Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Replisome Assembly at oriC , the Replication Origin of E. coli , Reveals an Explanation for Initiation Sites outside an Origin

Identifieur interne : 001857 ( Istex/Corpus ); précédent : 001856; suivant : 001858

Replisome Assembly at oriC , the Replication Origin of E. coli , Reveals an Explanation for Initiation Sites outside an Origin

Auteurs : Linhua Fang ; Megan J. Davey ; Mike O'Donnell

Source :

RBID : ISTEX:D867D2ED56ED4731C7B4FA256035A9850464BB53

English descriptors

Abstract

Abstract: This study outlines the events downstream of origin unwinding by DnaA, leading to assembly of two replication forks at the E. coli origin, oriC. We show that two hexamers of DnaB assemble onto the opposing strands of the resulting bubble, expanding it further, yet helicase action is not required. Primase cannot act until the helicases move 65 nucleotides or more. Once primers are formed, two molecules of the large DNA polymerase III holoenzyme machinery assemble into the bubble, forming two replication forks. Primer locations are heterogeneous; some are even outside oriC. This observation generalizes to many systems, prokaryotic and eukaryotic. Heterogeneous initiation sites are likely explained by primase functioning with a moving helicase target.

Url:
DOI: 10.1016/S1097-2765(00)80205-1

Links to Exploration step

ISTEX:D867D2ED56ED4731C7B4FA256035A9850464BB53

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Replisome Assembly at oriC , the Replication Origin of E. coli , Reveals an Explanation for Initiation Sites outside an Origin</title>
<author>
<name sortKey="Fang, Linhua" sort="Fang, Linhua" uniqKey="Fang L" first="Linhua" last="Fang">Linhua Fang</name>
<affiliation>
<mods:affiliation>Microbiology Department, Joan and Sanford I. Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10021, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Davey, Megan J" sort="Davey, Megan J" uniqKey="Davey M" first="Megan J" last="Davey">Megan J. Davey</name>
<affiliation>
<mods:affiliation>The Rockefeller University and, Howard Hughes Medical Institute, New York, New York 10021, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="O Donnell, Mike" sort="O Donnell, Mike" uniqKey="O Donnell M" first="Mike" last="O'Donnell">Mike O'Donnell</name>
<affiliation>
<mods:affiliation>E-mail: odonnel@rockvax.rockefeller.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>The Rockefeller University and, Howard Hughes Medical Institute, New York, New York 10021, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:D867D2ED56ED4731C7B4FA256035A9850464BB53</idno>
<date when="1999" year="1999">1999</date>
<idno type="doi">10.1016/S1097-2765(00)80205-1</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-7V1WXK28-9/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001857</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001857</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Replisome Assembly at oriC , the Replication Origin of E. coli , Reveals an Explanation for Initiation Sites outside an Origin</title>
<author>
<name sortKey="Fang, Linhua" sort="Fang, Linhua" uniqKey="Fang L" first="Linhua" last="Fang">Linhua Fang</name>
<affiliation>
<mods:affiliation>Microbiology Department, Joan and Sanford I. Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10021, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Davey, Megan J" sort="Davey, Megan J" uniqKey="Davey M" first="Megan J" last="Davey">Megan J. Davey</name>
<affiliation>
<mods:affiliation>The Rockefeller University and, Howard Hughes Medical Institute, New York, New York 10021, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="O Donnell, Mike" sort="O Donnell, Mike" uniqKey="O Donnell M" first="Mike" last="O'Donnell">Mike O'Donnell</name>
<affiliation>
<mods:affiliation>E-mail: odonnel@rockvax.rockefeller.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>The Rockefeller University and, Howard Hughes Medical Institute, New York, New York 10021, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Molecular Cell</title>
<title level="j" type="abbrev">MOLCEL</title>
<idno type="ISSN">1097-2765</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999">1999</date>
<biblScope unit="volume">4</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="541">541</biblScope>
<biblScope unit="page" to="553">553</biblScope>
</imprint>
<idno type="ISSN">1097-2765</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1097-2765</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Assay</term>
<term>Bidirectional</term>
<term>Bidirectional replication</term>
<term>Biol</term>
<term>Chem</term>
<term>Chromosomal</term>
<term>Chromosome</term>
<term>Coli</term>
<term>Coli origin</term>
<term>Core polymerases</term>
<term>Dnaa</term>
<term>Dnaa protein</term>
<term>Dnab</term>
<term>Dnab assembly</term>
<term>Dnab helicase</term>
<term>Dnab hexamer</term>
<term>Dnab hexamers</term>
<term>Dnab protein</term>
<term>Dnabpk</term>
<term>Dnac</term>
<term>Duplex</term>
<term>Edta</term>
<term>Escherichia</term>
<term>Escherichia coli</term>
<term>Experimental procedures</term>
<term>Filtration</term>
<term>Fmol</term>
<term>Footprint analysis</term>
<term>Funnell</term>
<term>Helicase</term>
<term>Helicase action</term>
<term>Helicase activity</term>
<term>Helicase motion</term>
<term>Helicases</term>
<term>Hexamer</term>
<term>Hexamers</term>
<term>Holoenzyme</term>
<term>Initiation sites</term>
<term>Junction sites</term>
<term>Kmno4</term>
<term>Kornberg</term>
<term>Lower strand</term>
<term>Marians</term>
<term>Molecular cell</term>
<term>Mutant</term>
<term>Nucleotide</term>
<term>Opposite strand</term>
<term>Oric</term>
<term>Oric plasmid</term>
<term>Oric sequence</term>
<term>Plasmid</term>
<term>Pmol</term>
<term>Polymerase</term>
<term>Primase</term>
<term>Primase action</term>
<term>Primer</term>
<term>Primer extension</term>
<term>Quantitated</term>
<term>Reaction buffer</term>
<term>Replication</term>
<term>Replication forks</term>
<term>Replication origin</term>
<term>Replication products</term>
<term>Replisome</term>
<term>Replisome assembly</term>
<term>Replisomes</term>
<term>Right panel</term>
<term>Ssdna</term>
<term>Strand</term>
<term>Subunit</term>
<term>Unlabeled</term>
<term>Unwinding</term>
<term>Upper strand</term>
<term>Yuzhakov</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: This study outlines the events downstream of origin unwinding by DnaA, leading to assembly of two replication forks at the E. coli origin, oriC. We show that two hexamers of DnaB assemble onto the opposing strands of the resulting bubble, expanding it further, yet helicase action is not required. Primase cannot act until the helicases move 65 nucleotides or more. Once primers are formed, two molecules of the large DNA polymerase III holoenzyme machinery assemble into the bubble, forming two replication forks. Primer locations are heterogeneous; some are even outside oriC. This observation generalizes to many systems, prokaryotic and eukaryotic. Heterogeneous initiation sites are likely explained by primase functioning with a moving helicase target.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>dnab</json:string>
<json:string>oric</json:string>
<json:string>helicase</json:string>
<json:string>primase</json:string>
<json:string>dnac</json:string>
<json:string>polymerase</json:string>
<json:string>ssdna</json:string>
<json:string>replication</json:string>
<json:string>pmol</json:string>
<json:string>dnaa</json:string>
<json:string>coli</json:string>
<json:string>primer</json:string>
<json:string>plasmid</json:string>
<json:string>holoenzyme</json:string>
<json:string>helicases</json:string>
<json:string>hexamer</json:string>
<json:string>kornberg</json:string>
<json:string>replisome</json:string>
<json:string>hexamers</json:string>
<json:string>helicase action</json:string>
<json:string>biol</json:string>
<json:string>bidirectional</json:string>
<json:string>dnabpk</json:string>
<json:string>dnab hexamers</json:string>
<json:string>yuzhakov</json:string>
<json:string>chem</json:string>
<json:string>unwinding</json:string>
<json:string>escherichia</json:string>
<json:string>fmol</json:string>
<json:string>marians</json:string>
<json:string>replisomes</json:string>
<json:string>primase action</json:string>
<json:string>kmno4</json:string>
<json:string>replisome assembly</json:string>
<json:string>helicase activity</json:string>
<json:string>edta</json:string>
<json:string>reaction buffer</json:string>
<json:string>filtration</json:string>
<json:string>replication forks</json:string>
<json:string>funnell</json:string>
<json:string>bidirectional replication</json:string>
<json:string>subunit</json:string>
<json:string>mutant</json:string>
<json:string>quantitated</json:string>
<json:string>assay</json:string>
<json:string>chromosomal</json:string>
<json:string>unlabeled</json:string>
<json:string>escherichia coli</json:string>
<json:string>experimental procedures</json:string>
<json:string>initiation sites</json:string>
<json:string>chromosome</json:string>
<json:string>dnab hexamer</json:string>
<json:string>helicase motion</json:string>
<json:string>replication origin</json:string>
<json:string>right panel</json:string>
<json:string>dnaa protein</json:string>
<json:string>strand</json:string>
<json:string>dnab protein</json:string>
<json:string>molecular cell</json:string>
<json:string>oric plasmid</json:string>
<json:string>junction sites</json:string>
<json:string>primer extension</json:string>
<json:string>upper strand</json:string>
<json:string>nucleotide</json:string>
<json:string>opposite strand</json:string>
<json:string>core polymerases</json:string>
<json:string>oric sequence</json:string>
<json:string>coli origin</json:string>
<json:string>replication products</json:string>
<json:string>dnab assembly</json:string>
<json:string>dnab helicase</json:string>
<json:string>lower strand</json:string>
<json:string>footprint analysis</json:string>
<json:string>duplex</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Linhua Fang</name>
<affiliations>
<json:string>Microbiology Department, Joan and Sanford I. Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10021, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Megan J Davey</name>
<affiliations>
<json:string>The Rockefeller University and, Howard Hughes Medical Institute, New York, New York 10021, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Mike O'Donnell</name>
<affiliations>
<json:string>E-mail: odonnel@rockvax.rockefeller.edu</json:string>
<json:string>The Rockefeller University and, Howard Hughes Medical Institute, New York, New York 10021, USA</json:string>
</affiliations>
</json:item>
</author>
<arkIstex>ark:/67375/6H6-7V1WXK28-9</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Abstract: This study outlines the events downstream of origin unwinding by DnaA, leading to assembly of two replication forks at the E. coli origin, oriC. We show that two hexamers of DnaB assemble onto the opposing strands of the resulting bubble, expanding it further, yet helicase action is not required. Primase cannot act until the helicases move 65 nucleotides or more. Once primers are formed, two molecules of the large DNA polymerase III holoenzyme machinery assemble into the bubble, forming two replication forks. Primer locations are heterogeneous; some are even outside oriC. This observation generalizes to many systems, prokaryotic and eukaryotic. Heterogeneous initiation sites are likely explained by primase functioning with a moving helicase target.</abstract>
<qualityIndicators>
<score>8.38</score>
<pdfWordCount>10153</pdfWordCount>
<pdfCharCount>59079</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>13</pdfPageCount>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>115</abstractWordCount>
<abstractCharCount>768</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Replisome Assembly at oriC , the Replication Origin of E. coli , Reveals an Explanation for Initiation Sites outside an Origin</title>
<pmid>
<json:string>10549286</json:string>
</pmid>
<pii>
<json:string>S1097-2765(00)80205-1</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Molecular Cell</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1999</publicationDate>
<issn>
<json:string>1097-2765</json:string>
</issn>
<pii>
<json:string>S1097-2765(00)X0030-5</json:string>
</pii>
<volume>4</volume>
<issue>4</issue>
<pages>
<first>541</first>
<last>553</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>1999</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Cornell University</json:string>
<json:string>The Rockefeller University</json:string>
<json:string>Howard Hughes Medical Institute New York, New York</json:string>
<json:string>GM</json:string>
<json:string>National Institutes of Health</json:string>
</orgName>
<orgName_funder>
<json:string>GM</json:string>
<json:string>National Institutes of Health</json:string>
</orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>J. Biol</json:string>
<json:string>J. Virol</json:string>
<json:string>Hiroshi Hiasa</json:string>
<json:string>Mike O’Donnell</json:string>
<json:string>DnaB</json:string>
<json:string>Kenneth J. Marians</json:string>
<json:string>J. Mol</json:string>
<json:string>A. Reactions</json:string>
<json:string>A. DnaC</json:string>
<json:string>Sciences</json:string>
<json:string>C. Fractions</json:string>
</persName>
<placeName>
<json:string>NY.</json:string>
<json:string>York</json:string>
<json:string>Borowiec</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Hirose et al., 1983</json:string>
<json:string>Fang, 1999</json:string>
<json:string>Hingorani and O’Donnell, 1998</json:string>
<json:string>Studwell and O’Donnell, 1990</json:string>
<json:string>Frappier and O’Donnell, 1992</json:string>
<json:string>Tsurimoto and Matsubara, 1984</json:string>
<json:string>Shrimankar et al., 1992</json:string>
<json:string>Kaguni et al., 1982</json:string>
<json:string>Borowiec et al., 1990</json:string>
<json:string>Mukherjee et al., 1985</json:string>
<json:string>Marians, 1992</json:string>
<json:string>Jezewska et al., 1996</json:string>
<json:string>Gille and Messer, 1991</json:string>
<json:string>Mukhopadhyay and Chattoraj, 1993</json:string>
<json:string>Chen et al., 1998</json:string>
<json:string>Funnell et al., 1987</json:string>
<json:string>Hiasa and Marians (1994)</json:string>
<json:string>Bernander et al., 1992</json:string>
<json:string>Kitani et al., 1985</json:string>
<json:string>Kim et al., 1996</json:string>
<json:string>Lemon and Grossman, 1998</json:string>
<json:string>Hiasa and Marians, 1994</json:string>
<json:string>Gillette et al., 1994</json:string>
<json:string>Kelman and O’Donnell, 1995</json:string>
<json:string>Bielinsky and Gerbi, 1998</json:string>
<json:string>Wahle et al., 1989</json:string>
<json:string>Yuzhakov et al., 1996</json:string>
<json:string>Fuller et al., 1984</json:string>
<json:string>Schnos et al., 1988</json:string>
<json:string>Hwang and Kornberg, 1992</json:string>
<json:string>Webb et al., 1997</json:string>
<json:string>Kobori and Kornberg, 1982</json:string>
<json:string>Smelkova and Borowiec, 1998</json:string>
<json:string>Kohara et al., 1985</json:string>
<json:string>Bramhill and Kornberg, 1988</json:string>
<json:string>Arai and Kornberg, 1979</json:string>
<json:string>Hiasa et al., 1996</json:string>
<json:string>Stukenberg and O’Donnell, 1995</json:string>
<json:string>San Martin et al., 1995</json:string>
<json:string>Kornberg and Baker, 1992</json:string>
<json:string>Allen et al., 1993</json:string>
<json:string>Baker et al., 1987</json:string>
<json:string>Konieczny et al., 1997</json:string>
<json:string>Yu et al., 1996</json:string>
<json:string>Turner and O’Donnell, 1995</json:string>
<json:string>Bullock and Denis, 1995</json:string>
<json:string>Hay and DePamphilis, 1982</json:string>
<json:string>Lee and Lehman, 1997</json:string>
<json:string>Parada and Marians, 1991</json:string>
<json:string>Marszalek and Kaguni, 1994</json:string>
<json:string>Ng and Marians, 1996</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/6H6-7V1WXK28-9</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - cell biology</json:string>
<json:string>2 - biochemistry & molecular biology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - biomedical research</json:string>
<json:string>3 - developmental biology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Cell Biology</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Molecular Biology</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
<json:string>4 - microbiologie</json:string>
</inist>
</categories>
<publicationDate>1999</publicationDate>
<copyrightDate>1999</copyrightDate>
<doi>
<json:string>10.1016/S1097-2765(00)80205-1</json:string>
</doi>
<id>D867D2ED56ED4731C7B4FA256035A9850464BB53</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-7V1WXK28-9/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-7V1WXK28-9/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/6H6-7V1WXK28-9/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Replisome Assembly at oriC , the Replication Origin of E. coli , Reveals an Explanation for Initiation Sites outside an Origin</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://scientific-publisher.data.istex.fr">ELSEVIER</publisher>
<availability>
<licence>
<p>©1999 Cell Press</p>
</licence>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</p>
</availability>
<date>1999</date>
</publicationStmt>
<notesStmt>
<note type="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
<note type="content">Section title: Article</note>
<note type="content">Figure 5: Mapping of RNA/DNA Junctions of Initial Start Sites at oriC Primer extension using 32P-labeled primers was used to determine the location of RNA/DNA junctions on replicated pUC18 oriC as described under Experimental Procedures. (A) Autoradiogram of a sequencing gel of 32P-primer extension products that map RNA/DNA junctions on the bottom strand. (B) Autoradiogram of 32P-primer extension products on the top strand. The positions of the 13-mer repeats (L, M, and R) and AT-rich region in oriC are illustrated on the side of the gels. (C) Summary of initiation sites using 96 nM primase. Vertical line heights reflect relative intensities in the sequencing gels. Horizontal arrows indicate direction of DNA synthesis. The vertical arrow, at position 392358 9 (+1), indicates the left boundary of oriC. Numbers reflect the position in the E. coli genome. The number within parentheses indicates the position in the minimal oriC sequence (Kornberg and Baker 1992). (D) Bidirectional replication was confirmed using pBROTB (shown in upper panel) as described in Experimental Procedures. The 2 and 3 kb fragments between terB sites and oriC are indicated on the plasmid map. An autoradiogram of a denaturing agarose gel of the replication products (lower panel) with increasing amounts of DnaB (as indicated) is shown. Quantitation of the 2 and 3 kb bands using a phosphorimager indicates equal amounts of each in every lane (taking into account differences in intensity due to their different sizes).</note>
<note type="content">Figure 1: Assembly of Proteins at the Origin Five different experiments, differing only in which radioactive-labeled protein was added in place of the unlabeled protein, were performed as described in Experimental Procedures. Proteins were assembled onto plasmid DNA either containing oriC (closed circles), or lacking it (open circles) followed by gel filtration. Radiolabeled proteins were located in column fractions by liquid scintillation and quantitated from their known specific activity: (A) 32P-DnaB, (B) 3H-DnaC, (C) 3H-Pol III*, (D) 3H-β, and (E) 32P-primase. The diagram at the top summarizes the results. Two hexamers of DnaB are shown as encircling ssDNA. The two ring-shaped β clamps are each shown as a torus encircling a primed site. Each Pol III* contains two core polymerases and one γ complex clamp loader (not shown).</note>
<note type="content">Figure 2: Characterization of DnaB ATP Site Mutants Assays were performed as described under Experimental Procedures. In each assay, all components were kept the same except for the type of DnaB used: DnaBPK (circles), DnaBPKK236R (diamonds), DnaBPKK236A (triangles), or no DnaB ([D] only, squares). (A) ATP binding. (B) ATPase activity using M13mp18 ssDNA as a DNA effector. (C) Oligonucleotide displacement from M13mp18 ssDNA. (D) General priming activity testing the ability of different DnaB proteins to support general priming by primase on M13mp18 ssDNA. (E) oriC replication assays.</note>
<note type="content">Figure 3: Two DnaB Hexamers Assemble onto oriC in the Absence of Helicase Action DnaB assembly experiments are described in Experimental Procedures. (A) Assembly of DnaBPK (left panel) or DnaBPKK236A (right panel) onto M13mp18 ssDNA in the presence (triangles) or absence (circles) of DnaC. (B) 32P-labeled DnaBPKK236A and 3H-DnaC were incubated with plasmid DNA along with DnaA protein, HU, and SSB. Assembly of DnaBPKK236A, left panel; 3HDnaC (right panel); pUC18 oriC, triangles; pUC18, circles.</note>
<note type="content">Figure 4: Helicase Action Is Needed for Priming and Replisome Assembly (A) Assembly of Pol III* (left panel) and β (right panel) on pUC18 oriC was performed using either DnaBPK (closed circles) or DnaBPKK236A (open circles). (B) RNA synthesis on pUC18 oriC was performed using either DnaBPK (closed circles) or DnaBPKK236A (open circles).</note>
<note type="content">Figure 6: Footprint Analysis of DnaB on oriC Using KMnO4 (A) KMnO4 modification experiments were performed as described under Experimental Procedures. In brief, pUC18 oriC was incubated with DnaA and/or DnaBPKK236A plus DnaC, then treated with KMnO4, followed by location of the modified residues by primer extension analysis in a sequencing gel. The left gel is the upper strand analysis, and the lower strand is shown to the right. All reactions except lane 1 contained 0.46 μg DnaA. Lane 1, 0.35 μg DnaBPKK236A; lane 2, no DnaBPKK236A; lane 3, 0.18 μg DnaBPKK236A; and lane 4, 0.35 μg DnaBPKK236A. DnaC was added at an equimolar ratio to DnaBPKK236A (monomer to monomer). The diagram between the gels shows ssDNA in the DnaA-induced open complex (middle diagram) compared to the DnaBC-induced expanded melted region of the origin to include the L 13-mer and AT-rich region (bottom diagram). The direction of helicase movement is indicated by the arrows. (B) Scale representation of DnaB on a 55 nt bubble. The dimensions of DnaB are based on those from electron microscope studies.</note>
<note type="content">Figure 7: Stages in Assembly of Two Opposed Replication Forks at oriC (A) Stages in replisome assembly. Stage I, two DnaB hexamers are assembled onto the DnaA-activated open complex through the action of DnaC. Stage II, DnaB helicases pass each other creating ssDNA for primase action. The passing action ensures that the region between the helicases is melted and remains so upon being coated with SSB. Primase must interact with DnaB to initiate RNA synthesis resulting in RNA primers in cis to DnaB. Stage III, two replicases assemble onto the two primed sites. Stage IV, the two molecules of Pol III holoenzyme extend DNA opposite the motion of DnaB assembled on the same strand. Hence, the polymerases pass one another to reach the DnaB helicases on the opposite strand, which move in the same direction as DNA polymerization. (B) The factory model for replication indicates that the polymerases remain fixed while the DNA moves.</note>
<note type="content">Table 1: Stoichiometry of Replisome Components</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Replisome Assembly at oriC , the Replication Origin of E. coli , Reveals an Explanation for Initiation Sites outside an Origin</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Linhua</forename>
<surname>Fang</surname>
</persName>
<note type="biography">Present address: Molecular Staging Inc., 66 High Street, Guilford, Connecticut 06437.</note>
<affiliation>Present address: Molecular Staging Inc., 66 High Street, Guilford, Connecticut 06437.</affiliation>
<affiliation>Microbiology Department, Joan and Sanford I. Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10021, USA</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Megan J</forename>
<surname>Davey</surname>
</persName>
<affiliation>The Rockefeller University and, Howard Hughes Medical Institute, New York, New York 10021, USA</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Mike</forename>
<surname>O'Donnell</surname>
</persName>
<email>odonnel@rockvax.rockefeller.edu</email>
<note type="correspondence">
<p>Corresponding author: Mike O'Donnell, 212 327 7251 (phone), 212 327 7254 (fax)</p>
</note>
<affiliation>To whom correspondence should be addressed (e-mail: odonnel@rockvax.rockefeller.edu).</affiliation>
<affiliation>The Rockefeller University and, Howard Hughes Medical Institute, New York, New York 10021, USA</affiliation>
</author>
<idno type="istex">D867D2ED56ED4731C7B4FA256035A9850464BB53</idno>
<idno type="ark">ark:/67375/6H6-7V1WXK28-9</idno>
<idno type="DOI">10.1016/S1097-2765(00)80205-1</idno>
<idno type="PII">S1097-2765(00)80205-1</idno>
</analytic>
<monogr>
<title level="j">Molecular Cell</title>
<title level="j" type="abbrev">MOLCEL</title>
<idno type="pISSN">1097-2765</idno>
<idno type="PII">S1097-2765(00)X0030-5</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999"></date>
<biblScope unit="volume">4</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="541">541</biblScope>
<biblScope unit="page" to="553">553</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1999</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Abstract: This study outlines the events downstream of origin unwinding by DnaA, leading to assembly of two replication forks at the E. coli origin, oriC. We show that two hexamers of DnaB assemble onto the opposing strands of the resulting bubble, expanding it further, yet helicase action is not required. Primase cannot act until the helicases move 65 nucleotides or more. Once primers are formed, two molecules of the large DNA polymerase III holoenzyme machinery assemble into the bubble, forming two replication forks. Primer locations are heterogeneous; some are even outside oriC. This observation generalizes to many systems, prokaryotic and eukaryotic. Heterogeneous initiation sites are likely explained by primase functioning with a moving helicase target.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="1999-08-13">Modified</change>
<change when="1999">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-7V1WXK28-9/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="gr4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="gr5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="gr6"></istex:entity>
<istex:entity SYSTEM="gr7" NDATA="IMAGE" name="gr7"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla" xml:lang="en">
<item-info>
<jid>MOLCEL</jid>
<aid>6107</aid>
<ce:pii>S1097-2765(00)80205-1</ce:pii>
<ce:doi>10.1016/S1097-2765(00)80205-1</ce:doi>
<ce:copyright type="other" year="1999">Cell Press</ce:copyright>
</item-info>
<head>
<ce:dochead>
<ce:textfn>Article</ce:textfn>
</ce:dochead>
<ce:title>Replisome Assembly at
<ce:italic>oriC</ce:italic>
, the Replication Origin of
<ce:italic>E. coli</ce:italic>
, Reveals an Explanation for Initiation Sites outside an Origin</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Linhua</ce:given-name>
<ce:surname>Fang</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>1</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="FN2">§</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Megan J</ce:given-name>
<ce:surname>Davey</ce:surname>
<ce:cross-ref refid="AFF2">
<ce:sup>2</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Mike</ce:given-name>
<ce:surname>O'Donnell</ce:surname>
<ce:cross-ref refid="AFF2">
<ce:sup>2</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="FN1"></ce:cross-ref>
<ce:cross-ref refid="COR1">*</ce:cross-ref>
<ce:e-address>odonnel@rockvax.rockefeller.edu</ce:e-address>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>1</ce:label>
<ce:textfn>Microbiology Department, Joan and Sanford I. Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10021, USA</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label>2</ce:label>
<ce:textfn>The Rockefeller University and, Howard Hughes Medical Institute, New York, New York 10021, USA</ce:textfn>
</ce:affiliation>
<ce:correspondence id="COR1">
<ce:label>*</ce:label>
<ce:text>Corresponding author: Mike O'Donnell, 212 327 7251 (phone), 212 327 7254 (fax)</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="16" month="6" year="1999"></ce:date-received>
<ce:date-revised day="13" month="8" year="1999"></ce:date-revised>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>This study outlines the events downstream of origin unwinding by DnaA, leading to assembly of two replication forks at the
<ce:italic>E. coli</ce:italic>
origin,
<ce:italic>oriC</ce:italic>
. We show that two hexamers of DnaB assemble onto the opposing strands of the resulting bubble, expanding it further, yet helicase action is not required. Primase cannot act until the helicases move 65 nucleotides or more. Once primers are formed, two molecules of the large DNA polymerase III holoenzyme machinery assemble into the bubble, forming two replication forks. Primer locations are heterogeneous; some are even outside
<ce:italic>oriC</ce:italic>
. This observation generalizes to many systems, prokaryotic and eukaryotic. Heterogeneous initiation sites are likely explained by primase functioning with a moving helicase target.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Replisome Assembly at oriC , the Replication Origin of E. coli , Reveals an Explanation for Initiation Sites outside an Origin</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>Replisome Assembly at</title>
</titleInfo>
<name type="personal">
<namePart type="given">Linhua</namePart>
<namePart type="family">Fang</namePart>
<affiliation>Microbiology Department, Joan and Sanford I. Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10021, USA</affiliation>
<description>Present address: Molecular Staging Inc., 66 High Street, Guilford, Connecticut 06437.</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Megan J</namePart>
<namePart type="family">Davey</namePart>
<affiliation>The Rockefeller University and, Howard Hughes Medical Institute, New York, New York 10021, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mike</namePart>
<namePart type="family">O'Donnell</namePart>
<affiliation>E-mail: odonnel@rockvax.rockefeller.edu</affiliation>
<affiliation>The Rockefeller University and, Howard Hughes Medical Institute, New York, New York 10021, USA</affiliation>
<description>Corresponding author: Mike O'Donnell, 212 327 7251 (phone), 212 327 7254 (fax)</description>
<description>To whom correspondence should be addressed (e-mail: odonnel@rockvax.rockefeller.edu).</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1999</dateIssued>
<dateModified encoding="w3cdtf">1999-08-13</dateModified>
<copyrightDate encoding="w3cdtf">1999</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: This study outlines the events downstream of origin unwinding by DnaA, leading to assembly of two replication forks at the E. coli origin, oriC. We show that two hexamers of DnaB assemble onto the opposing strands of the resulting bubble, expanding it further, yet helicase action is not required. Primase cannot act until the helicases move 65 nucleotides or more. Once primers are formed, two molecules of the large DNA polymerase III holoenzyme machinery assemble into the bubble, forming two replication forks. Primer locations are heterogeneous; some are even outside oriC. This observation generalizes to many systems, prokaryotic and eukaryotic. Heterogeneous initiation sites are likely explained by primase functioning with a moving helicase target.</abstract>
<note type="content">Section title: Article</note>
<note type="content">Figure 5: Mapping of RNA/DNA Junctions of Initial Start Sites at oriC Primer extension using 32P-labeled primers was used to determine the location of RNA/DNA junctions on replicated pUC18 oriC as described under Experimental Procedures. (A) Autoradiogram of a sequencing gel of 32P-primer extension products that map RNA/DNA junctions on the bottom strand. (B) Autoradiogram of 32P-primer extension products on the top strand. The positions of the 13-mer repeats (L, M, and R) and AT-rich region in oriC are illustrated on the side of the gels. (C) Summary of initiation sites using 96 nM primase. Vertical line heights reflect relative intensities in the sequencing gels. Horizontal arrows indicate direction of DNA synthesis. The vertical arrow, at position 392358 9 (+1), indicates the left boundary of oriC. Numbers reflect the position in the E. coli genome. The number within parentheses indicates the position in the minimal oriC sequence (Kornberg and Baker 1992). (D) Bidirectional replication was confirmed using pBROTB (shown in upper panel) as described in Experimental Procedures. The 2 and 3 kb fragments between terB sites and oriC are indicated on the plasmid map. An autoradiogram of a denaturing agarose gel of the replication products (lower panel) with increasing amounts of DnaB (as indicated) is shown. Quantitation of the 2 and 3 kb bands using a phosphorimager indicates equal amounts of each in every lane (taking into account differences in intensity due to their different sizes).</note>
<note type="content">Figure 1: Assembly of Proteins at the Origin Five different experiments, differing only in which radioactive-labeled protein was added in place of the unlabeled protein, were performed as described in Experimental Procedures. Proteins were assembled onto plasmid DNA either containing oriC (closed circles), or lacking it (open circles) followed by gel filtration. Radiolabeled proteins were located in column fractions by liquid scintillation and quantitated from their known specific activity: (A) 32P-DnaB, (B) 3H-DnaC, (C) 3H-Pol III*, (D) 3H-β, and (E) 32P-primase. The diagram at the top summarizes the results. Two hexamers of DnaB are shown as encircling ssDNA. The two ring-shaped β clamps are each shown as a torus encircling a primed site. Each Pol III* contains two core polymerases and one γ complex clamp loader (not shown).</note>
<note type="content">Figure 2: Characterization of DnaB ATP Site Mutants Assays were performed as described under Experimental Procedures. In each assay, all components were kept the same except for the type of DnaB used: DnaBPK (circles), DnaBPKK236R (diamonds), DnaBPKK236A (triangles), or no DnaB ([D] only, squares). (A) ATP binding. (B) ATPase activity using M13mp18 ssDNA as a DNA effector. (C) Oligonucleotide displacement from M13mp18 ssDNA. (D) General priming activity testing the ability of different DnaB proteins to support general priming by primase on M13mp18 ssDNA. (E) oriC replication assays.</note>
<note type="content">Figure 3: Two DnaB Hexamers Assemble onto oriC in the Absence of Helicase Action DnaB assembly experiments are described in Experimental Procedures. (A) Assembly of DnaBPK (left panel) or DnaBPKK236A (right panel) onto M13mp18 ssDNA in the presence (triangles) or absence (circles) of DnaC. (B) 32P-labeled DnaBPKK236A and 3H-DnaC were incubated with plasmid DNA along with DnaA protein, HU, and SSB. Assembly of DnaBPKK236A, left panel; 3HDnaC (right panel); pUC18 oriC, triangles; pUC18, circles.</note>
<note type="content">Figure 4: Helicase Action Is Needed for Priming and Replisome Assembly (A) Assembly of Pol III* (left panel) and β (right panel) on pUC18 oriC was performed using either DnaBPK (closed circles) or DnaBPKK236A (open circles). (B) RNA synthesis on pUC18 oriC was performed using either DnaBPK (closed circles) or DnaBPKK236A (open circles).</note>
<note type="content">Figure 6: Footprint Analysis of DnaB on oriC Using KMnO4 (A) KMnO4 modification experiments were performed as described under Experimental Procedures. In brief, pUC18 oriC was incubated with DnaA and/or DnaBPKK236A plus DnaC, then treated with KMnO4, followed by location of the modified residues by primer extension analysis in a sequencing gel. The left gel is the upper strand analysis, and the lower strand is shown to the right. All reactions except lane 1 contained 0.46 μg DnaA. Lane 1, 0.35 μg DnaBPKK236A; lane 2, no DnaBPKK236A; lane 3, 0.18 μg DnaBPKK236A; and lane 4, 0.35 μg DnaBPKK236A. DnaC was added at an equimolar ratio to DnaBPKK236A (monomer to monomer). The diagram between the gels shows ssDNA in the DnaA-induced open complex (middle diagram) compared to the DnaBC-induced expanded melted region of the origin to include the L 13-mer and AT-rich region (bottom diagram). The direction of helicase movement is indicated by the arrows. (B) Scale representation of DnaB on a 55 nt bubble. The dimensions of DnaB are based on those from electron microscope studies.</note>
<note type="content">Figure 7: Stages in Assembly of Two Opposed Replication Forks at oriC (A) Stages in replisome assembly. Stage I, two DnaB hexamers are assembled onto the DnaA-activated open complex through the action of DnaC. Stage II, DnaB helicases pass each other creating ssDNA for primase action. The passing action ensures that the region between the helicases is melted and remains so upon being coated with SSB. Primase must interact with DnaB to initiate RNA synthesis resulting in RNA primers in cis to DnaB. Stage III, two replicases assemble onto the two primed sites. Stage IV, the two molecules of Pol III holoenzyme extend DNA opposite the motion of DnaB assembled on the same strand. Hence, the polymerases pass one another to reach the DnaB helicases on the opposite strand, which move in the same direction as DNA polymerization. (B) The factory model for replication indicates that the polymerases remain fixed while the DNA moves.</note>
<note type="content">Table 1: Stoichiometry of Replisome Components</note>
<relatedItem type="host">
<titleInfo>
<title>Molecular Cell</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>MOLCEL</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1999</dateIssued>
</originInfo>
<identifier type="ISSN">1097-2765</identifier>
<identifier type="PII">S1097-2765(00)X0030-5</identifier>
<part>
<date>1999</date>
<detail type="volume">
<number>4</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>4</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>459</start>
<end>664</end>
</extent>
<extent unit="pages">
<start>541</start>
<end>553</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">D867D2ED56ED4731C7B4FA256035A9850464BB53</identifier>
<identifier type="ark">ark:/67375/6H6-7V1WXK28-9</identifier>
<identifier type="DOI">10.1016/S1097-2765(00)80205-1</identifier>
<identifier type="PII">S1097-2765(00)80205-1</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©1999 Cell Press</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
<recordOrigin>Cell Press, ©1999</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-7V1WXK28-9/record.json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001857 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001857 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:D867D2ED56ED4731C7B4FA256035A9850464BB53
   |texte=   Replisome Assembly at oriC , the Replication Origin of E. coli , Reveals an Explanation for Initiation Sites outside an Origin
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021