Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cell Type-Specific Expression of Fasciclin II Isoforms Reveals Neuronal–Glial Interactions during Peripheral Nerve Growth

Identifieur interne : 001851 ( Istex/Corpus ); précédent : 001850; suivant : 001852

Cell Type-Specific Expression of Fasciclin II Isoforms Reveals Neuronal–Glial Interactions during Peripheral Nerve Growth

Auteurs : Jay W. Wright ; Philip F. Copenhaver

Source :

RBID : ISTEX:9B1FEFC0F55C6A9A8B8EC252133E4F39349D1959

English descriptors

Abstract

Abstract: During the formation of the insect peripheral nervous system (PNS), the cell adhesion receptor fasciclin II has been shown to play a prominent role in axonal fasciculation and synapse formation during motor neuron outgrowth. In the moth Manduca, fasciclin II (MFas II) is expressed both as a transmembrane isoform (TM-MFas II) and a glycosyl phosphatidylinositol-linked isoform (GPI-MFas II). By using RNA and antibody probes, we have shown that these two isoforms are expressed in nonoverlapping patterns: TM-MFas II is expressed exclusively by neurons and becomes localized to their most motile regions, while GPI-MFas II is expressed primarily by the glial cells that ensheath the peripheral nerves. This cell-type specificity of expression allowed us to monitor the nature of neuronal–glial interactions during PNS development. The outgrowth of TM-MFas II-positive axons in many regions preceded the arrival of GPI-MFas II-expressing glial processes that enwrapped them. In a few key locations, however, GPI-MFas II-positive glial cells differentiated before the arrival of the first axons and prefigured their subsequent trajectories. Prior inhibition of GPI-MFas II expression disrupted the subsequent outgrowth of axons at these locations but not elsewhere in the PNS. Our results suggest that the two isoforms of MFas II play distinct roles with respect to cellular motility and nerve formation.

Url:
DOI: 10.1006/dbio.2001.0247

Links to Exploration step

ISTEX:9B1FEFC0F55C6A9A8B8EC252133E4F39349D1959

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cell Type-Specific Expression of Fasciclin II Isoforms Reveals Neuronal–Glial Interactions during Peripheral Nerve Growth</title>
<author>
<name sortKey="Wright, Jay W" sort="Wright, Jay W" uniqKey="Wright J" first="Jay W." last="Wright">Jay W. Wright</name>
<affiliation>
<mods:affiliation>Department of Cell and Developmental Biology L-215, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97201</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Copenhaver, Philip F" sort="Copenhaver, Philip F" uniqKey="Copenhaver P" first="Philip F." last="Copenhaver">Philip F. Copenhaver</name>
<affiliation>
<mods:affiliation>Department of Cell and Developmental Biology L-215, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97201</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:9B1FEFC0F55C6A9A8B8EC252133E4F39349D1959</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1006/dbio.2001.0247</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-1LWFF0V5-Q/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001851</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001851</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Cell Type-Specific Expression of Fasciclin II Isoforms Reveals Neuronal–Glial Interactions during Peripheral Nerve Growth</title>
<author>
<name sortKey="Wright, Jay W" sort="Wright, Jay W" uniqKey="Wright J" first="Jay W." last="Wright">Jay W. Wright</name>
<affiliation>
<mods:affiliation>Department of Cell and Developmental Biology L-215, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97201</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Copenhaver, Philip F" sort="Copenhaver, Philip F" uniqKey="Copenhaver P" first="Philip F." last="Copenhaver">Philip F. Copenhaver</name>
<affiliation>
<mods:affiliation>Department of Cell and Developmental Biology L-215, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97201</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Developmental Biology</title>
<title level="j" type="abbrev">YDBIO</title>
<idno type="ISSN">0012-1606</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001">2001</date>
<biblScope unit="volume">234</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="24">24</biblScope>
<biblScope unit="page" to="41">41</biblScope>
</imprint>
<idno type="ISSN">0012-1606</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0012-1606</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Manduca sexta.</term>
<term>adhesion</term>
<term>fasciculation</term>
<term>growth cone</term>
<term>insect</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Academic press</term>
<term>Adhesion</term>
<term>Antisense</term>
<term>Antisense odns</term>
<term>Arrowhead</term>
<term>Axon</term>
<term>Axon fascicles</term>
<term>Axon outgrowth</term>
<term>Axon pathways</term>
<term>Axonal</term>
<term>Axonal guidance</term>
<term>Bastiani</term>
<term>Biol</term>
<term>Black arrowhead</term>
<term>Black arrowheads</term>
<term>Black arrows</term>
<term>Bridge formation</term>
<term>Bridge glia</term>
<term>Cellular motility</term>
<term>Copenhaver</term>
<term>Copyright</term>
<term>Cultured embryos</term>
<term>Developmental expression</term>
<term>Dorsal</term>
<term>Dorsal nerve</term>
<term>Drosophila</term>
<term>Embryo</term>
<term>Embryogenesis</term>
<term>Embryonic</term>
<term>Embryonic development</term>
<term>Ensheathed</term>
<term>Extracellular</term>
<term>Extracellular domain</term>
<term>Fascicle</term>
<term>Fasciclin</term>
<term>Ganglion</term>
<term>Genetic analysis</term>
<term>Glia</term>
<term>Glial</term>
<term>Glial bridge</term>
<term>Glial cells</term>
<term>Glial interactions</term>
<term>Glial processes</term>
<term>Goodman</term>
<term>Gpimfas</term>
<term>Grasshopper</term>
<term>Grenningloh</term>
<term>Growth cone guidance</term>
<term>Growth cones</term>
<term>Harrelson</term>
<term>Hybridization</term>
<term>Hybridization histochemistry</term>
<term>Immunohistochemical staining</term>
<term>Immunoreactivity</term>
<term>Immunostained</term>
<term>Initial outgrowth</term>
<term>Isoform</term>
<term>Isoforms</term>
<term>Kinase</term>
<term>Large number</term>
<term>Lateral branch</term>
<term>Localized</term>
<term>Manduca</term>
<term>Manduca sexta</term>
<term>Mesodermal</term>
<term>Mfa</term>
<term>Motility</term>
<term>Motor axons</term>
<term>Motor terminals</term>
<term>Mrna</term>
<term>Ncam</term>
<term>Nerve</term>
<term>Nerve branch</term>
<term>Nervous system</term>
<term>Neuromuscular junction</term>
<term>Neuron</term>
<term>Neuronal</term>
<term>Neuronal migration</term>
<term>Neuronal motility</term>
<term>Neurosci</term>
<term>Nomarski optics</term>
<term>Nonneural cells</term>
<term>Odns</term>
<term>Other insects</term>
<term>Outgrowth</term>
<term>Pathway</term>
<term>Peripheral glia</term>
<term>Peripheral glial cells</term>
<term>Peripheral nerves</term>
<term>Phenotype</term>
<term>Precursor</term>
<term>Previous work</term>
<term>Receptor</term>
<term>Schwann</term>
<term>Schwann cells</term>
<term>Short processes</term>
<term>Soma</term>
<term>Spiracle</term>
<term>Subsequent trajectories</term>
<term>Subset</term>
<term>Synapse formation</term>
<term>Synaptic</term>
<term>Taghert</term>
<term>Target muscles</term>
<term>Trajectory</term>
<term>Transmembrane</term>
<term>Transmembrane isoform</term>
<term>Transverse nerve</term>
<term>Vertebrate</term>
<term>White arrowhead</term>
<term>White arrows</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: During the formation of the insect peripheral nervous system (PNS), the cell adhesion receptor fasciclin II has been shown to play a prominent role in axonal fasciculation and synapse formation during motor neuron outgrowth. In the moth Manduca, fasciclin II (MFas II) is expressed both as a transmembrane isoform (TM-MFas II) and a glycosyl phosphatidylinositol-linked isoform (GPI-MFas II). By using RNA and antibody probes, we have shown that these two isoforms are expressed in nonoverlapping patterns: TM-MFas II is expressed exclusively by neurons and becomes localized to their most motile regions, while GPI-MFas II is expressed primarily by the glial cells that ensheath the peripheral nerves. This cell-type specificity of expression allowed us to monitor the nature of neuronal–glial interactions during PNS development. The outgrowth of TM-MFas II-positive axons in many regions preceded the arrival of GPI-MFas II-expressing glial processes that enwrapped them. In a few key locations, however, GPI-MFas II-positive glial cells differentiated before the arrival of the first axons and prefigured their subsequent trajectories. Prior inhibition of GPI-MFas II expression disrupted the subsequent outgrowth of axons at these locations but not elsewhere in the PNS. Our results suggest that the two isoforms of MFas II play distinct roles with respect to cellular motility and nerve formation.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>glial</json:string>
<json:string>axon</json:string>
<json:string>fasciclin</json:string>
<json:string>isoforms</json:string>
<json:string>glial cells</json:string>
<json:string>dorsal</json:string>
<json:string>dorsal nerve</json:string>
<json:string>mfa</json:string>
<json:string>glia</json:string>
<json:string>ganglion</json:string>
<json:string>neuron</json:string>
<json:string>copenhaver</json:string>
<json:string>drosophila</json:string>
<json:string>isoform</json:string>
<json:string>mrna</json:string>
<json:string>manduca</json:string>
<json:string>academic press</json:string>
<json:string>copyright</json:string>
<json:string>glial processes</json:string>
<json:string>outgrowth</json:string>
<json:string>neuronal</json:string>
<json:string>embryo</json:string>
<json:string>axonal</json:string>
<json:string>fascicle</json:string>
<json:string>biol</json:string>
<json:string>arrowhead</json:string>
<json:string>pathway</json:string>
<json:string>odns</json:string>
<json:string>transverse nerve</json:string>
<json:string>grenningloh</json:string>
<json:string>receptor</json:string>
<json:string>growth cones</json:string>
<json:string>transmembrane</json:string>
<json:string>taghert</json:string>
<json:string>peripheral nerves</json:string>
<json:string>glial bridge</json:string>
<json:string>hybridization</json:string>
<json:string>motility</json:string>
<json:string>white arrowhead</json:string>
<json:string>synaptic</json:string>
<json:string>gpimfas</json:string>
<json:string>ensheathed</json:string>
<json:string>schwann</json:string>
<json:string>embryogenesis</json:string>
<json:string>phenotype</json:string>
<json:string>ncam</json:string>
<json:string>spiracle</json:string>
<json:string>subset</json:string>
<json:string>nervous system</json:string>
<json:string>immunostained</json:string>
<json:string>kinase</json:string>
<json:string>grasshopper</json:string>
<json:string>harrelson</json:string>
<json:string>goodman</json:string>
<json:string>immunoreactivity</json:string>
<json:string>antisense</json:string>
<json:string>peripheral glia</json:string>
<json:string>bastiani</json:string>
<json:string>precursor</json:string>
<json:string>neurosci</json:string>
<json:string>extracellular</json:string>
<json:string>mesodermal</json:string>
<json:string>peripheral glial cells</json:string>
<json:string>black arrows</json:string>
<json:string>black arrowheads</json:string>
<json:string>localized</json:string>
<json:string>genetic analysis</json:string>
<json:string>bridge glia</json:string>
<json:string>axon fascicles</json:string>
<json:string>axonal guidance</json:string>
<json:string>motor terminals</json:string>
<json:string>neuronal migration</json:string>
<json:string>white arrows</json:string>
<json:string>embryonic</json:string>
<json:string>adhesion</json:string>
<json:string>soma</json:string>
<json:string>trajectory</json:string>
<json:string>manduca sexta</json:string>
<json:string>black arrowhead</json:string>
<json:string>hybridization histochemistry</json:string>
<json:string>schwann cells</json:string>
<json:string>transmembrane isoform</json:string>
<json:string>bridge formation</json:string>
<json:string>extracellular domain</json:string>
<json:string>glial interactions</json:string>
<json:string>embryonic development</json:string>
<json:string>other insects</json:string>
<json:string>nomarski optics</json:string>
<json:string>growth cone guidance</json:string>
<json:string>motor axons</json:string>
<json:string>axon pathways</json:string>
<json:string>target muscles</json:string>
<json:string>immunohistochemical staining</json:string>
<json:string>lateral branch</json:string>
<json:string>vertebrate</json:string>
<json:string>nerve</json:string>
<json:string>neuronal motility</json:string>
<json:string>nerve branch</json:string>
<json:string>subsequent trajectories</json:string>
<json:string>neuromuscular junction</json:string>
<json:string>axon outgrowth</json:string>
<json:string>antisense odns</json:string>
<json:string>cellular motility</json:string>
<json:string>short processes</json:string>
<json:string>cultured embryos</json:string>
<json:string>previous work</json:string>
<json:string>developmental expression</json:string>
<json:string>synapse formation</json:string>
<json:string>large number</json:string>
<json:string>initial outgrowth</json:string>
<json:string>nonneural cells</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Jay W. Wright</name>
<affiliations>
<json:string>Department of Cell and Developmental Biology L-215, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97201</json:string>
</affiliations>
</json:item>
<json:item>
<name>Philip F. Copenhaver</name>
<affiliations>
<json:string>Department of Cell and Developmental Biology L-215, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97201</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>growth cone</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>fasciculation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>adhesion</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>insect</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Manduca sexta.</value>
</json:item>
</subject>
<arkIstex>ark:/67375/6H6-1LWFF0V5-Q</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Abstract: During the formation of the insect peripheral nervous system (PNS), the cell adhesion receptor fasciclin II has been shown to play a prominent role in axonal fasciculation and synapse formation during motor neuron outgrowth. In the moth Manduca, fasciclin II (MFas II) is expressed both as a transmembrane isoform (TM-MFas II) and a glycosyl phosphatidylinositol-linked isoform (GPI-MFas II). By using RNA and antibody probes, we have shown that these two isoforms are expressed in nonoverlapping patterns: TM-MFas II is expressed exclusively by neurons and becomes localized to their most motile regions, while GPI-MFas II is expressed primarily by the glial cells that ensheath the peripheral nerves. This cell-type specificity of expression allowed us to monitor the nature of neuronal–glial interactions during PNS development. The outgrowth of TM-MFas II-positive axons in many regions preceded the arrival of GPI-MFas II-expressing glial processes that enwrapped them. In a few key locations, however, GPI-MFas II-positive glial cells differentiated before the arrival of the first axons and prefigured their subsequent trajectories. Prior inhibition of GPI-MFas II expression disrupted the subsequent outgrowth of axons at these locations but not elsewhere in the PNS. Our results suggest that the two isoforms of MFas II play distinct roles with respect to cellular motility and nerve formation.</abstract>
<qualityIndicators>
<score>9.508</score>
<pdfWordCount>10887</pdfWordCount>
<pdfCharCount>66408</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>18</pdfPageCount>
<pdfPageSize>541 x 725 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>209</abstractWordCount>
<abstractCharCount>1413</abstractCharCount>
<keywordCount>5</keywordCount>
</qualityIndicators>
<title>Cell Type-Specific Expression of Fasciclin II Isoforms Reveals Neuronal–Glial Interactions during Peripheral Nerve Growth</title>
<pmid>
<json:string>11356017</json:string>
</pmid>
<pii>
<json:string>S0012-1606(01)90247-7</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Developmental Biology</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>2001</publicationDate>
<issn>
<json:string>0012-1606</json:string>
</issn>
<pii>
<json:string>S0012-1606(00)X0009-7</json:string>
</pii>
<volume>234</volume>
<issue>1</issue>
<pages>
<first>24</first>
<last>41</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2001</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Synthegen Inc.</json:string>
<json:string>Pocono Rabbit Farm and Laboratories Inc.</json:string>
<json:string>Collins, CO</json:string>
<json:string>National Institutes of Health Grant</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Laura Knittel</json:string>
<json:string>E. Scale</json:string>
<json:string>Philip F. Copenhaver</json:string>
<json:string>Jan</json:string>
<json:string>M. Copyright</json:string>
<json:string>Karin Rodland</json:string>
<json:string>Scott Conklin</json:string>
<json:string>David Colvin</json:string>
<json:string>John Phipps</json:string>
<json:string>Of</json:string>
<json:string>David Morton</json:string>
<json:string>Tracy Balzer</json:string>
<json:string>Karla Kent</json:string>
<json:string>Goodman</json:string>
<json:string>Mark Snyder</json:string>
</persName>
<placeName>
<json:string>TX</json:string>
<json:string>Houston</json:string>
<json:string>Canadensis</json:string>
<json:string>PA</json:string>
</placeName>
<ref_url>
<json:string>http://www.idealibrary.com</json:string>
</ref_url>
<ref_bibl>
<json:string>Rheuben, 1992</json:string>
<json:string>Beggs et al., 1997</json:string>
<json:string>Wright et al., 1999</json:string>
<json:string>Grenningloh et al., 1990</json:string>
<json:string>Copenhaver and Taghert, 1989a</json:string>
<json:string>Younossi-Hartenstein and Hartenstein, 1993</json:string>
<json:string>Dorn et al., 1987</json:string>
<json:string>Thomas et al., 1997</json:string>
<json:string>Nguyen et al., 1986</json:string>
<json:string>Brown, 1993</json:string>
<json:string>Hidalgo and Booth, 2000</json:string>
<json:string>Martin and Kandel, 1996</json:string>
<json:string>Sepp et al.</json:string>
<json:string>Casey, 1995</json:string>
<json:string>Snow et al., 1988</json:string>
<json:string>Ignelzi et al., 1994</json:string>
<json:string>Copenhaver and Wright, 2000</json:string>
<json:string>Gorczyca et al.</json:string>
<json:string>Wright et al., 1998</json:string>
<json:string>Klambt and Goodman, 1991</json:string>
<json:string>Gorczyca et al., 1994</json:string>
<json:string>Carr and Taghert, 1988</json:string>
<json:string>Edwards et al., 1993</json:string>
<json:string>Lin and Goodman, 1994</json:string>
<json:string>Carr and Taghert (1988)</json:string>
<json:string>Mayford et al., 1992</json:string>
<json:string>Klambt et al., 1991</json:string>
<json:string>Singer et al., 1979</json:string>
<json:string>Fenster et al., 1994</json:string>
<json:string>Davies, 1998</json:string>
<json:string>Mirsky and Jessen, 1999</json:string>
<json:string>Harrelson and Goodman, 1988</json:string>
<json:string>Altschul et al., 1990</json:string>
<json:string>as noted by Carr and Taghert, 1988</json:string>
<json:string>Sanes and Lichtman, 1999</json:string>
<json:string>Jacobs and Goodman, 1989b</json:string>
<json:string>originating from the next anterior ganglion; Carr and Taghert, 1988</json:string>
<json:string>Rajan and Denburg, 1997</json:string>
<json:string>Bernardoni et al., 1998</json:string>
<json:string>Schuster et al., 1996b</json:string>
<json:string>Olive et al., 1995</json:string>
<json:string>Zito et al., 1997</json:string>
<json:string>Zheng et al., 1996</json:string>
<json:string>Lipp et al., 1995</json:string>
<json:string>Goodman et al., 1997</json:string>
<json:string>Jacobs and Goodman, 1989a</json:string>
<json:string>Horgan et al., 1994</json:string>
<json:string>Van Vactor et al., 1993</json:string>
<json:string>Anderson and Tucker, 1989</json:string>
<json:string>Zisch et al., 1995</json:string>
<json:string>Sepp et al., 2000</json:string>
<json:string>Schmid et al., 1999</json:string>
<json:string>Davis et al., 1997</json:string>
<json:string>Knittel et al., 2001</json:string>
<json:string>Atwood et al., 1993</json:string>
<json:string>Bhattacharyya et al., 1994</json:string>
<json:string>Grenningloh et al., 1991</json:string>
<json:string>Doherty et al., 1990</json:string>
<json:string>Bastiani et al., 1987</json:string>
<json:string>Garcia-Alonso et al., 1995</json:string>
<json:string>Jessen and Mirsky, 1999</json:string>
<json:string>Wright and Copenhaver, 2000</json:string>
<json:string>see Silver, 1993</json:string>
<json:string>Rio et al., 1997</json:string>
<json:string>Chiang et al., 1991</json:string>
<json:string>Mason and Sretavan, 1997</json:string>
<json:string>Lin et al., 1994</json:string>
<json:string>Ronnov-Jessen and Petersen, 1996</json:string>
<json:string>Wright and Copenhaver 2000</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/6H6-1LWFF0V5-Q</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - developmental biology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - biomedical research</json:string>
<json:string>3 - developmental biology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Cell Biology</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Developmental Biology</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Molecular Biology</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>2001</publicationDate>
<copyrightDate>2001</copyrightDate>
<doi>
<json:string>10.1006/dbio.2001.0247</json:string>
</doi>
<id>9B1FEFC0F55C6A9A8B8EC252133E4F39349D1959</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-1LWFF0V5-Q/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-1LWFF0V5-Q/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/6H6-1LWFF0V5-Q/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Cell Type-Specific Expression of Fasciclin II Isoforms Reveals Neuronal–Glial Interactions during Peripheral Nerve Growth</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://scientific-publisher.data.istex.fr">ELSEVIER</publisher>
<availability>
<licence>
<p>©2001 Academic Press</p>
</licence>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</p>
</availability>
<date>2001</date>
</publicationStmt>
<notesStmt>
<note type="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
<note>To whom correspondence should be addressed. Fax: 503-494-4253. E-mail: copenhav@ohsu.edu.</note>
<note type="content">Section title: Regular Article</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Cell Type-Specific Expression of Fasciclin II Isoforms Reveals Neuronal–Glial Interactions during Peripheral Nerve Growth</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Jay W.</forename>
<surname>Wright</surname>
</persName>
<affiliation>Department of Cell and Developmental Biology L-215, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97201</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Philip F.</forename>
<surname>Copenhaver</surname>
</persName>
<affiliation>Department of Cell and Developmental Biology L-215, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97201</affiliation>
</author>
<idno type="istex">9B1FEFC0F55C6A9A8B8EC252133E4F39349D1959</idno>
<idno type="ark">ark:/67375/6H6-1LWFF0V5-Q</idno>
<idno type="DOI">10.1006/dbio.2001.0247</idno>
<idno type="PII">S0012-1606(01)90247-7</idno>
</analytic>
<monogr>
<title level="j">Developmental Biology</title>
<title level="j" type="abbrev">YDBIO</title>
<idno type="pISSN">0012-1606</idno>
<idno type="PII">S0012-1606(00)X0009-7</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001"></date>
<biblScope unit="volume">234</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="24">24</biblScope>
<biblScope unit="page" to="41">41</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2001</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Abstract: During the formation of the insect peripheral nervous system (PNS), the cell adhesion receptor fasciclin II has been shown to play a prominent role in axonal fasciculation and synapse formation during motor neuron outgrowth. In the moth Manduca, fasciclin II (MFas II) is expressed both as a transmembrane isoform (TM-MFas II) and a glycosyl phosphatidylinositol-linked isoform (GPI-MFas II). By using RNA and antibody probes, we have shown that these two isoforms are expressed in nonoverlapping patterns: TM-MFas II is expressed exclusively by neurons and becomes localized to their most motile regions, while GPI-MFas II is expressed primarily by the glial cells that ensheath the peripheral nerves. This cell-type specificity of expression allowed us to monitor the nature of neuronal–glial interactions during PNS development. The outgrowth of TM-MFas II-positive axons in many regions preceded the arrival of GPI-MFas II-expressing glial processes that enwrapped them. In a few key locations, however, GPI-MFas II-positive glial cells differentiated before the arrival of the first axons and prefigured their subsequent trajectories. Prior inhibition of GPI-MFas II expression disrupted the subsequent outgrowth of axons at these locations but not elsewhere in the PNS. Our results suggest that the two isoforms of MFas II play distinct roles with respect to cellular motility and nerve formation.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>growth cone</term>
</item>
<item>
<term>fasciculation</term>
</item>
<item>
<term>adhesion</term>
</item>
<item>
<term>insect</term>
</item>
<item>
<term>Manduca sexta.</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2001-01-04">Modified</change>
<change when="2001">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-1LWFF0V5-Q/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType"></istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla" xml:lang="en">
<item-info>
<jid>YDBIO</jid>
<aid>90247</aid>
<ce:pii>S0012-1606(01)90247-7</ce:pii>
<ce:doi>10.1006/dbio.2001.0247</ce:doi>
<ce:copyright type="full-transfer" year="2001">Academic Press</ce:copyright>
</item-info>
<head>
<ce:article-footnote>
<ce:label></ce:label>
<ce:note-para>To whom correspondence should be addressed. Fax: 503-494-4253. E-mail: copenhav@ohsu.edu.</ce:note-para>
</ce:article-footnote>
<ce:dochead>
<ce:textfn>Regular Article</ce:textfn>
</ce:dochead>
<ce:title>Cell Type-Specific Expression of Fasciclin II Isoforms Reveals Neuronal–Glial Interactions during Peripheral Nerve Growth</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Jay W.</ce:given-name>
<ce:surname>Wright</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>Philip F.</ce:given-name>
<ce:surname>Copenhaver</ce:surname>
</ce:author>
<ce:affiliation>
<ce:textfn>Department of Cell and Developmental Biology L-215, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97201</ce:textfn>
</ce:affiliation>
</ce:author-group>
<ce:date-revised day="4" month="1" year="2001"></ce:date-revised>
<ce:date-accepted day="23" month="2" year="2001"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>During the formation of the insect peripheral nervous system (PNS), the cell adhesion receptor fasciclin II has been shown to play a prominent role in axonal fasciculation and synapse formation during motor neuron outgrowth. In the moth
<ce:italic>Manduca</ce:italic>
, fasciclin II (MFas II) is expressed both as a transmembrane isoform (TM-MFas II) and a glycosyl phosphatidylinositol-linked isoform (GPI-MFas II). By using RNA and antibody probes, we have shown that these two isoforms are expressed in nonoverlapping patterns: TM-MFas II is expressed exclusively by neurons and becomes localized to their most motile regions, while GPI-MFas II is expressed primarily by the glial cells that ensheath the peripheral nerves. This cell-type specificity of expression allowed us to monitor the nature of neuronal–glial interactions during PNS development. The outgrowth of TM-MFas II-positive axons in many regions preceded the arrival of GPI-MFas II-expressing glial processes that enwrapped them. In a few key locations, however, GPI-MFas II-positive glial cells differentiated before the arrival of the first axons and prefigured their subsequent trajectories. Prior inhibition of GPI-MFas II expression disrupted the subsequent outgrowth of axons at these locations but not elsewhere in the PNS. Our results suggest that the two isoforms of MFas II play distinct roles with respect to cellular motility and nerve formation.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords>
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>growth cone</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>fasciculation</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>adhesion</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>insect</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>
<ce:italic>Manduca sexta.</ce:italic>
</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Cell Type-Specific Expression of Fasciclin II Isoforms Reveals Neuronal–Glial Interactions during Peripheral Nerve Growth</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>Cell Type-Specific Expression of Fasciclin II Isoforms Reveals Neuronal–Glial Interactions during Peripheral Nerve Growth</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jay W.</namePart>
<namePart type="family">Wright</namePart>
<affiliation>Department of Cell and Developmental Biology L-215, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97201</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philip F.</namePart>
<namePart type="family">Copenhaver</namePart>
<affiliation>Department of Cell and Developmental Biology L-215, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97201</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2001</dateIssued>
<dateModified encoding="w3cdtf">2001-01-04</dateModified>
<copyrightDate encoding="w3cdtf">2001</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: During the formation of the insect peripheral nervous system (PNS), the cell adhesion receptor fasciclin II has been shown to play a prominent role in axonal fasciculation and synapse formation during motor neuron outgrowth. In the moth Manduca, fasciclin II (MFas II) is expressed both as a transmembrane isoform (TM-MFas II) and a glycosyl phosphatidylinositol-linked isoform (GPI-MFas II). By using RNA and antibody probes, we have shown that these two isoforms are expressed in nonoverlapping patterns: TM-MFas II is expressed exclusively by neurons and becomes localized to their most motile regions, while GPI-MFas II is expressed primarily by the glial cells that ensheath the peripheral nerves. This cell-type specificity of expression allowed us to monitor the nature of neuronal–glial interactions during PNS development. The outgrowth of TM-MFas II-positive axons in many regions preceded the arrival of GPI-MFas II-expressing glial processes that enwrapped them. In a few key locations, however, GPI-MFas II-positive glial cells differentiated before the arrival of the first axons and prefigured their subsequent trajectories. Prior inhibition of GPI-MFas II expression disrupted the subsequent outgrowth of axons at these locations but not elsewhere in the PNS. Our results suggest that the two isoforms of MFas II play distinct roles with respect to cellular motility and nerve formation.</abstract>
<note>To whom correspondence should be addressed. Fax: 503-494-4253. E-mail: copenhav@ohsu.edu.</note>
<note type="content">Section title: Regular Article</note>
<subject lang="en">
<genre>Keywords</genre>
<topic>growth cone</topic>
<topic>fasciculation</topic>
<topic>adhesion</topic>
<topic>insect</topic>
<topic>Manduca sexta.</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Developmental Biology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>YDBIO</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2001</dateIssued>
</originInfo>
<identifier type="ISSN">0012-1606</identifier>
<identifier type="PII">S0012-1606(00)X0009-7</identifier>
<part>
<date>2001</date>
<detail type="volume">
<number>234</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>1</start>
<end>274</end>
</extent>
<extent unit="pages">
<start>24</start>
<end>41</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">9B1FEFC0F55C6A9A8B8EC252133E4F39349D1959</identifier>
<identifier type="ark">ark:/67375/6H6-1LWFF0V5-Q</identifier>
<identifier type="DOI">10.1006/dbio.2001.0247</identifier>
<identifier type="PII">S0012-1606(01)90247-7</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©2001 Academic Press</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
<recordOrigin>Academic Press, ©2001</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-1LWFF0V5-Q/record.json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001851 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001851 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:9B1FEFC0F55C6A9A8B8EC252133E4F39349D1959
   |texte=   Cell Type-Specific Expression of Fasciclin II Isoforms Reveals Neuronal–Glial Interactions during Peripheral Nerve Growth
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021