Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Interaction between acridine orange and polyriboadenylic acid

Identifieur interne : 001717 ( Istex/Corpus ); précédent : 001716; suivant : 001718

Interaction between acridine orange and polyriboadenylic acid

Auteurs : Toyoko Imae ; Shoji Hayashi ; Shoichi Ikeda ; Tomohiko Sakaki

Source :

RBID : ISTEX:55DFF1325A2ADF1F41E48592405B7A9A556F4D6C

English descriptors

Abstract

Abstract: The absorption spectra and circular dichroism of aqueous solutions of acridine orange mixed with polY(riboadenylic acid) [poly(rA)] have been measured for different mixing ratios at acid and neutral pH. The binding ratio of dye to poly(rA) has been determined by equilibrium dialysis. At acid pH where poly(rA) is in a double-stranded helix, monomeric dye molecules are intercalated between base pairs, first sparsely and then at neighbouring sites with mutual coupling, as the nucleotide-to-dye mixing ratio decreases. In the presence of excess dye, dimeric dye molecules of antiparallel type are bound to phosphate groups electrostatically and stack together to form linear sequences along a poly(rA) chain. At neutral pH where poly(rA) is single-stranded, isolated intercalation of monomeric dye molecules can occur in the helical parts. At intermediate mixing ratios, half-intercalated dimeric dye molecules are bound to adjacent sites and electronically coupled, inducing characteristic circular dichroism. In the presence of higher amounts of dye, external stacking of dimeric dye molecules of antiparallel type occurs along a poly(rA) chain. The binding of dye cations is suppressed to some degree at acid pH compared to that at neutral pH, owing to the repulsion exerted by protonated adenine bases.

Url:
DOI: 10.1016/0141-8130(81)90037-4

Links to Exploration step

ISTEX:55DFF1325A2ADF1F41E48592405B7A9A556F4D6C

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Interaction between acridine orange and polyriboadenylic acid</title>
<author>
<name sortKey="Imae, Toyoko" sort="Imae, Toyoko" uniqKey="Imae T" first="Toyoko" last="Imae">Toyoko Imae</name>
<affiliation>
<mods:affiliation>Department of Chemistry, Faculty of Science, Nagoya University, Japan</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hayashi, Shoji" sort="Hayashi, Shoji" uniqKey="Hayashi S" first="Shoji" last="Hayashi">Shoji Hayashi</name>
<affiliation>
<mods:affiliation>Department of Chemistry, Faculty of Science, Nagoya University, Japan</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ikeda, Shoichi" sort="Ikeda, Shoichi" uniqKey="Ikeda S" first="Shoichi" last="Ikeda">Shoichi Ikeda</name>
<affiliation>
<mods:affiliation>Department of Chemistry, Faculty of Science, Nagoya University, Japan</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sakaki, Tomohiko" sort="Sakaki, Tomohiko" uniqKey="Sakaki T" first="Tomohiko" last="Sakaki">Tomohiko Sakaki</name>
<affiliation>
<mods:affiliation>Department of Chemistry, College of General Education, Nagoya University Chikusa, Nagoya, Japan</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:55DFF1325A2ADF1F41E48592405B7A9A556F4D6C</idno>
<date when="1981" year="1981">1981</date>
<idno type="doi">10.1016/0141-8130(81)90037-4</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-2CM385D5-X/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001717</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001717</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Interaction between acridine orange and polyriboadenylic acid</title>
<author>
<name sortKey="Imae, Toyoko" sort="Imae, Toyoko" uniqKey="Imae T" first="Toyoko" last="Imae">Toyoko Imae</name>
<affiliation>
<mods:affiliation>Department of Chemistry, Faculty of Science, Nagoya University, Japan</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hayashi, Shoji" sort="Hayashi, Shoji" uniqKey="Hayashi S" first="Shoji" last="Hayashi">Shoji Hayashi</name>
<affiliation>
<mods:affiliation>Department of Chemistry, Faculty of Science, Nagoya University, Japan</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ikeda, Shoichi" sort="Ikeda, Shoichi" uniqKey="Ikeda S" first="Shoichi" last="Ikeda">Shoichi Ikeda</name>
<affiliation>
<mods:affiliation>Department of Chemistry, Faculty of Science, Nagoya University, Japan</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sakaki, Tomohiko" sort="Sakaki, Tomohiko" uniqKey="Sakaki T" first="Tomohiko" last="Sakaki">Tomohiko Sakaki</name>
<affiliation>
<mods:affiliation>Department of Chemistry, College of General Education, Nagoya University Chikusa, Nagoya, Japan</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">International Journal of Biological Macromolecules</title>
<title level="j" type="abbrev">BIOMAC</title>
<idno type="ISSN">0141-8130</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1981">1981</date>
<biblScope unit="volume">3</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="259">259</biblScope>
<biblScope unit="page" to="266">266</biblScope>
</imprint>
<idno type="ISSN">0141-8130</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0141-8130</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Absorption band</term>
<term>Absorption spectra</term>
<term>Acridine</term>
<term>Acridine interactions</term>
<term>Acridine mixtures</term>
<term>Adenine bases</term>
<term>Antiparallel</term>
<term>Antiparallel type</term>
<term>Aqueous solution</term>
<term>August</term>
<term>Base pairs</term>
<term>Binding process</term>
<term>Biol</term>
<term>Biopolymers</term>
<term>Chem</term>
<term>Circular dichroic bands</term>
<term>Circular dichroism</term>
<term>Conservative pair</term>
<term>Dichroic</term>
<term>Dichroic band</term>
<term>Dichroic bands</term>
<term>Dichroism</term>
<term>Dimer</term>
<term>Dimeric</term>
<term>Dimeric molecules</term>
<term>Equilibrium dialysis</term>
<term>External association</term>
<term>Free acridine</term>
<term>Helical</term>
<term>Helical content</term>
<term>Helical parts</term>
<term>Helix</term>
<term>Imae</term>
<term>Inner compartment</term>
<term>Intercalated</term>
<term>Intercalated monomer</term>
<term>Intercalated monomers</term>
<term>Intercalation</term>
<term>Ionic strength</term>
<term>Isosbestic point</term>
<term>Macromol</term>
<term>Molar</term>
<term>Molar ellipticity</term>
<term>Molar extinction coefficient</term>
<term>Molecule</term>
<term>Monomer</term>
<term>Monomeric</term>
<term>Naci</term>
<term>Negative band</term>
<term>Optical activity</term>
<term>Positive band</term>
<term>Residue extinction coefficient</term>
<term>Toyoko</term>
<term>Toyoko imae</term>
<term>Toyoko lmae</term>
<term>Visible absorption spectra</term>
<term>Visking membrane</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: The absorption spectra and circular dichroism of aqueous solutions of acridine orange mixed with polY(riboadenylic acid) [poly(rA)] have been measured for different mixing ratios at acid and neutral pH. The binding ratio of dye to poly(rA) has been determined by equilibrium dialysis. At acid pH where poly(rA) is in a double-stranded helix, monomeric dye molecules are intercalated between base pairs, first sparsely and then at neighbouring sites with mutual coupling, as the nucleotide-to-dye mixing ratio decreases. In the presence of excess dye, dimeric dye molecules of antiparallel type are bound to phosphate groups electrostatically and stack together to form linear sequences along a poly(rA) chain. At neutral pH where poly(rA) is single-stranded, isolated intercalation of monomeric dye molecules can occur in the helical parts. At intermediate mixing ratios, half-intercalated dimeric dye molecules are bound to adjacent sites and electronically coupled, inducing characteristic circular dichroism. In the presence of higher amounts of dye, external stacking of dimeric dye molecules of antiparallel type occurs along a poly(rA) chain. The binding of dye cations is suppressed to some degree at acid pH compared to that at neutral pH, owing to the repulsion exerted by protonated adenine bases.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>acridine</json:string>
<json:string>dichroism</json:string>
<json:string>intercalated</json:string>
<json:string>dichroic</json:string>
<json:string>circular dichroism</json:string>
<json:string>dimer</json:string>
<json:string>dimeric</json:string>
<json:string>helical</json:string>
<json:string>biol</json:string>
<json:string>intercalation</json:string>
<json:string>absorption band</json:string>
<json:string>biopolymers</json:string>
<json:string>helix</json:string>
<json:string>monomeric</json:string>
<json:string>intercalated monomers</json:string>
<json:string>chem</json:string>
<json:string>circular dichroic bands</json:string>
<json:string>absorption spectra</json:string>
<json:string>august</json:string>
<json:string>naci</json:string>
<json:string>toyoko</json:string>
<json:string>imae</json:string>
<json:string>antiparallel</json:string>
<json:string>macromol</json:string>
<json:string>molar</json:string>
<json:string>external association</json:string>
<json:string>acridine interactions</json:string>
<json:string>helical content</json:string>
<json:string>positive band</json:string>
<json:string>negative band</json:string>
<json:string>toyoko imae</json:string>
<json:string>binding process</json:string>
<json:string>helical parts</json:string>
<json:string>isosbestic point</json:string>
<json:string>dimeric molecules</json:string>
<json:string>dichroic band</json:string>
<json:string>antiparallel type</json:string>
<json:string>monomer</json:string>
<json:string>residue extinction coefficient</json:string>
<json:string>visible absorption spectra</json:string>
<json:string>molar ellipticity</json:string>
<json:string>free acridine</json:string>
<json:string>toyoko lmae</json:string>
<json:string>acridine mixtures</json:string>
<json:string>conservative pair</json:string>
<json:string>ionic strength</json:string>
<json:string>aqueous solution</json:string>
<json:string>visking membrane</json:string>
<json:string>dichroic bands</json:string>
<json:string>molar extinction coefficient</json:string>
<json:string>equilibrium dialysis</json:string>
<json:string>optical activity</json:string>
<json:string>base pairs</json:string>
<json:string>adenine bases</json:string>
<json:string>intercalated monomer</json:string>
<json:string>inner compartment</json:string>
<json:string>molecule</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Toyoko Imae</name>
<affiliations>
<json:string>Department of Chemistry, Faculty of Science, Nagoya University, Japan</json:string>
</affiliations>
</json:item>
<json:item>
<name>Shoji Hayashi</name>
<affiliations>
<json:string>Department of Chemistry, Faculty of Science, Nagoya University, Japan</json:string>
</affiliations>
</json:item>
<json:item>
<name>Shoichi Ikeda</name>
<affiliations>
<json:string>Department of Chemistry, Faculty of Science, Nagoya University, Japan</json:string>
</affiliations>
</json:item>
<json:item>
<name>Tomohiko Sakaki</name>
<affiliations>
<json:string>Department of Chemistry, College of General Education, Nagoya University Chikusa, Nagoya, Japan</json:string>
</affiliations>
</json:item>
</author>
<arkIstex>ark:/67375/6H6-2CM385D5-X</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Abstract: The absorption spectra and circular dichroism of aqueous solutions of acridine orange mixed with polY(riboadenylic acid) [poly(rA)] have been measured for different mixing ratios at acid and neutral pH. The binding ratio of dye to poly(rA) has been determined by equilibrium dialysis. At acid pH where poly(rA) is in a double-stranded helix, monomeric dye molecules are intercalated between base pairs, first sparsely and then at neighbouring sites with mutual coupling, as the nucleotide-to-dye mixing ratio decreases. In the presence of excess dye, dimeric dye molecules of antiparallel type are bound to phosphate groups electrostatically and stack together to form linear sequences along a poly(rA) chain. At neutral pH where poly(rA) is single-stranded, isolated intercalation of monomeric dye molecules can occur in the helical parts. At intermediate mixing ratios, half-intercalated dimeric dye molecules are bound to adjacent sites and electronically coupled, inducing characteristic circular dichroism. In the presence of higher amounts of dye, external stacking of dimeric dye molecules of antiparallel type occurs along a poly(rA) chain. The binding of dye cations is suppressed to some degree at acid pH compared to that at neutral pH, owing to the repulsion exerted by protonated adenine bases.</abstract>
<qualityIndicators>
<score>9.34</score>
<pdfWordCount>5220</pdfWordCount>
<pdfCharCount>27621</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>8</pdfPageCount>
<pdfPageSize>591 x 843 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>195</abstractWordCount>
<abstractCharCount>1317</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Interaction between acridine orange and polyriboadenylic acid</title>
<pii>
<json:string>0141-8130(81)90037-4</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>International Journal of Biological Macromolecules</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1981</publicationDate>
<issn>
<json:string>0141-8130</json:string>
</issn>
<pii>
<json:string>S0141-8130(00)X0091-8</json:string>
</pii>
<volume>3</volume>
<issue>4</issue>
<pages>
<first>259</first>
<last>266</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>1981</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Nagoya University</json:string>
<json:string>L Biochemicals Inc.</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>J. Biol</json:string>
<json:string>N. Circular</json:string>
</persName>
<placeName>
<json:string>Japan</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Armstrong et al.</json:string>
<json:string>Brahms et al.</json:string>
<json:string>Imae et al.</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/6H6-2CM385D5-X</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - biochemistry & molecular biology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - chemistry</json:string>
<json:string>3 - polymers</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Molecular Biology</json:string>
<json:string>1 - Health Sciences</json:string>
<json:string>2 - Medicine</json:string>
<json:string>3 - General Medicine</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Biochemistry</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Structural Biology</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
<json:string>4 - genetique des eucaryotes. evolution biologique et moleculaire</json:string>
</inist>
</categories>
<publicationDate>1981</publicationDate>
<copyrightDate>1981</copyrightDate>
<doi>
<json:string>10.1016/0141-8130(81)90037-4</json:string>
</doi>
<id>55DFF1325A2ADF1F41E48592405B7A9A556F4D6C</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-2CM385D5-X/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-2CM385D5-X/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/6H6-2CM385D5-X/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Interaction between acridine orange and polyriboadenylic acid</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://scientific-publisher.data.istex.fr">ELSEVIER</publisher>
<availability>
<licence>
<p>elsevier</p>
</licence>
</availability>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M"></p>
<date>1981</date>
</publicationStmt>
<notesStmt>
<note type="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Interaction between acridine orange and polyriboadenylic acid</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Toyoko</forename>
<surname>Imae</surname>
</persName>
<affiliation>Department of Chemistry, Faculty of Science, Nagoya University, Japan</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Shoji</forename>
<surname>Hayashi</surname>
</persName>
<affiliation>Department of Chemistry, Faculty of Science, Nagoya University, Japan</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Shoichi</forename>
<surname>Ikeda</surname>
</persName>
<affiliation>Department of Chemistry, Faculty of Science, Nagoya University, Japan</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Tomohiko</forename>
<surname>Sakaki</surname>
</persName>
<affiliation>Department of Chemistry, College of General Education, Nagoya University Chikusa, Nagoya, Japan</affiliation>
</author>
<idno type="istex">55DFF1325A2ADF1F41E48592405B7A9A556F4D6C</idno>
<idno type="ark">ark:/67375/6H6-2CM385D5-X</idno>
<idno type="DOI">10.1016/0141-8130(81)90037-4</idno>
<idno type="PII">0141-8130(81)90037-4</idno>
</analytic>
<monogr>
<title level="j">International Journal of Biological Macromolecules</title>
<title level="j" type="abbrev">BIOMAC</title>
<idno type="pISSN">0141-8130</idno>
<idno type="PII">S0141-8130(00)X0091-8</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1981"></date>
<biblScope unit="volume">3</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="259">259</biblScope>
<biblScope unit="page" to="266">266</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1981</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Abstract: The absorption spectra and circular dichroism of aqueous solutions of acridine orange mixed with polY(riboadenylic acid) [poly(rA)] have been measured for different mixing ratios at acid and neutral pH. The binding ratio of dye to poly(rA) has been determined by equilibrium dialysis. At acid pH where poly(rA) is in a double-stranded helix, monomeric dye molecules are intercalated between base pairs, first sparsely and then at neighbouring sites with mutual coupling, as the nucleotide-to-dye mixing ratio decreases. In the presence of excess dye, dimeric dye molecules of antiparallel type are bound to phosphate groups electrostatically and stack together to form linear sequences along a poly(rA) chain. At neutral pH where poly(rA) is single-stranded, isolated intercalation of monomeric dye molecules can occur in the helical parts. At intermediate mixing ratios, half-intercalated dimeric dye molecules are bound to adjacent sites and electronically coupled, inducing characteristic circular dichroism. In the presence of higher amounts of dye, external stacking of dimeric dye molecules of antiparallel type occurs along a poly(rA) chain. The binding of dye cations is suppressed to some degree at acid pH compared to that at neutral pH, owing to the repulsion exerted by protonated adenine bases.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="1981">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-2CM385D5-X/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType"></istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>BIOMAC</jid>
<aid>81900374</aid>
<ce:pii>0141-8130(81)90037-4</ce:pii>
<ce:doi>10.1016/0141-8130(81)90037-4</ce:doi>
<ce:copyright type="unknown" year="1981"></ce:copyright>
</item-info>
<head>
<ce:title>Interaction between acridine orange and polyriboadenylic acid</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Toyoko</ce:given-name>
<ce:surname>Imae</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>Shoji</ce:given-name>
<ce:surname>Hayashi</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>Shoichi</ce:given-name>
<ce:surname>Ikeda</ce:surname>
</ce:author>
<ce:affiliation>
<ce:textfn>Department of Chemistry, Faculty of Science, Nagoya University, Japan</ce:textfn>
</ce:affiliation>
</ce:author-group>
<ce:author-group>
<ce:author>
<ce:given-name>Tomohiko</ce:given-name>
<ce:surname>Sakaki</ce:surname>
</ce:author>
<ce:affiliation>
<ce:textfn>Department of Chemistry, College of General Education, Nagoya University Chikusa, Nagoya, Japan</ce:textfn>
</ce:affiliation>
</ce:author-group>
<ce:date-received day="27" month="5" year="1980"></ce:date-received>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>The absorption spectra and circular dichroism of aqueous solutions of acridine orange mixed with polY(riboadenylic acid) [poly(rA)] have been measured for different mixing ratios at acid and neutral pH. The binding ratio of dye to poly(rA) has been determined by equilibrium dialysis. At acid pH where poly(rA) is in a double-stranded helix, monomeric dye molecules are intercalated between base pairs, first sparsely and then at neighbouring sites with mutual coupling, as the nucleotide-to-dye mixing ratio decreases. In the presence of excess dye, dimeric dye molecules of antiparallel type are bound to phosphate groups electrostatically and stack together to form linear sequences along a poly(rA) chain. At neutral pH where poly(rA) is single-stranded, isolated intercalation of monomeric dye molecules can occur in the helical parts. At intermediate mixing ratios, half-intercalated dimeric dye molecules are bound to adjacent sites and electronically coupled, inducing characteristic circular dichroism. In the presence of higher amounts of dye, external stacking of dimeric dye molecules of antiparallel type occurs along a poly(rA) chain. The binding of dye cations is suppressed to some degree at acid pH compared to that at neutral pH, owing to the repulsion exerted by protonated adenine bases.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Interaction between acridine orange and polyriboadenylic acid</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Interaction between acridine orange and polyriboadenylic acid</title>
</titleInfo>
<name type="personal">
<namePart type="given">Toyoko</namePart>
<namePart type="family">Imae</namePart>
<affiliation>Department of Chemistry, Faculty of Science, Nagoya University, Japan</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shoji</namePart>
<namePart type="family">Hayashi</namePart>
<affiliation>Department of Chemistry, Faculty of Science, Nagoya University, Japan</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shoichi</namePart>
<namePart type="family">Ikeda</namePart>
<affiliation>Department of Chemistry, Faculty of Science, Nagoya University, Japan</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tomohiko</namePart>
<namePart type="family">Sakaki</namePart>
<affiliation>Department of Chemistry, College of General Education, Nagoya University Chikusa, Nagoya, Japan</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1981</dateIssued>
<copyrightDate encoding="w3cdtf">1981</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: The absorption spectra and circular dichroism of aqueous solutions of acridine orange mixed with polY(riboadenylic acid) [poly(rA)] have been measured for different mixing ratios at acid and neutral pH. The binding ratio of dye to poly(rA) has been determined by equilibrium dialysis. At acid pH where poly(rA) is in a double-stranded helix, monomeric dye molecules are intercalated between base pairs, first sparsely and then at neighbouring sites with mutual coupling, as the nucleotide-to-dye mixing ratio decreases. In the presence of excess dye, dimeric dye molecules of antiparallel type are bound to phosphate groups electrostatically and stack together to form linear sequences along a poly(rA) chain. At neutral pH where poly(rA) is single-stranded, isolated intercalation of monomeric dye molecules can occur in the helical parts. At intermediate mixing ratios, half-intercalated dimeric dye molecules are bound to adjacent sites and electronically coupled, inducing characteristic circular dichroism. In the presence of higher amounts of dye, external stacking of dimeric dye molecules of antiparallel type occurs along a poly(rA) chain. The binding of dye cations is suppressed to some degree at acid pH compared to that at neutral pH, owing to the repulsion exerted by protonated adenine bases.</abstract>
<relatedItem type="host">
<titleInfo>
<title>International Journal of Biological Macromolecules</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>BIOMAC</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1981</dateIssued>
</originInfo>
<identifier type="ISSN">0141-8130</identifier>
<identifier type="PII">S0141-8130(00)X0091-8</identifier>
<part>
<date>1981</date>
<detail type="volume">
<number>3</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>4</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>217</start>
<end>280</end>
</extent>
<extent unit="pages">
<start>259</start>
<end>266</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">55DFF1325A2ADF1F41E48592405B7A9A556F4D6C</identifier>
<identifier type="ark">ark:/67375/6H6-2CM385D5-X</identifier>
<identifier type="DOI">10.1016/0141-8130(81)90037-4</identifier>
<identifier type="PII">0141-8130(81)90037-4</identifier>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-2CM385D5-X/record.json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001717 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001717 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:55DFF1325A2ADF1F41E48592405B7A9A556F4D6C
   |texte=   Interaction between acridine orange and polyriboadenylic acid
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021