Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Isolation of the C-type lectin like-domain cDNAs from the mud crab Scylla paramamosain Estampador, 1949, and its expression profiles in various tissues, during larval development, and under Vibrio challenge

Identifieur interne : 001306 ( Istex/Corpus ); précédent : 001305; suivant : 001307

Isolation of the C-type lectin like-domain cDNAs from the mud crab Scylla paramamosain Estampador, 1949, and its expression profiles in various tissues, during larval development, and under Vibrio challenge

Auteurs : K. Jiang ; D. Zhang ; M. Sun ; L. Ma ; L. Qi ; Z. Qiao ; S. Zhang ; F. Zhang

Source :

RBID : ISTEX:4E88A44103BCEC4FD7240C8CB7E23B4507E80AFD

English descriptors


Url:
DOI: 10.1163/156854012X650269

Links to Exploration step

ISTEX:4E88A44103BCEC4FD7240C8CB7E23B4507E80AFD

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Isolation of the C-type lectin like-domain cDNAs from the mud crab Scylla paramamosain Estampador, 1949, and its expression profiles in various tissues, during larval development, and under Vibrio challenge</title>
<author>
<name sortKey="Jiang, K" sort="Jiang, K" uniqKey="Jiang K" first="K." last="Jiang">K. Jiang</name>
</author>
<author>
<name sortKey="Zhang, D" sort="Zhang, D" uniqKey="Zhang D" first="D." last="Zhang">D. Zhang</name>
</author>
<author>
<name sortKey="Sun, M" sort="Sun, M" uniqKey="Sun M" first="M." last="Sun">M. Sun</name>
</author>
<author>
<name sortKey="Ma, L" sort="Ma, L" uniqKey="Ma L" first="L." last="Ma">L. Ma</name>
</author>
<author>
<name sortKey="Qi, L" sort="Qi, L" uniqKey="Qi L" first="L." last="Qi">L. Qi</name>
</author>
<author>
<name sortKey="Qiao, Z" sort="Qiao, Z" uniqKey="Qiao Z" first="Z." last="Qiao">Z. Qiao</name>
</author>
<author>
<name sortKey="Zhang, S" sort="Zhang, S" uniqKey="Zhang S" first="S." last="Zhang">S. Zhang</name>
</author>
<author>
<name sortKey="Zhang, F" sort="Zhang, F" uniqKey="Zhang F" first="F." last="Zhang">F. Zhang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:4E88A44103BCEC4FD7240C8CB7E23B4507E80AFD</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1163/156854012X650269</idno>
<idno type="url">https://api.istex.fr/ark:/67375/JKT-ZT37PB96-Z/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001306</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001306</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Isolation of the C-type lectin like-domain cDNAs from the mud crab Scylla paramamosain Estampador, 1949, and its expression profiles in various tissues, during larval development, and under Vibrio challenge</title>
<author>
<name sortKey="Jiang, K" sort="Jiang, K" uniqKey="Jiang K" first="K." last="Jiang">K. Jiang</name>
</author>
<author>
<name sortKey="Zhang, D" sort="Zhang, D" uniqKey="Zhang D" first="D." last="Zhang">D. Zhang</name>
</author>
<author>
<name sortKey="Sun, M" sort="Sun, M" uniqKey="Sun M" first="M." last="Sun">M. Sun</name>
</author>
<author>
<name sortKey="Ma, L" sort="Ma, L" uniqKey="Ma L" first="L." last="Ma">L. Ma</name>
</author>
<author>
<name sortKey="Qi, L" sort="Qi, L" uniqKey="Qi L" first="L." last="Qi">L. Qi</name>
</author>
<author>
<name sortKey="Qiao, Z" sort="Qiao, Z" uniqKey="Qiao Z" first="Z." last="Qiao">Z. Qiao</name>
</author>
<author>
<name sortKey="Zhang, S" sort="Zhang, S" uniqKey="Zhang S" first="S." last="Zhang">S. Zhang</name>
</author>
<author>
<name sortKey="Zhang, F" sort="Zhang, F" uniqKey="Zhang F" first="F." last="Zhang">F. Zhang</name>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Crustaceana</title>
<title level="j" type="sub">International Journal of Crustacean Research</title>
<title level="j" type="abbrev">CR</title>
<idno type="ISSN">0011-216X</idno>
<idno type="eISSN">1568-5403</idno>
<imprint>
<publisher>BRILL</publisher>
<pubPlace>The Netherlands</pubPlace>
<date type="published" when="2012">2012</date>
<biblScope unit="volume">85</biblScope>
<biblScope unit="issue">7</biblScope>
<biblScope unit="page" from="817">817</biblScope>
<biblScope unit="page" to="834">834</biblScope>
</imprint>
<idno type="ISSN">0011-216X</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0011-216X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Amino</term>
<term>Amino acids</term>
<term>Amino acids residues</term>
<term>Bacterial challenge</term>
<term>Binding site</term>
<term>Black letters</term>
<term>Carbohydrate</term>
<term>Carbohydrate binding</term>
<term>Cdna</term>
<term>Cdna synthesis</term>
<term>Chinensis</term>
<term>Comp</term>
<term>Crab</term>
<term>Cysteine residues</term>
<term>Different species</term>
<term>Different tissues</term>
<term>Estampador</term>
<term>Expression level</term>
<term>Expression levels</term>
<term>Fenneropenaeus chinensis</term>
<term>Fish immunol</term>
<term>Haemocytes</term>
<term>Hepatopancreas</term>
<term>Highest expression level</term>
<term>Immunity system</term>
<term>Immunol</term>
<term>Important role</term>
<term>Jiang</term>
<term>Lectin</term>
<term>Lectin cdnas</term>
<term>Lectin gene</term>
<term>Lectin genes</term>
<term>Lectin mrna</term>
<term>Litopenaeus vannamei</term>
<term>Megalopa</term>
<term>Megalopa stage</term>
<term>Monodon</term>
<term>Mrna</term>
<term>Novel lectin</term>
<term>Original level</term>
<term>Parahaemolyticus</term>
<term>Paramamosain</term>
<term>Penaeus</term>
<term>Penaeus monodon fabricius</term>
<term>Phylogenetic tree</term>
<term>Portunus trituberculatus</term>
<term>Random coil</term>
<term>Scylla</term>
<term>Scylla paramamosain</term>
<term>Scylla paramamosain estampador</term>
<term>Secondary structures</term>
<term>Shrimp</term>
<term>Shrimp penaeus monodon</term>
<term>Splec</term>
<term>Splec1</term>
<term>Splec2</term>
<term>Temporal expression</term>
<term>Tertiary structures</term>
<term>Trituberculatus</term>
<term>Vannamei</term>
<term>Various species</term>
<term>Various stages</term>
<term>Vibrio</term>
<term>Vibrio parahaemolyticus</term>
<term>Wang</term>
<term>Zoeal</term>
<term>Zoeal stage</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
</TEI>
<istex>
<corpusName>brill-journals</corpusName>
<keywords>
<teeft>
<json:string>lectin</json:string>
<json:string>splec2</json:string>
<json:string>splec1</json:string>
<json:string>paramamosain</json:string>
<json:string>cdna</json:string>
<json:string>scylla</json:string>
<json:string>parahaemolyticus</json:string>
<json:string>splec</json:string>
<json:string>wang</json:string>
<json:string>immunol</json:string>
<json:string>mrna</json:string>
<json:string>estampador</json:string>
<json:string>hepatopancreas</json:string>
<json:string>megalopa</json:string>
<json:string>scylla paramamosain estampador</json:string>
<json:string>different tissues</json:string>
<json:string>haemocytes</json:string>
<json:string>lectin cdnas</json:string>
<json:string>penaeus</json:string>
<json:string>chinensis</json:string>
<json:string>vibrio</json:string>
<json:string>jiang</json:string>
<json:string>trituberculatus</json:string>
<json:string>monodon</json:string>
<json:string>vannamei</json:string>
<json:string>crab</json:string>
<json:string>megalopa stage</json:string>
<json:string>lectin gene</json:string>
<json:string>zoeal</json:string>
<json:string>comp</json:string>
<json:string>binding site</json:string>
<json:string>expression level</json:string>
<json:string>important role</json:string>
<json:string>expression levels</json:string>
<json:string>carbohydrate</json:string>
<json:string>highest expression level</json:string>
<json:string>original level</json:string>
<json:string>lectin genes</json:string>
<json:string>zoeal stage</json:string>
<json:string>penaeus monodon fabricius</json:string>
<json:string>cysteine residues</json:string>
<json:string>different species</json:string>
<json:string>amino</json:string>
<json:string>random coil</json:string>
<json:string>carbohydrate binding</json:string>
<json:string>various species</json:string>
<json:string>litopenaeus vannamei</json:string>
<json:string>novel lectin</json:string>
<json:string>fish immunol</json:string>
<json:string>immunity system</json:string>
<json:string>various stages</json:string>
<json:string>amino acids</json:string>
<json:string>fenneropenaeus chinensis</json:string>
<json:string>black letters</json:string>
<json:string>cdna synthesis</json:string>
<json:string>tertiary structures</json:string>
<json:string>secondary structures</json:string>
<json:string>scylla paramamosain</json:string>
<json:string>temporal expression</json:string>
<json:string>vibrio parahaemolyticus</json:string>
<json:string>phylogenetic tree</json:string>
<json:string>amino acids residues</json:string>
<json:string>bacterial challenge</json:string>
<json:string>lectin mrna</json:string>
<json:string>portunus trituberculatus</json:string>
<json:string>shrimp penaeus monodon</json:string>
<json:string>shrimp</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>K. Jiang</name>
</json:item>
<json:item>
<name>D. Zhang</name>
</json:item>
<json:item>
<name>M. Sun</name>
</json:item>
<json:item>
<name>L. Ma</name>
</json:item>
<json:item>
<name>L. Qi</name>
</json:item>
<json:item>
<name>Z. Qiao</name>
</json:item>
<json:item>
<name>S. Zhang</name>
</json:item>
<json:item>
<name>F. Zhang</name>
</json:item>
</author>
<arkIstex>ark:/67375/JKT-ZT37PB96-Z</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<qualityIndicators>
<score>7.012</score>
<pdfWordCount>5563</pdfWordCount>
<pdfCharCount>32188</pdfCharCount>
<pdfVersion>1.4</pdfVersion>
<pdfPageCount>18</pdfPageCount>
<pdfPageSize>453.543 x 680.315 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<abstractWordCount>1</abstractWordCount>
<abstractCharCount>0</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Isolation of the C-type lectin like-domain cDNAs from the mud crab Scylla paramamosain Estampador, 1949, and its expression profiles in various tissues, during larval development, and under Vibrio challenge</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Crustaceana</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>0011-216X</json:string>
</issn>
<eissn>
<json:string>1568-5403</json:string>
</eissn>
<volume>85</volume>
<issue>7</issue>
<pages>
<first>817</first>
<last>834</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date></date>
<geogName></geogName>
<orgName></orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName></persName>
<placeName></placeName>
<ref_url></ref_url>
<ref_bibl></ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/JKT-ZT37PB96-Z</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - marine & freshwater biology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - biology</json:string>
<json:string>3 - marine biology & hydrobiology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Agricultural and Biological Sciences</json:string>
<json:string>3 - Aquatic Science</json:string>
</scopus>
</categories>
<publicationDate>2012</publicationDate>
<copyrightDate>2012</copyrightDate>
<doi>
<json:string>10.1163/156854012X650269</json:string>
</doi>
<id>4E88A44103BCEC4FD7240C8CB7E23B4507E80AFD</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/JKT-ZT37PB96-Z/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/JKT-ZT37PB96-Z/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/JKT-ZT37PB96-Z/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Isolation of the C-type lectin like-domain cDNAs from the mud crab Scylla paramamosain Estampador, 1949, and its expression profiles in various tissues, during larval development, and under Vibrio challenge</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://scientific-publisher.data.istex.fr">BRILL</publisher>
<pubPlace>The Netherlands</pubPlace>
<availability>
<licence>
<p>© Koninklijke Brill NV, Leiden, The Netherlands</p>
</licence>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-56W3KPD5-3">brill-journals</p>
</availability>
<date>2012</date>
</publicationStmt>
<notesStmt>
<note type="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Isolation of the C-type lectin like-domain cDNAs from the mud crab Scylla paramamosain Estampador, 1949, and its expression profiles in various tissues, during larval development, and under Vibrio challenge</title>
<author xml:id="author-0000">
<persName>
<forename type="first">K.</forename>
<surname>Jiang</surname>
</persName>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">D.</forename>
<surname>Zhang</surname>
</persName>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">M.</forename>
<surname>Sun</surname>
</persName>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">L.</forename>
<surname>Ma</surname>
</persName>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">L.</forename>
<surname>Qi</surname>
</persName>
</author>
<author xml:id="author-0005">
<persName>
<forename type="first">Z.</forename>
<surname>Qiao</surname>
</persName>
</author>
<author xml:id="author-0006">
<persName>
<forename type="first">S.</forename>
<surname>Zhang</surname>
</persName>
</author>
<author xml:id="author-0007">
<persName>
<forename type="first">F.</forename>
<surname>Zhang</surname>
</persName>
</author>
<idno type="istex">4E88A44103BCEC4FD7240C8CB7E23B4507E80AFD</idno>
<idno type="ark">ark:/67375/JKT-ZT37PB96-Z</idno>
<idno type="DOI">10.1163/156854012X650269</idno>
<idno type="href">15685403_085_07_s005_text.pdf</idno>
</analytic>
<monogr>
<title level="j">Crustaceana</title>
<title level="j" type="sub">International Journal of Crustacean Research</title>
<title level="j" type="abbrev">CR</title>
<idno type="pISSN">0011-216X</idno>
<idno type="eISSN">1568-5403</idno>
<imprint>
<publisher>BRILL</publisher>
<pubPlace>The Netherlands</pubPlace>
<date type="published" when="2012"></date>
<biblScope unit="volume">85</biblScope>
<biblScope unit="issue">7</biblScope>
<biblScope unit="page" from="817">817</biblScope>
<biblScope unit="page" to="834">834</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2012</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
<revisionDesc>
<change when="2012">Created</change>
<change when="2012">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/JKT-ZT37PB96-Z/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus brill-journals not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//NLM//DTD Journal Publishing DTD v2.3 20070202//EN" URI="http://dtd.nlm.nih.gov/publishing/2.3/journalpublishing.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article article-type="research-article" dtd-version="2.3">
<front>
<journal-meta>
<journal-id journal-id-type="e-issn">15685403</journal-id>
<journal-title>Crustaceana</journal-title>
<journal-subtitle>International Journal of Crustacean Research</journal-subtitle>
<abbrev-journal-title>CR</abbrev-journal-title>
<issn pub-type="ppub">0011-216X</issn>
<issn pub-type="epub">1568-5403</issn>
<publisher>
<publisher-name>BRILL</publisher-name>
<publisher-loc>The Netherlands</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1163/156854012X650269</article-id>
<title-group>
<article-title>Isolation of the C-type lectin like-domain cDNAs from the mud crab Scylla paramamosain Estampador, 1949, and its expression profiles in various tissues, during larval development, and under Vibrio challenge</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Jiang</surname>
<given-names>K.</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhang</surname>
<given-names>D.</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sun</surname>
<given-names>M.</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ma</surname>
<given-names>L.</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Qi</surname>
<given-names>L.</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Qiao</surname>
<given-names>Z.</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhang</surname>
<given-names>S.</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhang</surname>
<given-names>F.</given-names>
</name>
</contrib>
</contrib-group>
<pub-date pub-type="epub">
<year>2012</year>
</pub-date>
<volume>85</volume>
<issue>7</issue>
<fpage>817</fpage>
<lpage>834</lpage>
<permissions>
<copyright-statement>© Koninklijke Brill NV, Leiden, The Netherlands</copyright-statement>
<copyright-holder>Koninklijke Brill NV, Leiden, The Netherlands</copyright-holder>
</permissions>
<self-uri content-type="pdf" xlink:href="15685403_085_07_s005_text.pdf"></self-uri>
<custom-meta-wrap>
<custom-meta>
<meta-name>version</meta-name>
<meta-value>header</meta-value>
</custom-meta>
</custom-meta-wrap>
</article-meta>
</front>
<body>
<p>Crustaceana 85 (7) 817-834 ISOLATION OF THE C-TYPE LECTIN LIKE-DOMAIN CDNAS FROM THE MUD CRAB SCYLLA PARAMAMOSAIN ESTAMPADOR, 1949, AND ITS EXPRESSION PROFILES IN VARIOUS TISSUES, DURING LARVAL DEVELOPMENT, AND UNDER VIBRIO CHALLENGE BY K. JIANG 1 ) , D. ZHANG 1,2 ) , F. ZHANG 1 ) , M. SUN 1,2 ) , L. QI 1,2 ) , S. ZHANG 1,2 ) , Z. QIAO 1 ) and L. MA 1,3 ) 1 ) East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai 200090, P.R. China 2 ) College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, P.R. China ABSTRACT Scylla paramamosain Estampador, 1949 is one of the most precious marine crabs farmed in China. The crab is prone to infection by microbes at various stages during its growth, leading to high mortality. C-type lectin has a characteristic carbohydrate recognition domain and plays an important role in the immunity system. A cDNA library from the mud crab S. paramamosain was constructed using the SMART technique. Two complete cDNA sequences showing high identities with the C-type lectin gene were isolated from the library. The two full-length C-type lectin cDNAs of S. paramamosain ( SpLec1 and SpLec2 ) consist of 746 and 834 bp, respectively. Quantitative real- time PCR analyses revealed that the C-type lectins were expressed mainly in haemocytes, muscle and hepatopancreas, with the highest expression level found in hepatopancreas. The C-type lectin mRNA expression in continuous developmental stages during zoeal phases were also examined by quantitative real-time PCR. After infection with Vibrio parahaemolyticus (Sakazaki, 1963) at a concentration of 2.3 × 10 6 cfu/ml, the temporal expression of SpLec1 and SpLec2 mRNA in the megalopa stage was first increased, reached a maximum, and then dropped to the original level again. The research of C-type lectins in Scylla paramamosain could shed new light on studies on immunity and moulting in the mud crab. RÉSUMÉ Scylla paramamosain Estampador, 1949 est l’un des plus précieux crabe marin cultivé en Chine. Le crabe est sujet à l’infection par des microbes à différents stades de sa croissance, résultant en de fortes mortalités. La lectine de type C présente un domaine de reconnaissance des carbohydrates et joue un rôle important dans le système immunitaire. Une banque de DNAc à partir du crabe 3 ) Corresponding author; e-mail: malingbo@vip.sina.com © Koninklijke Brill NV, Leiden, 2012 DOI:10.1163/156854012X650269</p>
<p>818 K. JIANG ET AL. S. paramamosain a été construite en utilisant la technique SMART. Deux séquences de DNAc complètes montrant une forte similarité avec le gêne de la lectine C ont été isolées de la banque. Les deux longueurs de DNAc de lectine type C de S. paramamosain ( SpLec1 et SpLec2 ) consistent respectivement en 746 et 834 paires de bases. Des analyses par RT-PCR quantitative ont révélé que les lectines type C ont été exprimées essentiellement dans les hémocytes, les muscles et l’hépatopancréas, avec le niveau d’expression le plus élevé trouvé dans l’hépatopancréas. Les expressions de l’ARMm de la lectine type C ont aussi été examinées par RT-PCR quantitative au cours du développement durant les stades zoés. Après une infection avec Vibrio parahaemolyticus (Sakazaki, 1963) à une concentration de 2.3 × 10 6 cfu/ml, les expressions au cours du temps au stade mégalope ont d’abord augmenté, puis sont redescendues à leur niveau originel. La recherche des lectines type C chez Scylla paramamosain pourrait apporter de nouvelles lumières dans les études de l’immunité et de la mue de ce crabe. INTRODUCTION C-type lectin is regarded as an important protein in the innate immune system. It is said that C-type lectin participates in pathogen recognition and other defense responses, such as in innate immunity and cell-cell interactions (Zhang et al., 2000; Yamaura et al., 2008). Apart from acting an important role in immune response (Chai et al., 2008; Sun Y. et al., 2008), C-type lectin may be also involved in the moulting process (Kawaguchi et al., 1991; Soria et al., 2006; Chai et al., 2008). The typical C-type lectins have a carbohydrate recognition domain (CRD) with a well-defined structure stabilized by two or three pairs of disulfide bonds, which can bind to carbohydrate residues of foreign pathogens (Sun Y. et al., 2008). EPN (or QPD) and WND are two important motifs which play important roles in carbohydrate-binding. In many species the typical C-type lectin has two motifs, one is the EPN domain for the binding of mannose or QPD domain for the binding of galactose, while the other one is the WND motif. Such as in Osmerus lanceolatus (Hikita, 1913), both the H and L subunits have the typical C-type lectin motifs EPN and WND (Hosono et al., 2005). In Litopenaeus vannamei (Boone, 1931), the first CRD contained a QPD motif while the second CRD contained an EPN motif (Ma et al., 2007). However, it was reported that in Portunus trituberculatus (Miers, 1876) the C-type lectin like-domain contained a single CRD domain with six cysteine residues but do not contained a typical EPN (or QPD) or WND motif (Kong et al., 2008). In CRDs of different species, there are four Ca 2 + -binding sites identified, among which the amino acid for Ca 2 + -binding site 2 is extremely conservative and it plays an important role in carbohydrate- binding activity (Zelensky & Gready, 2005). Mud crabs ( Scylla spp.) are one of the most precious marine crabs in aquaculture throughout the Indo-Pacific and Indian Ocean regions (Hideyuki & Takeda, 2005; Imjongjirak et al., 2007). Mud crabs possess significant economic value, but its culture has suffered from serious diseases caused mainly by microorganisms</p>
<p>C-TYPE LECTIN LIKE-DOMAIN CDNAS FROM SCYLLA PARAMAMOSAIN ESTAMPADOR 819 and viruses such as Vibrio parahaemolyticus (Sakazaki, 1963) which brought a huge commercial loss. The morbidity during aquaculture over the whole year was approximately 15%, with microorganisms as the most common cause of which V. parahaemolyticus was the most prevalent. Therefore, researchers have become increasingly paying close attention to cloning and isolation of important genes in immune system. So far, a number of C-type lectin genes have been cloned and isolated from various species (Kong et al., 2008). However, there is no report on the C-type lectin genes of Scylla paramamosain Estampador, 1949 so far. In this study, we describe the characterization of the full-length cDNA and the deduced amino-acid sequence of C-type lectins in S. paramamosain. The expression profiles of C-type lectin mRNA in different tissues, at various developmental stages, were investigated, and the expression profiles in megalopa challenged by V. parahaemolyticus in vitro were also analysed. MATERIAL AND METHODS Material and reagents Healthy Scylla paramamosain , averaging 400 g in weight, were collected from Hainan Island, P.R. China. Different tissues such as haemocytes, muscle, heart, ovary, and hepatopancreas were excised and preserved in liquid nitrogen for RNA extraction. Samples of crabs in the zoeal I (Z1) stage, Z2, Z3, Z4 and Z5 were collected during the cultivation process on Hainan Island. cDNA library construction Total RNA was extracted from a juvenile of S. paramamosain using TRIzol reagent (TaKaRa, Shiga, Japan) according to the manufacturer’s protocol. The RNA was used for the construction of the cDNA library using the Super SMART PCR cDNA Synthesis Kit (Clontech, Madison, WI, U.S.A.) according to the manufacturer’s instructions. Sequence data analysis The homology searches for the nucleotide and protein sequences were per- formed using the BLAST algorithm at NCBI (http://www.ncbi.nlm.nih.gov/). The deduced amino-acid sequence was analysed with the Expert Protein Analysis Sys- tem (http://www.expasy.org/). Amino acid sequences from various species were retrieved from the NCBI GenBank and were analysed using the Vector NTI Suite 11.0. A neighbour-joining phylogenetic tree was constructed using MEGA software version 4.1 (Tamura et al., 2007) and the confidence level in the tree generated was obtained using 1000 bootstraps. The secondary structure of SpLec1</p>
<p>820 K. JIANG ET AL. and SpLec2 was predicted by the application of the hierarchical neural network. The three-dimensional structure of SpLec1 and SpLec2 were simulated using the SWISS-MODEL long-distance server (Arnold et al., 2006). qRT-PCR analysis of the C-type lectin gene in different tissues and at various developmental stages of S. paramamosain Total RNA was isolated from different tissues and various developmental stages of S. paramamosain using the TRIzol reagent (TaKaRa, Shiga, Japan) and was stored at − 80°C. First-strand cDNA synthesis was performed using M-MLV reverse transcriptase (Promega, Madison, WI, USA) to transcribe poly(A) mRNA with Oligo-dT and random 6-mers as primers. The reaction conditions were as recommended by the manufacturer. The cDNA was maintained at − 20°C for qRT- PCR. qRT-PCR was used to analyse the expression of SpLec genes in different tissues and in various developmental stages. The process was as follows: the first chain of the cDNA was reverse transcribed using 500 ng of total RNA by using 5-fold serial diluted to generate the standard curve. The SYBR Green I qRT-PCR assay (Power SYBR Green PCR Master Mix, Applied Biosystems, Foster City, CA, USA) was carried out in an ABI StepOnePlus Detection system (Applied Biosystems). Am- plifications were performed in a 96-well plate with a 20 μ l reaction volume con- taining 10 μ l of 2 × Power SYBR Green PCR Master Mix, 0.4 μ l of PCR Forward Primer (10 μ M), 0.4 μ l of PCR Reverse Primer (10 μ M), 2.0 μ l of cDNA temple and 7.2 μ l of diethylpyrocarbonate-treated water (DEPC-treated water). The ther- mal profile for SYBR Green qRT-PCR was 10 min at 95°C, followed by 45 cycles of 95°C for 15 s and 60°C for 1 min. DEPC-treated water was used to replace the template in the negative control. Fluorescence collection was performed after the completion of each cycle. In this experiment, 18S rRNA was used as the inter- nal gene in all qRT-PCR assays, 18s-RT-F (5 ′ -GGGGTTTGCAATTGTCTCCC-3 ′ ) and 18s-RT-R (5 ′ -GGTGTGTACAAAGGGCAGGG-3 ′ ) were designed based on the 18S rRNA gene sequence (accession number FJ646616.1). The primers used to amplify SpLec were SpLec1 -RT-F (5 ′ -TTAATGACGGTAATTGTAGCACG-3 ′ ) and SpLec1 -RT-R (5 ′ -AATATTTTCGGTACCTGTGCGTC-3 ′ ), SpLec2 -RT-F (5 ′ - GGGCCAACTATAAGGACAACGT-3 ′ ) and SpLec2 -RT-R (5 ′ -CCTTCGAACA TCGTGCAGTATAT-3 ′ ). The standard curve and the gene expression levels were analysed automatically by the system, as was the setting of the base line. A melt- ing curve analysis of amplification products was performed at the end of each PCR reaction to confirm that only one product was amplified and detected. For the ex- perimental result of qRT-PCR, the observations at the different tissues and various stages were calculated to derive the means and standard deviations.</p>
<p>C-TYPE LECTIN LIKE-DOMAIN CDNAS FROM SCYLLA PARAMAMOSAIN ESTAMPADOR 821 The temporal expression pattern of SpLec1 and SpLec2 mRNA in megalopa after bacterial challenge To elucidate whether the expression of C-type lectin is enhanced by microbial challenge, we used real-time PCR to analyse the expression level of SpLec mRNA in the megalopa stage after challenge with V. parahaemolyticus. The bacterial challenge experiment was performed by adding 2.3 × 10 4 cfu/ml and 2.3 × 10 6 cfu/ml of V. parahaemolyticus suspended in physiological saline into two separate plastic tanks to culture the larvae. Untreated larvae were used as the blank group. The larvae in megalopa stage were randomly put into the two tanks and from each tank five individuals were collected at 0, 3, 6, 12, 24, 48, 72 and 96 h. Three replicates were employed for each sampling time point. RNA isolation, cDNA synthesis and qRT-PCR analysis were carried out as described above. The blank group was used as the calibrator. All data were calculated to derive the means and standard deviations. RESULTS Cloning of C-type lectin from S. paramamosain Based on the EST library of the juvenile Scylla paramamosain (cf. Zhang et al., 2010), two cDNA clones for C-type lectin were isolated. The full-length cDNA of SpLec1 and SpLec2 were 746 bp and 834 bp, respectively (GenBank accession nos. HQ325747, HQ325748). SpLec1 exhibited a 495-bp open reading frame (ORF) coding for 165 amino acids; in contrast, SpLec2 exhibited a 528-bp ORF coding for a 176-amino-acid protein. The predicted molecular mass and the isoelectric points (pI) of SpLec1 and SpLec2 were 18.25 kDa, 4.56 and 19.70 kDa, 4.90. Using the signal peptide prediction software SignalP 3.0 (http://www.cbs.dtu.dk/ services/SignalP/), it was predicted that amino acid residues 1-18 represented the signal peptide region of SpLec1 while 1-26 represented the signal peptide region of SpLec2 . Both SpLec1 and SpLec2 contained a single CRD domain with six conserved cysteine residues, in spite of that the CRD did not contain a typical EPN or WND motif for carbohydrate binding. The full-length nucleotide sequence and the deduced amino acid sequence of SpLec1 and SpLec2 are shown in fig. 1. Sequence analysis The sequences of CRD in SpLec1 and SpLec2 were aligned with the CRD sequences of other species using the program of Vector NTI Suite 11.0. The alignment showed that some amino acid residues were highly conserved in different species such as the cysteine residues (fig. 2). The deduced amino-acid</p>
<p>822 K. JIANG ET AL. (a) Fig. 1. Nucleotide sequence and deduced amino-acid sequence of Scylla paramamosain Estampador, 1949 C-type lectin cDNAs ( SpLec1 and SpLec2 ). The start (ATG) and stop (TAA) codons are un- derlined. The putative sequence of the signal peptide is single underlined. The putative carbohydrate recognition domain (CRD) is in gray. The six conserved cysteine residues (C) are double under- lined (C).</p>
<p>C-TYPE LECTIN LIKE-DOMAIN CDNAS FROM SCYLLA PARAMAMOSAIN ESTAMPADOR 823 (b) Fig. 1. (Continued).</p>
<p>824 K. JIANG ET AL. Fig. 2. Multiple alignments of the deduced amino-acid sequences of the SpLec1 and SpLec2 CRD with some elucidated CRD sequences of other species obtained using Vector NTI Suite 11.0. The abbreviations and GenBank accession numbers are: Portunus trituberculatus (Miers, 1876) ACC86854.1; Penaeus monodon Fabricius, 1798, PMAV AAQ75589.1; Penaeus semisulcatus De Haan, 1844, ABI97372.1; Litopenaeus vannamei (Boone, 1931) ABI97374.1; Fenneropenaeus chi- nensis (Osbeck, 1975) ABA54612.1; Penaeus monodon Fabricius, 1798, ABI97373.1; Homo sapi- ens Linnaeus, 1758, AAB17133.1; Mus musculus Linnaeus, 1758, NP-058031.2. Dashes represent gaps introduced to maximize similarities. The relationships between residues are indicated as fol- lows: non-similar residues, black letters on a white background; conserved residues, black letters on a dark gray background; block of similarity, black letters on a light grey background; identical residues, white letters on a black background; and weakly similar residues, dark grey letters on a white background.</p>
<p>C-TYPE LECTIN LIKE-DOMAIN CDNAS FROM SCYLLA PARAMAMOSAIN ESTAMPADOR 825 sequence of SpLec1 showed 63% similarity with that of P. trituberculatus and only 16% with that of Homo sapiens Linnaeus, 1758. While SpLec2 shared the highest homology with that of P. trituberculatus (75%) and the lowest percentage with that of H. sapiens (17%) (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The identity between SpLec1 and SpLec2 was 65%. Furthermore, a NJ phylogenetic tree was generated using the deduced CRD protein sequences deposited in NCBI by MEGA 4.1 (fig. 3). The phylogenetic analyses indicated that the C-type lectins from vertebrates and invertebrates were classified into two big clusters. SpLec1 Fig. 3. Phylogenetic analysis of the CRD sequences of C-type lectins. The phylogenetic tree was constructed by the neighbour-joining method, based on the amino-acid alignments of individual CRD sequence from selected lectins, and the reliability of the branching was tested using bootstrap re-sample (1000 pseudo-replicates) using MEGA 4.1. The GenBank accession numbers of these lectins are Portunus trituberculatus (Miers, 1876) ACC86854.1; Penaeus monodon Fabricius, 1798, PMAV AAQ75589.1; Penaeus semisulcatus De Haan, 1844, ABI97372.1; Litopenaeus vannamei (Boone, 1931) ABI97374.1; Fenneropenaeus chinensis (Osbeck, 1975) ABA54612.1; Penaeus monodon Fabricius, 1798, ABI97373.1; Homo sapiens Linnaeus, 1758, AAB17133.1; Mus musculus Linnaeus, 1758, NP-058031.2.</p>
<p>826 K. JIANG ET AL. and SpLec2 were in a large cluster together with C-type lectins owning a single CRD domain such as that of P. trituberculatus . The potential tertiary structures of CRD in SpLec1 and SpLec2 The hierarchical neural network provided a structural model of SpLec . In SpLec1 it included 21.21% alpha helix (35 AA), 21.21% extended strand (35 AA) and 57.58% random coil (95 AA), while in SpLec2 it contained 26.70% alpha helix (47 AA), 17.61% extended strand (31 AA) and 55.68% random coil (98 AA). The result showed that random coil was the major component in SpLec . The deduced amino-acid sequences of SpLec1 and SpLec2 were submitted to the SWISS-MODEL server. Through searching the PDB database with this program, the deduced tertiary structures were obtained. The comparative analysis revealed Fig. 4. The secondary structures and the three-dimensional structures of the deduced C-type lectin polypeptides from Scylla paramamosain Estampador, 1949. a, The secondary structures of SpLec1 . b, The secondary structures of SpLec2 . c, The three-dimensional structures of SpLec1 . d, The three- dimensional structures of SpLec2 . α -Helices and extended strands are denoted as vertical long bars and vertical short bars, respectively, with the horizontal line presenting the random coil running through the entire molecule. The three-dimensional structures were established based on the Swiss Model. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/15685403.</p>
<p>C-TYPE LECTIN LIKE-DOMAIN CDNAS FROM SCYLLA PARAMAMOSAIN ESTAMPADOR 827 that, although there were some differences in the amino-acid sequence, the deduced tertiary structures of C-type lectins were conserved in various species (fig. 4). qRT-PCR analysis of lectin gene in different tissues and at various developmental stages of larval S. paramamosain The qRT-PCR investigation was carried out to indentify the spatial and temporal expression of SpLec among different tissues and various periods. As can be seen in fig. 5, it could befound that the expression levels of SpLec in different tissues and stages were dissimilar. The highest expression level could be seen in the hepatopancreas while the gill showed the lowest, and marginally in haemocytes, muscle and ovary. In the various stages, the highest expression level of SpLec1 emerged at the Z2 stage, there was a drop in Z3, and then it reached a higher level at Z4, but abruptly declined at the next stage. The lowest level appeared at the Z3 stage. The highest expression level of SpLec2 was detected at the Z1 stage while the lowest was observed at the Z3 stage. The detailed results are displayed in fig. 5. The temporal expression of SpLec mRNA in megalopa stage after bacterial challenge The temporal expressions of SpLec1 and SpLec2 genes in megalopa stage after Vibrio parahaemolyticus challenge were investigated by qRT-PCR. When using the concentration of 2.3 × 10 4 cfu/ml of V. parahaemolyticus to challenge the megalopa juvenile, there was no great change during the experiment times. Nevertheless, when the larvae were challenged by V. parahaemolyticus at a Fig. 5. The expression profile of the C-type lectin genes in different tissues (a) and various developmental stages (b) revealed by qRT-PCR. The amount of lectin mRNA was normalized to the 18S rRNA transcript level. Data are shown as means ± SD of three repeated experiments. The y -axis represents the relative ratio of expression levels of lectin / 18S rRNA mRNA. Z1, zoeal stage 1; Z2, zoeal stage 2; Z3, zoeal stage 3; Z4, zoeal stage 4; Z5, zoeal stage 5.</p>
<p>828 K. JIANG ET AL. (a) (b) (c)</p>
<p>C-TYPE LECTIN LIKE-DOMAIN CDNAS FROM SCYLLA PARAMAMOSAIN ESTAMPADOR 829 concentration of 2.3 × 10 6 cfu/ml, SpLec mRNA expression was up-regulated during the first 3 hours, reached the maximum level, and then the expression of SpLec was gradually down-regulated and dropped back to the original level 72 h after challenge (fig. 6). DISCUSSION In this study, we successfully isolated and sequenced two cDNA of C-type lectins from Scylla paramamosain . Both SpLec1 and SpLec2 have only one CRD with six conserved cysteine residues despite that the CRD does not contain a typical EPN or WND motif for carbohydrate binding. It was reported that in some species there were more than a single gene encoding C-type lectin. For example, in Drosophila melanogaster (Meigen, 1830), there are 32 genes encoding C-type lectin-like domains in the genome (Dodd & Drickamer, 2001). In Fenneropenaeus chinensis (Osbeck, 1765), there are at least eight putative C-type lectins obtained (Wang et al., 2009a, b). In this study, two cDNAs of C-type lectin were cloned from S. paramamosain ( SpLec1 and SpLec2 ). The abundant and diverse of C-type lectin-like domain imply that they may play an important role in immunity system (Wang et al., 2007). The status of invertebrate in the evolution is original, they rely solely on the innate system to prevent invading microorganisms, so the diverse of C-type lectins in a species could recognize more non-self microorganism in immunity system and then prevent the invasion, reducing the damage to the invertebrate. The numbers of CRD are variable in different species. For example, in the C- type lectins of L. vannamei (cf. Ma et al., 2007) and Penaeus monodon Fabricius, 1798 (cf. Ma et al., 2008), each cDNA sequence contained two CRDs, while in the fish “ O. fasciatus ” (data not shown) and Cyprinus carpio Linnaeus, 1758 (cf. Savan et al., 2004) the C-type lectins contained only one CRD. Interestingly, even in the same species the number of CRD in different C-type lectins were also dissimilar. For example, in F. chinensis there were two CRDs in a C-type lectin (FcLectin) (Liu et al., 2007), whereas recently it has been reported that there was only one CRD in a novel C-type lectin (FcLec4) isolated from F. chinensis (Wang et al., Fig. 6. SpLec1 and SpLec2 expression in megalopa stage at different time intervals in the Vibrio parahaemolyticus (Sakazaki, 1963) challenging experiment. a, Time-course of expression of SpLec1 and SpLec2 in V. parahaemolyticus challenged control groups. b, Time-course of expression of SpLec1 and SpLec2 in V. parahaemolyticus challenged groups with a concentration of 2.3 × 10 4 cfu/ml. c, Time-course of expression of SpLec1 and SpLec2 in V. parahaemolyticus challenged groups with a concentration of 2.3 × 10 6 cfu/ml. The y -axis represents the relative ratio of expression levels of lectin / 18S rRNA mRNA.</p>
<p>830 K. JIANG ET AL. 2009a, b). Similarly, there was only a single CRD in both SpLec1 and SpLec2 . As a single CRD has a weak affinity for carbohydrates while two or more CRDs have a better affinity, so SpLec1 and SpLec2 might have a weak affinity binding to carbohydrates. Some highly conserved amino-acid residues in the CRD of different species are important for us to understand the roles that C-type lectins play (Liu et al., 2007). As the previous research reported, there are four Ca 2 + -binding sites in the CRD structure from different C-type lectins (Chai et al., 2008). Ca 2 + -binding site 2, in particular, is involved in carbohydrate binding. The conserved amino acids residues involved in carbohydrate binding at the Ca 2 + -binding site 2 are EN, E, ND for the mannose binding or QD, Q, DD for the galactose type. In SpLec1 the amino acids of Ca 2 + -binding site 2 were MN, Q, ND, two out of the five conserved amino acids residues were changed in the CRD sequence. While in SpLec2 the 5 amino-acid residues of Ca 2 + -binding site 2 were MA, Q, ND, there were only two amino acids residues conserved. However, in C-type lectin these five residues were not conserved strongly, especially in invertebrates; for example, in CRD1 of L. vannamei the amino acids for Ca 2 + -binding site 2 were QD, E, ND, whereas in CRD2 the residences were ED, Q, RD (Ma et al., 2007). In a C-type lectin like-domain-containing protein of P. trituberculatus , the amino-acid residues for Ca 2 + -binding site 2 were MT, Q, ND (Kong et al., 2008). In conclusion, in SpLec1 and SpLec2 the ability to bind carbohydrate and Ca 2 + may be low and even lost. Further explorations are needed to test this putative result and to provide evidences for carbohydrate-binding mechanisms in SpLec genes. On the other hand, the deduced tertiary structures of the CRD were conserved in various species, it has a double-loop structure. The overall domain was a loop, contained some β -sheets and α -helices (Zelensky & Gready, 2005). The conservation and diversity of C-type lectin might suggest that it plays a crucial role in immune defence. The mRNA expression level is a substantial element which affects the synthe- sis of lectins. The expression levels of C-type lectin genes in different tissues and various stages are dissimilar. In Oncorhynchus mykiss (Walbaum, 1792), the C- type lectin gene was expressed mainly in spleen and peripheral blood leukocyte while with a weak expression in tests (Zhang et al., 2000). In P. trituberculatus , the highest expression of C-type lectin like-domain was found in hepatopancreas, moderately in gills, haemocytes and ovary (Kong et al., 2008). The hepatopancreas and haemocytes are considered two important tissues in immune defence (Söder- häll et al., 1998; Gross et al., 2001). Similarly, the transcription of C-type lectin was detected exclusively in the haemocytes of P. monodon (cf. Luo et al., 2003) and F. chinensis (cf. Liu et al., 2007). However, in L. vannamei the C-type lectin mRNA was only detected in the hepatopancreas but not in the haemocytes (Ma et</p>
<p>C-TYPE LECTIN LIKE-DOMAIN CDNAS FROM SCYLLA PARAMAMOSAIN ESTAMPADOR 831 al., 2007). In this study, the highest expression level of SpLec was found in hep- atopancreas, marginally in haemocytes, muscle, and ovary. In different species, the expression level of C-type lectin gene in haemocytes and hepatopancreas are not the same, the reason may be that in diverse kinds of species the C-type lectins act in unlike ways in different tissues. It was reported in some shrimps a large amount of C-type lectins need to be secreted into the haemolymph to exert their effects (Luo et al., 2006; Sun J. et al., 2008). As for the ubiquitous expression of SpLec in ovary and muscle, it has been suggested that SpLec might be involved in various biological processes, including non-self innate immunity (Kong et al., 2008), or because there were some other unknown C-type lectins existing in S. paramamo- sain . In various developmental stages, SpLec were expressed from stage Z1 to Z5. As a whole, the expression level of SpLec1 was higher than which of SpLec2 in different stages. The result suggested that SpLec may play an important role in the moulting process but act in different patterns in the course. Many researchers reported that the expression level of the C-type lectin gene after bacteria or virus challenge did vary. In Chlamys farreri (Jones & Preston, 1904), the expression of C-type lectin gene in haemocytes after Vibrio anguillarum Bergeman, 1909 and Micrococcus luteus (Cohn, 1872) challenge was up-regulated, reached a maximum level and then dropped to the original level, but the expression patterns in these two bacteria were different (Wang et al., 2007). In F. chinensis , the transcription of C- type lectin was up-regulated from 2 to 12 h and then decreased to the original level by 24 h infection both in gills and stomach after V. anguillarum challenge; how- ever, in hepatopancreas it was decreased from 2 to 6 h and then slightly recovered from 12 h to 24 h. One reasonable explanation may be that gills and stomach might be involved in the initial defence against the pathogens from water and food, while the initial decrease of C-type lectin transcript in hepatopancreas might be due to an emergency response (Wang et al., 2009). As the megalopa stage is the most impor- tant stage in the course of cultured crabs, we choose the megalopa as the subject for investigation. A time-dependent pattern of SpLec1 and SpLec2 expression was observed after Vibrio parahaemolyticus challenge. In the study, three different con- centrations of V. parahaemolyticus were used to challenge the megalopa juvenile. It was found that at different concentrations the expression levels of SpLec1 and SpLec2 were different; there was little change in the expression level of SpLec at different times when using the concentration of 2.3 × 10 4 cfu/ml of V. para- haemolyticus to challenge the megalopa juvenile, but there were great disparities in the expression level of SpLec when challenged at the concentration of 2.3 × 10 6 cfu/ml. The transcription of SpLec rose at first, then ascended to the maximum peak at 24 h or 48 h after the challenge and finally declined to the original level. It also appeared that the expression levels rose again after 48 h for a new round,</p>
<p>832 K. JIANG ET AL. revealing a character of periodicity which remained to be validated. When the con- centration of V. parahaemolyticus increased to 2.3 × 10 7 cfu/ml, all the larvae died at the beginning of the experiment. So we inferred that both SpLec1 and SpLec2 were relative to bacterial challenge, but the speculation needed to be confirmed with additional research. In crustaceans, it had been shown that lectins could be expressed in the membrane of haemocytes (Sierra et al., 2005) and intracellular deposits of lectins have also been identified (Vàzquez et al., 1997). However, the entire pathway including mRNA transcription, protein synthesis and modification, secretion, transportation, functioning, and degradation still remained incomplete. Indicated by this study, some lectin copies such as SpLec2 showed dominant transcription in hepatopancreas and haemolymph (fig. 5), implying these two organs as the main sites for synthetizing lectin genes. With challenges of bacteria, SpLec1 responded to both low density and high density of V. parahaemolyticus (fig. 6b, c), while the mRNA expression of SpLec2 was only triggered by high density of V. parahaemolyticus (fig. 6c). As lectin genes act their roles ubiquitously, these data supported the above statements (Vàzquez et al., 1997; Sierra et al., 2005), and a systemic mechanism for the synthesis of lectins and transportation. Furthermore, various copies might share separate expression profiles; some were responding for constitutive expression in specific organs, some were assumed to play their parts under external stimuli. All these phenomena point towards a complex functional mechanism of lectin in Crustacea. In the future, with the rapid increase in the number of lectin-like molecules cloned and isolated from S. paramamosain , by understanding how they act in the immunity system, it would play an important role in controlling disease outbreak in aquaculture. Further characterization of the C-type lectin at the protein level is necessary to reveal its role in the innate immune system. ACKNOWLEDGEMENTS This work was supported by the National Natural Science Foundation of China (No. 31101890), Science and Technology Commission of Shanghai Municipality (No. 10JC1418600) and the Basic Research Fund for State-level Nonprofit Re- search Institutes of ESCFRI, CAFS (Nos. 2008M02, 2007Z01). REFERENCES A RNOLD , K., L. B ORDOLI , J. K OPP & T. S CHWEDE , 2006. The SWISS-MODEL Workspace: a web-based environment for protein structure homology modelling. Bioinformatics, 22 : 195- 201.</p>
<p>C-TYPE LECTIN LIKE-DOMAIN CDNAS FROM SCYLLA PARAMAMOSAIN ESTAMPADOR 833 C HAI , L.-Q., Y.-Y. T IAN , D.-T. Y ANG , J.-X. W ANG & X.-F. Z HAO , 2008. Molecular cloning and characterization of a C-type lectin from the cotton bollworm, Helicoverpa armigera . Dev. Comp. Immunol., 32 : 71-83. D ODD , R. B. & K. D RICKAMER , 2001. Lectin-like proteins in model organisms: implications for evolution of carbohydrate-binding activity. Glycobiology, 11 : 71-79. G ROSS , P. S., T. C. B ARTLETT , C. L. B ROWDY , R. W. C HAPMAN & G. W. W ARR , 2001. Immune gene discovery by expressed sequence tag analysis of hemocytes and hepatopancreas in the Pacific White Shrimp, Litopenaeus vannamei , and the Atlantic white shrimp, L. setiferus . Dev. Comp. Immunol., 25 : 565-577. H OSONO , M., S. S UGAWARA , Y. O GAWA , T. K OHNO , M. T AKAYANAGI & K. N ITTA , 2005. Purification, characterization, cDNA cloning, and expression of asialofetuin-binding C-type lectin from eggs of Shishamo smelt ( Osmerus [ Spirinchus ] lanceolatus ). Biochim. Biophys. Acta General Subjects, 1725 : 160-173. I MAI , H. & M. T AKEDA , 2005. A natural hybrid mud crab (Decapoda, Portunidae) from Japan. Journ. Crustacean Biol., 25 : 620-624. I MJONGJIRAK , C., P. A MPARYUP , A. T ASSANAKAJON & S. S ITTIPRANEED , 2007. An- tilipopolysaccharide factor (ALF) of the mud crab Scylla paramamosain : molecular cloning, genomic organization and the antimicrobial activity of its synthetic LPS binding domain. Mol. Immunol., 44 : 3195-3203. K AWAGUCHI , N., H. K OMANO & S. N ATORI , 1991. Involvement of Sarcophaga lectin in the development of imaginal discs of Sarcophaga peregrina in an autocrine manner. Dev. Biol., 144 : 86-93. K ONG , H. J., E.-M. P ARK , B.-H. N AM , Y.-O. K IM , W.-J. K IM , H.-J. P ARK , C. H. L EE & S.-J. L EE , 2008. A C-type lectin like-domain (CTLD)-containing protein (PtLP) from the swimming crab Portunus trituberculatus . Fish Shellfish Immunol., 25 : 311-314. L IU , Y.-C., F.-H. L I , B. D ONG , B. W ANG , W. L UAN , X.-J. Z HANG , L.-S. Z HANG & J.-H. X IANG , 2007. Molecular cloning, characterization and expression analysis of a putative C- type lectin (Fclectin) gene in the Chinese shrimp Fenneropenaeus chinensis . Mol. Immunol., 44 : 598-607. L UO , T., H. Y ANG , F. L I , X. Z HANG & X. X U , 2006. Purification, characterization and cDNA cloning of a novel lipopolysaccharide-binding lectin from the shrimp Penaeus monodon . Dev. Comp. Immunol., 30 : 607-617. L UO , T., X. Z HANG , Z. S HAO & X. X U , 2003. PmAV, a novel gene involved in virus resistance of shrimp Penaeus monodon . FEBS Lett., 551 : 53-57. M A , T. H. T., J. A. H. B ENZIE , J.-G. H E & S.-M. C HAN , 2008. PmLT, a C-type lectin specific to hepatopancreas is involved in the innate defense of the shrimp Penaeus monodon . Journ. Invertebr. Pathol., 99 : 332-341. M A , T. H. T., S. H. K. T IU , J.-G. H E & S.-M. C HAN , 2007. Molecular cloning of a C-type lectin (LvLT) from the shrimp Litopenaeus vannamei : early gene down-regulation after WSSV infection. Fish Shellfish Immunol., 23 : 430-437. S AVAN , R., M. E NDO & M. S AKAI , 2004. Characterization of a new C-type lectin from common carp Cyprinus carpio . Mol. Immunol., 41 : 891-899. S IERRA , C., R. L ASCURAIN , A. P EREYRA , J. G UEVARA , G. M ARTÍNEZ , C. A GUNDIS , E. Z EN - TENO & L. V ÁZQUEZ , 2005. Participation of serum and membrane lections on the oxidative burst regulation in Macrobrachium rosenbergii hemocytes. Dev. Comp. Immunol., 29 : 113- 121. S ÖDERHÄLL , K. & L. C ERENIUS , 1998. Role of the prophenoloxidase-activating system in invertebrate immunity. Curr. Opin. Immunol., 10 : 23-28. S ORIA , F., C. S IERRA , S. B OUQUELET , C. B RASSART , C. A GUNDIS , E. Z ENTENO & L. V ÀZQUEZ , 2006. The effect of sugars and free amino acids from the freshwater prawn Ma- crobrachium rosenbergii hemolymph on lectin activity and on oxidative burst. Comp. Biochem. Physiol. C, 142 : 212-219.</p>
<p>834 K. JIANG ET AL. S UN , Y.-D., L.-D. F U , Y.-P. J IA , X.-J. D U , Q. W ANG , Y.-H. W ANG , X.-F. Z HAO , X.-Q. Y U & J.-X. W ANG , 2008. A hepatopancreas-specific C-type lectin from the Chinese shrimp Fenneropenaeus chinensis exhibits antimicrobial activity. Mol. Immunol., 45 : 348-361. S UN , J., L. W ANG , B. W ANG , Z. G UO , M. L IU , K. J IANG , R. T AO & G. Z HANG , 2008. Purification and characterization of a natural lectin from the plasma of the shrimp Fenneropenaeus chinensis . Fish Shellfish Immunol., 25 : 290-297. T AMURA , K., J. D UFLRY , M. N EI & S. K UMAR , 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol., 24 : 1596-1599. V ÀZQUEZ , L., G. M ALDONADO , C. A GUNDIS , A. P ÉREZ , E. L. C OOPER & E. Z ENTENO , 1997. Participation of a sialic acid-specific lectin from freshwater prawn Macrobrachium rosenbergii hemocytes in the recognition of non-self cells. Journ. Exp. Zool., 279 : 265-272. W ANG , H., L. S ONG , C. L I , J. Z HAO , H. Z HANG , D. N I & W. X U , 2007. Cloning and charac- terization of a novel C-type lectin from Zhikong scallop Chlamys farreri . Mol. Immunol., 44 : 722-731. W ANG , X.-W., W.-T. X U , X.-W. Z HANG , X.-F. Z HAO , X.-Q. Y U & J.-X. W ANG , 2009a. A C- type lectin is involved in the innate immune response of Chinese white shrimp. Fish Shellfish Immunol., 27 : 556-562. W ANG , X.-W., X.-W. Z HANG , W.-T. X U , X.-F. Z HAO & J.-X. W ANG , 2009b. A novel C-type lectin (FcLec4) facilitates the clearance of Vibrio anguillarum in vivo in Chinese white shrimp. Dev. Comp. Immunol., 33 : 1039-1047. Y AMAURA , K., K. G. T AKAHASHI & T. S UZUKI , 2008. Identification and tissue expression analysis of C-type lectin and galectin in the Pacific oyster, Crassostrea gigas . Comp. Biochem. Physiol. B: Biochem. Mol. Biol., 149 : 168-175. Z ELENSKY , A. N. & J. E. G READY , 2005. The C-type lectin-like domain superfamily. FEBS Journ., 272 : 6179-6217. Z HANG , D., K.-J. J IANG , F.-Y. Z HANG , C.-Y. M A , Y.-H. S HI , Z.-G. Q IAO & L.-B. M A , 2011. Isolation and characterization of a ferritin cDNA from the mud crab Scylla paramamosain . Journ. Crustacean Biol., 31 : 345-351. Z HANG , H., B. R OBISON , G. H. T HORGAARD & S. S. R ISTOW , 2000. Cloning, mapping and genomic organization of a fish C-type lectin gene from homozygous clones of rainbow trout ( Oncorhynchus mykiss ). Biochim. Biophys. Acta Gene Structure and Expression, 1494 : 14-22. First received 10 December 2010. Final version accepted 15 February 2012.</p>
</body>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Isolation of the C-type lectin like-domain cDNAs from the mud crab Scylla paramamosain Estampador, 1949, and its expression profiles in various tissues, during larval development, and under Vibrio challenge</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Isolation of the C-type lectin like-domain cDNAs from the mud crab Scylla paramamosain Estampador, 1949, and its expression profiles in various tissues, during larval development, and under Vibrio challenge</title>
</titleInfo>
<name type="personal">
<namePart type="given">K.</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D.</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M.</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">L.</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">L.</namePart>
<namePart type="family">Qi</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Z.</namePart>
<namePart type="family">Qiao</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S.</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">F.</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>BRILL</publisher>
<place>
<placeTerm type="text">The Netherlands</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2012</dateIssued>
<dateCreated encoding="w3cdtf">2012</dateCreated>
<copyrightDate encoding="w3cdtf">2012</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Crustaceana</title>
<subTitle>International Journal of Crustacean Research</subTitle>
</titleInfo>
<titleInfo type="abbreviated">
<title>CR</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0011-216X</identifier>
<identifier type="eISSN">1568-5403</identifier>
<part>
<date>2012</date>
<detail type="volume">
<caption>vol.</caption>
<number>85</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>7</number>
</detail>
<extent unit="pages">
<start>817</start>
<end>834</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">4E88A44103BCEC4FD7240C8CB7E23B4507E80AFD</identifier>
<identifier type="ark">ark:/67375/JKT-ZT37PB96-Z</identifier>
<identifier type="DOI">10.1163/156854012X650269</identifier>
<identifier type="href">15685403_085_07_s005_text.pdf</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© Koninklijke Brill NV, Leiden, The Netherlands</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-56W3KPD5-3">brill-journals</recordContentSource>
<recordOrigin>© Koninklijke Brill NV, Leiden, The Netherlands</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/JKT-ZT37PB96-Z/record.json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001306 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001306 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:4E88A44103BCEC4FD7240C8CB7E23B4507E80AFD
   |texte=   Isolation of the C-type lectin like-domain cDNAs from the mud crab Scylla paramamosain Estampador, 1949, and its expression profiles in various tissues, during larval development, and under Vibrio challenge
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021