Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nucleation and crystallization of globular proteins — what we know and what is missing

Identifieur interne : 000D83 ( Istex/Corpus ); précédent : 000D82; suivant : 000D84

Nucleation and crystallization of globular proteins — what we know and what is missing

Auteurs : F. Rosenberger ; P. G. Vekilov ; M. Muschol ; B. R. Thomas

Source :

RBID : ISTEX:01CE8274DA1904DF6B6EFC5CEFB9673F12E30B89

English descriptors

Abstract

Abstract: Recently, much progress has been made in understanding the nucleation and crystallization of globular proteins, including the formation of compositional and structural crystal defects. Insight into the interactions of (screened) protein macro-ions in solution, obtained from light scattering, small angle X-ray scattering and osmotic pressure studies, can guide the search for crystallization conditions. These studies show that the nucleation of globular proteins is governed by the same principles as that of small molecules. However, failure to account for direct and indirect (hydrodynamic) protein interactions in the solutions results in unrealistic aggregation scenarios. Microscopic studies of numerous proteins reveal that crystals grow by the attachment of growth units through the same layer-spreading mechanisms as inorganic crystals. Investigations of the growth kinetics of hen-egg-white lysozyme (HEWL) reveal non-steady behavior under steady external conditions. Long-term variations in growth rates are due to changes in step-originating dislocation groups. Fluctuations on a shorter timescale reflect the non-linear dynamics of layer growth that results from the interplay between interfacial kinetics and bulk transport. Systematic gel electrophoretic analyses suggest that most HEWL crystallization studies have been performed with material containing other proteins at percent levels. Yet, sub-percent levels of protein impurities impede growth step propagation and play a role in the formation of structural/compositional inhomogeneities. In crystal growth from highly purified HEWL solutions, however, such inhomogeneities are much weaker and form only in response to unusually large changes in growth conditions. Equally important for connecting growth conditions to crystal perfection and diffraction resolution are recent advances in structural characterization through high-resolution Bragg reflection profiling and X-ray topography.

Url:
DOI: 10.1016/0022-0248(96)00358-2

Links to Exploration step

ISTEX:01CE8274DA1904DF6B6EFC5CEFB9673F12E30B89

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Nucleation and crystallization of globular proteins — what we know and what is missing</title>
<author>
<name sortKey="Rosenberger, F" sort="Rosenberger, F" uniqKey="Rosenberger F" first="F." last="Rosenberger">F. Rosenberger</name>
<affiliation>
<mods:affiliation>Center for Microgravity and Materials Research, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vekilov, P G" sort="Vekilov, P G" uniqKey="Vekilov P" first="P. G." last="Vekilov">P. G. Vekilov</name>
<affiliation>
<mods:affiliation>Center for Microgravity and Materials Research, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Muschol, M" sort="Muschol, M" uniqKey="Muschol M" first="M." last="Muschol">M. Muschol</name>
<affiliation>
<mods:affiliation>Center for Microgravity and Materials Research, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Thomas, B R" sort="Thomas, B R" uniqKey="Thomas B" first="B. R." last="Thomas">B. R. Thomas</name>
<affiliation>
<mods:affiliation>Center for Microgravity and Materials Research, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:01CE8274DA1904DF6B6EFC5CEFB9673F12E30B89</idno>
<date when="1996" year="1996">1996</date>
<idno type="doi">10.1016/0022-0248(96)00358-2</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-D6FN0XNC-B/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000D83</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000D83</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Nucleation and crystallization of globular proteins — what we know and what is missing</title>
<author>
<name sortKey="Rosenberger, F" sort="Rosenberger, F" uniqKey="Rosenberger F" first="F." last="Rosenberger">F. Rosenberger</name>
<affiliation>
<mods:affiliation>Center for Microgravity and Materials Research, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vekilov, P G" sort="Vekilov, P G" uniqKey="Vekilov P" first="P. G." last="Vekilov">P. G. Vekilov</name>
<affiliation>
<mods:affiliation>Center for Microgravity and Materials Research, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Muschol, M" sort="Muschol, M" uniqKey="Muschol M" first="M." last="Muschol">M. Muschol</name>
<affiliation>
<mods:affiliation>Center for Microgravity and Materials Research, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Thomas, B R" sort="Thomas, B R" uniqKey="Thomas B" first="B. R." last="Thomas">B. R. Thomas</name>
<affiliation>
<mods:affiliation>Center for Microgravity and Materials Research, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Crystal Growth</title>
<title level="j" type="abbrev">CRYS</title>
<idno type="ISSN">0022-0248</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1996">1996</date>
<biblScope unit="volume">168</biblScope>
<biblScope unit="issue">1–4</biblScope>
<biblScope unit="page" from="1">1</biblScope>
<biblScope unit="page" to="27">27</biblScope>
</imprint>
<idno type="ISSN">0022-0248</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-0248</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Acid residues</term>
<term>Acta</term>
<term>Acta cryst</term>
<term>Aggregation</term>
<term>Asymmetric unit</term>
<term>Atomic force microscopy</term>
<term>Attractive forces</term>
<term>Attractive interactions</term>
<term>Authentic protein standards</term>
<term>Avidin</term>
<term>Avidin incorporation</term>
<term>Brookhaven protein database</term>
<term>Bulk solution</term>
<term>Bulk transport</term>
<term>Chem</term>
<term>Compositional</term>
<term>Compositional inhomogeneities</term>
<term>Convection</term>
<term>Convective transport</term>
<term>Corresponding rocking width profile</term>
<term>Coulomb repulsion</term>
<term>Crys values</term>
<term>Cryst</term>
<term>Crystal</term>
<term>Crystal contacts</term>
<term>Crystal growth</term>
<term>Crystal perfection</term>
<term>Crystal size</term>
<term>Crystallization</term>
<term>Crystallization cell</term>
<term>Crystallization conditions</term>
<term>Defect</term>
<term>Defect formation</term>
<term>Depletion zones</term>
<term>Diffraction resolution</term>
<term>Diffusive transport</term>
<term>Diffusivities</term>
<term>Dimer</term>
<term>Direct interactions</term>
<term>Dislocation</term>
<term>Dislocation formation</term>
<term>Dislocation groups</term>
<term>Dislocation step sources</term>
<term>Dlvo potentials</term>
<term>Dynamic data</term>
<term>Dynamic light</term>
<term>Electrostatic repulsion</term>
<term>Etching features</term>
<term>Facet</term>
<term>Facet edges</term>
<term>Fine striations</term>
<term>Fluctuation</term>
<term>Fluctuation amplitude</term>
<term>Full symbols</term>
<term>Globular</term>
<term>Globular proteins</term>
<term>Grain boundary</term>
<term>Growth conditions</term>
<term>Growth kinetics</term>
<term>Growth morphology</term>
<term>Growth rate</term>
<term>Growth rate fluctuations</term>
<term>Growth rates</term>
<term>Growth sector boundaries</term>
<term>Growth steps</term>
<term>Growth units</term>
<term>Hewl</term>
<term>Hewl crystal</term>
<term>Hewl crystallization</term>
<term>Hewl crystals</term>
<term>Hewl dimer</term>
<term>Hewl face</term>
<term>Hewl solutions</term>
<term>Hexamer</term>
<term>High supersaturations</term>
<term>Hydrodynamic</term>
<term>Hydrodynamic interaction term</term>
<term>Hydrodynamic interactions</term>
<term>Hydrophobic</term>
<term>Hydrophobic groups</term>
<term>Impurity</term>
<term>Impurity effects</term>
<term>Impurity repartitioning</term>
<term>Incorporation</term>
<term>Incorporation mechanism</term>
<term>Inhomogeneity</term>
<term>Initial lysozyme concentration</term>
<term>Initial solutions</term>
<term>Inorganic crystals</term>
<term>Inorganic materials</term>
<term>Inorganic solution growth</term>
<term>Inorganic systems</term>
<term>Interaction effects</term>
<term>Interfacial kinetics</term>
<term>Kinetics</term>
<term>Large impurities</term>
<term>Large number</term>
<term>Linear dependence</term>
<term>Local slope</term>
<term>Long wavelength limit</term>
<term>Lysozyme</term>
<term>Lysozyme concentration</term>
<term>Lysozyme molecule</term>
<term>Lysozyme molecules</term>
<term>Macromolecular crystallization community</term>
<term>Macromolecule</term>
<term>Mass density</term>
<term>Materials research</term>
<term>Mcpherson</term>
<term>Mole ratio</term>
<term>Molecular weight</term>
<term>Molecule</term>
<term>Monomer</term>
<term>More efforts</term>
<term>Normal gravity</term>
<term>Normal growth rate</term>
<term>Nucleation</term>
<term>Nucleation events</term>
<term>Numerous proteins</term>
<term>Other hand</term>
<term>Other proteins</term>
<term>Oxford university press</term>
<term>Phys</term>
<term>Precipitant</term>
<term>Protein</term>
<term>Protein charge</term>
<term>Protein concentration</term>
<term>Protein concentrations</term>
<term>Protein crystal</term>
<term>Protein crystallization</term>
<term>Protein crystals</term>
<term>Protein impurities</term>
<term>Protein interactions</term>
<term>Protein ions</term>
<term>Protein molecules</term>
<term>Protein solutions</term>
<term>Purer seikagaku solutions</term>
<term>Real crystal structure</term>
<term>Recent work</term>
<term>Repartitioning</term>
<term>Repulsion</term>
<term>Rosenberger</term>
<term>Scenario</term>
<term>Seikagaku</term>
<term>Seikagaku solution</term>
<term>Side chains</term>
<term>Sigma</term>
<term>Sigma solutions</term>
<term>Silver stain</term>
<term>Similar observations</term>
<term>Smaller crystals</term>
<term>Sodium acetate buffer</term>
<term>Solute</term>
<term>Solute concentration</term>
<term>Solute particles</term>
<term>Solution conditions</term>
<term>Space experiments</term>
<term>Specific antibodies</term>
<term>Staining techniques</term>
<term>Static light</term>
<term>Static structure factor</term>
<term>Step generation</term>
<term>Step motion</term>
<term>Step sources</term>
<term>Striation</term>
<term>Striation formation</term>
<term>Structural perfection</term>
<term>Structural quality</term>
<term>Supersaturated solutions</term>
<term>Supersaturation</term>
<term>Supersaturation conditions</term>
<term>Supersaturations</term>
<term>Surface charge</term>
<term>Surface nucleation</term>
<term>Surface separation</term>
<term>Synchrotron topographs</term>
<term>Tangential velocity</term>
<term>Temperature changes</term>
<term>Topographs</term>
<term>Transport conditions</term>
<term>Typical crystallization conditions</term>
<term>Undersaturated solutions</term>
<term>Unit cell</term>
<term>Unrelated proteins</term>
<term>Various concentrations</term>
<term>Various nac1 concentrations</term>
<term>Various supersaturations</term>
<term>Vekilov</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Recently, much progress has been made in understanding the nucleation and crystallization of globular proteins, including the formation of compositional and structural crystal defects. Insight into the interactions of (screened) protein macro-ions in solution, obtained from light scattering, small angle X-ray scattering and osmotic pressure studies, can guide the search for crystallization conditions. These studies show that the nucleation of globular proteins is governed by the same principles as that of small molecules. However, failure to account for direct and indirect (hydrodynamic) protein interactions in the solutions results in unrealistic aggregation scenarios. Microscopic studies of numerous proteins reveal that crystals grow by the attachment of growth units through the same layer-spreading mechanisms as inorganic crystals. Investigations of the growth kinetics of hen-egg-white lysozyme (HEWL) reveal non-steady behavior under steady external conditions. Long-term variations in growth rates are due to changes in step-originating dislocation groups. Fluctuations on a shorter timescale reflect the non-linear dynamics of layer growth that results from the interplay between interfacial kinetics and bulk transport. Systematic gel electrophoretic analyses suggest that most HEWL crystallization studies have been performed with material containing other proteins at percent levels. Yet, sub-percent levels of protein impurities impede growth step propagation and play a role in the formation of structural/compositional inhomogeneities. In crystal growth from highly purified HEWL solutions, however, such inhomogeneities are much weaker and form only in response to unusually large changes in growth conditions. Equally important for connecting growth conditions to crystal perfection and diffraction resolution are recent advances in structural characterization through high-resolution Bragg reflection profiling and X-ray topography.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>crystal growth</json:string>
<json:string>hewl</json:string>
<json:string>nucleation</json:string>
<json:string>kinetics</json:string>
<json:string>rosenberger</json:string>
<json:string>lysozyme</json:string>
<json:string>supersaturation</json:string>
<json:string>fluctuation</json:string>
<json:string>dimer</json:string>
<json:string>solute</json:string>
<json:string>seikagaku</json:string>
<json:string>striation</json:string>
<json:string>dislocation</json:string>
<json:string>precipitant</json:string>
<json:string>acta cryst</json:string>
<json:string>cryst</json:string>
<json:string>acta</json:string>
<json:string>vekilov</json:string>
<json:string>impurity</json:string>
<json:string>protein crystallization</json:string>
<json:string>dynamic light</json:string>
<json:string>hydrodynamic</json:string>
<json:string>repartitioning</json:string>
<json:string>inhomogeneity</json:string>
<json:string>crystallization</json:string>
<json:string>phys</json:string>
<json:string>protein impurities</json:string>
<json:string>protein crystals</json:string>
<json:string>crystal size</json:string>
<json:string>diffusivities</json:string>
<json:string>sigma</json:string>
<json:string>avidin</json:string>
<json:string>macromolecule</json:string>
<json:string>globular</json:string>
<json:string>chem</json:string>
<json:string>supersaturations</json:string>
<json:string>hexamer</json:string>
<json:string>growth sector boundaries</json:string>
<json:string>topographs</json:string>
<json:string>growth kinetics</json:string>
<json:string>crystallization conditions</json:string>
<json:string>other hand</json:string>
<json:string>growth units</json:string>
<json:string>temperature changes</json:string>
<json:string>protein concentration</json:string>
<json:string>lysozyme concentration</json:string>
<json:string>defect formation</json:string>
<json:string>bulk transport</json:string>
<json:string>normal growth rate</json:string>
<json:string>hewl solutions</json:string>
<json:string>dislocation step sources</json:string>
<json:string>crystal</json:string>
<json:string>facet</json:string>
<json:string>repulsion</json:string>
<json:string>oxford university press</json:string>
<json:string>authentic protein standards</json:string>
<json:string>compositional inhomogeneities</json:string>
<json:string>large impurities</json:string>
<json:string>sigma solutions</json:string>
<json:string>seikagaku solution</json:string>
<json:string>tangential velocity</json:string>
<json:string>growth rate</json:string>
<json:string>striation formation</json:string>
<json:string>diffraction resolution</json:string>
<json:string>protein molecules</json:string>
<json:string>other proteins</json:string>
<json:string>hydrodynamic interactions</json:string>
<json:string>protein solutions</json:string>
<json:string>compositional</json:string>
<json:string>aggregation</json:string>
<json:string>scenario</json:string>
<json:string>protein</json:string>
<json:string>interaction effects</json:string>
<json:string>full symbols</json:string>
<json:string>static structure factor</json:string>
<json:string>protein concentrations</json:string>
<json:string>fine striations</json:string>
<json:string>lysozyme molecules</json:string>
<json:string>asymmetric unit</json:string>
<json:string>brookhaven protein database</json:string>
<json:string>inorganic systems</json:string>
<json:string>globular proteins</json:string>
<json:string>hewl dimer</json:string>
<json:string>surface separation</json:string>
<json:string>hewl crystals</json:string>
<json:string>bulk solution</json:string>
<json:string>initial solutions</json:string>
<json:string>high supersaturations</json:string>
<json:string>structural perfection</json:string>
<json:string>convective transport</json:string>
<json:string>solute particles</json:string>
<json:string>hewl crystal</json:string>
<json:string>transport conditions</json:string>
<json:string>crystal perfection</json:string>
<json:string>growth morphology</json:string>
<json:string>inorganic solution growth</json:string>
<json:string>coulomb repulsion</json:string>
<json:string>side chains</json:string>
<json:string>solution conditions</json:string>
<json:string>local slope</json:string>
<json:string>growth rates</json:string>
<json:string>defect</json:string>
<json:string>monomer</json:string>
<json:string>hydrophobic</json:string>
<json:string>similar observations</json:string>
<json:string>supersaturated solutions</json:string>
<json:string>undersaturated solutions</json:string>
<json:string>nucleation events</json:string>
<json:string>attractive interactions</json:string>
<json:string>unrelated proteins</json:string>
<json:string>recent work</json:string>
<json:string>impurity effects</json:string>
<json:string>materials research</json:string>
<json:string>crystal contacts</json:string>
<json:string>electrostatic repulsion</json:string>
<json:string>solute concentration</json:string>
<json:string>staining techniques</json:string>
<json:string>silver stain</json:string>
<json:string>specific antibodies</json:string>
<json:string>various concentrations</json:string>
<json:string>sodium acetate buffer</json:string>
<json:string>dynamic data</json:string>
<json:string>hydrodynamic interaction term</json:string>
<json:string>impurity repartitioning</json:string>
<json:string>static light</json:string>
<json:string>protein charge</json:string>
<json:string>attractive forces</json:string>
<json:string>inorganic materials</json:string>
<json:string>various nac1 concentrations</json:string>
<json:string>typical crystallization conditions</json:string>
<json:string>crys values</json:string>
<json:string>purer seikagaku solutions</json:string>
<json:string>avidin incorporation</json:string>
<json:string>hewl crystallization</json:string>
<json:string>long wavelength limit</json:string>
<json:string>space experiments</json:string>
<json:string>depletion zones</json:string>
<json:string>protein interactions</json:string>
<json:string>large number</json:string>
<json:string>mass density</json:string>
<json:string>supersaturation conditions</json:string>
<json:string>crystallization cell</json:string>
<json:string>normal gravity</json:string>
<json:string>protein crystal</json:string>
<json:string>dlvo potentials</json:string>
<json:string>diffusive transport</json:string>
<json:string>unit cell</json:string>
<json:string>initial lysozyme concentration</json:string>
<json:string>molecular weight</json:string>
<json:string>linear dependence</json:string>
<json:string>dislocation formation</json:string>
<json:string>hewl face</json:string>
<json:string>protein ions</json:string>
<json:string>interfacial kinetics</json:string>
<json:string>direct interactions</json:string>
<json:string>various supersaturations</json:string>
<json:string>smaller crystals</json:string>
<json:string>surface nucleation</json:string>
<json:string>facet edges</json:string>
<json:string>surface charge</json:string>
<json:string>acid residues</json:string>
<json:string>step generation</json:string>
<json:string>step sources</json:string>
<json:string>hydrophobic groups</json:string>
<json:string>atomic force microscopy</json:string>
<json:string>growth steps</json:string>
<json:string>step motion</json:string>
<json:string>inorganic crystals</json:string>
<json:string>macromolecular crystallization community</json:string>
<json:string>fluctuation amplitude</json:string>
<json:string>growth rate fluctuations</json:string>
<json:string>structural quality</json:string>
<json:string>incorporation mechanism</json:string>
<json:string>numerous proteins</json:string>
<json:string>etching features</json:string>
<json:string>grain boundary</json:string>
<json:string>real crystal structure</json:string>
<json:string>growth conditions</json:string>
<json:string>corresponding rocking width profile</json:string>
<json:string>synchrotron topographs</json:string>
<json:string>more efforts</json:string>
<json:string>dislocation groups</json:string>
<json:string>lysozyme molecule</json:string>
<json:string>mole ratio</json:string>
<json:string>mcpherson</json:string>
<json:string>convection</json:string>
<json:string>incorporation</json:string>
<json:string>molecule</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>F. Rosenberger</name>
<affiliations>
<json:string>Center for Microgravity and Materials Research, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>P.G. Vekilov</name>
<affiliations>
<json:string>Center for Microgravity and Materials Research, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>M. Muschol</name>
<affiliations>
<json:string>Center for Microgravity and Materials Research, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>B.R. Thomas</name>
<affiliations>
<json:string>Center for Microgravity and Materials Research, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Section I. Keynote paper</value>
</json:item>
</subject>
<arkIstex>ark:/67375/6H6-D6FN0XNC-B</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Abstract: Recently, much progress has been made in understanding the nucleation and crystallization of globular proteins, including the formation of compositional and structural crystal defects. Insight into the interactions of (screened) protein macro-ions in solution, obtained from light scattering, small angle X-ray scattering and osmotic pressure studies, can guide the search for crystallization conditions. These studies show that the nucleation of globular proteins is governed by the same principles as that of small molecules. However, failure to account for direct and indirect (hydrodynamic) protein interactions in the solutions results in unrealistic aggregation scenarios. Microscopic studies of numerous proteins reveal that crystals grow by the attachment of growth units through the same layer-spreading mechanisms as inorganic crystals. Investigations of the growth kinetics of hen-egg-white lysozyme (HEWL) reveal non-steady behavior under steady external conditions. Long-term variations in growth rates are due to changes in step-originating dislocation groups. Fluctuations on a shorter timescale reflect the non-linear dynamics of layer growth that results from the interplay between interfacial kinetics and bulk transport. Systematic gel electrophoretic analyses suggest that most HEWL crystallization studies have been performed with material containing other proteins at percent levels. Yet, sub-percent levels of protein impurities impede growth step propagation and play a role in the formation of structural/compositional inhomogeneities. In crystal growth from highly purified HEWL solutions, however, such inhomogeneities are much weaker and form only in response to unusually large changes in growth conditions. Equally important for connecting growth conditions to crystal perfection and diffraction resolution are recent advances in structural characterization through high-resolution Bragg reflection profiling and X-ray topography.</abstract>
<qualityIndicators>
<score>10</score>
<pdfWordCount>12611</pdfWordCount>
<pdfCharCount>79060</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>27</pdfPageCount>
<pdfPageSize>540 x 756 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>261</abstractWordCount>
<abstractCharCount>1970</abstractCharCount>
<keywordCount>1</keywordCount>
</qualityIndicators>
<title>Nucleation and crystallization of globular proteins — what we know and what is missing</title>
<pii>
<json:string>0022-0248(96)00358-2</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Journal of Crystal Growth</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1996</publicationDate>
<issn>
<json:string>0022-0248</json:string>
</issn>
<pii>
<json:string>S0022-0248(00)X0013-9</json:string>
</pii>
<volume>168</volume>
<issue>1–4</issue>
<pages>
<first>1</first>
<last>27</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<conference>
<json:item>
<name>Crystallization of Biological Macromolecules, Hiroshima, Japan 19951112 19951117</name>
</json:item>
</conference>
<editor>
<json:item>
<name>K. Miki</name>
</json:item>
<json:item>
<name>M. Ataka</name>
</json:item>
<json:item>
<name>K. Fukuyama</name>
</json:item>
<json:item>
<name>Y. Higuchi</name>
</json:item>
<json:item>
<name>T. Miyashita</name>
</json:item>
</editor>
</host>
<namedEntities>
<unitex>
<date>
<json:string>19951112</json:string>
<json:string>1996</json:string>
</date>
<geogName>
<json:string>Ill</json:string>
</geogName>
<orgName>
<json:string>National Science Foundation</json:string>
<json:string>University of Alabama</json:string>
<json:string>Materials Research, University of Alabama</json:string>
<json:string>National Aeronautics and Space Administration</json:string>
</orgName>
<orgName_funder>
<json:string>National Aeronautics and Space Administration</json:string>
</orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>L. Carver</json:string>
<json:string>H. Lin</json:string>
<json:string>T. Miyashita</json:string>
<json:string>Y. Higuchi</json:string>
<json:string>R. Gieg</json:string>
<json:string>Pattern</json:string>
<json:string>A.A. Chernov</json:string>
<json:string>A. Crystals</json:string>
<json:string>The</json:string>
<json:string>J.N. Sherwood</json:string>
<json:string>V. Stojanoff</json:string>
<json:string>P.G. Vekilov</json:string>
<json:string>Crystal Growth</json:string>
<json:string>M. Ataka</json:string>
<json:string>H. Komatsu</json:string>
<json:string>W.W. Wilson</json:string>
<json:string>M. Ri</json:string>
<json:string>Materials Research</json:string>
<json:string>K. Fukuyama</json:string>
<json:string>F. Rosenberger</json:string>
</persName>
<placeName>
<json:string>Huntsville</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>[72]</json:string>
<json:string>[4]</json:string>
<json:string>[ 122]</json:string>
<json:string>[45]</json:string>
<json:string>[102]</json:string>
<json:string>[121]</json:string>
<json:string>[84-86]</json:string>
<json:string>[15,16]</json:string>
<json:string>[39,40]</json:string>
<json:string>[6]</json:string>
<json:string>[71]</json:string>
<json:string>[ 103-105]</json:string>
<json:string>[2,3]</json:string>
<json:string>[107]</json:string>
<json:string>[100,101]</json:string>
<json:string>[77]</json:string>
<json:string>[42,43]</json:string>
<json:string>[6,41]</json:string>
<json:string>[8]</json:string>
<json:string>[115]</json:string>
<json:string>[26-29]</json:string>
<json:string>[47,48]</json:string>
<json:string>[92]</json:string>
<json:string>[123]</json:string>
<json:string>[1]</json:string>
<json:string>[94,108]</json:string>
<json:string>[87]</json:string>
<json:string>[53-56]</json:string>
<json:string>[49]</json:string>
<json:string>[3]</json:string>
<json:string>[101]</json:string>
<json:string>[120]</json:string>
<json:string>[13,14]</json:string>
<json:string>[117]</json:string>
<json:string>[80-83]</json:string>
<json:string>[75]</json:string>
<json:string>F. Rosenberger et al.</json:string>
<json:string>[106]</json:string>
<json:string>[5]</json:string>
<json:string>[41-44]</json:string>
<json:string>[37]</json:string>
<json:string>[100,114]</json:string>
<json:string>[49,101,102]</json:string>
<json:string>[78,79]</json:string>
<json:string>[83,92]</json:string>
<json:string>[74]</json:string>
<json:string>F. Rosenberger et aL</json:string>
<json:string>[7]</json:string>
<json:string>[80,83]</json:string>
<json:string>[17,18]</json:string>
<json:string>[57-61]</json:string>
<json:string>[88-90]</json:string>
<json:string>[69]</json:string>
<json:string>[119]</json:string>
<json:string>[62,109]</json:string>
<json:string>[94,95]</json:string>
<json:string>[62]</json:string>
<json:string>[116]</json:string>
<json:string>[2]</json:string>
<json:string>[99-102]</json:string>
<json:string>Wilson et al.</json:string>
<json:string>[19]</json:string>
<json:string>[71,72]</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/6H6-D6FN0XNC-B</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - physics, applied</json:string>
<json:string>2 - materials science, multidisciplinary</json:string>
<json:string>2 - crystallography</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - physics & astronomy</json:string>
<json:string>3 - applied physics</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Materials Science</json:string>
<json:string>3 - Materials Chemistry</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Chemistry</json:string>
<json:string>3 - Inorganic Chemistry</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Physics and Astronomy</json:string>
<json:string>3 - Condensed Matter Physics</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>1996</publicationDate>
<copyrightDate>1996</copyrightDate>
<doi>
<json:string>10.1016/0022-0248(96)00358-2</json:string>
</doi>
<id>01CE8274DA1904DF6B6EFC5CEFB9673F12E30B89</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-D6FN0XNC-B/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-D6FN0XNC-B/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/6H6-D6FN0XNC-B/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Nucleation and crystallization of globular proteins — what we know and what is missing</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://scientific-publisher.data.istex.fr">ELSEVIER</publisher>
<availability>
<licence>
<p>elsevier</p>
</licence>
</availability>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M"></p>
<date>1996</date>
</publicationStmt>
<notesStmt>
<note type="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Nucleation and crystallization of globular proteins — what we know and what is missing</title>
<author xml:id="author-0000">
<persName>
<forename type="first">F.</forename>
<surname>Rosenberger</surname>
</persName>
<note type="correspondence">
<p>Corresponding author.</p>
</note>
<affiliation>Center for Microgravity and Materials Research, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">P.G.</forename>
<surname>Vekilov</surname>
</persName>
<affiliation>Center for Microgravity and Materials Research, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">M.</forename>
<surname>Muschol</surname>
</persName>
<affiliation>Center for Microgravity and Materials Research, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">B.R.</forename>
<surname>Thomas</surname>
</persName>
<affiliation>Center for Microgravity and Materials Research, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA</affiliation>
</author>
<idno type="istex">01CE8274DA1904DF6B6EFC5CEFB9673F12E30B89</idno>
<idno type="ark">ark:/67375/6H6-D6FN0XNC-B</idno>
<idno type="DOI">10.1016/0022-0248(96)00358-2</idno>
<idno type="PII">0022-0248(96)00358-2</idno>
</analytic>
<monogr>
<title level="j">Journal of Crystal Growth</title>
<title level="j" type="abbrev">CRYS</title>
<idno type="pISSN">0022-0248</idno>
<idno type="PII">S0022-0248(00)X0013-9</idno>
<meeting>
<addName>Crystallization of Biological Macromolecules, Hiroshima, Japan</addName>
<date>19951112</date>
<date>19951117</date>
</meeting>
<editor xml:id="book-author-0000">
<persName>K. Miki</persName>
</editor>
<editor xml:id="book-author-0001">
<persName>M. Ataka</persName>
</editor>
<editor xml:id="book-author-0002">
<persName>K. Fukuyama</persName>
</editor>
<editor xml:id="book-author-0003">
<persName>Y. Higuchi</persName>
</editor>
<editor xml:id="book-author-0004">
<persName>T. Miyashita</persName>
</editor>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1996"></date>
<biblScope unit="volume">168</biblScope>
<biblScope unit="issue">1–4</biblScope>
<biblScope unit="page" from="1">1</biblScope>
<biblScope unit="page" to="27">27</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1996</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Abstract: Recently, much progress has been made in understanding the nucleation and crystallization of globular proteins, including the formation of compositional and structural crystal defects. Insight into the interactions of (screened) protein macro-ions in solution, obtained from light scattering, small angle X-ray scattering and osmotic pressure studies, can guide the search for crystallization conditions. These studies show that the nucleation of globular proteins is governed by the same principles as that of small molecules. However, failure to account for direct and indirect (hydrodynamic) protein interactions in the solutions results in unrealistic aggregation scenarios. Microscopic studies of numerous proteins reveal that crystals grow by the attachment of growth units through the same layer-spreading mechanisms as inorganic crystals. Investigations of the growth kinetics of hen-egg-white lysozyme (HEWL) reveal non-steady behavior under steady external conditions. Long-term variations in growth rates are due to changes in step-originating dislocation groups. Fluctuations on a shorter timescale reflect the non-linear dynamics of layer growth that results from the interplay between interfacial kinetics and bulk transport. Systematic gel electrophoretic analyses suggest that most HEWL crystallization studies have been performed with material containing other proteins at percent levels. Yet, sub-percent levels of protein impurities impede growth step propagation and play a role in the formation of structural/compositional inhomogeneities. In crystal growth from highly purified HEWL solutions, however, such inhomogeneities are much weaker and form only in response to unusually large changes in growth conditions. Equally important for connecting growth conditions to crystal perfection and diffraction resolution are recent advances in structural characterization through high-resolution Bragg reflection profiling and X-ray topography.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>article-category</head>
<item>
<term>Section I. Keynote paper</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1996">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-D6FN0XNC-B/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType"></istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>CRYS</jid>
<aid>96003582</aid>
<ce:pii>0022-0248(96)00358-2</ce:pii>
<ce:doi>10.1016/0022-0248(96)00358-2</ce:doi>
<ce:copyright type="unknown" year="1996"></ce:copyright>
<ce:doctopics>
<ce:doctopic>
<ce:text>Section I. Keynote paper</ce:text>
</ce:doctopic>
</ce:doctopics>
</item-info>
<head>
<ce:title>Nucleation and crystallization of globular proteins — what we know and what is missing</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>F.</ce:given-name>
<ce:surname>Rosenberger</ce:surname>
<ce:cross-ref refid="COR1">
<ce:sup></ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>P.G.</ce:given-name>
<ce:surname>Vekilov</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>M.</ce:given-name>
<ce:surname>Muschol</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>B.R.</ce:given-name>
<ce:surname>Thomas</ce:surname>
</ce:author>
<ce:affiliation>
<ce:textfn>Center for Microgravity and Materials Research, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA</ce:textfn>
</ce:affiliation>
<ce:correspondence id="COR1">
<ce:label></ce:label>
<ce:text>Corresponding author.</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Recently, much progress has been made in understanding the nucleation and crystallization of globular proteins, including the formation of compositional and structural crystal defects. Insight into the interactions of (screened) protein macro-ions in solution, obtained from light scattering, small angle X-ray scattering and osmotic pressure studies, can guide the search for crystallization conditions. These studies show that the nucleation of globular proteins is governed by the same principles as that of small molecules. However, failure to account for direct and indirect (hydrodynamic) protein interactions in the solutions results in unrealistic aggregation scenarios. Microscopic studies of numerous proteins reveal that crystals grow by the attachment of growth units through the same layer-spreading mechanisms as inorganic crystals. Investigations of the growth kinetics of hen-egg-white lysozyme (HEWL) reveal non-steady behavior under steady external conditions. Long-term variations in growth rates are due to changes in step-originating dislocation groups. Fluctuations on a shorter timescale reflect the non-linear dynamics of layer growth that results from the interplay between interfacial kinetics and bulk transport. Systematic gel electrophoretic analyses suggest that most HEWL crystallization studies have been performed with material containing other proteins at percent levels. Yet, sub-percent levels of protein impurities impede growth step propagation and play a role in the formation of structural/compositional inhomogeneities. In crystal growth from highly purified HEWL solutions, however, such inhomogeneities are much weaker and form only in response to unusually large changes in growth conditions. Equally important for connecting growth conditions to crystal perfection and diffraction resolution are recent advances in structural characterization through high-resolution Bragg reflection profiling and X-ray topography.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Nucleation and crystallization of globular proteins — what we know and what is missing</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Nucleation and crystallization of globular proteins — what we know and what is missing</title>
</titleInfo>
<name type="personal">
<namePart type="given">F.</namePart>
<namePart type="family">Rosenberger</namePart>
<affiliation>Center for Microgravity and Materials Research, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA</affiliation>
<description>Corresponding author.</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P.G.</namePart>
<namePart type="family">Vekilov</namePart>
<affiliation>Center for Microgravity and Materials Research, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M.</namePart>
<namePart type="family">Muschol</namePart>
<affiliation>Center for Microgravity and Materials Research, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">B.R.</namePart>
<namePart type="family">Thomas</namePart>
<affiliation>Center for Microgravity and Materials Research, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1996</dateIssued>
<copyrightDate encoding="w3cdtf">1996</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: Recently, much progress has been made in understanding the nucleation and crystallization of globular proteins, including the formation of compositional and structural crystal defects. Insight into the interactions of (screened) protein macro-ions in solution, obtained from light scattering, small angle X-ray scattering and osmotic pressure studies, can guide the search for crystallization conditions. These studies show that the nucleation of globular proteins is governed by the same principles as that of small molecules. However, failure to account for direct and indirect (hydrodynamic) protein interactions in the solutions results in unrealistic aggregation scenarios. Microscopic studies of numerous proteins reveal that crystals grow by the attachment of growth units through the same layer-spreading mechanisms as inorganic crystals. Investigations of the growth kinetics of hen-egg-white lysozyme (HEWL) reveal non-steady behavior under steady external conditions. Long-term variations in growth rates are due to changes in step-originating dislocation groups. Fluctuations on a shorter timescale reflect the non-linear dynamics of layer growth that results from the interplay between interfacial kinetics and bulk transport. Systematic gel electrophoretic analyses suggest that most HEWL crystallization studies have been performed with material containing other proteins at percent levels. Yet, sub-percent levels of protein impurities impede growth step propagation and play a role in the formation of structural/compositional inhomogeneities. In crystal growth from highly purified HEWL solutions, however, such inhomogeneities are much weaker and form only in response to unusually large changes in growth conditions. Equally important for connecting growth conditions to crystal perfection and diffraction resolution are recent advances in structural characterization through high-resolution Bragg reflection profiling and X-ray topography.</abstract>
<subject>
<genre>article-category</genre>
<topic>Section I. Keynote paper</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Crystal Growth</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>CRYS</title>
</titleInfo>
<name type="conference">
<namePart>Crystallization of Biological Macromolecules, Hiroshima, Japan</namePart>
<namePart type="date">19951112</namePart>
<namePart type="date">19951117</namePart>
</name>
<name type="personal">
<namePart>K. Miki</namePart>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart>M. Ataka</namePart>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart>K. Fukuyama</namePart>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart>Y. Higuchi</namePart>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart>T. Miyashita</namePart>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1996</dateIssued>
</originInfo>
<identifier type="ISSN">0022-0248</identifier>
<identifier type="PII">S0022-0248(00)X0013-9</identifier>
<part>
<date>1996</date>
<detail type="issue">
<title>Crystallization of Biological Macromolecules, Hiroshima, Japan</title>
</detail>
<detail type="volume">
<number>168</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1–4</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>1</start>
<end>328</end>
</extent>
<extent unit="pages">
<start>1</start>
<end>27</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">01CE8274DA1904DF6B6EFC5CEFB9673F12E30B89</identifier>
<identifier type="ark">ark:/67375/6H6-D6FN0XNC-B</identifier>
<identifier type="DOI">10.1016/0022-0248(96)00358-2</identifier>
<identifier type="PII">0022-0248(96)00358-2</identifier>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-D6FN0XNC-B/record.json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D83 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000D83 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:01CE8274DA1904DF6B6EFC5CEFB9673F12E30B89
   |texte=   Nucleation and crystallization of globular proteins — what we know and what is missing
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021