Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Polymerase Blockage and Misincorporation of dNTPs Opposite the Ethylene Dibromide-Derived DNA Adducts S-[2-(N7-Guanyl)ethyl]glutathione, S-[2-(N2-Guanyl)ethyl]glutathione, and S-[2-(O6-Guanyl)ethyl]glutathione†

Identifieur interne : 000D73 ( Istex/Corpus ); précédent : 000D72; suivant : 000D74

Polymerase Blockage and Misincorporation of dNTPs Opposite the Ethylene Dibromide-Derived DNA Adducts S-[2-(N7-Guanyl)ethyl]glutathione, S-[2-(N2-Guanyl)ethyl]glutathione, and S-[2-(O6-Guanyl)ethyl]glutathione†

Auteurs : Mi-Sook Kim ; F. Peter Guengerich

Source :

RBID : ISTEX:B587D6D00D21F938208F695EFBADD5C3568FA782

Abstract

The carcinogen ethylene dibromide (EDB) has been shown to cause glutathione (GSH)-dependent base-substitution mutations, especially GC to AT transitions, in a variety of bacterial and eukaryotic systems. The known DNA adducts S-[2-(N7-guanyl)ethyl]GSH, S-[2-(N2-guanyl)ethyl]GSH, and S-[2-(O6-guanyl)ethyl]GSH were individually placed at a site in a single oligonucleotide. Polymerase extension studies were carried out using Escherichia coli polymerase I exo- (Klenow fragment, Kf-) and polymerase II exo- (pol II-), bacteriophage T7 polymerase exo-, and human immunodeficiency virus-1 reverse transcriptase in order to characterize misincorporation events. Even though extension was not as efficient as with the nonadducted template, some fully extended primers were observed with the template containing S-[2-(N7-guanyl)ethyl]GSH using all of these polymerases. dCTP was the most preferred nucleotide incorporated opposite S-[2-(N7-guanyl)ethyl]GSH by most of polymerases examined; however, dTTP incorporation was observed opposite S-[2-(N7-guanyl)ethyl]GSH with pol II-. Both S-[2-(N2-guanyl)ethyl]GSH and S-[2-(O6-guanyl)ethyl]GSH strongly blocked replication by all polymerases. Only dATP and dGTP were incorporated opposite S-[2-(N2-guanyl)ethyl]GSH by both Kf- and pol II-. S-[2-(O6-Guanyl)ethyl]GSH was shown to strongly code for dATP incorporation by Kf-. With pol II-, dTTP was incorporated opposite S-[2-(O6-guanyl)ethyl]GSH. In conclusion, all three GSH-guanyl adducts derived from the carcinogen EDB blocked the polymerases and were capable of miscoding.

Url:
DOI: 10.1021/tx970206m

Links to Exploration step

ISTEX:B587D6D00D21F938208F695EFBADD5C3568FA782

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Polymerase Blockage and Misincorporation of dNTPs Opposite the Ethylene Dibromide-Derived DNA Adducts S-[2-(N7-Guanyl)ethyl]glutathione, S-[2-(N2-Guanyl)ethyl]glutathione, and S-[2-(O6-Guanyl)ethyl]glutathione†</title>
<author>
<name sortKey="Kim, Mi Sook" sort="Kim, Mi Sook" uniqKey="Kim M" first="Mi-Sook" last="Kim">Mi-Sook Kim</name>
<affiliation>
<mods:affiliation>Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School ofMedicine, Nashville, Tennessee 37232-0146</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Current address:  Merck & Company, P.O. Box 2000,126 EastLincoln Ave., Rahway, NJ 07065-0900.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guengerich, F Peter" sort="Guengerich, F Peter" uniqKey="Guengerich F" first="F. Peter" last="Guengerich">F. Peter Guengerich</name>
<affiliation>
<mods:affiliation>Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School ofMedicine, Nashville, Tennessee 37232-0146</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Address correspondence to this author. Tel:  (615) 322-2261.Fax: (615) 322-3141. E-mail: guengerich@toxicology.mc.vanderbilt.edu.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:B587D6D00D21F938208F695EFBADD5C3568FA782</idno>
<date when="1998" year="1998">1998</date>
<idno type="doi">10.1021/tx970206m</idno>
<idno type="url">https://api.istex.fr/ark:/67375/TPS-QTD464B6-M/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000D73</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000D73</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Polymerase Blockage and Misincorporation of dNTPs Opposite the Ethylene Dibromide-Derived DNA Adducts
<hi rend="italic">S</hi>
-[2-(
<hi rend="italic">N</hi>
<hi rend="superscript">7</hi>
-Guanyl)ethyl]glutathione,
<hi rend="italic">S</hi>
-[2-(
<hi rend="italic">N</hi>
<hi rend="superscript">2</hi>
-Guanyl)ethyl]glutathione, and
<hi rend="italic">S</hi>
-[2-(
<hi rend="italic">O</hi>
<hi rend="superscript">6</hi>
-Guanyl)ethyl]glutathione
<ref type="bib" target="#tx970206mAF2">
<hi rend="superscript"></hi>
</ref>
</title>
<author>
<name sortKey="Kim, Mi Sook" sort="Kim, Mi Sook" uniqKey="Kim M" first="Mi-Sook" last="Kim">Mi-Sook Kim</name>
<affiliation>
<mods:affiliation>Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School ofMedicine, Nashville, Tennessee 37232-0146</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Current address:  Merck & Company, P.O. Box 2000,126 EastLincoln Ave., Rahway, NJ 07065-0900.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guengerich, F Peter" sort="Guengerich, F Peter" uniqKey="Guengerich F" first="F. Peter" last="Guengerich">F. Peter Guengerich</name>
<affiliation>
<mods:affiliation>Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School ofMedicine, Nashville, Tennessee 37232-0146</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Address correspondence to this author. Tel:  (615) 322-2261.Fax: (615) 322-3141. E-mail: guengerich@toxicology.mc.vanderbilt.edu.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Chemical Research in Toxicology</title>
<title level="j" type="abbrev">Chem. Res. Toxicol.</title>
<idno type="ISSN">0893-228x</idno>
<idno type="eISSN">1520-5010</idno>
<imprint>
<publisher>American Chemical Society</publisher>
<date type="e-published">1998</date>
<date type="published">1998</date>
<biblScope unit="vol">11</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="311">311</biblScope>
<biblScope unit="page" to="316">316</biblScope>
</imprint>
<idno type="ISSN">0893-228x</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0893-228x</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">The carcinogen ethylene dibromide (EDB) has been shown to cause glutathione (GSH)-dependent base-substitution mutations, especially GC to AT transitions, in a variety of bacterial and eukaryotic systems. The known DNA adducts S-[2-(N7-guanyl)ethyl]GSH, S-[2-(N2-guanyl)ethyl]GSH, and S-[2-(O6-guanyl)ethyl]GSH were individually placed at a site in a single oligonucleotide. Polymerase extension studies were carried out using Escherichia coli polymerase I exo- (Klenow fragment, Kf-) and polymerase II exo- (pol II-), bacteriophage T7 polymerase exo-, and human immunodeficiency virus-1 reverse transcriptase in order to characterize misincorporation events. Even though extension was not as efficient as with the nonadducted template, some fully extended primers were observed with the template containing S-[2-(N7-guanyl)ethyl]GSH using all of these polymerases. dCTP was the most preferred nucleotide incorporated opposite S-[2-(N7-guanyl)ethyl]GSH by most of polymerases examined; however, dTTP incorporation was observed opposite S-[2-(N7-guanyl)ethyl]GSH with pol II-. Both S-[2-(N2-guanyl)ethyl]GSH and S-[2-(O6-guanyl)ethyl]GSH strongly blocked replication by all polymerases. Only dATP and dGTP were incorporated opposite S-[2-(N2-guanyl)ethyl]GSH by both Kf- and pol II-. S-[2-(O6-Guanyl)ethyl]GSH was shown to strongly code for dATP incorporation by Kf-. With pol II-, dTTP was incorporated opposite S-[2-(O6-guanyl)ethyl]GSH. In conclusion, all three GSH-guanyl adducts derived from the carcinogen EDB blocked the polymerases and were capable of miscoding.</div>
</front>
</TEI>
<istex>
<corpusName>acs</corpusName>
<keywords>
<teeft>
<json:string>polymerase</json:string>
<json:string>adduct</json:string>
<json:string>dctp</json:string>
<json:string>datp</json:string>
<json:string>dttp</json:string>
<json:string>primer</json:string>
<json:string>dgtp</json:string>
<json:string>guengerich</json:string>
<json:string>chem</json:string>
<json:string>mutation</json:string>
<json:string>coli</json:string>
<json:string>toxicol</json:string>
<json:string>biochemistry</json:string>
<json:string>ethylene</json:string>
<json:string>misinsertion</json:string>
<json:string>dntps</json:string>
<json:string>misincorporation</json:string>
<json:string>escherichia</json:string>
<json:string>dntp</json:string>
<json:string>kcat</json:string>
<json:string>misinsertion ratio</json:string>
<json:string>pairing</json:string>
<json:string>dttp incorporation</json:string>
<json:string>dibromide</json:string>
<json:string>miscoding</json:string>
<json:string>oligonucleotides</json:string>
<json:string>replication</json:string>
<json:string>ethylene dibromide</json:string>
<json:string>incorporation</json:string>
<json:string>sequence analysis</json:string>
<json:string>dctp incorporation</json:string>
<json:string>human immunodeficiency</json:string>
<json:string>derivative</json:string>
<json:string>insertion</json:string>
<json:string>escherichia coli polymerase</json:string>
<json:string>kinetic analysis</json:string>
<json:string>adducted template</json:string>
<json:string>klenow fragment</json:string>
<json:string>nucleotide sequence analysis</json:string>
<json:string>misincorporation frequency</json:string>
<json:string>datp opposite</json:string>
<json:string>dttp opposite</json:string>
<json:string>primer extension reaction</json:string>
<json:string>ethylating agent</json:string>
<json:string>nucleotide</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>KIM Mi-Sook</name>
<affiliations>
<json:string>Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School ofMedicine, Nashville, Tennessee 37232-0146</json:string>
<json:string>Current address:  Merck & Company, P.O. Box 2000,126 EastLincoln Ave., Rahway, NJ 07065-0900.</json:string>
</affiliations>
</json:item>
<json:item>
<name>GUENGERICH F. Peter</name>
<affiliations>
<json:string>Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School ofMedicine, Nashville, Tennessee 37232-0146</json:string>
<json:string>Address correspondence to this author. Tel:  (615) 322-2261.Fax: (615) 322-3141. E-mail: guengerich@toxicology.mc.vanderbilt.edu.</json:string>
</affiliations>
</json:item>
</author>
<arkIstex>ark:/67375/TPS-QTD464B6-M</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>The carcinogen ethylene dibromide (EDB) has been shown to cause glutathione (GSH)-dependent base-substitution mutations, especially GC to AT transitions, in a variety of bacterial and eukaryotic systems. The known DNA adducts S-[2-(N7-guanyl)ethyl]GSH, S-[2-(N2-guanyl)ethyl]GSH, and S-[2-(O6-guanyl)ethyl]GSH were individually placed at a site in a single oligonucleotide. Polymerase extension studies were carried out using Escherichia coli polymerase I exo- (Klenow fragment, Kf-) and polymerase II exo- (pol II-), bacteriophage T7 polymerase exo-, and human immunodeficiency virus-1 reverse transcriptase in order to characterize misincorporation events. Even though extension was not as efficient as with the nonadducted template, some fully extended primers were observed with the template containing S-[2-(N7-guanyl)ethyl]GSH using all of these polymerases. dCTP was the most preferred nucleotide incorporated opposite S-[2-(N7-guanyl)ethyl]GSH by most of polymerases examined; however, dTTP incorporation was observed opposite S-[2-(N7-guanyl)ethyl]GSH with pol II-. Both S-[2-(N2-guanyl)ethyl]GSH and S-[2-(O6-guanyl)ethyl]GSH strongly blocked replication by all polymerases. Only dATP and dGTP were incorporated opposite S-[2-(N2-guanyl)ethyl]GSH by both Kf- and pol II-. S-[2-(O6-Guanyl)ethyl]GSH was shown to strongly code for dATP incorporation by Kf-. With pol II-, dTTP was incorporated opposite S-[2-(O6-guanyl)ethyl]GSH. In conclusion, all three GSH-guanyl adducts derived from the carcinogen EDB blocked the polymerases and were capable of miscoding.</abstract>
<qualityIndicators>
<score>9.094</score>
<pdfWordCount>4742</pdfWordCount>
<pdfCharCount>31345</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>6</pdfPageCount>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<pdfWordsPerPage>790</pdfWordsPerPage>
<pdfText>true</pdfText>
<refBibsNative>true</refBibsNative>
<abstractWordCount>196</abstractWordCount>
<abstractCharCount>1568</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Polymerase Blockage and Misincorporation of dNTPs Opposite the Ethylene Dibromide-Derived DNA Adducts S-[2-(N7-Guanyl)ethyl]glutathione, S-[2-(N2-Guanyl)ethyl]glutathione, and S-[2-(O6-Guanyl)ethyl]glutathione†</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Chemical Research in Toxicology</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>0893-228x</json:string>
</issn>
<eissn>
<json:string>1520-5010</json:string>
</eissn>
<volume>11</volume>
<issue>4</issue>
<pages>
<first>311</first>
<last>316</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<ark>
<json:string>ark:/67375/TPS-QTD464B6-M</json:string>
</ark>
<categories>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>1998</publicationDate>
<copyrightDate>1998</copyrightDate>
<doi>
<json:string>10.1021/tx970206m</json:string>
</doi>
<id>B587D6D00D21F938208F695EFBADD5C3568FA782</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-QTD464B6-M/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-QTD464B6-M/bundle.zip</uri>
</json:item>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-QTD464B6-M/fulltext.txt</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/TPS-QTD464B6-M/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Polymerase Blockage and Misincorporation of dNTPs Opposite the Ethylene Dibromide-Derived DNA Adducts
<hi rend="italic">S</hi>
-[2-(
<hi rend="italic">N</hi>
<hi rend="superscript">7</hi>
-Guanyl)ethyl]glutathione,
<hi rend="italic">S</hi>
-[2-(
<hi rend="italic">N</hi>
<hi rend="superscript">2</hi>
-Guanyl)ethyl]glutathione, and
<hi rend="italic">S</hi>
-[2-(
<hi rend="italic">O</hi>
<hi rend="superscript">6</hi>
-Guanyl)ethyl]glutathione
<ref type="bib" target="#tx970206mAF2">
<hi rend="superscript"></hi>
</ref>
</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>American Chemical Society</publisher>
<availability>
<licence>Copyright © 1998 American Chemical Society</licence>
<p>American Chemical Society</p>
</availability>
<date type="published">1998</date>
<date type="Copyright" when="1998">1998</date>
</publicationStmt>
<notesStmt>
<note type="content-type" source="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="publication-type" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Polymerase Blockage and Misincorporation of dNTPs Opposite the Ethylene Dibromide-Derived DNA Adducts
<hi rend="italic">S</hi>
-[2-(
<hi rend="italic">N</hi>
<hi rend="superscript">7</hi>
-Guanyl)ethyl]glutathione,
<hi rend="italic">S</hi>
-[2-(
<hi rend="italic">N</hi>
<hi rend="superscript">2</hi>
-Guanyl)ethyl]glutathione, and
<hi rend="italic">S</hi>
-[2-(
<hi rend="italic">O</hi>
<hi rend="superscript">6</hi>
-Guanyl)ethyl]glutathione
<ref type="bib" target="#tx970206mAF2">
<hi rend="superscript"></hi>
</ref>
</title>
<author xml:id="author-0000">
<persName>
<surname>Kim</surname>
<forename type="first">Mi-Sook</forename>
</persName>
<affiliation>
<orgName type="institution">Department of Biochemistry and Center in Molecular Toxicology</orgName>
<orgName type="institution">Vanderbilt University School of Medicine</orgName>
<address>
<addrLine>Nashville</addrLine>
<addrLine>Tennessee 37232-0146</addrLine>
</address>
</affiliation>
<note place="foot" n="tx970206mAF4">
<ref>§</ref>
<p>  Current address:  Merck & Company, P.O. Box 2000, 126 East Lincoln Ave., Rahway, NJ 07065-0900.</p>
</note>
</author>
<author xml:id="author-0001" role="corresp">
<persName>
<surname>Guengerich</surname>
<forename type="first">F. Peter</forename>
</persName>
<affiliation>
<orgName type="institution">Department of Biochemistry and Center in Molecular Toxicology</orgName>
<orgName type="institution">Vanderbilt University School of Medicine</orgName>
<address>
<addrLine>Nashville</addrLine>
<addrLine>Tennessee 37232-0146</addrLine>
</address>
</affiliation>
<affiliation role="corresp"> Address correspondence to this author. Tel:  (615) 322-2261. Fax:  (615) 322-3141. E-mail:  guengerich@toxicology.mc.vanderbilt.edu.</affiliation>
</author>
<idno type="istex">B587D6D00D21F938208F695EFBADD5C3568FA782</idno>
<idno type="ark">ark:/67375/TPS-QTD464B6-M</idno>
<idno type="DOI">10.1021/tx970206m</idno>
</analytic>
<monogr>
<title level="j" type="main">Chemical Research in Toxicology</title>
<title level="j" type="abbrev">Chem. Res. Toxicol.</title>
<idno type="acspubs">tx</idno>
<idno type="coden">crtoec</idno>
<idno type="pISSN">0893-228x</idno>
<idno type="eISSN">1520-5010</idno>
<imprint>
<publisher>American Chemical Society</publisher>
<date type="e-published">1998</date>
<date type="published">1998</date>
<biblScope unit="vol">11</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="311">311</biblScope>
<biblScope unit="page" to="316">316</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<encodingDesc>
<schemaRef type="ODD" url="https://xml-schema.delivery.istex.fr/tei-istex.odd"></schemaRef>
<appInfo>
<application ident="pub2tei" version="1.0.41" when="2020-04-06">
<label>pub2TEI-ISTEX</label>
<desc>A set of style sheets for converting XML documents encoded in various scientific publisher formats into a common TEI format.
<ref target="http://www.tei-c.org/">We use TEI</ref>
</desc>
</application>
</appInfo>
</encodingDesc>
<profileDesc>
<abstract>
<p>The carcinogen ethylene dibromide (EDB) has been shown to cause glutathione (GSH)-dependent base-substitution mutations, especially GC to AT transitions, in a variety of bacterial and eukaryotic systems. The known DNA adducts
<hi rend="italic">S</hi>
-[2-(
<hi rend="italic">N</hi>
<hi rend="superscript">7</hi>
-guanyl)ethyl]GSH,
<hi rend="italic">S</hi>
-[2-(
<hi rend="italic">N</hi>
<hi rend="superscript">2</hi>
-guanyl)ethyl]GSH, and
<hi rend="italic">S</hi>
-[2-(
<hi rend="italic">O</hi>
<hi rend="superscript">6</hi>
-guanyl)ethyl]GSH were individually placed at a site in a single oligonucleotide. Polymerase extension studies were carried out using
<hi rend="italic">Escherichia coli</hi>
polymerase I exo
<hi rend="superscript">-</hi>
(Klenow fragment, Kf
<hi rend="superscript">-</hi>
) and polymerase II exo
<hi rend="superscript">-</hi>
(pol II
<hi rend="superscript">-</hi>
), bacteriophage T7 polymerase exo
<hi rend="superscript">-</hi>
, and human immunodeficiency virus-1 reverse transcriptase in order to characterize misincorporation events. Even though extension was not as efficient as with the nonadducted template, some fully extended primers were observed with the template containing
<hi rend="italic">S</hi>
-[2-(
<hi rend="italic">N</hi>
<hi rend="superscript">7</hi>
-guanyl)ethyl]GSH using all of these polymerases. dCTP was the most preferred nucleotide incorporated opposite
<hi rend="italic">S</hi>
-[2-(
<hi rend="italic">N</hi>
<hi rend="superscript">7</hi>
-guanyl)ethyl]GSH by most of polymerases examined; however, dTTP incorporation was observed opposite
<hi rend="italic">S</hi>
-[2-(
<hi rend="italic">N</hi>
<hi rend="superscript">7</hi>
-guanyl)ethyl]GSH with pol II
<hi rend="superscript">-</hi>
. Both
<hi rend="italic">S</hi>
-[2-(
<hi rend="italic">N</hi>
<hi rend="superscript">2</hi>
-guanyl)ethyl]GSH and
<hi rend="italic">S</hi>
-[2-(
<hi rend="italic">O</hi>
<hi rend="superscript">6</hi>
-guanyl)ethyl]GSH strongly blocked replication by all polymerases. Only dATP and dGTP were incorporated opposite
<hi rend="italic">S</hi>
-[2-(
<hi rend="italic">N</hi>
<hi rend="superscript">2</hi>
-guanyl)ethyl]GSH by both Kf
<hi rend="superscript">-</hi>
and pol II
<hi rend="superscript">-</hi>
.
<hi rend="italic">S</hi>
-[2-(
<hi rend="italic">O</hi>
<hi rend="superscript">6</hi>
-Guanyl)ethyl]GSH was shown to strongly code for dATP incorporation by Kf
<hi rend="superscript">-</hi>
. With pol II
<hi rend="superscript">-</hi>
, dTTP was incorporated opposite
<hi rend="italic">S</hi>
-[2-(
<hi rend="italic">O</hi>
<hi rend="superscript">6</hi>
-guanyl)ethyl]GSH. In conclusion, all three GSH-guanyl adducts derived from the carcinogen EDB blocked the polymerases and were capable of miscoding. </p>
</abstract>
<textClass ana="subject">
<keywords scheme="document-type-name">
<term>Article</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
<revisionDesc>
<change when="2020-04-06" who="#istex" xml:id="pub2tei">formatting</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus acs not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:document>
<article article-type="research-article" specific-use="acs2jats-1.1.23" dtd-version="1.1d1">
<front>
<journal-meta>
<journal-id journal-id-type="acspubs">tx</journal-id>
<journal-id journal-id-type="coden">crtoec</journal-id>
<journal-title-group>
<journal-title>Chemical Research in Toxicology</journal-title>
<abbrev-journal-title>Chem. Res. Toxicol.</abbrev-journal-title>
</journal-title-group>
<issn pub-type="ppub">0893-228x</issn>
<issn pub-type="epub">1520-5010</issn>
<publisher>
<publisher-name>American Chemical Society</publisher-name>
</publisher>
<self-uri>pubs.acs.org/crt</self-uri>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1021/tx970206m</article-id>
<article-categories>
<subj-group subj-group-type="document-type-name">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Polymerase Blockage and Misincorporation of dNTPs Opposite the Ethylene Dibromide-Derived DNA Adducts
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>7</sup>
-Guanyl)ethyl]glutathione,
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>2</sup>
-Guanyl)ethyl]glutathione, and
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">O</italic>
<sup>6</sup>
-Guanyl)ethyl]glutathione
<xref rid="tx970206mAF2">
<sup></sup>
</xref>
</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name name-style="western">
<surname>Kim</surname>
<given-names>Mi-Sook</given-names>
</name>
<xref rid="tx970206mAF4">
<sup>§</sup>
</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name name-style="western">
<surname>Guengerich</surname>
<given-names>F. Peter</given-names>
</name>
<xref rid="tx970206mAF1">*</xref>
</contrib>
<aff>Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146 </aff>
</contrib-group>
<author-notes>
<fn id="tx970206mAF4">
<label>§</label>
<p>  Current address:  Merck & Company, P.O. Box 2000, 126 East Lincoln Ave., Rahway, NJ 07065-0900.</p>
</fn>
<corresp id="tx970206mAF1">  Address correspondence to this author. Tel:  (615) 322-2261. Fax:  (615) 322-3141. E-mail:  guengerich@toxicology.mc.vanderbilt.edu.</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>26</day>
<month>02</month>
<year>1998</year>
</pub-date>
<pub-date pub-type="ppub">
<day>20</day>
<month>04</month>
<year>1998</year>
</pub-date>
<volume>11</volume>
<issue>4</issue>
<fpage>311</fpage>
<lpage>316</lpage>
<supplementary-material xlink:href="tx311.pdf" orientation="portrait" position="float"></supplementary-material>
<history>
<date date-type="received">
<day>18</day>
<month>11</month>
<year>1997</year>
</date>
<date date-type="asap">
<day>26</day>
<month>02</month>
<year>1998</year>
</date>
<date date-type="issue-pub">
<day>20</day>
<month>04</month>
<year>1998</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 1998 American Chemical Society</copyright-statement>
<copyright-year>1998</copyright-year>
<copyright-holder>American Chemical Society</copyright-holder>
</permissions>
<abstract>
<p>The carcinogen ethylene dibromide (EDB) has been shown to cause glutathione (GSH)-dependent base-substitution mutations, especially GC to AT transitions, in a variety of bacterial and eukaryotic systems. The known DNA adducts
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>7</sup>
-guanyl)ethyl]GSH,
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>2</sup>
-guanyl)ethyl]GSH, and
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">O</italic>
<sup>6</sup>
-guanyl)ethyl]GSH were individually placed at a site in a single oligonucleotide. Polymerase extension studies were carried out using
<italic toggle="yes">Escherichia coli</italic>
polymerase I exo
<sup>-</sup>
(Klenow fragment, Kf
<sup>-</sup>
) and polymerase II exo
<sup>-</sup>
(pol II
<sup>-</sup>
), bacteriophage T7 polymerase exo
<sup>-</sup>
, and human immunodeficiency virus-1 reverse transcriptase in order to characterize misincorporation events. Even though extension was not as efficient as with the nonadducted template, some fully extended primers were observed with the template containing
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>7</sup>
-guanyl)ethyl]GSH using all of these polymerases. dCTP was the most preferred nucleotide incorporated opposite
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>7</sup>
-guanyl)ethyl]GSH by most of polymerases examined; however, dTTP incorporation was observed opposite
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>7</sup>
-guanyl)ethyl]GSH with pol II
<sup>-</sup>
. Both
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>2</sup>
-guanyl)ethyl]GSH and
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">O</italic>
<sup>6</sup>
-guanyl)ethyl]GSH strongly blocked replication by all polymerases. Only dATP and dGTP were incorporated opposite
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>2</sup>
-guanyl)ethyl]GSH by both Kf
<sup>-</sup>
and pol II
<sup>-</sup>
.
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">O</italic>
<sup>6</sup>
-Guanyl)ethyl]GSH was shown to strongly code for dATP incorporation by Kf
<sup>-</sup>
. With pol II
<sup>-</sup>
, dTTP was incorporated opposite
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">O</italic>
<sup>6</sup>
-guanyl)ethyl]GSH. In conclusion, all three GSH-guanyl adducts derived from the carcinogen EDB blocked the polymerases and were capable of miscoding. </p>
</abstract>
<custom-meta-group>
<custom-meta>
<meta-name>document-id-old-9</meta-name>
<meta-value>tx970206m</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
<notes id="tx970206mAF2">
<label></label>
<p>  This research was supported in part by United States Public Health Service Grant R35 CA44353 and Grant P30 ES00267. M.-S. Kim was supported in part by a Merck predoctoral fellowship.</p>
</notes>
</front>
<body>
<sec id="d7e257">
<title>Introduction</title>
<p>Ethylene dibromide (EDB)
<xref rid="tx970206mb00001" ref-type="bibr"></xref>
has been shown to induce tumors in rodents at a number of sites (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="tx970206mb00001" ref-type="bibr"></xref>
<xref rid="tx970206mb00002" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="tx970206mb00003" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="tx970206mb00004" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="tx970206mb00005" ref-type="bibr"></xref>
</named-content>
</italic>
). The human carcinogenicity of low-level EDB exposure is unknown, but two workers died shortly following acute exposure to EDB (
<italic toggle="yes">
<xref rid="tx970206mb00006" ref-type="bibr"></xref>
</italic>
). Because of concern about toxicity and carcinogenicity, industrial use of EDB (soil fumigant, scavenger in leaded gasoline) was considerably curtailed in the 1980s (
<italic toggle="yes">
<xref rid="tx970206mb00007" ref-type="bibr"></xref>
</italic>
). </p>
<p>Bacteriophage M13mp18 was treated with
<italic toggle="yes">S</italic>
-(2-chloroethyl)GSH, an analogue of the activated form of EDB, and used to transfect
<italic toggle="yes">Salmonella typhimurium</italic>
; DNA sequence analysis of the
<italic toggle="yes">lac Z</italic>
α-complementation mutants revealed that GC to AT transitions were dominant (
<italic toggle="yes">
<xref rid="tx970206mb00008" ref-type="bibr"></xref>
</italic>
). The same mutational changes (GC to AT base transitions) have also been observed in very different biological systems such as
<italic toggle="yes">Drosophila melanogaster</italic>
, Chinese hamster ovary cells, and
<italic toggle="yes">Escherichia coli </italic>
after treatment with EDB, indicating that the biology related to EDB adducts may be rather similar among species (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="tx970206mb00009" ref-type="bibr"></xref>
<xref rid="tx970206mb00010" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="tx970206mb00011" ref-type="bibr"></xref>
</named-content>
</italic>
).
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>7</sup>
-Guanyl)ethyl]GSH was characterized as the major DNA adduct derived from EDB, and
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>2</sup>
-guanyl)ethyl]GSH,
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">O</italic>
<sup>6</sup>
-guanyl)ethyl]GSH, and
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>1</sup>
-adenyl)ethyl]GSH are minor adducts (Chart
<xref rid="tx970206mc00001"></xref>
) (
<italic toggle="yes">8</italic>
,
<italic toggle="yes">12</italic>
<italic toggle="yes">15</italic>
).
<fig id="tx970206mc00001" position="float" fig-type="chart" orientation="portrait">
<label>1</label>
<caption>
<p>Structures of Guanyl Adducts Derived from EDB</p>
</caption>
<graphic xlink:href="tx970206mc00001.eps" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>Oligonucleotides containing
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>7</sup>
-guanyl)ethyl]GSH have been characterized by physicochemical methods (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="tx970206mb00016" ref-type="bibr"></xref>
<xref rid="tx970206mb00017" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="tx970206mb00018" ref-type="bibr"></xref>
</named-content>
</italic>
). Base pairing of
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>7</sup>
-guanyl)ethyl]GSH with Cyt in the complementary sequence was shown to be quite disrupted; however, the basic B-type helical structure was not perturbed (
<italic toggle="yes">
<xref rid="tx970206mb00016" ref-type="bibr"></xref>
</italic>
). Comparative studies of oligonucleotides containing various
<italic toggle="yes">N</italic>
<sup>7</sup>
-guanyl adducts indicated some interactions between the GSH side chain and the DNA bases (
<italic toggle="yes">
<xref rid="tx970206mb00017" ref-type="bibr"></xref>
</italic>
). Dramatic variations of the ratio of
<italic toggle="yes">S. typhimurium</italic>
TA100 base-pair mutations to bacterial DNA
<italic toggle="yes">N</italic>
<sup>7</sup>
-guanyl adducts were also observed (
<italic toggle="yes">
<xref rid="tx970206mb00019" ref-type="bibr"></xref>
</italic>
). The frequency of
<italic toggle="yes">O</italic>
<sup>6</sup>
-alkylGua lesions in DNA has been shown to be strongly correlated with mutation induction in different target genes in bacteria and cultured cells and to be critical in tumorigenesis of many chemical carcinogens (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="tx970206mb00020" ref-type="bibr"></xref>
<xref rid="tx970206mb00021" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="tx970206mb00022" ref-type="bibr"></xref>
</named-content>
</italic>
). GC to AT transition is the predominant type of mutation caused by
<italic toggle="yes">O</italic>
<sup>6</sup>
-alkylGua (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="tx970206mb00023" ref-type="bibr"></xref>
<xref rid="tx970206mb00024" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="tx970206mb00025" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="tx970206mb00026" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="tx970206mb00027" ref-type="bibr"></xref>
</named-content>
</italic>
). Some
<italic toggle="yes">N</italic>
<sup>2</sup>
-guanyl adducts have been shown to miscode (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="tx970206mb00028" ref-type="bibr"></xref>
,
<xref rid="tx970206mb00029" ref-type="bibr"></xref>
</named-content>
</italic>
). </p>
<p>We developed methods for the synthesis of oligonucleotides containing the EDB-derived DNA adducts
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>7</sup>
-guanyl)ethyl]GSH,
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>2</sup>
-guanyl)ethyl]GSH, and
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">O</italic>
<sup>6</sup>
-guanyl)ethyl]GSH at a single site (
<italic toggle="yes">
<xref rid="tx970206mb00030" ref-type="bibr"></xref>
</italic>
), in a sequence previously demonstrated to show mutations when M13mp18 DNA was treated with
<italic toggle="yes">S</italic>
-(2-chloroethyl)GSH, an analogue of the activated form of EDB (
<italic toggle="yes">
<xref rid="tx970206mb00008" ref-type="bibr"></xref>
</italic>
). In this study, the blocking and miscoding potentials of each Gua adduct in the oligonucleotide were investigated using four model DNA polymerases in order to characterize the mechanism by which EDB causes mutations. </p>
</sec>
<sec id="d7e478">
<title>Experimental Procedures</title>
<p>
<bold>Chemicals.</bold>
[γ-
<sup>32</sup>
P]dATP was purchased from DuPont NEN (Boston, MA). dNTPs were from Pharmacia (Piscataway, NJ). DNA sequencing systems (Maxam−Gilbert procedure) were from DuPont Biotechnology Systems (Boston, MA) and Sigma Chemical Co. (St. Louis, MO). </p>
<p>
<bold>Enzymes.</bold>
T4 polynucleotide kinase was purchased from United States Biochemical (Cleveland, OH). DNA polymerases were purified by L. L. Furge, Department of Biochemistry, from
<italic toggle="yes">E</italic>
.
<italic toggle="yes">coli</italic>
using stock plasmids provided (ε
<sub>280</sub>
values used in parentheses): Kf
<sup>-</sup>
(Klenow fragment of
<italic toggle="yes">E. coli</italic>
polymerase I, exo
<sup>-</sup>
) (Dr. C. Joyce, Yale University, New Heaven, CT; ε
<sub>280</sub>
= 6.32 × 10
<sup>4</sup>
M
<sup>-1</sup>
cm
<sup>-1</sup>
), pol II
<sup>-</sup>
(
<italic toggle="yes">E. coli </italic>
polymerase II exo
<sup>-</sup>
) (Prof. M. F. Goodman, University of Southern California, Los Angeles, CA; ε
<sub>280</sub>
= 1.24 × 10
<sup>5</sup>
M
<sup>-1</sup>
cm
<sup>-1</sup>
), T7
<sup>-</sup>
(bacteriophage polymerase T7 exo
<sup>-</sup>
; abbreviation T7
<sup>-</sup>
also refers to thioredoxin mixture) (ε
<sub>280</sub>
= 1.44 × 10
<sup>5</sup>
M
<sup>-1</sup>
cm
<sup>-1</sup>
) and thioredoxin (ε
<sub>280</sub>
= 1.37 × 10
<sup>4</sup>
M
<sup>-1</sup>
cm
<sup>-1</sup>
) (Prof. K. A. Johnson, Pennsylvania State University, University Park, PA), HIV RT (human immunodeficiency virus-1 reverse transcriptase) (Dr. S. Hughes, Frederick Cancer Facility, Frederick, MD; ε
<sub>280</sub>
= 2.61 × 10
<sup>5</sup>
M
<sup>-1</sup>
cm
<sup>-1</sup>
) (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="tx970206mb00031" ref-type="bibr"></xref>
,
<xref rid="tx970206mb00032" ref-type="bibr"></xref>
</named-content>
</italic>
). Concentrations of diluted solutions were estimated by
<italic toggle="yes">A</italic>
<sub>280</sub>
measurements using a modified Cary 14/OLIS spectrophotometer (On-Line Instrument Systems, Bogart, GA). The ratio of T7 DNA polymerase to thioredoxin used in this study was 1:20. </p>
<p>
<bold>Polymerase Assays. </bold>
<bold>General.</bold>
The synthesis and characterization of the three modified templates have been described (
<italic toggle="yes">
<xref rid="tx970206mb00030" ref-type="bibr"></xref>
</italic>
). The 13-mer primer d(5‘-CTCGGTACCCTTG-3‘) (2 mM) was 5‘-end-phosphorylated with
<sup>32</sup>
P using T4 polynucleotide kinase and [γ-
<sup>32</sup>
P]dATP and purified on a Biospin column (Bio-Rad, Hercules, CA). Template and primer (2:1 molar ratio) were annealed in a buffer containing 50 mM sodium MOPS [3-(
<italic toggle="yes">N</italic>
-morpholino)propanesulfonic acid] (pH 7.0), bovine serum albumin (50 μg mL
<sup>-1</sup>
), and 5 mM MgCl
<sub>2</sub>
by incubating for 2 h at 16 °C. Concentrations of oligonucleotides were estimated using
<italic toggle="yes">A</italic>
<sub>260</sub>
measurements, with calculation of extinction coefficients as described (
<italic toggle="yes">
<xref rid="tx970206mb00033" ref-type="bibr"></xref>
</italic>
):  primer ε
<sub>260</sub>
= 8.54 × 10
<sup>4</sup>
M
<sup>-1</sup>
cm
<sup>-1</sup>
, template ε
<sub>260</sub>
= 1.74 × 10
<sup>5</sup>
M
<sup>-1</sup>
cm
<sup>-1</sup>
. The extended products were analyzed using a PhosphorImager system (model 400E, Molecular Dynamics, Sunnyvale, CA) and the manufacturer's software. </p>
<p>
<bold>Primer Extension.</bold>
Primer extension reactions were performed by reacting primer/template pairs (100 nM) (Chart
<xref rid="tx970206mc00002"></xref>
) with a mixture of dNTPs (100 μM each) in 5 μL of 50 mM sodium MOPS buffer (pH 7.0) containing 8 mM MgCl
<sub>2</sub>
, 4 mM dithiothreitol, and bovine serum albumin (2 μg mL
<sup>-1</sup>
) with each of three different concentrations of polymerases. These reactions were carried out for 1 h at 25 °C with all polymerases, except for pol II
<sup>-</sup>
which was incubated at 37 °C.
<xref rid="tx970206mb00002" ref-type="bibr"></xref>
Reactions were quenched by adding 5 μL of 10 mM EDTA in 90% formamide (v/v), and the products were analyzed on 20% (w/v) denaturing polyacrylamide gels, prepared using Sequagel (National Diagnostics, Atlanta, GA).
<fig id="tx970206mc00002" position="float" fig-type="chart" orientation="portrait">
<label>2</label>
<caption>
<p>Oligonucleotides
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
</p>
<p>
<fn id="d7e693">
<p>
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
 G* = Gua,
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>7</sup>
-guanyl)ethyl]GSH,
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>2</sup>
-guanyl)ethyl]GSH, or
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">O</italic>
<sup>6</sup>
-guanyl)ethyl]GSH. The site of first incorporation is indicated with an arrow.</p>
</fn>
</p>
</caption>
<graphic xlink:href="tx970206mc00002.eps" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>
<bold>One-Base Incorporation.</bold>
Primers (13-mer) were extended using unmodified and adducted templates (100 nM) (Chart
<xref rid="tx970206mc00002"></xref>
) in the presence of single dNTPs (100 μM). Preliminary reactions were performed at 25 °C for 1 h with all polymerases (except for pol II
<sup>-</sup>
, which was incubated at 37 °C),
<xref rid="tx970206mb00002" ref-type="bibr"></xref>
and the concentrations of polymerase used were 200 nM (Kf
<sup>-</sup>
), 400 nM (pol II
<sup>-</sup>
), 400 nM (T7), and 200 nM (HIV RT). Conditions were adjusted accordingly for steady-state kinetics (vide infra). </p>
<p>
<bold>Steady-State Kinetics.</bold>
Primer extension reactions were performed according to the general procedure described elsewhere (
<italic toggle="yes">31</italic>
,
<italic toggle="yes">32</italic>
,
<italic toggle="yes">35</italic>
), using adducted templates in the presence of several different concentrations of single dNTPs as indicated in the table of the results. In all cases, extension was <20% of the substrate. The results were analyzed using a k•cat computer program (Biometallics, Princeton, NJ). </p>
<p>
<bold>Nucleotide Sequence Analysis.</bold>
Nucleotide sequences of some of the primer extension products were analyzed as described by Maxam and Gilbert (
<italic toggle="yes">
<xref rid="tx970206mb00036" ref-type="bibr"></xref>
</italic>
), except for the T-specific reaction (
<italic toggle="yes">
<xref rid="tx970206mb00037" ref-type="bibr"></xref>
</italic>
). </p>
</sec>
<sec id="d7e774">
<title>Results</title>
<p>
<bold>Polymerase Extension Assays.</bold>
Primer extension reactions were performed by reacting primer/template complexes with a mixture of all four dNTPs. All of the modified templates blocked extension to different degrees (Figure
<xref rid="tx970206mf00001"></xref>
). Full-length extended products were obtained with templates containing
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>7</sup>
-guanyl)ethyl]GSH using Kf
<sup>-</sup>
, pol II
<sup>-</sup>
, T7
<sup>-</sup>
, and HIV RT, even though extension was not as efficient as with the control template. With Kf
<sup>-</sup>
and HIV RT, the one-base extended primer (14-mer) was observed as well as full-length extended product, indicating that this adduct blocks replication after addition of a single dNTP.
<fig id="tx970206mf00001" position="float" orientation="portrait">
<label>1</label>
<caption>
<p>Extension of 13-mer primer in the presence of all four dNTPs when paired with modified 18-mers:  (A) Kf
<sup>-</sup>
, (B) pol II
<sup>-</sup>
, (C) T7
<sup>-</sup>
, (D) HIV RT. The indicated concentrations of polymerases were used, and other conditions are presented in the Experimental Procedures.</p>
</caption>
<graphic xlink:href="tx970206mf00001.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>Both
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>2</sup>
-guanyl)ethyl]GSH and
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">O</italic>
<sup>6</sup>
-guanyl)ethyl]GSH strongly blocked replication with Kf
<sup>-</sup>
. One-base extended primers (14-mers) were found to be the major products with both adducts. Nevertheless, a small amount of full-length extended product was observed with the
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>2</sup>
-guanyl)ethyl]GSH-containing oligonucleotide using Kf
<sup>-</sup>
. With pol II
<sup>-</sup>
, the template containing
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>2</sup>
-guanyl)ethyl]GSH was extended to yield a ladder of all the possible products differing in length by one base.
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">O</italic>
<sup>6</sup>
-Guanyl)ethyl]GSH strongly blocked replication with pol II
<sup>-</sup>
. With T7
<sup>-</sup>
and HIV RT, the primers were hardly extended with oligonucleotides containing
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>2</sup>
-guanyl)ethyl]GSH or
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">O</italic>
<sup>6</sup>
-guanyl)ethyl]GSH and, as a result, could not be used in subsequent sequence analysis (vide infra). </p>
<p>
<bold>Primer Extension Assays with Individual dNTPs: Preliminary Studies.</bold>
Extension studies were repeated with only each single nucleotide present at high concentration and with prolonged incubation time, to obtain qualitative information about misincorporation. With Kf
<sup>-</sup>
, dCTP was the base preferentially incorporated opposite
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>7</sup>
-guanyl)ethyl]GSH, although some incorporation of each dNTP could be detected under these conditions of high dNTP concentration and extended time.
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>2</sup>
-Guanyl)ethyl]GSH showed strong mispairing with Kf
<sup>-</sup>
; both dATP and dGTP were preferentially incorporated opposite
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>2</sup>
-guanyl)ethyl]GSH. Preferential incorporation of dATP opposite
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">O</italic>
<sup>6</sup>
-guanyl)ethyl]GSH was observed with Kf
<sup>-</sup>
. </p>
<p>With pol II
<sup>-</sup>
, both dTTP and dCTP were incorporated opposite
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>7</sup>
-guanyl)ethyl]GSH, as well as lesser amounts of dGTP and dATP. dATP was the preferred base incorporated opposite
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>2</sup>
-guanyl)ethyl]GSH, and both dTTP and dCTP were incorporated opposite
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">O</italic>
<sup>6</sup>
-guanyl)ethyl]GSH using pol II
<sup>-</sup>
. </p>
<p>With T7
<sup>-</sup>
and HIV RT, dCTP was incorporated opposite
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>7</sup>
-guanyl)ethyl]GSH. No incorporation was observed opposite
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>2</sup>
-guanyl)ethyl]GSH or
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">O</italic>
<sup>6</sup>
-guanyl)ethyl]GSH with T7
<sup>-</sup>
or HIV RT. </p>
<p>
<bold>Nucleotide Sequence Analysis of Extended Primers.</bold>
Extended products formed in the presence of all four dNTPs were analyzed (
<italic toggle="yes">
<xref rid="tx970206mb00036" ref-type="bibr"></xref>
</italic>
). Only the reactions with Kf
<sup>-</sup>
and pol II
<sup>-</sup>
yielded sufficient material for analysis, and the results should be considered qualitative because of the low signal and high background. Sequence analysis of full-length primer-extended product from template containing
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>7</sup>
-guanyl)ethyl]GSH showed that dCTP was primarily incorporated opposite the adduct when Kf
<sup>-</sup>
was used (data not presented). In the 14-mer (one-base extended) product derived from the template containing
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>2</sup>
-guanyl)ethyl]GSH, both dATP and dGTP were incorporated opposite the adduct (the “G + A” lane band was considerably more intense than the “G” lane band; see Supporting Information). dATP was found to be primarily incorporated opposite
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">O</italic>
<sup>6</sup>
-guanyl)ethyl]GSH by analysis of the sequence of the 14-mer extended by Kf
<sup>-</sup>
. </p>
<p>Sequence analysis of fully extended primer from the reaction of template containing
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>2</sup>
-guanyl)ethyl]GSH with pol II
<sup>-</sup>
indicated that dATP was incorporated opposite
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>2</sup>
-guanyl)ethyl]GSH (data not presented). </p>
<p>These qualitative results correspond with those from the initial primer extension assays with individual dNTPs. </p>
<p>
<bold>Steady-State Kinetic Analysis of One-Base Incorporation.</bold>
To obtain more quantitative information about the tendency of DNA polymerases to misincorporate nucleotides opposite EDB-guanyl adducts, steady-state kinetic analyses were done under typical conditions (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="tx970206mb00035" ref-type="bibr"></xref>
,
<xref rid="tx970206mb00038" ref-type="bibr"></xref>
</named-content>
</italic>
) using both Kf
<sup>-</sup>
and pol II
<sup>-</sup>
(Table
<xref rid="tx970206mt00001"></xref>
). T7
<sup>-</sup>
and HIV RT were not further examined due to previous results (vide supra, lack of obvious incorporation of any dNTPs except dCTP). All kinetic parameters (
<italic toggle="yes">K</italic>
<sub>m</sub>
and
<italic toggle="yes">k</italic>
<sub>cat</sub>
) were estimated by nonlinear regression analysis of the data. The relative efficiency of incorporation was determined from the ratio
<italic toggle="yes">k</italic>
<sub>cat</sub>
/
<italic toggle="yes">K</italic>
<sub>m</sub>
. Misinsertion ratios (also termed “misincorporation frequencies”) were evaluated from the ratio of insertion frequency of wrong base to right base, [
<italic toggle="yes">k</italic>
<sub>cat</sub>
/
<italic toggle="yes">K</italic>
<sub>m</sub>
(wrong)]/[
<italic toggle="yes">k</italic>
<sub>cat</sub>
/
<italic toggle="yes">K</italic>
<sub>m</sub>
(right)], opposite specific adducts (
<italic toggle="yes">
<xref rid="tx970206mb00034" ref-type="bibr"></xref>
</italic>
).
<table-wrap id="tx970206mt00001" position="float" orientation="portrait">
<label>1</label>
<caption>
<p>Steady-State Kinetic Parameters for DNTP Incorporation</p>
</caption>
<oasis:table colsep="2" rowsep="2">
<oasis:tgroup cols="9">
<oasis:colspec colnum="1" colname="1"></oasis:colspec>
<oasis:colspec colnum="2" colname="2"></oasis:colspec>
<oasis:colspec colnum="3" colname="3"></oasis:colspec>
<oasis:colspec colnum="4" colname="4"></oasis:colspec>
<oasis:colspec colnum="5" colname="5"></oasis:colspec>
<oasis:colspec colnum="6" colname="6"></oasis:colspec>
<oasis:colspec colnum="7" colname="7"></oasis:colspec>
<oasis:colspec colnum="8" colname="8"></oasis:colspec>
<oasis:colspec colnum="9" colname="9"></oasis:colspec>
<oasis:tbody>
<oasis:row>
<oasis:entry colname="1"></oasis:entry>
<oasis:entry namest="2" nameend="5">Kf
<sup>-</sup>
</oasis:entry>
<oasis:entry namest="6" nameend="9">pol II
<sup>-</sup>
</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">pairing</oasis:entry>
<oasis:entry colname="2">
<italic toggle="yes">k</italic>
<sub>cat</sub>
(min
<sup>-1</sup>
)</oasis:entry>
<oasis:entry colname="3">
<italic toggle="yes">K</italic>
<sub>m</sub>
(mM)</oasis:entry>
<oasis:entry colname="4">
<italic toggle="yes">k</italic>
<sub>cat</sub>
/
<italic toggle="yes">K</italic>
<sub>m</sub>
</oasis:entry>
<oasis:entry colname="5">misinsertion ratio
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
</oasis:entry>
<oasis:entry colname="6">
<italic toggle="yes">k</italic>
<sub>cat</sub>
(min
<sup>-1</sup>
)</oasis:entry>
<oasis:entry colname="7">
<italic toggle="yes">K</italic>
<sub>m</sub>
(μM)</oasis:entry>
<oasis:entry colname="8">
<italic toggle="yes">k</italic>
<sub>cat</sub>
/
<italic toggle="yes">K</italic>
<sub>m</sub>
</oasis:entry>
<oasis:entry colname="9">misinsertion ratio
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">Gua:dCTP </oasis:entry>
<oasis:entry colname="2">29
<italic toggle="yes">
<sup>b</sup>
</italic>
<sup></sup>
</oasis:entry>
<oasis:entry colname="3">0.03 </oasis:entry>
<oasis:entry colname="4">970 </oasis:entry>
<oasis:entry colname="5"></oasis:entry>
<oasis:entry colname="6">21
<italic toggle="yes">
<sup>c</sup>
</italic>
<sup></sup>
</oasis:entry>
<oasis:entry colname="7">0.11 </oasis:entry>
<oasis:entry colname="8">190 </oasis:entry>
<oasis:entry colname="9"></oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">Gua:dATP </oasis:entry>
<oasis:entry colname="2">0.71 </oasis:entry>
<oasis:entry colname="3">42 </oasis:entry>
<oasis:entry colname="4">0.017 </oasis:entry>
<oasis:entry colname="5">1.7 × 10
<sup>-5</sup>
</oasis:entry>
<oasis:entry colname="6"></oasis:entry>
<oasis:entry colname="7"></oasis:entry>
<oasis:entry colname="8"><10
<sup>-5</sup>
</oasis:entry>
<oasis:entry colname="9"><5 × 10
<sup>-8</sup>
</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">Gua:dGTP </oasis:entry>
<oasis:entry colname="2">0.45 </oasis:entry>
<oasis:entry colname="3">14 </oasis:entry>
<oasis:entry colname="4">0.032 </oasis:entry>
<oasis:entry colname="5">3.3 × 10
<sup>-5</sup>
</oasis:entry>
<oasis:entry colname="6">0.072 </oasis:entry>
<oasis:entry colname="7">760 </oasis:entry>
<oasis:entry colname="8">9.4 × 10
<sup>-5</sup>
</oasis:entry>
<oasis:entry colname="9">5 × 10
<sup>-7</sup>
</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">Gua:dTTP </oasis:entry>
<oasis:entry colname="2">0.57 </oasis:entry>
<oasis:entry colname="3">61 </oasis:entry>
<oasis:entry colname="4">0.0093 </oasis:entry>
<oasis:entry colname="5">1.0 × 10
<sup>-5</sup>
</oasis:entry>
<oasis:entry colname="6">0.083 </oasis:entry>
<oasis:entry colname="7">770 </oasis:entry>
<oasis:entry colname="8">1.1 × 10
<sup>-4</sup>
</oasis:entry>
<oasis:entry colname="9">6 × 10
<sup>-7</sup>
</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">
<italic toggle="yes">N</italic>
<sup>7</sup>
-Gua:dCTP </oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3"></oasis:entry>
<oasis:entry colname="4"></oasis:entry>
<oasis:entry colname="5"></oasis:entry>
<oasis:entry colname="6">0.75
<italic toggle="yes">
<sup>d</sup>
</italic>
<sup></sup>
</oasis:entry>
<oasis:entry colname="7">0.24 </oasis:entry>
<oasis:entry colname="8">3.1 </oasis:entry>
<oasis:entry colname="9"></oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">
<italic toggle="yes">N</italic>
<sup>7</sup>
-Gua:dTTP </oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3"></oasis:entry>
<oasis:entry colname="4"></oasis:entry>
<oasis:entry colname="5"></oasis:entry>
<oasis:entry colname="6">0.63
<italic toggle="yes">
<sup>e</sup>
</italic>
<sup></sup>
</oasis:entry>
<oasis:entry colname="7">340 </oasis:entry>
<oasis:entry colname="8">0.0019 </oasis:entry>
<oasis:entry colname="9">6 × 10
<sup>-4</sup>
</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">
<italic toggle="yes">N</italic>
<sup>2</sup>
-Gua:dCTP </oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3"></oasis:entry>
<oasis:entry colname="4"><2 × 10
<sup>-8</sup>
<italic toggle="yes">
<sup>f</sup>
</italic>
<sup></sup>
</oasis:entry>
<oasis:entry colname="5"></oasis:entry>
<oasis:entry colname="6"></oasis:entry>
<oasis:entry colname="7"></oasis:entry>
<oasis:entry colname="8"><2 ×10
<sup>-8</sup>
<italic toggle="yes">
<sup>g</sup>
</italic>
<sup></sup>
</oasis:entry>
<oasis:entry colname="9"></oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">
<italic toggle="yes">N</italic>
<sup>2</sup>
-Gua:dATP </oasis:entry>
<oasis:entry colname="2">0.11
<italic toggle="yes">
<sup>h</sup>
</italic>
<sup></sup>
</oasis:entry>
<oasis:entry colname="3">80 </oasis:entry>
<oasis:entry colname="4">0.0014 </oasis:entry>
<oasis:entry colname="5">>10
<sup>5</sup>
</oasis:entry>
<oasis:entry colname="6">0.043
<italic toggle="yes">
<sup>i</sup>
</italic>
<sup></sup>
</oasis:entry>
<oasis:entry colname="7">4400 </oasis:entry>
<oasis:entry colname="8">9.7 × 10
<sup>-6</sup>
</oasis:entry>
<oasis:entry colname="9">>490 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">
<italic toggle="yes">N</italic>
<sup>2</sup>
Gua:dGTP </oasis:entry>
<oasis:entry colname="2">0.40
<italic toggle="yes">
<sup>j</sup>
</italic>
<sup></sup>
</oasis:entry>
<oasis:entry colname="3">18 </oasis:entry>
<oasis:entry colname="4">0.022 </oasis:entry>
<oasis:entry colname="5">>10
<sup>6</sup>
</oasis:entry>
<oasis:entry colname="6">0.0013
<italic toggle="yes">
<sup>k</sup>
</italic>
<sup></sup>
</oasis:entry>
<oasis:entry colname="7">440 </oasis:entry>
<oasis:entry colname="8">2.9 × 10
<sup>-6</sup>
</oasis:entry>
<oasis:entry colname="9">>150 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">
<italic toggle="yes">O</italic>
<sup>6</sup>
-Gua:dCTP </oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3"></oasis:entry>
<oasis:entry colname="4"><2 × 10
<sup>-8</sup>
<italic toggle="yes">
<sup>l</sup>
</italic>
<sup></sup>
</oasis:entry>
<oasis:entry colname="5"></oasis:entry>
<oasis:entry colname="6">1.8 × 10
<sup>-4</sup>
<italic toggle="yes">
<sup>m</sup>
</italic>
<sup></sup>
</oasis:entry>
<oasis:entry colname="7">0.54 </oasis:entry>
<oasis:entry colname="8">3.3 × 10
<sup>-4</sup>
</oasis:entry>
<oasis:entry colname="9"></oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">
<italic toggle="yes">O</italic>
<sup>6</sup>
-Gua:dATP </oasis:entry>
<oasis:entry colname="2">0.027
<italic toggle="yes">
<sup>n</sup>
</italic>
<sup></sup>
</oasis:entry>
<oasis:entry colname="3">3.9 </oasis:entry>
<oasis:entry colname="4">0.007 </oasis:entry>
<oasis:entry colname="5">>10
<sup>5</sup>
</oasis:entry>
<oasis:entry colname="6"></oasis:entry>
<oasis:entry colname="7"></oasis:entry>
<oasis:entry colname="8"></oasis:entry>
<oasis:entry colname="9"></oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">
<italic toggle="yes">O</italic>
<sup>6</sup>
-Gua:dTTP </oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3"></oasis:entry>
<oasis:entry colname="4"></oasis:entry>
<oasis:entry colname="5"></oasis:entry>
<oasis:entry colname="6">2.0 × 10
<sup>-4</sup>
<italic toggle="yes">
<sup>o</sup>
</italic>
<sup></sup>
</oasis:entry>
<oasis:entry colname="7">4.4 </oasis:entry>
<oasis:entry colname="8">4.5 × 10
<sup>-5</sup>
</oasis:entry>
<oasis:entry colname="9">0.13</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
<table-wrap-foot>
<p>
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
 Misinsertion ratio = (
<italic toggle="yes">k</italic>
<sub>cat</sub>
/
<italic toggle="yes">K</italic>
<sub>m</sub>
)
<sub>dNTP</sub>
/(
<italic toggle="yes">k</italic>
<sub>cat</sub>
/
<italic toggle="yes">K</italic>
<sub>m</sub>
)
<sub>dCTP</sub>
, where dNTP ≠ dCTP (also termed misincorporation frequency) (
<italic toggle="yes">
<xref rid="tx970206mb00034" ref-type="bibr"></xref>
</italic>
). In cases where the ratio
<italic toggle="yes">k</italic>
<sub>cat</sub>
/
<italic toggle="yes">K</italic>
<sub>m</sub>
is presented (as a limit) in the absence of
<italic toggle="yes">k</italic>
<sub>cat</sub>
and
<italic toggle="yes">K</italic>
<sub>m</sub>
,
<italic toggle="yes">k</italic>
<sub>cat</sub>
was not above the limit of detection and the limit at the highest dNTP concentration is divided by that dNTP concentration to estimate a limit for the ratio
<italic toggle="yes">k</italic>
<sub>cat</sub>
/
<italic toggle="yes">K</italic>
<sub>m</sub>
. In all cases the [primer·template] was 100 nM. Some of the individual reaction conditions are indicated in the footnotes.
<italic toggle="yes">
<sup>b</sup>
</italic>
<sup></sup>
 [Kf
<sup>-</sup>
] = 0.2 nM, [dCTP] = 0.01−5
<italic toggle="yes">m</italic>
M,
<italic toggle="yes">t</italic>
= 1 min.
<italic toggle="yes">
<sup>c</sup>
</italic>
<sup></sup>
 [pol II
<sup>-</sup>
] = 20 nM, [dCTP] = 0.01−50
<italic toggle="yes">m</italic>
M,
<italic toggle="yes">t</italic>
= 0.5 min.
<italic toggle="yes">
<sup>d</sup>
</italic>
<sup></sup>
 [pol II
<sup>-</sup>
] = 40 nM, [dCTP] = 0.01−50
<italic toggle="yes">m</italic>
M,
<italic toggle="yes">t</italic>
= 6 min.
<italic toggle="yes">
<sup>e</sup>
</italic>
<sup></sup>
 [pol II
<sup>-</sup>
] = 40 nM, [dTTP] = 0.5−1000
<italic toggle="yes">m</italic>
M,
<italic toggle="yes">t</italic>
= 6 min.
<italic toggle="yes">
<sup>f</sup>
</italic>
<sup></sup>
 [Kf
<sup>-</sup>
] = 100 nM, [dCTP] = 10 mM,
<italic toggle="yes">t</italic>
= 60 min.
<italic toggle="yes">
<sup>g</sup>
</italic>
<sup></sup>
 [pol II
<sup>-</sup>
] = 400 nM, [dCTP] = 10 mM,
<italic toggle="yes">t</italic>
= 60 min.
<italic toggle="yes">
<sup>h</sup>
</italic>
<sup></sup>
 [Kf
<sup>-</sup>
] = 10 nM, [dATP] = 0.5−1000
<italic toggle="yes">m</italic>
M,
<italic toggle="yes">t</italic>
= 10 min.
<italic toggle="yes">
<sup>i</sup>
</italic>
<sup></sup>
 [pol II
<sup>-</sup>
] = 40 nM, [dATP] = 0.005−10 mM,
<italic toggle="yes">t</italic>
= 30 min.
<italic toggle="yes">
<sup>j</sup>
</italic>
<sup></sup>
 [Kf
<sup>-</sup>
] = 10 nM, [dGTP] = 0.5−1000
<italic toggle="yes">m</italic>
M,
<italic toggle="yes">t</italic>
= 2 min.
<italic toggle="yes">
<sup>k</sup>
</italic>
<sup></sup>
 [pol II
<sup>-</sup>
] = 400 nM, [dGTP] = 0.005−10 mM,
<italic toggle="yes">t</italic>
= 20 min.
<italic toggle="yes">
<sup>l</sup>
</italic>
<sup></sup>
 [Kf
<sup>-</sup>
] = 100 nM, [dCTP] = 10 mM,
<italic toggle="yes">t</italic>
= 60 min.
<italic toggle="yes">
<sup>m</sup>
</italic>
<sup></sup>
 [pol II
<sup>-</sup>
] = 400 nM, [dCTP] = 0.5−1000
<italic toggle="yes">m</italic>
M,
<italic toggle="yes">t</italic>
= 60 min.
<italic toggle="yes">
<sup>n</sup>
</italic>
<sup></sup>
 [Kf
<sup>-</sup>
] = 10 nM, [dATP] = 0.5−1000
<italic toggle="yes">m</italic>
M,
<italic toggle="yes">t</italic>
= 20 min.
<italic toggle="yes">
<sup>o</sup>
</italic>
<sup></sup>
 [pol II
<sup>-</sup>
] = 400 nM, [dTTP] = 0.5−1000
<italic toggle="yes">m</italic>
M,
<italic toggle="yes">t</italic>
= 60 min.</p>
</table-wrap-foot>
</table-wrap>
</p>
<p>Misinsertion ratios were measured for insertion of dATP, dGTP, and dTTP opposite G, relative to dCTP. These ratios were on the order of 10
<sup>-5</sup>
for Kf
<sup>-</sup>
and 10
<sup>-7</sup>
for pol II
<sup>-</sup>
(Table
<xref rid="tx970206mt00001"></xref>
) and are considered in subsequent comparisons. </p>
<p>With pol II
<sup>-</sup>
, dTTP incorporation was observed opposite
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>7</sup>
-guanyl)ethyl]GSH, as well as dCTP incorporation. The
<italic toggle="yes">k</italic>
<sub>cat</sub>
values for both dCTP incorporation and dTTP were similar; however, the
<italic toggle="yes">K</italic>
<sub>m</sub>
for the incorporation of dTTP was much higher than for dCTP incorporation. Attempts with dATP and dGTP yielded much less incorporation than for dTTP under these conditions, and the results were not quantified. In a separate study with a commercial preparation of Kf
<sup>-</sup>
, no difference in the misinsertion ratios (for dTTP/dCTP) opposite Gua and
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>7</sup>
-guanyl)ethyl]GSH was detected (these results are not included in Table
<xref rid="tx970206mt00001"></xref>
because of the different preparation of enzyme used). </p>
<p>Kf
<sup>-</sup>
and pol II
<sup>-</sup>
incorporated both dATP and dGTP opposite
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>2</sup>
-guanyl)ethyl]GSH. There was no detectable dCTP incorporation opposite
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>2</sup>
-guanyl)ethyl]GSH with either DNA polymerase. The estimates of
<italic toggle="yes">k</italic>
<sub>cat</sub>
/
<italic toggle="yes">K</italic>
<sub>m</sub>
are based on limits of detection at high substrate concentrations. The apparent misinsertion ratios, then, are very high for both dATP and dGTP. With Kf
<sup>-</sup>
the
<italic toggle="yes">k</italic>
<sub>cat</sub>
/
<italic toggle="yes">K</italic>
<sub>m</sub>
ratio was 15, in favor of dGTP incorporation over dATP. However,
<italic toggle="yes">k</italic>
<sub>cat</sub>
/
<italic toggle="yes">K</italic>
<sub>m</sub>
was 3 times greater for dATP incorporation over dGTP with pol II
<sup>-</sup>
. </p>
<p>Kf
<sup>-</sup>
incorporated dATP opposite
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">O</italic>
<sup>6</sup>
-guanyl)ethyl]GSH, and there was no detectable dCTP base incorporation. dTTP incorporation was observed opposite
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">O</italic>
<sup>6</sup>
-guanyl)ethyl]GSH, as well as dCTP, using pol II
<sup>-</sup>
.
<italic toggle="yes">k</italic>
<sub>cat</sub>
for the incorporation of both bases was similar; however, the
<italic toggle="yes">K</italic>
<sub>m</sub>
for dTTP incorporation was 10 times greater than for dCTP incorporation with pol II
<sup>-</sup>
, yielding a misincorporation ratio of 0.13. </p>
</sec>
<sec id="d7e2021">
<title>Discussion</title>
<p>All three of the guanyl-ethylene-GSH adducts (
<italic toggle="yes">N</italic>
<sup>7</sup>
,
<italic toggle="yes">N</italic>
<sup>2</sup>
, and
<italic toggle="yes">O</italic>
<sup>6</sup>
) were shown to block replication and miscode with at least one polymerase. The extents of replication blockage and miscoding specificity were dependent on both the adduct structure and polymerase used. </p>
<p>Chemical lability has hindered the study of biological properties of
<italic toggle="yes">N</italic>
<sup>7</sup>
-alkylGua derivatives, i.e., instability of the glycosidic bond and the tendency of the charged imidazole ring to open. In general,
<italic toggle="yes">N</italic>
<sup>7</sup>
-alkylGua derivatives have been considered not to be miscoding lesions in most of the literature. No
<italic toggle="yes">N</italic>
<sup>7</sup>
-alkylGua adducts have been definitively shown to miscode except one, that derived from aflatoxin B
<sub>1</sub>
<italic toggle="yes">exo</italic>
-8,9-epoxide (
<italic toggle="yes">
<xref rid="tx970206mb00039" ref-type="bibr"></xref>
</italic>
). We found that
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>7</sup>
-guanyl)ethyl]GSH blocked replication and caused a low level of miscoding. Extension of the primer annealed to the adducted template was not as efficient as nonadducted template; however, some fully extended primers were observed with all polymerases. dCTP was the most preferred nucleotide incorporated opposite
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>7</sup>
-guanyl)ethyl]GSH with Kf
<sup>-</sup>
, T7
<sup>-</sup>
, and HIV RT; however, dTTP incorporation was detected opposite
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>7</sup>
-guanyl)ethyl]GSH with pol II
<sup>-</sup>
(Table
<xref rid="tx970206mt00001"></xref>
). The efficiency of insertion (
<italic toggle="yes">k</italic>
<sub>cat</sub>
/
<italic toggle="yes">K</italic>
<sub>m</sub>
) for dCTP opposite
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>7</sup>
-guanyl)ethyl]GSH decreased dramatically compared to Gua (from 190 to 3.1), and the misinsertion ratio for dTTP was 6 × 10
<sup>-4</sup>
(i.e., 0.06%). DNA sequence analysis indicated that dCTP was predominantly incorporated opposite
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>7</sup>
-guanyl)ethyl]GSH in the primer, which was fully extended with Kf
<sup>-</sup>
and pol II
<sup>-</sup>
. However, sequence analysis would not have been expected to detect the presence of T, with such a low misincorporation frequency. The misincorporation ratio of 6 × 10
<sup>-4</sup>
may be compared with the values seen with the oligonucleotide containing Gua at this site, which are 3 orders of magnitude lower (Table
<xref rid="tx970206mt00001"></xref>
). This comparison argues that the misincorporation event is significant. However, an adduct level of ∼1 modification/10
<sup>3</sup>
bases of DNA would be required to double the overall extent of misincorporation seen in the absence of the adduct. </p>
<p>
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>2</sup>
-Guanyl)ethyl]GSH was a block to replication and miscoded. With Kf
<sup>-</sup>
a strong replication block was observed after one base was incorporated; however, pol II
<sup>-</sup>
incorporated one base beyond the adduct (Figure
<xref rid="tx970206mf00001"></xref>
B). dATP and dGTP were readily incorporated opposite
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>2</sup>
-guanyl)ethyl]GSH (Table
<xref rid="tx970206mt00001"></xref>
). A small amount of full-length product was detectable using the template containing
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>2</sup>
-guanyl)ethyl]GSH and Kf
<sup>-</sup>
. Attempts to analyze the DNA sequence of this product were not very successful, because the amount of product was quite low. With T7
<sup>-</sup>
and HIV RT, the primer paired with the template containing
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>2</sup>
-guanyl)ethyl]GSH was hardly extended. </p>
<p>
<italic toggle="yes">O</italic>
<sup>6</sup>
-AlkylGua derivatives are generally considered to be important mutagenic lesions, critical in tumorigenesis of many chemical carcinogens, and cytotoxic (
<italic toggle="yes">20</italic>
<italic toggle="yes">22</italic>
,
<italic toggle="yes">40</italic>
<italic toggle="yes">42</italic>
). dTTP is preferentially incorporated opposite
<italic toggle="yes">O</italic>
<sup>6</sup>
-methylGua, causing GC to AT transitions (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="tx970206mb00023" ref-type="bibr"></xref>
<xref rid="tx970206mb00024" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="tx970206mb00025" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="tx970206mb00026" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="tx970206mb00027" ref-type="bibr"></xref>
</named-content>
</italic>
).
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">O</italic>
<sup>6</sup>
-Guanyl)ethyl]GSH strongly blocked replication with all polymerases. dATP was primarily incorporated opposite
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">O</italic>
<sup>6</sup>
-guanyl)ethyl]GSH, and some incorporation of dGTP was observed with Kf
<sup>-</sup>
. The misinsertion ratio for dATP opposite
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">O</italic>
<sup>6</sup>
-guanyl)ethyl]GSH was >10
<sup>5</sup>
. dTTP incorporation and dCTP incorporation opposite
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">O</italic>
<sup>6</sup>
-guanyl)ethyl]GSH were both detectable with pol II
<sup>-</sup>
. The misinsertion ratio for dTTP was 0.13, which was lower than that reported for dTTP opposite
<italic toggle="yes">O</italic>
<sup>6</sup>
-methylGua with Kf
<sup>-</sup>
in a different sequence (1−2.5) (
<italic toggle="yes">
<xref rid="tx970206mb00027" ref-type="bibr"></xref>
</italic>
). </p>
<p>In considering the results of the polymerase kinetic experiments, comparisons can be made not only of the misinsertion ratios but also of the enzyme efficiencies (
<italic toggle="yes">k</italic>
<sub>cat</sub>
/
<italic toggle="yes">K</italic>
<sub>m</sub>
) for each pairing. With regard to pairing of Gua and its derivatives with dTTP by pol II
<sup>-</sup>
, the efficiency is ∼17-fold better for
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>7</sup>
-guanyl)ethyl]GSH than Gua but the efficiencies for
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">O</italic>
<sup>6</sup>
-guanyl)ethyl]GSH and Gua are similar (Table
<xref rid="tx970206mt00001"></xref>
). With regard to insertion of dATP and dGTP, the efficiencies are less with both the N
<sup>2</sup>
- and O
<sup>6</sup>
-adducts than with Gua for both Kf
<sup>-</sup>
and pol II
<sup>-</sup>
. The favorable misinsertion ratios are driven not by favorable pairing of dATP and dGTP with the adducts but by the very disfavored incorporation of dCTP opposite these adducts. The molecular basis of this disfavored incorporation of dCTP (as much as 10
<sup>11</sup>
) may be related to the difficulty in developing canonical Watson−Crick base pairs with dCTP due to the presence of bulky
<italic toggle="yes">N</italic>
<sup>2</sup>
- and
<italic toggle="yes">O</italic>
<sup>6</sup>
-guanyl adducts. Alternative pairing modes (e.g., wobble) may be nearly as feasible for these derivatives as for Gua itself. Exactly why the N
<sup>7</sup>
-adduct is a block (Table
<xref rid="tx970206mt00001"></xref>
, Figure
<xref rid="tx970206mf00001"></xref>
) is not clear, since the base modification is not in the base-pairing region and only changed the ΔΔ
<italic toggle="yes">G</italic>
° for binding to a complemetary C by 1.4 kcal mol
<sup>-1</sup>
(
<italic toggle="yes">
<xref rid="tx970206mb00018" ref-type="bibr"></xref>
</italic>
). However, the GSH moiety does present considerable bulk in the major groove [when the DNA is double-stranded (
<italic toggle="yes">
<xref rid="tx970206mb00016" ref-type="bibr"></xref>
</italic>
)] and may interact directly with the polymerase. </p>
<p>Abril et al. (
<italic toggle="yes">
<xref rid="tx970206mb00043" ref-type="bibr"></xref>
</italic>
) reported decreased mutations caused by EDB in bacterial strains devoid of
<italic toggle="yes">O</italic>
<sup>6</sup>
-alkyltransferases. The basis of this finding is not clear, because if the
<italic toggle="yes">O</italic>
<sup>6</sup>
-alkylGua lesion is mutagenic, the transferases might repair this lesion and lower the mutation rate. Possible speculation on this finding is that a repair enzyme might bind to
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">O</italic>
<sup>6</sup>
-guanyl)ethyl]GSH without repairing it, and mutation could somehow be enhanced by a complex of DNA lesion and repair enzyme. However, nucleotide excision repair does seem to be involved and lowers the mutation frequency in experiments in which DNA is modified with the half-mustard (2-chloroethyl)GSH (
<italic toggle="yes">
<xref rid="tx970206mb00008" ref-type="bibr"></xref>
</italic>
). It is not known whether
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">O</italic>
<sup>6</sup>
-guanyl)ethyl]GSH is a substrate foror an inhibitor of
<italic toggle="yes">O</italic>
<sup>6</sup>
-alkyltransferase. There was no detectable incorporation of any base opposite
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">O</italic>
<sup>6</sup>
-guanyl)ethyl]GSH or
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>2</sup>
-guanyl)ethyl]GSH with T7
<sup>-</sup>
or HIV RT (Table
<xref rid="tx970206mt00001"></xref>
), both of which are replicative polymerases, indicating that the fates of replication of EDB-guanyl adducts are highly dependent on DNA polymerases. </p>
<p>In conclusion, the miscoding potentials of three known EDB-guanyl adducts were investigated.
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>7</sup>
-Guanyl)ethyl]GSH was found to be a replication block and miscoded to insert dTTP, with pol II
<sup>-</sup>
, at a low frequency.
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>2</sup>
-Guanyl)ethyl]GSH was shown to be capable of blocking polymerization and miscoding, with dATP and dGTP being the most preferred bases incorporated opposite this adduct.
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">O</italic>
<sup>6</sup>
-Guanyl)ethyl]GSH was also found to be a replication block and to code for dATP and dGTP incorporation with Kf
<sup>-</sup>
and for dTTP incorporation with pol II
<sup>-</sup>
. In considering the GC to AT transition observed in many biological systems, the expected pairing of a Gua adduct with dTTP was observed only with pol II
<sup>-</sup>
and two adducts,
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">N</italic>
<sup>7</sup>
-guanyl)ethyl]GSH and
<italic toggle="yes">S</italic>
-[2-(
<italic toggle="yes">O</italic>
<sup>6</sup>
-guanyl)ethyl]GSH (Table
<xref rid="tx970206mt00001"></xref>
). The O
<sup>6</sup>
-adduct was 2 orders of magnitude more likely to miscode than the N
<sup>7</sup>
-adduct, but the N
<sup>7</sup>
-adduct is present at levels at least 2 orders of magnitude higher than the O
<sup>6</sup>
-adduct (
<italic toggle="yes">
<xref rid="tx970206mb00008" ref-type="bibr"></xref>
</italic>
). A quantitative assessment of the ability of pol II
<sup>-</sup>
to extend the two adducts has not been made. The in vitro assay system we used in this study is not necessarily representative of the prokaryotic cellular replication system, in which DNA polymerase III is the major replicative enzyme [prior work suggests that the SOS system is not obligatory for mutagenesis in bacteria (
<italic toggle="yes">
<xref rid="tx970206mb00019" ref-type="bibr"></xref>
</italic>
)]. This study has provided useful information about how these adducts can behave with DNA polymerases, even though the information about which guanyl adduct is primarily responsible for the dominant GC to AT transitions seen in vivo is still not complete. </p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>We thank Dr. S. Langouët for valuable suggestions and L. L. Furge for purification of the polymerases used in this study and for comments on the manuscript. </p>
</ack>
<notes notes-type="si">
<sec id="d7e2517">
<title>
<ext-link xlink:href="/doi/suppl/10.1021%2Ftx970206m">Supporting Information Available</ext-link>
</title>
<p>Figure showing nucleotide sequence analysis of extended primers (1 page). Ordering information is given on any current masthead page. </p>
</sec>
</notes>
<ref-list>
<title>References</title>
<ref id="tx970206mb00001">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Olson</surname>
<given-names>W. A.</given-names>
</name>
<name name-style="western">
<surname>Habermann</surname>
<given-names>R. T.</given-names>
</name>
<name name-style="western">
<surname>Weisburger</surname>
<given-names>E. K.</given-names>
</name>
<name name-style="western">
<surname>Ward</surname>
<given-names>J. M.</given-names>
</name>
<name name-style="western">
<surname>Weisburger</surname>
<given-names>J. H.</given-names>
</name>
<article-title>Induction of stomach cancer in rats and mice by halogenated aliphatic fumigants</article-title>
<source>J. Natl. Cancer Inst.</source>
<year>1973</year>
<volume>51</volume>
<fpage>1993</fpage>
<lpage>1995</lpage>
</element-citation>
</ref>
<ref id="tx970206mb00002">
<mixed-citation>NTP. (1982)
<italic toggle="yes">NTP Technical Report on the Carcinogenesis Bioassay of 1,2-Dibromoethane in F344 Rats and B6C3F1 Mice (Inhalation Study)</italic>
, pp 1−163, Government Printing Office, Washington, DC.</mixed-citation>
</ref>
<ref id="tx970206mb00003">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Wong</surname>
<given-names>L. C. K.</given-names>
</name>
<name name-style="western">
<surname>Winston</surname>
<given-names>J. M.</given-names>
</name>
<name name-style="western">
<surname>Hong</surname>
<given-names>C. B.</given-names>
</name>
<name name-style="western">
<surname>Plotnick</surname>
<given-names>H.</given-names>
</name>
<article-title>Carcinogenicity and toxicity of 1,2-dibromoethane in the rat</article-title>
<source>Toxicol. Appl. Pharmacol.</source>
<year>1982</year>
<volume>63</volume>
<fpage>155</fpage>
<lpage>165</lpage>
<pub-id pub-id-type="doi">10.1016/0041-008X(82)90036-9</pub-id>
</element-citation>
</ref>
<ref id="tx970206mb00004">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Huff</surname>
<given-names>J. E.</given-names>
</name>
<article-title>1,2-Dibromoethane (ethylene dibromide)</article-title>
<source>Environ. Health Perspect.</source>
<year>1983</year>
<volume>47</volume>
<fpage>359</fpage>
<lpage>363</lpage>
<pub-id pub-id-type="doi">10.2307/3429524</pub-id>
</element-citation>
</ref>
<ref id="tx970206mb00005">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Moslen</surname>
<given-names>M. T.</given-names>
</name>
<name name-style="western">
<surname>Ahluwalia</surname>
<given-names>M. B.</given-names>
</name>
<name name-style="western">
<surname>Farber</surname>
<given-names>E.</given-names>
</name>
<article-title>1,2-Dibromoethane initiation of hepatic nodules in Sprague-Dawley rats selected with Solt-Farber system</article-title>
<source>Arch. Toxicol.</source>
<year>1985</year>
<volume>58</volume>
<fpage>118</fpage>
<lpage>119</lpage>
<pub-id pub-id-type="doi">10.1007/BF00348321</pub-id>
</element-citation>
</ref>
<ref id="tx970206mb00006">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Letz</surname>
<given-names>G. A.</given-names>
</name>
<name name-style="western">
<surname>Pond</surname>
<given-names>S. M.</given-names>
</name>
<name name-style="western">
<surname>Osterloh</surname>
<given-names>J. D.</given-names>
</name>
<name name-style="western">
<surname>Wade</surname>
<given-names>R. L.</given-names>
</name>
<name name-style="western">
<surname>Becker</surname>
<given-names>C. E.</given-names>
</name>
<article-title>Two fatalities after acute occupational exposure to ethylene dibromide</article-title>
<source>J. Am. Med. Assoc.</source>
<year>1984</year>
<volume>252</volume>
<fpage>2428</fpage>
<lpage>2431</lpage>
<pub-id pub-id-type="doi">10.1001/jama.252.17.2428</pub-id>
</element-citation>
</ref>
<ref id="tx970206mb00007">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Sun</surname>
<given-names>M.</given-names>
</name>
<article-title>EDB contamination kindles federal action</article-title>
<source>Science</source>
<year>1984</year>
<volume>223</volume>
<fpage>464</fpage>
<lpage>466</lpage>
<pub-id pub-id-type="doi">10.1126/science.6362008</pub-id>
</element-citation>
</ref>
<ref id="tx970206mb00008">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Cmarik</surname>
<given-names>J. L.</given-names>
</name>
<name name-style="western">
<surname>Humphreys</surname>
<given-names>W. G.</given-names>
</name>
<name name-style="western">
<surname>Bruner</surname>
<given-names>K. L.</given-names>
</name>
<name name-style="western">
<surname>Lloyd</surname>
<given-names>R. S.</given-names>
</name>
<name name-style="western">
<surname>Tibbetts</surname>
<given-names>C.</given-names>
</name>
<name name-style="western">
<surname>Guengerich</surname>
<given-names>F. P.</given-names>
</name>
<article-title>Mutation spectrum and sequence alkylation selectivity resulting from modification of bacteriophage M13mp18 with S-(2-chloroethyl)glutathione. Evidence for a role of S-[2-(N7-guanyl)ethyl]glutathione as a mutagenic lesion formed from ethylene dibromide</article-title>
<source>J. Biol. Chem.</source>
<year>1992</year>
<volume>267</volume>
<fpage>6672</fpage>
<lpage>6679</lpage>
</element-citation>
</ref>
<ref id="tx970206mb00009">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Foster</surname>
<given-names>P. L.</given-names>
</name>
<name name-style="western">
<surname>Wilkinson</surname>
<given-names>W. G.</given-names>
</name>
<name name-style="western">
<surname>Miller</surname>
<given-names>J. K.</given-names>
</name>
<name name-style="western">
<surname>Sullivan</surname>
<given-names>A. D.</given-names>
</name>
<name name-style="western">
<surname>Barnes</surname>
<given-names>W. M.</given-names>
</name>
<article-title>An analysis of the mutagenicity of 1,2-dibromoethane to Escherichia coli: influence of DNA repair activities and metabolic pathways</article-title>
<source>Mutat. Res.</source>
<year>1988</year>
<volume>194</volume>
<fpage>171</fpage>
<lpage>181</lpage>
</element-citation>
</ref>
<ref id="tx970206mb00010">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Ballering</surname>
<given-names>L. A. P.</given-names>
</name>
<name name-style="western">
<surname>Nivard</surname>
<given-names>M. J. M.</given-names>
</name>
<name name-style="western">
<surname>Vogel</surname>
<given-names>E. W.</given-names>
</name>
<article-title>Mutation spectra of 1,2-dibromoethane, 1,2-dichloroethane and 1-bromo-2-chloroethane in excision repair proficient and repair deficient strains of Drosophila melanogaster</article-title>
<source>Carcinogenesis</source>
<year>1994</year>
<volume>15</volume>
<fpage>869</fpage>
<lpage>875</lpage>
<pub-id pub-id-type="doi">10.1093/carcin/15.5.869</pub-id>
</element-citation>
</ref>
<ref id="tx970206mb00011">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Graves</surname>
<given-names>R. J.</given-names>
</name>
<name name-style="western">
<surname>Coutts</surname>
<given-names>C.</given-names>
</name>
<name name-style="western">
<surname>Green</surname>
<given-names>T.</given-names>
</name>
<article-title>Methylene chloride-induced DNA damage: an interspecies comparison</article-title>
<source>Carcinogenesis</source>
<year>1995</year>
<volume>16</volume>
<fpage>1919</fpage>
<lpage>1926</lpage>
<pub-id pub-id-type="doi">10.1093/carcin/16.8.1919</pub-id>
</element-citation>
</ref>
<ref id="tx970206mb00012">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Koga</surname>
<given-names>N.</given-names>
</name>
<name name-style="western">
<surname>Inskeep</surname>
<given-names>P. B.</given-names>
</name>
<name name-style="western">
<surname>Harris</surname>
<given-names>T. M.</given-names>
</name>
<name name-style="western">
<surname>Guengerich</surname>
<given-names>F. P.</given-names>
</name>
<article-title>S-[2-(N7-Guanyl)ethyl]glutathione, the major DNA adduct formed from 1,2-dibromoethane</article-title>
<source>Biochemistry</source>
<year>1986</year>
<volume>25</volume>
<fpage>2192</fpage>
<lpage>2198</lpage>
<pub-id pub-id-type="doi">10.1021/bi00356a051</pub-id>
</element-citation>
</ref>
<ref id="tx970206mb00013">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Inskeep</surname>
<given-names>P. B.</given-names>
</name>
<name name-style="western">
<surname>Koga</surname>
<given-names>N.</given-names>
</name>
<name name-style="western">
<surname>Cmarik</surname>
<given-names>J. L.</given-names>
</name>
<name name-style="western">
<surname>Guengerich</surname>
<given-names>F. P.</given-names>
</name>
<article-title>Covalent binding of 1,2-dihaloalkanes to DNA and stability of the major DNA adduct, S-[2-(N7-guanyl)ethyl]glutathione</article-title>
<source>Cancer Res.</source>
<year>1986</year>
<volume>46</volume>
<fpage>2839</fpage>
<lpage>2844</lpage>
</element-citation>
</ref>
<ref id="tx970206mb00014">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Kim</surname>
<given-names>D.-H.</given-names>
</name>
<name name-style="western">
<surname>Guengerich</surname>
<given-names>F. P.</given-names>
</name>
<article-title>Excretion of the mercapturic acid S-[2-(N7-guanyl)ethyl]-N-acetylcysteine in urine following administration of ethylene dibromide to rats</article-title>
<source>Cancer Res.</source>
<year>1989</year>
<volume>49</volume>
<fpage>5843</fpage>
<lpage>5851</lpage>
</element-citation>
</ref>
<ref id="tx970206mb00015">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Kim</surname>
<given-names>D.-H.</given-names>
</name>
<name name-style="western">
<surname>Humphreys</surname>
<given-names>W. G.</given-names>
</name>
<name name-style="western">
<surname>Guengerich</surname>
<given-names>F. P.</given-names>
</name>
<article-title>Characterization of S-[2-(N1-adenyl)ethyl]glutathione formed in DNA and RNA from 1,2-dibromoethane</article-title>
<source>Chem. Res. Toxicol.</source>
<year>1990</year>
<volume>3</volume>
<fpage>587</fpage>
<lpage>594</lpage>
<pub-id pub-id-type="doi">10.1021/tx00018a015</pub-id>
</element-citation>
</ref>
<ref id="tx970206mb00016">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Oida</surname>
<given-names>T.</given-names>
</name>
<name name-style="western">
<surname>Humphreys</surname>
<given-names>W. G.</given-names>
</name>
<name name-style="western">
<surname>Guengerich</surname>
<given-names>F. P.</given-names>
</name>
<article-title>Preparation and characterization of oligonucleotides containing S-[2-(N7-guanyl)ethyl]glutathione</article-title>
<source>Biochemistry</source>
<year>1991</year>
<volume>30</volume>
<fpage>10513</fpage>
<lpage>10522</lpage>
<pub-id pub-id-type="doi">10.1021/bi00107a021</pub-id>
</element-citation>
</ref>
<ref id="tx970206mb00017">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Kim</surname>
<given-names>M.-S.</given-names>
</name>
<name name-style="western">
<surname>Guengerich</surname>
<given-names>F. P.</given-names>
</name>
<article-title>Interactions of N7-guanyl methyl- and thioether-substituted d(CATGCCT) derivatives with d(AGGNATC)</article-title>
<source>Chem. Res. Toxicol.</source>
<year>1993</year>
<volume>6</volume>
<fpage>900</fpage>
<lpage>905</lpage>
<pub-id pub-id-type="doi">10.1021/tx00036a022</pub-id>
</element-citation>
</ref>
<ref id="tx970206mb00018">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Persmark</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Guengerich</surname>
<given-names>F. P.</given-names>
</name>
<article-title>Spectroscopic and thermodynamic characterization of the interaction of N7-guanyl thioether derivatives of d(TGCTG*CAAG) with potential complements</article-title>
<source>Biochemistry</source>
<year>1994</year>
<volume>33</volume>
<fpage>8662</fpage>
<lpage>8672</lpage>
<pub-id pub-id-type="doi">10.1021/bi00195a006</pub-id>
</element-citation>
</ref>
<ref id="tx970206mb00019">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Humphreys</surname>
<given-names>W. G.</given-names>
</name>
<name name-style="western">
<surname>Kim</surname>
<given-names>D.-H.</given-names>
</name>
<name name-style="western">
<surname>Cmarik</surname>
<given-names>J. L.</given-names>
</name>
<name name-style="western">
<surname>Shimada</surname>
<given-names>T.</given-names>
</name>
<name name-style="western">
<surname>Guengerich</surname>
<given-names>F. P.</given-names>
</name>
<article-title>Comparison of the DNA alkylating properties and mutagenic responses caused by a series of S-(2-haloethyl)-substituted cysteine and glutathione derivatives</article-title>
<source>Biochemistry</source>
<year>1990</year>
<volume>29</volume>
<fpage>10342</fpage>
<lpage>10350</lpage>
<pub-id pub-id-type="doi">10.1021/bi00497a008</pub-id>
</element-citation>
</ref>
<ref id="tx970206mb00020">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Heflich</surname>
<given-names>R. H.</given-names>
</name>
<name name-style="western">
<surname>Beranek</surname>
<given-names>D. T.</given-names>
</name>
<name name-style="western">
<surname>Kodell</surname>
<given-names>R. L.</given-names>
</name>
<name name-style="western">
<surname>Morris</surname>
<given-names>S. M.</given-names>
</name>
<article-title>Induction of mutations and sister-chromatid exchanges in Chinese hamster ovary cells by ethylating agents, relationship to specific DNA adducts</article-title>
<source>Mutat. Res.</source>
<year>1982</year>
<volume>106</volume>
<fpage>147</fpage>
<lpage>161</lpage>
</element-citation>
</ref>
<ref id="tx970206mb00021">
<element-citation publication-type="journal">
<name name-style="western">
<surname>van Zeeland</surname>
<given-names>A. A.</given-names>
</name>
<name name-style="western">
<surname>de Groot</surname>
<given-names>A. J. L.</given-names>
</name>
<name name-style="western">
<surname>Neuhüser-Klaus</surname>
<given-names>A.</given-names>
</name>
<article-title>A DNA adduct formation in mouse testis by ethylating agents; a comparison with germ-cell mutagenesis</article-title>
<source>Mutat. Res.</source>
<year>1990</year>
<volume>232</volume>
<fpage>55</fpage>
<lpage>62</lpage>
</element-citation>
</ref>
<ref id="tx970206mb00022">
<element-citation publication-type="journal">
<name name-style="western">
<surname>van Zeeland</surname>
<given-names>A. A.</given-names>
</name>
<name name-style="western">
<surname>Mohn</surname>
<given-names>G. R.</given-names>
</name>
<name name-style="western">
<surname>Neuhäuser-Klaus</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Ehling</surname>
<given-names>U. H.</given-names>
</name>
<article-title>Quantitative comparison of genetic effects of ethylating agents on the basis of DNA adduct formation. Use of O6-ethylguanine as molecular dosimeter for extrapolation from cells in culture to the mouse</article-title>
<source>Environ. Health Perspect.</source>
<year>1985</year>
<volume>62</volume>
<fpage>163</fpage>
<lpage>169</lpage>
<pub-id pub-id-type="doi">10.2307/3430108</pub-id>
</element-citation>
</ref>
<ref id="tx970206mb00023">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Loveless</surname>
<given-names>A.</given-names>
</name>
<article-title>Possible relevance of O6-alkylation of deoxyguanosine to the mutagenicity and carcinogenicity of ntrosamines and nitrosamides</article-title>
<source>Nature</source>
<year>1969</year>
<volume>223</volume>
<fpage>206</fpage>
<lpage>207</lpage>
<pub-id pub-id-type="doi">10.1038/223206a0</pub-id>
</element-citation>
</ref>
<ref id="tx970206mb00024">
<mixed-citation>Sibghat-Ullah,
<name name-style="western">
<surname>and Day</surname>
<given-names>R. S.</given-names>
</name>
, III. (1992) Incision at
<italic toggle="yes">O</italic>
<sup>6</sup>
-methylguanine: thymine mispairs in DNA by extracts of human cells.
<italic toggle="yes"> Biochemistry</italic>
<bold>31</bold>
, 7998−8008.
<pub-id pub-id-type="doi">10.1021/bi00149a034</pub-id>
</mixed-citation>
</ref>
<ref id="tx970206mb00025">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Swann</surname>
<given-names>P. F.</given-names>
</name>
<article-title>Why do O6-alkylguanine and O4-alkylthymine miscode? The relationship between the structure of DNA containing O6-alkylguanine and O4-alkylthymine and the mutagenic properties of these bases</article-title>
<source>Mutat. Res.</source>
<year>1990</year>
<volume>233</volume>
<fpage>81</fpage>
<lpage>94</lpage>
<pub-id pub-id-type="doi">10.1016/0027-5107(90)90153-U</pub-id>
</element-citation>
</ref>
<ref id="tx970206mb00026">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Singer</surname>
<given-names>B.</given-names>
</name>
<name name-style="western">
<surname>Chavez</surname>
<given-names>F.</given-names>
</name>
<name name-style="western">
<surname>Goodman</surname>
<given-names>M. F.</given-names>
</name>
<name name-style="western">
<surname>Essigmann</surname>
<given-names>J. M.</given-names>
</name>
<name name-style="western">
<surname>Dosanjh</surname>
<given-names>M. K.</given-names>
</name>
<article-title>Effect of 3‘ flanking neighbors on kinetics of pairing of dCTP and dTTP opposite O6-methylguanine in a defined primed oligonucleotide when Ecsherichia coli DNA polymerase I is used</article-title>
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<year>1989</year>
<volume>86</volume>
<fpage>8271</fpage>
<lpage>8274</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.86.21.8271</pub-id>
</element-citation>
</ref>
<ref id="tx970206mb00027">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Dosanjh</surname>
<given-names>M. K.</given-names>
</name>
<name name-style="western">
<surname>Galeros</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Goodman</surname>
<given-names>M. F.</given-names>
</name>
<name name-style="western">
<surname>Singer</surname>
<given-names>B.</given-names>
</name>
<article-title>Kinetics of extension of O6-methylguanine paired with cytosine or thymine in defined oligonucleotide sequences</article-title>
<source>Biochemistry</source>
<year>1991</year>
<volume>30</volume>
<fpage>15595</fpage>
<lpage>11599</lpage>
</element-citation>
</ref>
<ref id="tx970206mb00028">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Mackay</surname>
<given-names>W.</given-names>
</name>
<name name-style="western">
<surname>Benasutti</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Drouin</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Loechler</surname>
<given-names>E. L.</given-names>
</name>
<article-title>Mutagenesis by (+)-anti-B[a]P-N2-Gua, the major adduct of activated benzo[a]pyrene, when studied in an Escherichia coli plasmid using site-directed methods</article-title>
<source>Carcinogenesis</source>
<year>1992</year>
<volume>13</volume>
<fpage>1415</fpage>
<lpage>1425</lpage>
<pub-id pub-id-type="doi">10.1093/carcin/13.8.1415</pub-id>
</element-citation>
</ref>
<ref id="tx970206mb00029">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Shibutani</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Margulis</surname>
<given-names>L. A.</given-names>
</name>
<name name-style="western">
<surname>Geacintov</surname>
<given-names>N. E.</given-names>
</name>
<name name-style="western">
<surname>Grollman</surname>
<given-names>A. P.</given-names>
</name>
<article-title>Translesional synthesis on a DNA template containing a single stereoisomer of dG-(+)- or dG-(-)-anti-BPDE (7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene)</article-title>
<source>Biochemistry</source>
<year>1993</year>
<volume>32</volume>
<fpage>7531</fpage>
<lpage>7541</lpage>
<pub-id pub-id-type="doi">10.1021/bi00080a027</pub-id>
</element-citation>
</ref>
<ref id="tx970206mb00030">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Kim</surname>
<given-names>M.-S.</given-names>
</name>
<name name-style="western">
<surname>Guengerich</surname>
<given-names>F. P.</given-names>
</name>
<article-title>Synthesis of oligonucleotides containing the ethylene dibromide-derived DNA adducts S-[2-(N7-guanyl)ethyl]glutathione, S-[2-(N2-guanyl)ethyl]glutathione, and S-[2-(O6-guanyl)ethyl]glutathione at a single site</article-title>
<source>Chem. Res. Toxicol.</source>
<year>1997</year>
<volume>10</volume>
<fpage>1133</fpage>
<lpage>1143</lpage>
<pub-id pub-id-type="doi">10.1021/tx9701081</pub-id>
</element-citation>
</ref>
<ref id="tx970206mb00031">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Lowe</surname>
<given-names>L. G.</given-names>
</name>
<name name-style="western">
<surname>Guengerich</surname>
<given-names>F. P.</given-names>
</name>
<article-title>Steady-state and pre-steady-state kinetic analysis of dNTP insertion opposite 8-oxo-7,8-dihydroguanine by Escherichia coli polymerases I exo- and II exo-</article-title>
<source>Biochemistry</source>
<year>1996</year>
<volume>35</volume>
<fpage>9840</fpage>
<lpage>9849</lpage>
<pub-id pub-id-type="doi">10.1021/bi960485x</pub-id>
</element-citation>
</ref>
<ref id="tx970206mb00032">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Furge</surname>
<given-names>L. L.</given-names>
</name>
<name name-style="western">
<surname>Guengerich</surname>
<given-names>F. P.</given-names>
</name>
<article-title>Analysis of nucleotide insertion and extension at 8-oxo-7,8-dihydroguanine by replicative T7 polymerase exo- and human immunodeficiency virus-1 reverse transcriptase using steady-state and pre-steady-state kinetics</article-title>
<source>Biochemistry</source>
<year>1997</year>
<volume>36</volume>
<fpage>6475</fpage>
<lpage>6487</lpage>
<pub-id pub-id-type="doi">10.1021/bi9627267</pub-id>
</element-citation>
</ref>
<ref id="tx970206mb00033">
<mixed-citation>
<name name-style="western">
<surname>Borer</surname>
<given-names>P. N.</given-names>
</name>
(1975) In
<italic toggle="yes">Handbook of Biochemistry and Molecular Biology,</italic>
3rd ed. (
<name name-style="western">
<surname>Fasman</surname>
<given-names>G. D.</given-names>
</name>
, Ed.) pp 589−590, CRC Press, Cleveland, OH.</mixed-citation>
</ref>
<ref id="tx970206mb00034">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Bonner</surname>
<given-names>C. A.</given-names>
</name>
<name name-style="western">
<surname>Stukenberg</surname>
<given-names>P. T.</given-names>
</name>
<name name-style="western">
<surname>Rajagopalan</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Eritja</surname>
<given-names>R.</given-names>
</name>
<name name-style="western">
<surname>O'Donnell</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>MeEntee</surname>
<given-names>K.</given-names>
</name>
<name name-style="western">
<surname>Echols</surname>
<given-names>H.</given-names>
</name>
<name name-style="western">
<surname>Goodman</surname>
<given-names>M. F.</given-names>
</name>
<article-title>Processive DNA synthesis by DNA polymerase II mediated by DNA polymerase III accessory proteins</article-title>
<source>J. Biol. Chem.</source>
<year>1992</year>
<volume>267</volume>
<fpage>11431</fpage>
<lpage>11438</lpage>
</element-citation>
</ref>
<ref id="tx970206mb00035">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Boosalis</surname>
<given-names>M. S.</given-names>
</name>
<name name-style="western">
<surname>Petruska</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Goodman</surname>
<given-names>M. F.</given-names>
</name>
<article-title>DNA polymerase insertion fidelity: gel assay for site-specific kinetics</article-title>
<source>J. Biol. Chem.</source>
<year>1987</year>
<volume>262</volume>
<fpage>14689</fpage>
<lpage>14696</lpage>
</element-citation>
</ref>
<ref id="tx970206mb00036">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Maxam</surname>
<given-names>A. M.</given-names>
</name>
<name name-style="western">
<surname>Gilbert</surname>
<given-names>W.</given-names>
</name>
<article-title>Sequencing end-labeled DNA with base-specific chemical cleavages</article-title>
<source>Methods Enzymol.</source>
<year>1980</year>
<volume>65</volume>
<fpage>499</fpage>
<lpage>560</lpage>
<pub-id pub-id-type="doi">10.1016/S0076-6879(80)65059-9</pub-id>
</element-citation>
</ref>
<ref id="tx970206mb00037">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Friedman</surname>
<given-names>T.</given-names>
</name>
<name name-style="western">
<surname>Brown</surname>
<given-names>D. H.</given-names>
</name>
<article-title>Base-specific reactions useful for DNA sequencing: methylene blue-sensitized photooxidation of guanine and osmium tetraoxide modification of thymine</article-title>
<source>Nucleic Acids Res.</source>
<year>1978</year>
<volume>5</volume>
<fpage>615</fpage>
<lpage>622</lpage>
<pub-id pub-id-type="doi">10.1093/nar/5.2.615</pub-id>
</element-citation>
</ref>
<ref id="tx970206mb00038">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Creighton</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Goodman</surname>
<given-names>M. F.</given-names>
</name>
<article-title>Gel kinetic analysis of DNA polymerase fidelity in the presence of proofreading using bacteriophage T4 DNA polymerase</article-title>
<source>J. Biol. Chem.</source>
<year>1995</year>
<volume>270</volume>
<fpage>4759</fpage>
<lpage>4774</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.270.9.4759</pub-id>
</element-citation>
</ref>
<ref id="tx970206mb00039">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Bailey</surname>
<given-names>E. A.</given-names>
</name>
<name name-style="western">
<surname>Iyer</surname>
<given-names>R. S.</given-names>
</name>
<name name-style="western">
<surname>Stone</surname>
<given-names>M. P.</given-names>
</name>
<name name-style="western">
<surname>Harris</surname>
<given-names>T. M.</given-names>
</name>
<name name-style="western">
<surname>Essigmann</surname>
<given-names>J. M.</given-names>
</name>
<article-title>Mutational properties of the primary aflatoxin B1-DNA adduct</article-title>
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<year>1996</year>
<volume>93</volume>
<fpage>1535</fpage>
<lpage>1539</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.93.4.1535</pub-id>
</element-citation>
</ref>
<ref id="tx970206mb00040">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Samson</surname>
<given-names>L.</given-names>
</name>
<name name-style="western">
<surname>Derfler</surname>
<given-names>B.</given-names>
</name>
<name name-style="western">
<surname>Waldstein</surname>
<given-names>E. A.</given-names>
</name>
<article-title>Suppression of human DNA alkylation-repair defects by Escherichia coli DNA-repair genes</article-title>
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<year>1986</year>
<volume>83</volume>
<fpage>5607</fpage>
<lpage>5610</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.83.15.5607</pub-id>
</element-citation>
</ref>
<ref id="tx970206mb00041">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Peterson</surname>
<given-names>L. A.</given-names>
</name>
<name name-style="western">
<surname>Hecht</surname>
<given-names>S. S.</given-names>
</name>
<article-title>O6-Methylguanine is a critical determinant of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone tumorigenesis in A/J mouse lung</article-title>
<source>Cancer Res.</source>
<year>1991</year>
<volume>51</volume>
<fpage>5557</fpage>
<lpage>5564</lpage>
</element-citation>
</ref>
<ref id="tx970206mb00042">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Rebeck</surname>
<given-names>G. W.</given-names>
</name>
<name name-style="western">
<surname>Samson</surname>
<given-names>L.</given-names>
</name>
<article-title>Increased spontaneous mutation and alkylation sensitivity of Escherichia coli strains lacking the ogt O6-methylguanine DNA repair methyltransferase</article-title>
<source>J. Bacteriol.</source>
<year>1991</year>
<volume>173</volume>
<fpage>2068</fpage>
<lpage>2076</lpage>
</element-citation>
</ref>
<ref id="tx970206mb00043">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Abril</surname>
<given-names>N.</given-names>
</name>
<name name-style="western">
<surname>Luqueromero</surname>
<given-names>F. L.</given-names>
</name>
<name name-style="western">
<surname>Prieto-Alamo</surname>
<given-names>M. J.</given-names>
</name>
<name name-style="western">
<surname>Margison</surname>
<given-names>G. P.</given-names>
</name>
<name name-style="western">
<surname>Pueyo</surname>
<given-names>C.</given-names>
</name>
<article-title>ogt Alkyltransferase enhances dibromoalkane mutagenicity in excision repair-deficient Escherichia coli K-12</article-title>
<source>Mol. Carcinogen.</source>
<year>1995</year>
<volume>12</volume>
<fpage>110</fpage>
<lpage>117</lpage>
<pub-id pub-id-type="doi">10.1002/mc.2940120208</pub-id>
</element-citation>
</ref>
<ref id="tx970206mn00001">
<mixed-citation>
<comment>Abbreviations:  EDB, ethylene dibromide; MOPS, 3-(
<italic toggle="yes">N</italic>
-morpholino)propanesulfonic acid; Kf
<sup>-</sup>
, Klenow fragment (of
<italic toggle="yes">Escherichia coli</italic>
polymerase I) exo
<sup>-</sup>
; pol II
<sup>-</sup>
, polymerase II exo
<sup>-</sup>
; T7
<sup>-</sup>
, bacteriophage polymerase T7 exo
<sup>-</sup>
(thioredoxin mixture); HIV RT, human immunodeficiency virus-1 reverse transcriptase. The standard abbreviations for nucleic acid bases are defined in the current Instructions to Authors (see the January issue of
<italic toggle="yes">Chem. Res. Toxicol.</italic>
).</comment>
</mixed-citation>
</ref>
<ref id="tx970206mn00002">
<mixed-citation>
<comment>The 37 °C temperature was used with pol II
<sup>-</sup>
because of historical reasons and for making comparisons with the literature; the other polymerases have been used historically at 25 °C (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="tx970206mb00031" ref-type="bibr"></xref>
,
<xref rid="tx970206mb00034" ref-type="bibr"></xref>
</named-content>
</italic>
).</comment>
</mixed-citation>
</ref>
</ref-list>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Polymerase Blockage and Misincorporation of dNTPs Opposite the Ethylene Dibromide-Derived DNA Adducts S-[2-(N7-Guanyl)ethyl]glutathione, S-[2-(N2-Guanyl)ethyl]glutathione, and S-[2-(O6-Guanyl)ethyl]glutathione†</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Polymerase Blockage and Misincorporation of dNTPs Opposite the Ethylene Dibromide-Derived DNA Adducts S-[2-(N7-Guanyl)ethyl]glutathione, S-[2-(N2-Guanyl)ethyl]glutathione, and S-[2-(O6-Guanyl)ethyl]glutathione†</title>
</titleInfo>
<name type="personal">
<namePart type="family">KIM</namePart>
<namePart type="given">Mi-Sook</namePart>
<affiliation>Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School ofMedicine, Nashville, Tennessee 37232-0146</affiliation>
<affiliation> Current address:  Merck & Company, P.O. Box 2000,126 EastLincoln Ave., Rahway, NJ 07065-0900.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal" displayLabel="corresp">
<namePart type="family">GUENGERICH</namePart>
<namePart type="given">F. Peter</namePart>
<affiliation>Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School ofMedicine, Nashville, Tennessee 37232-0146</affiliation>
<affiliation> Address correspondence to this author. Tel:  (615) 322-2261.Fax: (615) 322-3141. E-mail: guengerich@toxicology.mc.vanderbilt.edu.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>American Chemical Society</publisher>
<dateCreated encoding="w3cdtf">1998-02-26</dateCreated>
<dateIssued encoding="w3cdtf">1998-04-20</dateIssued>
<copyrightDate encoding="w3cdtf">1998</copyrightDate>
</originInfo>
<note type="footnote" ID="tx970206mAF2"> This research was supported in part by United States Public Health Service Grant R35 CA44353 and Grant P30 ES00267. M.-S. Kim was supported in part by a Merck predoctoral fellowship.</note>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract>The carcinogen ethylene dibromide (EDB) has been shown to cause glutathione (GSH)-dependent base-substitution mutations, especially GC to AT transitions, in a variety of bacterial and eukaryotic systems. The known DNA adducts S-[2-(N7-guanyl)ethyl]GSH, S-[2-(N2-guanyl)ethyl]GSH, and S-[2-(O6-guanyl)ethyl]GSH were individually placed at a site in a single oligonucleotide. Polymerase extension studies were carried out using Escherichia coli polymerase I exo- (Klenow fragment, Kf-) and polymerase II exo- (pol II-), bacteriophage T7 polymerase exo-, and human immunodeficiency virus-1 reverse transcriptase in order to characterize misincorporation events. Even though extension was not as efficient as with the nonadducted template, some fully extended primers were observed with the template containing S-[2-(N7-guanyl)ethyl]GSH using all of these polymerases. dCTP was the most preferred nucleotide incorporated opposite S-[2-(N7-guanyl)ethyl]GSH by most of polymerases examined; however, dTTP incorporation was observed opposite S-[2-(N7-guanyl)ethyl]GSH with pol II-. Both S-[2-(N2-guanyl)ethyl]GSH and S-[2-(O6-guanyl)ethyl]GSH strongly blocked replication by all polymerases. Only dATP and dGTP were incorporated opposite S-[2-(N2-guanyl)ethyl]GSH by both Kf- and pol II-. S-[2-(O6-Guanyl)ethyl]GSH was shown to strongly code for dATP incorporation by Kf-. With pol II-, dTTP was incorporated opposite S-[2-(O6-guanyl)ethyl]GSH. In conclusion, all three GSH-guanyl adducts derived from the carcinogen EDB blocked the polymerases and were capable of miscoding.</abstract>
<note type="footnote" ID="tx970206mAF2"> This research was supported in part by United States Public Health Service Grant R35 CA44353 and Grant P30 ES00267. M.-S. Kim was supported in part by a Merck predoctoral fellowship.</note>
<relatedItem type="host">
<titleInfo>
<title>Chemical Research in Toxicology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Chem. Res. Toxicol.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0893-228x</identifier>
<identifier type="eISSN">1520-5010</identifier>
<identifier type="acspubs">tx</identifier>
<identifier type="coden">CRTOEC</identifier>
<identifier type="uri">pubs.acs.org/crt</identifier>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>11</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>4</number>
</detail>
<extent unit="pages">
<start>311</start>
<end>316</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00001" displayLabel="bibtx970206mb00001">
<titleInfo>
<title>Induction of stomach cancer in rats and mice by halogenated aliphatic fumigants</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Induction of stomach cancer in rats and mice by halogenated aliphatic fumigants</title>
</titleInfo>
<name type="personal">
<namePart type="family">OLSON</namePart>
<namePart type="given">W. A.</namePart>
</name>
<name type="personal">
<namePart type="family">HABERMANN</namePart>
<namePart type="given">R. T.</namePart>
</name>
<name type="personal">
<namePart type="family">WEISBURGER</namePart>
<namePart type="given">E. K.</namePart>
</name>
<name type="personal">
<namePart type="family">WARD</namePart>
<namePart type="given">J. M.</namePart>
</name>
<name type="personal">
<namePart type="family">WEISBURGER</namePart>
<namePart type="given">J. H.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Natl. Cancer Inst.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1973</date>
<detail type="volume">
<caption>vol.</caption>
<number>51</number>
</detail>
<extent unit="pages">
<start>1993</start>
<end>1995</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00002" displayLabel="bibtx970206mb00002">
<titleInfo>
<title>NTP Technical Report on the Carcinogenesis Bioassay of 1,2-Dibromoethane in F344 Rats and B6C3F1 Mice (Inhalation Study)</title>
</titleInfo>
<note type="content-in-line">NTP. (1982) NTP Technical Report on the Carcinogenesis Bioassay of 1,2-Dibromoethane in F344 Rats and B6C3F1 Mice (Inhalation Study), pp 1−163, Government Printing Office, Washington, DC.</note>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00003" displayLabel="bibtx970206mb00003">
<titleInfo>
<title>Carcinogenicity and toxicity of 1,2-dibromoethane in the rat</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Carcinogenicity and toxicity of 1,2-dibromoethane in the rat</title>
</titleInfo>
<name type="personal">
<namePart type="family">WONG</namePart>
<namePart type="given">L. C. K.</namePart>
</name>
<name type="personal">
<namePart type="family">WINSTON</namePart>
<namePart type="given">J. M.</namePart>
</name>
<name type="personal">
<namePart type="family">HONG</namePart>
<namePart type="given">C. B.</namePart>
</name>
<name type="personal">
<namePart type="family">PLOTNICK</namePart>
<namePart type="given">H.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Toxicol. Appl. Pharmacol.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1982</date>
<detail type="volume">
<caption>vol.</caption>
<number>63</number>
</detail>
<extent unit="pages">
<start>155</start>
<end>165</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00004" displayLabel="bibtx970206mb00004">
<titleInfo>
<title>1,2-Dibromoethane (ethylene dibromide)</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>1,2-Dibromoethane (ethylene dibromide)</title>
</titleInfo>
<name type="personal">
<namePart type="family">HUFF</namePart>
<namePart type="given">J. E.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Environ. Health Perspect.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1983</date>
<detail type="volume">
<caption>vol.</caption>
<number>47</number>
</detail>
<extent unit="pages">
<start>359</start>
<end>363</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00005" displayLabel="bibtx970206mb00005">
<titleInfo>
<title>1,2-Dibromoethane initiation of hepatic nodules in Sprague-Dawley rats selected with Solt-Farber system</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>1,2-Dibromoethane initiation of hepatic nodules in Sprague-Dawley rats selected with Solt-Farber system</title>
</titleInfo>
<name type="personal">
<namePart type="family">MOSLEN</namePart>
<namePart type="given">M. T.</namePart>
</name>
<name type="personal">
<namePart type="family">AHLUWALIA</namePart>
<namePart type="given">M. B.</namePart>
</name>
<name type="personal">
<namePart type="family">FARBER</namePart>
<namePart type="given">E.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Arch. Toxicol.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1985</date>
<detail type="volume">
<caption>vol.</caption>
<number>58</number>
</detail>
<extent unit="pages">
<start>118</start>
<end>119</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00006" displayLabel="bibtx970206mb00006">
<titleInfo>
<title>Two fatalities after acute occupational exposure to ethylene dibromide</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Two fatalities after acute occupational exposure to ethylene dibromide</title>
</titleInfo>
<name type="personal">
<namePart type="family">LETZ</namePart>
<namePart type="given">G. A.</namePart>
</name>
<name type="personal">
<namePart type="family">POND</namePart>
<namePart type="given">S. M.</namePart>
</name>
<name type="personal">
<namePart type="family">OSTERLOH</namePart>
<namePart type="given">J. D.</namePart>
</name>
<name type="personal">
<namePart type="family">WADE</namePart>
<namePart type="given">R. L.</namePart>
</name>
<name type="personal">
<namePart type="family">BECKER</namePart>
<namePart type="given">C. E.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Am. Med. Assoc.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1984</date>
<detail type="volume">
<caption>vol.</caption>
<number>252</number>
</detail>
<extent unit="pages">
<start>2428</start>
<end>2431</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00007" displayLabel="bibtx970206mb00007">
<titleInfo>
<title>EDB contamination kindles federal action</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>EDB contamination kindles federal action</title>
</titleInfo>
<name type="personal">
<namePart type="family">SUN</namePart>
<namePart type="given">M.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Science</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1984</date>
<detail type="volume">
<caption>vol.</caption>
<number>223</number>
</detail>
<extent unit="pages">
<start>464</start>
<end>466</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00008" displayLabel="bibtx970206mb00008">
<titleInfo>
<title>Mutation spectrum and sequence alkylation selectivity resulting from modification of bacteriophage M13mp18 with S-(2-chloroethyl)glutathione. Evidence for a role of S-[2-(N7-guanyl)ethyl]glutathione as a mutagenic lesion formed from ethylene dibromide</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Mutation spectrum and sequence alkylation selectivity resulting from modification of bacteriophage M13mp18 with S-(2-chloroethyl)glutathione. Evidence for a role of S-[2-(N7-guanyl)ethyl]glutathione as a mutagenic lesion formed from ethylene dibromide</title>
</titleInfo>
<name type="personal">
<namePart type="family">CMARIK</namePart>
<namePart type="given">J. L.</namePart>
</name>
<name type="personal">
<namePart type="family">HUMPHREYS</namePart>
<namePart type="given">W. G.</namePart>
</name>
<name type="personal">
<namePart type="family">BRUNER</namePart>
<namePart type="given">K. L.</namePart>
</name>
<name type="personal">
<namePart type="family">LLOYD</namePart>
<namePart type="given">R. S.</namePart>
</name>
<name type="personal">
<namePart type="family">TIBBETTS</namePart>
<namePart type="given">C.</namePart>
</name>
<name type="personal">
<namePart type="family">GUENGERICH</namePart>
<namePart type="given">F. P.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1992</date>
<detail type="volume">
<caption>vol.</caption>
<number>267</number>
</detail>
<extent unit="pages">
<start>6672</start>
<end>6679</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00009" displayLabel="bibtx970206mb00009">
<titleInfo>
<title>An analysis of the mutagenicity of 1,2-dibromoethane to Escherichia coli: influence of DNA repair activities and metabolic pathways</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>An analysis of the mutagenicity of 1,2-dibromoethane to Escherichia coli: influence of DNA repair activities and metabolic pathways</title>
</titleInfo>
<name type="personal">
<namePart type="family">FOSTER</namePart>
<namePart type="given">P. L.</namePart>
</name>
<name type="personal">
<namePart type="family">WILKINSON</namePart>
<namePart type="given">W. G.</namePart>
</name>
<name type="personal">
<namePart type="family">MILLER</namePart>
<namePart type="given">J. K.</namePart>
</name>
<name type="personal">
<namePart type="family">SULLIVAN</namePart>
<namePart type="given">A. D.</namePart>
</name>
<name type="personal">
<namePart type="family">BARNES</namePart>
<namePart type="given">W. M.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Mutat. Res.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1988</date>
<detail type="volume">
<caption>vol.</caption>
<number>194</number>
</detail>
<extent unit="pages">
<start>171</start>
<end>181</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00010" displayLabel="bibtx970206mb00010">
<titleInfo>
<title>Mutation spectra of 1,2-dibromoethane, 1,2-dichloroethane and 1-bromo-2-chloroethane in excision repair proficient and repair deficient strains of Drosophila melanogaster</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Mutation spectra of 1,2-dibromoethane, 1,2-dichloroethane and 1-bromo-2-chloroethane in excision repair proficient and repair deficient strains of Drosophila melanogaster</title>
</titleInfo>
<name type="personal">
<namePart type="family">BALLERING</namePart>
<namePart type="given">L. A. P.</namePart>
</name>
<name type="personal">
<namePart type="family">NIVARD</namePart>
<namePart type="given">M. J. M.</namePart>
</name>
<name type="personal">
<namePart type="family">VOGEL</namePart>
<namePart type="given">E. W.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Carcinogenesis</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1994</date>
<detail type="volume">
<caption>vol.</caption>
<number>15</number>
</detail>
<extent unit="pages">
<start>869</start>
<end>875</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00011" displayLabel="bibtx970206mb00011">
<titleInfo>
<title>Methylene chloride-induced DNA damage: an interspecies comparison</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Methylene chloride-induced DNA damage: an interspecies comparison</title>
</titleInfo>
<name type="personal">
<namePart type="family">GRAVES</namePart>
<namePart type="given">R. J.</namePart>
</name>
<name type="personal">
<namePart type="family">COUTTS</namePart>
<namePart type="given">C.</namePart>
</name>
<name type="personal">
<namePart type="family">GREEN</namePart>
<namePart type="given">T.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Carcinogenesis</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>16</number>
</detail>
<extent unit="pages">
<start>1919</start>
<end>1926</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00012" displayLabel="bibtx970206mb00012">
<titleInfo>
<title>S-[2-(N7-Guanyl)ethyl]glutathione, the major DNA adduct formed from 1,2-dibromoethane</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>S-[2-(N7-Guanyl)ethyl]glutathione, the major DNA adduct formed from 1,2-dibromoethane</title>
</titleInfo>
<name type="personal">
<namePart type="family">KOGA</namePart>
<namePart type="given">N.</namePart>
</name>
<name type="personal">
<namePart type="family">INSKEEP</namePart>
<namePart type="given">P. B.</namePart>
</name>
<name type="personal">
<namePart type="family">HARRIS</namePart>
<namePart type="given">T. M.</namePart>
</name>
<name type="personal">
<namePart type="family">GUENGERICH</namePart>
<namePart type="given">F. P.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1986</date>
<detail type="volume">
<caption>vol.</caption>
<number>25</number>
</detail>
<extent unit="pages">
<start>2192</start>
<end>2198</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00013" displayLabel="bibtx970206mb00013">
<titleInfo>
<title>Covalent binding of 1,2-dihaloalkanes to DNA and stability of the major DNA adduct, S-[2-(N7-guanyl)ethyl]glutathione</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Covalent binding of 1,2-dihaloalkanes to DNA and stability of the major DNA adduct, S-[2-(N7-guanyl)ethyl]glutathione</title>
</titleInfo>
<name type="personal">
<namePart type="family">INSKEEP</namePart>
<namePart type="given">P. B.</namePart>
</name>
<name type="personal">
<namePart type="family">KOGA</namePart>
<namePart type="given">N.</namePart>
</name>
<name type="personal">
<namePart type="family">CMARIK</namePart>
<namePart type="given">J. L.</namePart>
</name>
<name type="personal">
<namePart type="family">GUENGERICH</namePart>
<namePart type="given">F. P.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Cancer Res.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1986</date>
<detail type="volume">
<caption>vol.</caption>
<number>46</number>
</detail>
<extent unit="pages">
<start>2839</start>
<end>2844</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00014" displayLabel="bibtx970206mb00014">
<titleInfo>
<title>Excretion of the mercapturic acid S-[2-(N7-guanyl)ethyl]-N-acetylcysteine in urine following administration of ethylene dibromide to rats</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Excretion of the mercapturic acid S-[2-(N7-guanyl)ethyl]-N-acetylcysteine in urine following administration of ethylene dibromide to rats</title>
</titleInfo>
<name type="personal">
<namePart type="family">KIM</namePart>
<namePart type="given">D.-H.</namePart>
</name>
<name type="personal">
<namePart type="family">GUENGERICH</namePart>
<namePart type="given">F. P.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Cancer Res.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1989</date>
<detail type="volume">
<caption>vol.</caption>
<number>49</number>
</detail>
<extent unit="pages">
<start>5843</start>
<end>5851</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00015" displayLabel="bibtx970206mb00015">
<titleInfo>
<title>Characterization of S-[2-(N1-adenyl)ethyl]glutathione formed in DNA and RNA from 1,2-dibromoethane</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Characterization of S-[2-(N1-adenyl)ethyl]glutathione formed in DNA and RNA from 1,2-dibromoethane</title>
</titleInfo>
<name type="personal">
<namePart type="family">KIM</namePart>
<namePart type="given">D.-H.</namePart>
</name>
<name type="personal">
<namePart type="family">HUMPHREYS</namePart>
<namePart type="given">W. G.</namePart>
</name>
<name type="personal">
<namePart type="family">GUENGERICH</namePart>
<namePart type="given">F. P.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Chem. Res. Toxicol.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1990</date>
<detail type="volume">
<caption>vol.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>587</start>
<end>594</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00016" displayLabel="bibtx970206mb00016">
<titleInfo>
<title>Preparation and characterization of oligonucleotides containing S-[2-(N7-guanyl)ethyl]glutathione</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Preparation and characterization of oligonucleotides containing S-[2-(N7-guanyl)ethyl]glutathione</title>
</titleInfo>
<name type="personal">
<namePart type="family">OIDA</namePart>
<namePart type="given">T.</namePart>
</name>
<name type="personal">
<namePart type="family">HUMPHREYS</namePart>
<namePart type="given">W. G.</namePart>
</name>
<name type="personal">
<namePart type="family">GUENGERICH</namePart>
<namePart type="given">F. P.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1991</date>
<detail type="volume">
<caption>vol.</caption>
<number>30</number>
</detail>
<extent unit="pages">
<start>10513</start>
<end>10522</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00017" displayLabel="bibtx970206mb00017">
<titleInfo>
<title>Interactions of N7-guanyl methyl- and thioether-substituted d(CATGCCT) derivatives with d(AGGNATC)</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Interactions of N7-guanyl methyl- and thioether-substituted d(CATGCCT) derivatives with d(AGGNATC)</title>
</titleInfo>
<name type="personal">
<namePart type="family">KIM</namePart>
<namePart type="given">M.-S.</namePart>
</name>
<name type="personal">
<namePart type="family">GUENGERICH</namePart>
<namePart type="given">F. P.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Chem. Res. Toxicol.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>6</number>
</detail>
<extent unit="pages">
<start>900</start>
<end>905</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00018" displayLabel="bibtx970206mb00018">
<titleInfo>
<title>Spectroscopic and thermodynamic characterization of the interaction of N7-guanyl thioether derivatives of d(TGCTG*CAAG) with potential complements</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Spectroscopic and thermodynamic characterization of the interaction of N7-guanyl thioether derivatives of d(TGCTG*CAAG) with potential complements</title>
</titleInfo>
<name type="personal">
<namePart type="family">PERSMARK</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">GUENGERICH</namePart>
<namePart type="given">F. P.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1994</date>
<detail type="volume">
<caption>vol.</caption>
<number>33</number>
</detail>
<extent unit="pages">
<start>8662</start>
<end>8672</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00019" displayLabel="bibtx970206mb00019">
<titleInfo>
<title>Comparison of the DNA alkylating properties and mutagenic responses caused by a series of S-(2-haloethyl)-substituted cysteine and glutathione derivatives</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Comparison of the DNA alkylating properties and mutagenic responses caused by a series of S-(2-haloethyl)-substituted cysteine and glutathione derivatives</title>
</titleInfo>
<name type="personal">
<namePart type="family">HUMPHREYS</namePart>
<namePart type="given">W. G.</namePart>
</name>
<name type="personal">
<namePart type="family">KIM</namePart>
<namePart type="given">D.-H.</namePart>
</name>
<name type="personal">
<namePart type="family">CMARIK</namePart>
<namePart type="given">J. L.</namePart>
</name>
<name type="personal">
<namePart type="family">SHIMADA</namePart>
<namePart type="given">T.</namePart>
</name>
<name type="personal">
<namePart type="family">GUENGERICH</namePart>
<namePart type="given">F. P.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1990</date>
<detail type="volume">
<caption>vol.</caption>
<number>29</number>
</detail>
<extent unit="pages">
<start>10342</start>
<end>10350</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00020" displayLabel="bibtx970206mb00020">
<titleInfo>
<title>Induction of mutations and sister-chromatid exchanges in Chinese hamster ovary cells by ethylating agents, relationship to specific DNA adducts</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Induction of mutations and sister-chromatid exchanges in Chinese hamster ovary cells by ethylating agents, relationship to specific DNA adducts</title>
</titleInfo>
<name type="personal">
<namePart type="family">HEFLICH</namePart>
<namePart type="given">R. H.</namePart>
</name>
<name type="personal">
<namePart type="family">BERANEK</namePart>
<namePart type="given">D. T.</namePart>
</name>
<name type="personal">
<namePart type="family">KODELL</namePart>
<namePart type="given">R. L.</namePart>
</name>
<name type="personal">
<namePart type="family">MORRIS</namePart>
<namePart type="given">S. M.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Mutat. Res.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1982</date>
<detail type="volume">
<caption>vol.</caption>
<number>106</number>
</detail>
<extent unit="pages">
<start>147</start>
<end>161</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00021" displayLabel="bibtx970206mb00021">
<titleInfo>
<title>A DNA adduct formation in mouse testis by ethylating agents; a comparison with germ-cell mutagenesis</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>A DNA adduct formation in mouse testis by ethylating agents; a comparison with germ-cell mutagenesis</title>
</titleInfo>
<name type="personal">
<namePart type="family">VAN ZEELAND</namePart>
<namePart type="given">A. A.</namePart>
</name>
<name type="personal">
<namePart type="family">DE GROOT</namePart>
<namePart type="given">A. J. L.</namePart>
</name>
<name type="personal">
<namePart type="family">NEUHüSER-KLAUS</namePart>
<namePart type="given">A.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Mutat. Res.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1990</date>
<detail type="volume">
<caption>vol.</caption>
<number>232</number>
</detail>
<extent unit="pages">
<start>55</start>
<end>62</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00022" displayLabel="bibtx970206mb00022">
<titleInfo>
<title>Quantitative comparison of genetic effects of ethylating agents on the basis of DNA adduct formation. Use of O6-ethylguanine as molecular dosimeter for extrapolation from cells in culture to the mouse</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Quantitative comparison of genetic effects of ethylating agents on the basis of DNA adduct formation. Use of O6-ethylguanine as molecular dosimeter for extrapolation from cells in culture to the mouse</title>
</titleInfo>
<name type="personal">
<namePart type="family">VAN ZEELAND</namePart>
<namePart type="given">A. A.</namePart>
</name>
<name type="personal">
<namePart type="family">MOHN</namePart>
<namePart type="given">G. R.</namePart>
</name>
<name type="personal">
<namePart type="family">NEUHäUSER-KLAUS</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">EHLING</namePart>
<namePart type="given">U. H.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Environ. Health Perspect.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1985</date>
<detail type="volume">
<caption>vol.</caption>
<number>62</number>
</detail>
<extent unit="pages">
<start>163</start>
<end>169</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00023" displayLabel="bibtx970206mb00023">
<titleInfo>
<title>Possible relevance of O6-alkylation of deoxyguanosine to the mutagenicity and carcinogenicity of ntrosamines and nitrosamides</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Possible relevance of O6-alkylation of deoxyguanosine to the mutagenicity and carcinogenicity of ntrosamines and nitrosamides</title>
</titleInfo>
<name type="personal">
<namePart type="family">LOVELESS</namePart>
<namePart type="given">A.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Nature</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1969</date>
<detail type="volume">
<caption>vol.</caption>
<number>223</number>
</detail>
<extent unit="pages">
<start>206</start>
<end>207</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00024" displayLabel="bibtx970206mb00024">
<name type="personal">
<namePart type="family">AND DAY</namePart>
<namePart type="given">R. S.</namePart>
</name>
<titleInfo>
<title>O</title>
</titleInfo>
<note type="content-in-line">Sibghat-Ullah, and DayR. S., III. (1992) Incision at O6-methylguanine: thymine mispairs in DNA by extracts of human cells. Biochemistry 31, 7998−8008.10.1021/bi00149a034</note>
<identifier type="doi">10.1021/bi00149a034</identifier>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00025" displayLabel="bibtx970206mb00025">
<titleInfo>
<title>Why do O6-alkylguanine and O4-alkylthymine miscode? The relationship between the structure of DNA containing O6-alkylguanine and O4-alkylthymine and the mutagenic properties of these bases</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Why do O6-alkylguanine and O4-alkylthymine miscode? The relationship between the structure of DNA containing O6-alkylguanine and O4-alkylthymine and the mutagenic properties of these bases</title>
</titleInfo>
<name type="personal">
<namePart type="family">SWANN</namePart>
<namePart type="given">P. F.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Mutat. Res.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1990</date>
<detail type="volume">
<caption>vol.</caption>
<number>233</number>
</detail>
<extent unit="pages">
<start>81</start>
<end>94</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00026" displayLabel="bibtx970206mb00026">
<titleInfo>
<title>Effect of 3‘ flanking neighbors on kinetics of pairing of dCTP and dTTP opposite O6-methylguanine in a defined primed oligonucleotide when Ecsherichia coli DNA polymerase I is used</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Effect of 3‘ flanking neighbors on kinetics of pairing of dCTP and dTTP opposite O6-methylguanine in a defined primed oligonucleotide when Ecsherichia coli DNA polymerase I is used</title>
</titleInfo>
<name type="personal">
<namePart type="family">SINGER</namePart>
<namePart type="given">B.</namePart>
</name>
<name type="personal">
<namePart type="family">CHAVEZ</namePart>
<namePart type="given">F.</namePart>
</name>
<name type="personal">
<namePart type="family">GOODMAN</namePart>
<namePart type="given">M. F.</namePart>
</name>
<name type="personal">
<namePart type="family">ESSIGMANN</namePart>
<namePart type="given">J. M.</namePart>
</name>
<name type="personal">
<namePart type="family">DOSANJH</namePart>
<namePart type="given">M. K.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Proc. Natl. Acad. Sci. U.S.A.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1989</date>
<detail type="volume">
<caption>vol.</caption>
<number>86</number>
</detail>
<extent unit="pages">
<start>8271</start>
<end>8274</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00027" displayLabel="bibtx970206mb00027">
<titleInfo>
<title>Kinetics of extension of O6-methylguanine paired with cytosine or thymine in defined oligonucleotide sequences</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Kinetics of extension of O6-methylguanine paired with cytosine or thymine in defined oligonucleotide sequences</title>
</titleInfo>
<name type="personal">
<namePart type="family">DOSANJH</namePart>
<namePart type="given">M. K.</namePart>
</name>
<name type="personal">
<namePart type="family">GALEROS</namePart>
<namePart type="given">G.</namePart>
</name>
<name type="personal">
<namePart type="family">GOODMAN</namePart>
<namePart type="given">M. F.</namePart>
</name>
<name type="personal">
<namePart type="family">SINGER</namePart>
<namePart type="given">B.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1991</date>
<detail type="volume">
<caption>vol.</caption>
<number>30</number>
</detail>
<extent unit="pages">
<start>15595</start>
<end>11599</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00028" displayLabel="bibtx970206mb00028">
<titleInfo>
<title>Mutagenesis by (+)-anti-B[a]P-N2-Gua, the major adduct of activated benzo[a]pyrene, when studied in an Escherichia coli plasmid using site-directed methods</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Mutagenesis by (+)-anti-B[a]P-N2-Gua, the major adduct of activated benzo[a]pyrene, when studied in an Escherichia coli plasmid using site-directed methods</title>
</titleInfo>
<name type="personal">
<namePart type="family">MACKAY</namePart>
<namePart type="given">W.</namePart>
</name>
<name type="personal">
<namePart type="family">BENASUTTI</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">DROUIN</namePart>
<namePart type="given">E.</namePart>
</name>
<name type="personal">
<namePart type="family">LOECHLER</namePart>
<namePart type="given">E. L.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Carcinogenesis</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1992</date>
<detail type="volume">
<caption>vol.</caption>
<number>13</number>
</detail>
<extent unit="pages">
<start>1415</start>
<end>1425</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00029" displayLabel="bibtx970206mb00029">
<titleInfo>
<title>Translesional synthesis on a DNA template containing a single stereoisomer of dG-(+)- or dG-(-)-anti-BPDE (7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene)</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Translesional synthesis on a DNA template containing a single stereoisomer of dG-(+)- or dG-(-)-anti-BPDE (7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene)</title>
</titleInfo>
<name type="personal">
<namePart type="family">SHIBUTANI</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">MARGULIS</namePart>
<namePart type="given">L. A.</namePart>
</name>
<name type="personal">
<namePart type="family">GEACINTOV</namePart>
<namePart type="given">N. E.</namePart>
</name>
<name type="personal">
<namePart type="family">GROLLMAN</namePart>
<namePart type="given">A. P.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>32</number>
</detail>
<extent unit="pages">
<start>7531</start>
<end>7541</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00030" displayLabel="bibtx970206mb00030">
<titleInfo>
<title>Synthesis of oligonucleotides containing the ethylene dibromide-derived DNA adducts S-[2-(N7-guanyl)ethyl]glutathione, S-[2-(N2-guanyl)ethyl]glutathione, and S-[2-(O6-guanyl)ethyl]glutathione at a single site</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Synthesis of oligonucleotides containing the ethylene dibromide-derived DNA adducts S-[2-(N7-guanyl)ethyl]glutathione, S-[2-(N2-guanyl)ethyl]glutathione, and S-[2-(O6-guanyl)ethyl]glutathione at a single site</title>
</titleInfo>
<name type="personal">
<namePart type="family">KIM</namePart>
<namePart type="given">M.-S.</namePart>
</name>
<name type="personal">
<namePart type="family">GUENGERICH</namePart>
<namePart type="given">F. P.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Chem. Res. Toxicol.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1997</date>
<detail type="volume">
<caption>vol.</caption>
<number>10</number>
</detail>
<extent unit="pages">
<start>1133</start>
<end>1143</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00031" displayLabel="bibtx970206mb00031">
<titleInfo>
<title>Steady-state and pre-steady-state kinetic analysis of dNTP insertion opposite 8-oxo-7,8-dihydroguanine by Escherichia coli polymerases I exo- and II exo-</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Steady-state and pre-steady-state kinetic analysis of dNTP insertion opposite 8-oxo-7,8-dihydroguanine by Escherichia coli polymerases I exo- and II exo-</title>
</titleInfo>
<name type="personal">
<namePart type="family">LOWE</namePart>
<namePart type="given">L. G.</namePart>
</name>
<name type="personal">
<namePart type="family">GUENGERICH</namePart>
<namePart type="given">F. P.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1996</date>
<detail type="volume">
<caption>vol.</caption>
<number>35</number>
</detail>
<extent unit="pages">
<start>9840</start>
<end>9849</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00032" displayLabel="bibtx970206mb00032">
<titleInfo>
<title>Analysis of nucleotide insertion and extension at 8-oxo-7,8-dihydroguanine by replicative T7 polymerase exo- and human immunodeficiency virus-1 reverse transcriptase using steady-state and pre-steady-state kinetics</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Analysis of nucleotide insertion and extension at 8-oxo-7,8-dihydroguanine by replicative T7 polymerase exo- and human immunodeficiency virus-1 reverse transcriptase using steady-state and pre-steady-state kinetics</title>
</titleInfo>
<name type="personal">
<namePart type="family">FURGE</namePart>
<namePart type="given">L. L.</namePart>
</name>
<name type="personal">
<namePart type="family">GUENGERICH</namePart>
<namePart type="given">F. P.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1997</date>
<detail type="volume">
<caption>vol.</caption>
<number>36</number>
</detail>
<extent unit="pages">
<start>6475</start>
<end>6487</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00033" displayLabel="bibtx970206mb00033">
<name type="personal">
<namePart type="family">BORER</namePart>
<namePart type="given">P. N.</namePart>
</name>
<name type="personal">
<namePart type="family">FASMAN</namePart>
<namePart type="given">G. D.</namePart>
</name>
<titleInfo>
<title>Handbook of Biochemistry and Molecular Biology,</title>
</titleInfo>
<note type="content-in-line">BorerP. N. (1975) In Handbook of Biochemistry and Molecular Biology, 3rd ed. (FasmanG. D., Ed.) pp 589−590, CRC Press, Cleveland, OH.</note>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00034" displayLabel="bibtx970206mb00034">
<titleInfo>
<title>Processive DNA synthesis by DNA polymerase II mediated by DNA polymerase III accessory proteins</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Processive DNA synthesis by DNA polymerase II mediated by DNA polymerase III accessory proteins</title>
</titleInfo>
<name type="personal">
<namePart type="family">BONNER</namePart>
<namePart type="given">C. A.</namePart>
</name>
<name type="personal">
<namePart type="family">STUKENBERG</namePart>
<namePart type="given">P. T.</namePart>
</name>
<name type="personal">
<namePart type="family">RAJAGOPALAN</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">ERITJA</namePart>
<namePart type="given">R.</namePart>
</name>
<name type="personal">
<namePart type="family">O'DONNELL</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">MEENTEE</namePart>
<namePart type="given">K.</namePart>
</name>
<name type="personal">
<namePart type="family">ECHOLS</namePart>
<namePart type="given">H.</namePart>
</name>
<name type="personal">
<namePart type="family">GOODMAN</namePart>
<namePart type="given">M. F.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1992</date>
<detail type="volume">
<caption>vol.</caption>
<number>267</number>
</detail>
<extent unit="pages">
<start>11431</start>
<end>11438</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00035" displayLabel="bibtx970206mb00035">
<titleInfo>
<title>DNA polymerase insertion fidelity: gel assay for site-specific kinetics</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>DNA polymerase insertion fidelity: gel assay for site-specific kinetics</title>
</titleInfo>
<name type="personal">
<namePart type="family">BOOSALIS</namePart>
<namePart type="given">M. S.</namePart>
</name>
<name type="personal">
<namePart type="family">PETRUSKA</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">GOODMAN</namePart>
<namePart type="given">M. F.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1987</date>
<detail type="volume">
<caption>vol.</caption>
<number>262</number>
</detail>
<extent unit="pages">
<start>14689</start>
<end>14696</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00036" displayLabel="bibtx970206mb00036">
<titleInfo>
<title>Sequencing end-labeled DNA with base-specific chemical cleavages</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Sequencing end-labeled DNA with base-specific chemical cleavages</title>
</titleInfo>
<name type="personal">
<namePart type="family">MAXAM</namePart>
<namePart type="given">A. M.</namePart>
</name>
<name type="personal">
<namePart type="family">GILBERT</namePart>
<namePart type="given">W.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Methods Enzymol.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1980</date>
<detail type="volume">
<caption>vol.</caption>
<number>65</number>
</detail>
<extent unit="pages">
<start>499</start>
<end>560</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00037" displayLabel="bibtx970206mb00037">
<titleInfo>
<title>Base-specific reactions useful for DNA sequencing: methylene blue-sensitized photooxidation of guanine and osmium tetraoxide modification of thymine</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Base-specific reactions useful for DNA sequencing: methylene blue-sensitized photooxidation of guanine and osmium tetraoxide modification of thymine</title>
</titleInfo>
<name type="personal">
<namePart type="family">FRIEDMAN</namePart>
<namePart type="given">T.</namePart>
</name>
<name type="personal">
<namePart type="family">BROWN</namePart>
<namePart type="given">D. H.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Nucleic Acids Res.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1978</date>
<detail type="volume">
<caption>vol.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>615</start>
<end>622</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00038" displayLabel="bibtx970206mb00038">
<titleInfo>
<title>Gel kinetic analysis of DNA polymerase fidelity in the presence of proofreading using bacteriophage T4 DNA polymerase</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Gel kinetic analysis of DNA polymerase fidelity in the presence of proofreading using bacteriophage T4 DNA polymerase</title>
</titleInfo>
<name type="personal">
<namePart type="family">CREIGHTON</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">GOODMAN</namePart>
<namePart type="given">M. F.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>270</number>
</detail>
<extent unit="pages">
<start>4759</start>
<end>4774</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00039" displayLabel="bibtx970206mb00039">
<titleInfo>
<title>Mutational properties of the primary aflatoxin B1-DNA adduct</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Mutational properties of the primary aflatoxin B1-DNA adduct</title>
</titleInfo>
<name type="personal">
<namePart type="family">BAILEY</namePart>
<namePart type="given">E. A.</namePart>
</name>
<name type="personal">
<namePart type="family">IYER</namePart>
<namePart type="given">R. S.</namePart>
</name>
<name type="personal">
<namePart type="family">STONE</namePart>
<namePart type="given">M. P.</namePart>
</name>
<name type="personal">
<namePart type="family">HARRIS</namePart>
<namePart type="given">T. M.</namePart>
</name>
<name type="personal">
<namePart type="family">ESSIGMANN</namePart>
<namePart type="given">J. M.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Proc. Natl. Acad. Sci. U.S.A.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1996</date>
<detail type="volume">
<caption>vol.</caption>
<number>93</number>
</detail>
<extent unit="pages">
<start>1535</start>
<end>1539</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00040" displayLabel="bibtx970206mb00040">
<titleInfo>
<title>Suppression of human DNA alkylation-repair defects by Escherichia coli DNA-repair genes</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Suppression of human DNA alkylation-repair defects by Escherichia coli DNA-repair genes</title>
</titleInfo>
<name type="personal">
<namePart type="family">SAMSON</namePart>
<namePart type="given">L.</namePart>
</name>
<name type="personal">
<namePart type="family">DERFLER</namePart>
<namePart type="given">B.</namePart>
</name>
<name type="personal">
<namePart type="family">WALDSTEIN</namePart>
<namePart type="given">E. A.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Proc. Natl. Acad. Sci. U.S.A.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1986</date>
<detail type="volume">
<caption>vol.</caption>
<number>83</number>
</detail>
<extent unit="pages">
<start>5607</start>
<end>5610</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00041" displayLabel="bibtx970206mb00041">
<titleInfo>
<title>O6-Methylguanine is a critical determinant of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone tumorigenesis in A/J mouse lung</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>O6-Methylguanine is a critical determinant of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone tumorigenesis in A/J mouse lung</title>
</titleInfo>
<name type="personal">
<namePart type="family">PETERSON</namePart>
<namePart type="given">L. A.</namePart>
</name>
<name type="personal">
<namePart type="family">HECHT</namePart>
<namePart type="given">S. S.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Cancer Res.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1991</date>
<detail type="volume">
<caption>vol.</caption>
<number>51</number>
</detail>
<extent unit="pages">
<start>5557</start>
<end>5564</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00042" displayLabel="bibtx970206mb00042">
<titleInfo>
<title>Increased spontaneous mutation and alkylation sensitivity of Escherichia coli strains lacking the ogt O6-methylguanine DNA repair methyltransferase</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Increased spontaneous mutation and alkylation sensitivity of Escherichia coli strains lacking the ogt O6-methylguanine DNA repair methyltransferase</title>
</titleInfo>
<name type="personal">
<namePart type="family">REBECK</namePart>
<namePart type="given">G. W.</namePart>
</name>
<name type="personal">
<namePart type="family">SAMSON</namePart>
<namePart type="given">L.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Bacteriol.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1991</date>
<detail type="volume">
<caption>vol.</caption>
<number>173</number>
</detail>
<extent unit="pages">
<start>2068</start>
<end>2076</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mb00043" displayLabel="bibtx970206mb00043">
<titleInfo>
<title>ogt Alkyltransferase enhances dibromoalkane mutagenicity in excision repair-deficient Escherichia coli K-12</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>ogt Alkyltransferase enhances dibromoalkane mutagenicity in excision repair-deficient Escherichia coli K-12</title>
</titleInfo>
<name type="personal">
<namePart type="family">ABRIL</namePart>
<namePart type="given">N.</namePart>
</name>
<name type="personal">
<namePart type="family">LUQUEROMERO</namePart>
<namePart type="given">F. L.</namePart>
</name>
<name type="personal">
<namePart type="family">PRIETO-ALAMO</namePart>
<namePart type="given">M. J.</namePart>
</name>
<name type="personal">
<namePart type="family">MARGISON</namePart>
<namePart type="given">G. P.</namePart>
</name>
<name type="personal">
<namePart type="family">PUEYO</namePart>
<namePart type="given">C.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Mol. Carcinogen.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>12</number>
</detail>
<extent unit="pages">
<start>110</start>
<end>117</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="tx970206mn00001" displayLabel="bibtx970206mn00001">
<titleInfo>
<title>Abbreviations:  EDB, ethylene dibromide; MOPS, 3-(N-morpholino)propanesulfonic acid; Kf-, Klenow fragment (ofEscherichia colipolymerase I) exo-; pol II-, polymerase II exo-; T7-, bacteriophage polymerase T7 exo-(thioredoxin mixture); HIV RT, human immunodeficiency virus-1 reverse transcriptase. The standard abbreviations for nucleic acid bases are defined in the current Instructions to Authors (see the January issue ofChem. Res. Toxicol.).</title>
</titleInfo>
<note type="content-in-line">Abbreviations:  EDB, ethylene dibromide; MOPS, 3-(N-morpholino)propanesulfonic acid; Kf-, Klenow fragment (of Escherichia coli polymerase I) exo-; pol II-, polymerase II exo-; T7-, bacteriophage polymerase T7 exo- (thioredoxin mixture); HIV RT, human immunodeficiency virus-1 reverse transcriptase. The standard abbreviations for nucleic acid bases are defined in the current Instructions to Authors (see the January issue of Chem. Res. Toxicol.).</note>
</relatedItem>
<relatedItem type="references" ID="tx970206mn00002" displayLabel="bibtx970206mn00002">
<titleInfo>
<title>The 37 °C temperature was used with pol II-because of historical reasons and for making comparisons with the literature; the other polymerases have been used historically at 25 °C (,).</title>
</titleInfo>
<note type="content-in-line">The 37 °C temperature was used with pol II- because of historical reasons and for making comparisons with the literature; the other polymerases have been used historically at 25 °C (, ).</note>
</relatedItem>
<identifier type="istex">B587D6D00D21F938208F695EFBADD5C3568FA782</identifier>
<identifier type="ark">ark:/67375/TPS-QTD464B6-M</identifier>
<identifier type="DOI">10.1021/tx970206m</identifier>
<accessCondition type="use and reproduction" contentType="restricted">Copyright © 1998 American Chemical Society</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-X5HBJWF8-J">acs</recordContentSource>
<recordOrigin>Converted from (version 1.2.10) to MODS version 3.6.</recordOrigin>
<recordCreationDate encoding="w3cdtf">2020-04-10</recordCreationDate>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-QTD464B6-M/record.json</uri>
</json:item>
</metadata>
<annexes>
<json:item>
<extension>eps</extension>
<original>true</original>
<mimetype>image/x-eps</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-QTD464B6-M/annexes.eps</uri>
</json:item>
<json:item>
<extension>tiff</extension>
<original>true</original>
<mimetype>image/tiff</mimetype>
<uri>https://api.istex.fr/document/B587D6D00D21F938208F695EFBADD5C3568FA782/annexes/tiff</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D73 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000D73 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:B587D6D00D21F938208F695EFBADD5C3568FA782
   |texte=   Polymerase Blockage and Misincorporation of dNTPs Opposite the Ethylene Dibromide-Derived DNA Adducts S-[2-(N7-Guanyl)ethyl]glutathione, S-[2-(N2-Guanyl)ethyl]glutathione, and S-[2-(O6-Guanyl)ethyl]glutathione†
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021