Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

SELEX Selection of High-Affinity Oligonucleotides for Bacteriophage Ff Gene 5 Protein†

Identifieur interne : 000D62 ( Istex/Corpus ); précédent : 000D61; suivant : 000D63

SELEX Selection of High-Affinity Oligonucleotides for Bacteriophage Ff Gene 5 Protein†

Auteurs : Jin-Der Wen ; Carla W. Gray ; Donald M. Gray

Source :

RBID : ISTEX:373A64E897640F4570DDCACBFFC388C995F2720C

Abstract

The Ff gene 5 protein (g5p) is a cooperative ssDNA-binding protein. SELEX was used to identify DNA sequences favorable for g5p binding at physiological ionic strength (200 mM NaCl) and 37 °C. Sequences were selected from a library of 58-mers that contained a central variable segment of 26 nucleotides. DNA sequences selected after eight rounds of SELEX were mostly G-rich, with multiple copies of CPuGGPy, TPuGGGPy, and/or PyPuPuGGGPy motifs. This was unexpected, since g5p has higher binding affinities for polypyrimidine than for polypurine sequences. The most recurrent G-rich sequence, named I-3, was found to have g5p-binding properties that were correlated with a structural transition. At 10 mM NaCl, I-3 existed in a single-stranded form that was saturated by g5p in an all-or-none fashion. At 200 mM NaCl, I-3 existed in a structured form that showed CD spectral features of G-quadruplexes. The g5p binding affinity for this structured form of I-3 was >100-fold higher than for the single-stranded form. Moreover, the structured I-3 was saturated by g5p in two steps, the first of which was the formation of an apparent initiation complex consisting of one I-3 strand and about three g5p dimers. Nuclease S1 footprinting and other experiments showed that g5p molecules in the initiation complex at 200 mM NaCl were bound directly to the G-rich variable segment and that the structure of I-3 was retained after saturation by g5p. Thus, G-rich motifs may form structures favorable for initiation of g5p binding and also provide the actual g5p-binding sites.

Url:
DOI: 10.1021/bi010109z

Links to Exploration step

ISTEX:373A64E897640F4570DDCACBFFC388C995F2720C

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>SELEX Selection of High-Affinity Oligonucleotides for Bacteriophage Ff Gene 5 Protein†</title>
<author>
<name sortKey="Wen, Jin Der" sort="Wen, Jin Der" uniqKey="Wen J" first="Jin-Der" last="Wen">Jin-Der Wen</name>
<affiliation>
<mods:affiliation>Department of Molecular and Cell Biology, The University of Texas at Dallas, Box 830688, Richardson, Texas 75083-0688</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gray, Carla W" sort="Gray, Carla W" uniqKey="Gray C" first="Carla W." last="Gray">Carla W. Gray</name>
<affiliation>
<mods:affiliation>Department of Molecular and Cell Biology, The University of Texas at Dallas, Box 830688, Richardson, Texas 75083-0688</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gray, Donald M" sort="Gray, Donald M" uniqKey="Gray D" first="Donald M." last="Gray">Donald M. Gray</name>
<affiliation>
<mods:affiliation>Department of Molecular and Cell Biology, The University of Texas at Dallas, Box 830688, Richardson, Texas 75083-0688</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> To whom correspondence should be addressed. Department ofMolecular and Cell Biology, Mail Stop FO 3.1, The University of Texasat Dallas, Box 830688, Richardson, TX 75083-0688; (972) 883-2513;FAX (972) 883-2409; e-mail:  dongray@utdallas.edu.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:373A64E897640F4570DDCACBFFC388C995F2720C</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1021/bi010109z</idno>
<idno type="url">https://api.istex.fr/ark:/67375/TPS-KD58MTD9-V/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000D62</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000D62</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">SELEX Selection of High-Affinity Oligonucleotides for Bacteriophage Ff Gene 5 Protein
<ref type="bib" target="#bi010109zAF2">
<hi rend="superscript"></hi>
</ref>
</title>
<author>
<name sortKey="Wen, Jin Der" sort="Wen, Jin Der" uniqKey="Wen J" first="Jin-Der" last="Wen">Jin-Der Wen</name>
<affiliation>
<mods:affiliation>Department of Molecular and Cell Biology, The University of Texas at Dallas, Box 830688, Richardson, Texas 75083-0688</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gray, Carla W" sort="Gray, Carla W" uniqKey="Gray C" first="Carla W." last="Gray">Carla W. Gray</name>
<affiliation>
<mods:affiliation>Department of Molecular and Cell Biology, The University of Texas at Dallas, Box 830688, Richardson, Texas 75083-0688</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gray, Donald M" sort="Gray, Donald M" uniqKey="Gray D" first="Donald M." last="Gray">Donald M. Gray</name>
<affiliation>
<mods:affiliation>Department of Molecular and Cell Biology, The University of Texas at Dallas, Box 830688, Richardson, Texas 75083-0688</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> To whom correspondence should be addressed. Department ofMolecular and Cell Biology, Mail Stop FO 3.1, The University of Texasat Dallas, Box 830688, Richardson, TX 75083-0688; (972) 883-2513;FAX (972) 883-2409; e-mail:  dongray@utdallas.edu.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Biochemistry</title>
<title level="j" type="abbrev">Biochemistry</title>
<idno type="ISSN">0006-2960</idno>
<idno type="eISSN">1520-4995</idno>
<imprint>
<publisher>American Chemical Society</publisher>
<date type="e-published">2001</date>
<date type="published">2001</date>
<biblScope unit="vol">40</biblScope>
<biblScope unit="issue">31</biblScope>
<biblScope unit="page" from="9300">9300</biblScope>
<biblScope unit="page" to="9310">9310</biblScope>
</imprint>
<idno type="ISSN">0006-2960</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0006-2960</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">The Ff gene 5 protein (g5p) is a cooperative ssDNA-binding protein. SELEX was used to identify DNA sequences favorable for g5p binding at physiological ionic strength (200 mM NaCl) and 37 °C. Sequences were selected from a library of 58-mers that contained a central variable segment of 26 nucleotides. DNA sequences selected after eight rounds of SELEX were mostly G-rich, with multiple copies of CPuGGPy, TPuGGGPy, and/or PyPuPuGGGPy motifs. This was unexpected, since g5p has higher binding affinities for polypyrimidine than for polypurine sequences. The most recurrent G-rich sequence, named I-3, was found to have g5p-binding properties that were correlated with a structural transition. At 10 mM NaCl, I-3 existed in a single-stranded form that was saturated by g5p in an all-or-none fashion. At 200 mM NaCl, I-3 existed in a structured form that showed CD spectral features of G-quadruplexes. The g5p binding affinity for this structured form of I-3 was >100-fold higher than for the single-stranded form. Moreover, the structured I-3 was saturated by g5p in two steps, the first of which was the formation of an apparent initiation complex consisting of one I-3 strand and about three g5p dimers. Nuclease S1 footprinting and other experiments showed that g5p molecules in the initiation complex at 200 mM NaCl were bound directly to the G-rich variable segment and that the structure of I-3 was retained after saturation by g5p. Thus, G-rich motifs may form structures favorable for initiation of g5p binding and also provide the actual g5p-binding sites.</div>
</front>
</TEI>
<istex>
<corpusName>acs</corpusName>
<keywords>
<teeft>
<json:string>nacl</json:string>
<json:string>initiation complex</json:string>
<json:string>selex</json:string>
<json:string>primer</json:string>
<json:string>ssdna</json:string>
<json:string>biochemistry</json:string>
<json:string>dimer</json:string>
<json:string>nuclease</json:string>
<json:string>variable region</json:string>
<json:string>emsa</json:string>
<json:string>mrna</json:string>
<json:string>nucleotide</json:string>
<json:string>selex selection</json:string>
<json:string>genome</json:string>
<json:string>binding affinity</json:string>
<json:string>complexed</json:string>
<json:string>agarose</json:string>
<json:string>titration</json:string>
<json:string>unimolecular</json:string>
<json:string>nucleic acid</json:string>
<json:string>clone</json:string>
<json:string>binding site</json:string>
<json:string>polyacrylamide</json:string>
<json:string>stoichiometry</json:string>
<json:string>viral</json:string>
<json:string>biol</json:string>
<json:string>edta</json:string>
<json:string>binding mode</json:string>
<json:string>storage phosphor screen</json:string>
<json:string>nacl concentration</json:string>
<json:string>experimental procedure</json:string>
<json:string>nucleic</json:string>
<json:string>leader sequence</json:string>
<json:string>final concentration</json:string>
<json:string>datum</json:string>
<json:string>constant sequence</json:string>
<json:string>primer region</json:string>
<json:string>ssdna sequence</json:string>
<json:string>high affinity</json:string>
<json:string>denaturing polyacrylamide</json:string>
<json:string>percent protection</json:string>
<json:string>information content</json:string>
<json:string>unimolecular form</json:string>
<json:string>positive band</json:string>
<json:string>initiation</json:string>
<json:string>primer sequence</json:string>
<json:string>viral genome</json:string>
<json:string>serial dilution</json:string>
<json:string>cooperative binding</json:string>
<json:string>room temperature</json:string>
<json:string>molecular dynamic</json:string>
<json:string>eighth round</json:string>
<json:string>various concentration</json:string>
<json:string>cell biology</json:string>
<json:string>ssdna library</json:string>
<json:string>central region</json:string>
<json:string>dimer bind</json:string>
<json:string>independent experiment</json:string>
<json:string>additional band</json:string>
<json:string>solid line</json:string>
<json:string>spectral feature</json:string>
<json:string>polynucleotide kinase</json:string>
<json:string>other protein</json:string>
<json:string>affinity</json:string>
<json:string>monomer</json:string>
<json:string>bind</json:string>
<json:string>cooperative ssdna binding protein</json:string>
<json:string>ssdna genome</json:string>
<json:string>higher binding affinity</json:string>
<json:string>acetic acid</json:string>
<json:string>selex procedure</json:string>
<json:string>intergenic region</json:string>
<json:string>previous work</json:string>
<json:string>quantitative nuclease</json:string>
<json:string>reaction mixture</json:string>
<json:string>initial selection</json:string>
<json:string>parallel reference sequencing lane</json:string>
<json:string>quantitative analysis</json:string>
<json:string>nucleic acid sequence</json:string>
<json:string>band position</json:string>
<json:string>preferential binding</json:string>
<json:string>translational repression</json:string>
<json:string>identical sequence</json:string>
<json:string>actual site</json:string>
<json:string>base distribution</json:string>
<json:string>intermediate round</json:string>
<json:string>target ssdna</json:string>
<json:string>high cooperativity</json:string>
<json:string>biological function</json:string>
<json:string>other experiment</json:string>
<json:string>salt concentration</json:string>
<json:string>competition experiment</json:string>
<json:string>intermediate complex</json:string>
<json:string>salt effect</json:string>
<json:string>higher salt concentration</json:string>
<json:string>unlabeled competitor</json:string>
<json:string>physiological condition</json:string>
<json:string>apparent binding affinity</json:string>
<json:string>negative band</json:string>
<json:string>emsa titration</json:string>
<json:string>intermediate band</json:string>
<json:string>horizontal bar</json:string>
<json:string>mrna leader sequence</json:string>
<json:string>primer end</json:string>
<json:string>binding protein</json:string>
<json:string>subsequent saturation</json:string>
<json:string>higher affinity</json:string>
<json:string>antiparallel fashion</json:string>
<json:string>emsa experiment</json:string>
<json:string>biological relevance</json:string>
<json:string>viral mrna</json:string>
<json:string>other hand</json:string>
<json:string>antiparallel strand</json:string>
<json:string>specific motif</json:string>
<json:string>strand stoichiometry</json:string>
<json:string>trace amount</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>WEN Jin-Der</name>
<affiliations>
<json:string>Department of Molecular and Cell Biology, The University of Texas at Dallas, Box 830688, Richardson, Texas 75083-0688</json:string>
</affiliations>
</json:item>
<json:item>
<name>GRAY Carla W.</name>
<affiliations>
<json:string>Department of Molecular and Cell Biology, The University of Texas at Dallas, Box 830688, Richardson, Texas 75083-0688</json:string>
</affiliations>
</json:item>
<json:item>
<name>GRAY Donald M.</name>
<affiliations>
<json:string>Department of Molecular and Cell Biology, The University of Texas at Dallas, Box 830688, Richardson, Texas 75083-0688</json:string>
<json:string>To whom correspondence should be addressed. Department ofMolecular and Cell Biology, Mail Stop FO 3.1, The University of Texasat Dallas, Box 830688, Richardson, TX 75083-0688; (972) 883-2513;FAX (972) 883-2409; e-mail:  dongray@utdallas.edu.</json:string>
</affiliations>
</json:item>
</author>
<arkIstex>ark:/67375/TPS-KD58MTD9-V</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>The Ff gene 5 protein (g5p) is a cooperative ssDNA-binding protein. SELEX was used to identify DNA sequences favorable for g5p binding at physiological ionic strength (200 mM NaCl) and 37 °C. Sequences were selected from a library of 58-mers that contained a central variable segment of 26 nucleotides. DNA sequences selected after eight rounds of SELEX were mostly G-rich, with multiple copies of CPuGGPy, TPuGGGPy, and/or PyPuPuGGGPy motifs. This was unexpected, since g5p has higher binding affinities for polypyrimidine than for polypurine sequences. The most recurrent G-rich sequence, named I-3, was found to have g5p-binding properties that were correlated with a structural transition. At 10 mM NaCl, I-3 existed in a single-stranded form that was saturated by g5p in an all-or-none fashion. At 200 mM NaCl, I-3 existed in a structured form that showed CD spectral features of G-quadruplexes. The g5p binding affinity for this structured form of I-3 was >100-fold higher than for the single-stranded form. Moreover, the structured I-3 was saturated by g5p in two steps, the first of which was the formation of an apparent initiation complex consisting of one I-3 strand and about three g5p dimers. Nuclease S1 footprinting and other experiments showed that g5p molecules in the initiation complex at 200 mM NaCl were bound directly to the G-rich variable segment and that the structure of I-3 was retained after saturation by g5p. Thus, G-rich motifs may form structures favorable for initiation of g5p binding and also provide the actual g5p-binding sites.</abstract>
<qualityIndicators>
<score>9.976</score>
<pdfWordCount>8924</pdfWordCount>
<pdfCharCount>49862</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>11</pdfPageCount>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<pdfWordsPerPage>811</pdfWordsPerPage>
<pdfText>true</pdfText>
<refBibsNative>true</refBibsNative>
<abstractWordCount>248</abstractWordCount>
<abstractCharCount>1565</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>SELEX Selection of High-Affinity Oligonucleotides for Bacteriophage Ff Gene 5 Protein†</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Biochemistry</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>0006-2960</json:string>
</issn>
<eissn>
<json:string>1520-4995</json:string>
</eissn>
<volume>40</volume>
<issue>31</issue>
<pages>
<first>9300</first>
<last>9310</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<ark>
<json:string>ark:/67375/TPS-KD58MTD9-V</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - biochemistry & molecular biology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - biomedical research</json:string>
<json:string>3 - biochemistry & molecular biology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Biochemistry</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>2001</publicationDate>
<copyrightDate>2001</copyrightDate>
<doi>
<json:string>10.1021/bi010109z</json:string>
</doi>
<id>373A64E897640F4570DDCACBFFC388C995F2720C</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-KD58MTD9-V/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-KD58MTD9-V/bundle.zip</uri>
</json:item>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-KD58MTD9-V/fulltext.txt</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/TPS-KD58MTD9-V/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">SELEX Selection of High-Affinity Oligonucleotides for Bacteriophage Ff Gene 5 Protein
<ref type="bib" target="#bi010109zAF2">
<hi rend="superscript"></hi>
</ref>
</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>American Chemical Society</publisher>
<availability>
<licence>Copyright © 2001 American Chemical Society</licence>
<p>American Chemical Society</p>
</availability>
<date type="published">2001</date>
<date type="Copyright" when="2001">2001</date>
</publicationStmt>
<notesStmt>
<note type="content-type" source="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="publication-type" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">SELEX Selection of High-Affinity Oligonucleotides for Bacteriophage Ff Gene 5 Protein
<ref type="bib" target="#bi010109zAF2">
<hi rend="superscript"></hi>
</ref>
</title>
<author xml:id="author-0000">
<persName>
<surname>Wen</surname>
<forename type="first">Jin-Der</forename>
</persName>
<affiliation>
<orgName type="laboratory">Department of Molecular and Cell Biology</orgName>
<orgName type="institution">The University of Texas at Dallas</orgName>
<address>
<addrLine>Box 830688</addrLine>
<addrLine>Richardson</addrLine>
<addrLine>Texas 75083-0688</addrLine>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<surname>Gray</surname>
<forename type="first">Carla W.</forename>
</persName>
<affiliation>
<orgName type="laboratory">Department of Molecular and Cell Biology</orgName>
<orgName type="institution">The University of Texas at Dallas</orgName>
<address>
<addrLine>Box 830688</addrLine>
<addrLine>Richardson</addrLine>
<addrLine>Texas 75083-0688</addrLine>
</address>
</affiliation>
</author>
<author xml:id="author-0002" role="corresp">
<persName>
<surname>Gray</surname>
<forename type="first">Donald M.</forename>
</persName>
<affiliation>
<orgName type="laboratory">Department of Molecular and Cell Biology</orgName>
<orgName type="institution">The University of Texas at Dallas</orgName>
<address>
<addrLine>Box 830688</addrLine>
<addrLine>Richardson</addrLine>
<addrLine>Texas 75083-0688</addrLine>
</address>
</affiliation>
<affiliation role="corresp"> To whom correspondence should be addressed. Department of Molecular and Cell Biology, Mail Stop FO 3.1, The University of Texas at Dallas, Box 830688, Richardson, TX 75083-0688; (972) 883-2513; FAX (972) 883-2409; e-mail:  dongray@utdallas.edu.</affiliation>
</author>
<idno type="istex">373A64E897640F4570DDCACBFFC388C995F2720C</idno>
<idno type="ark">ark:/67375/TPS-KD58MTD9-V</idno>
<idno type="DOI">10.1021/bi010109z</idno>
</analytic>
<monogr>
<title level="j" type="main">Biochemistry</title>
<title level="j" type="abbrev">Biochemistry</title>
<idno type="acspubs">bi</idno>
<idno type="coden">bichaw</idno>
<idno type="pISSN">0006-2960</idno>
<idno type="eISSN">1520-4995</idno>
<imprint>
<publisher>American Chemical Society</publisher>
<date type="e-published">2001</date>
<date type="published">2001</date>
<biblScope unit="vol">40</biblScope>
<biblScope unit="issue">31</biblScope>
<biblScope unit="page" from="9300">9300</biblScope>
<biblScope unit="page" to="9310">9310</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<encodingDesc>
<schemaRef type="ODD" url="https://xml-schema.delivery.istex.fr/tei-istex.odd"></schemaRef>
<appInfo>
<application ident="pub2tei" version="1.0.41" when="2020-04-06">
<label>pub2TEI-ISTEX</label>
<desc>A set of style sheets for converting XML documents encoded in various scientific publisher formats into a common TEI format.
<ref target="http://www.tei-c.org/">We use TEI</ref>
</desc>
</application>
</appInfo>
</encodingDesc>
<profileDesc>
<abstract>
<p>The Ff gene 5 protein (g5p) is a cooperative ssDNA-binding protein. SELEX was used to identify DNA sequences favorable for g5p binding at physiological ionic strength (200 mM NaCl) and 37 °C. Sequences were selected from a library of 58-mers that contained a central variable segment of 26 nucleotides. DNA sequences selected after eight rounds of SELEX were mostly G-rich, with multiple copies of CPuGGPy, TPuGGGPy, and/or PyPuPuGGGPy motifs. This was unexpected, since g5p has higher binding affinities for polypyrimidine than for polypurine sequences. The most recurrent G-rich sequence, named I-3, was found to have g5p-binding properties that were correlated with a structural transition. At 10 mM NaCl, I-3 existed in a single-stranded form that was saturated by g5p in an all-or-none fashion. At 200 mM NaCl, I-3 existed in a structured form that showed CD spectral features of G-quadruplexes. The g5p binding affinity for this structured form of I-3 was >100-fold higher than for the single-stranded form. Moreover, the structured I-3 was saturated by g5p in two steps, the first of which was the formation of an apparent initiation complex consisting of one I-3 strand and about three g5p dimers. Nuclease S1 footprinting and other experiments showed that g5p molecules in the initiation complex at 200 mM NaCl were bound directly to the G-rich variable segment and that the structure of I-3 was retained after saturation by g5p. Thus, G-rich motifs may form structures favorable for initiation of g5p binding and also provide the actual g5p-binding sites. </p>
</abstract>
<textClass ana="subject">
<keywords scheme="document-type-name">
<term>Article</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
<revisionDesc>
<change when="2020-04-06" who="#istex" xml:id="pub2tei">formatting</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus acs not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:document>
<article article-type="research-article" specific-use="acs2jats-1.1.23" dtd-version="1.1d1">
<front>
<journal-meta>
<journal-id journal-id-type="acspubs">bi</journal-id>
<journal-id journal-id-type="coden">bichaw</journal-id>
<journal-title-group>
<journal-title>Biochemistry</journal-title>
<abbrev-journal-title>Biochemistry</abbrev-journal-title>
</journal-title-group>
<issn pub-type="ppub">0006-2960</issn>
<issn pub-type="epub">1520-4995</issn>
<publisher>
<publisher-name>American Chemical Society</publisher-name>
</publisher>
<self-uri>pubs.acs.org/biochemistry</self-uri>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1021/bi010109z</article-id>
<article-categories>
<subj-group subj-group-type="document-type-name">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>SELEX Selection of High-Affinity Oligonucleotides for Bacteriophage Ff Gene 5 Protein
<xref rid="bi010109zAF2">
<sup></sup>
</xref>
</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name name-style="western">
<surname>Wen</surname>
<given-names>Jin-Der</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name name-style="western">
<surname>Gray</surname>
<given-names>Carla W.</given-names>
</name>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name name-style="western">
<surname>Gray</surname>
<given-names>Donald M.</given-names>
</name>
<xref rid="bi010109zAF1">*</xref>
</contrib>
<aff>Department of Molecular and Cell Biology, The University of Texas at Dallas, Box 830688, Richardson, Texas 75083-0688 </aff>
</contrib-group>
<author-notes>
<corresp id="bi010109zAF1">  To whom correspondence should be addressed. Department of Molecular and Cell Biology, Mail Stop FO 3.1, The University of Texas at Dallas, Box 830688, Richardson, TX 75083-0688; (972) 883-2513; FAX (972) 883-2409; e-mail:  dongray@utdallas.edu.</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>12</day>
<month>07</month>
<year>2001</year>
</pub-date>
<pub-date pub-type="ppub">
<day>07</day>
<month>08</month>
<year>2001</year>
</pub-date>
<volume>40</volume>
<issue>31</issue>
<fpage>9300</fpage>
<lpage>9310</lpage>
<history>
<date date-type="received">
<day>17</day>
<month>01</month>
<year>2001</year>
</date>
<date date-type="rev-recd">
<day>03</day>
<month>05</month>
<year>2001</year>
</date>
<date date-type="asap">
<day>12</day>
<month>07</month>
<year>2001</year>
</date>
<date date-type="issue-pub">
<day>07</day>
<month>08</month>
<year>2001</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2001 American Chemical Society</copyright-statement>
<copyright-year>2001</copyright-year>
<copyright-holder>American Chemical Society</copyright-holder>
</permissions>
<abstract>
<p>The Ff gene 5 protein (g5p) is a cooperative ssDNA-binding protein. SELEX was used to identify DNA sequences favorable for g5p binding at physiological ionic strength (200 mM NaCl) and 37 °C. Sequences were selected from a library of 58-mers that contained a central variable segment of 26 nucleotides. DNA sequences selected after eight rounds of SELEX were mostly G-rich, with multiple copies of CPuGGPy, TPuGGGPy, and/or PyPuPuGGGPy motifs. This was unexpected, since g5p has higher binding affinities for polypyrimidine than for polypurine sequences. The most recurrent G-rich sequence, named I-3, was found to have g5p-binding properties that were correlated with a structural transition. At 10 mM NaCl, I-3 existed in a single-stranded form that was saturated by g5p in an all-or-none fashion. At 200 mM NaCl, I-3 existed in a structured form that showed CD spectral features of G-quadruplexes. The g5p binding affinity for this structured form of I-3 was >100-fold higher than for the single-stranded form. Moreover, the structured I-3 was saturated by g5p in two steps, the first of which was the formation of an apparent initiation complex consisting of one I-3 strand and about three g5p dimers. Nuclease S1 footprinting and other experiments showed that g5p molecules in the initiation complex at 200 mM NaCl were bound directly to the G-rich variable segment and that the structure of I-3 was retained after saturation by g5p. Thus, G-rich motifs may form structures favorable for initiation of g5p binding and also provide the actual g5p-binding sites. </p>
</abstract>
<custom-meta-group>
<custom-meta>
<meta-name>document-id-old-9</meta-name>
<meta-value>bi010109z</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
<notes id="bi010109zAF2">
<label></label>
<p>  This work was performed by J.-D.W. in partial fulfillment of the requirements for the Ph.D. degree in the Department of Molecular and Cell Biology, The University of Texas at Dallas. Support was provided by grants from the Robert A. Welch Foundation (AT-503) and the Texas Advanced Technology Program (009741-0021-1999).</p>
</notes>
</front>
<body>
<sec id="d7e123">
<title></title>
<p>The genome of the Ff phages
<xref rid="bi010109zb00001" ref-type="bibr"></xref>
comprises 11 tightly packed genes and an intergenic region between genes 4 and 2 (
<italic toggle="yes">
<xref rid="bi010109zb00001" ref-type="bibr"></xref>
</italic>
). The Ff g5p is a single-stranded DNA binding protein of monomer MW 9690 (87 amino acid residues) that exists as a stable dimer even at a concentration as low as 1 nM (
<italic toggle="yes">
<xref rid="bi010109zb00002" ref-type="bibr"></xref>
</italic>
). The g5p dimer has 2-fold rotational symmetry and cooperatively saturates the Ff ssDNA genome by binding antiparallel-stranded nucleotides in its dyadic DNA-binding sites (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi010109zb00003" ref-type="bibr"></xref>
<xref rid="bi010109zb00004" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bi010109zb00005" ref-type="bibr"></xref>
</named-content>
</italic>
). There are three modes of binding, in which 4, 3, or 2.5 nucleotides are bound per g5p monomer (i.e.,
<italic toggle="yes">n</italic>
= 4, 3, or 2.5;
<italic toggle="yes">6</italic>
,
<italic toggle="yes"> 7</italic>
). The
<italic toggle="yes">n</italic>
= 4 mode of binding is the dominant mode when g5p is present at P/N ratios ≤ 0.25. However, there is virtually no information available on how g5p initiates cooperative binding to the viral genome under physiological conditions. The ssDNA complexed with g5p does not serve as a template for dsDNA synthesis and is a precursor for virion assembly (
<italic toggle="yes">
<xref rid="bi010109zb00001" ref-type="bibr"></xref>
</italic>
). </p>
<p>Owing to its biological functions in saturating the viral genome, g5p has been most studied for its non-sequence-specific binding properties (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi010109zb00003" ref-type="bibr"></xref>
,
<xref rid="bi010109zb00008" ref-type="bibr"></xref>
</named-content>
</italic>
). However, g5p is known to have marked differences in binding affinities (Kω) for synthetic single-stranded polynucleotides (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi010109zb00009" ref-type="bibr"></xref>
,
<xref rid="bi010109zb00010" ref-type="bibr"></xref>
</named-content>
</italic>
). A polynucleotide that is more stacked, like the polypurine poly[d(A)], binds with lower affinity than do the less stacked polypyrimidines poly[d(T)] and poly[d(C)]. Moreover, g5p has structure- and sequence-specific binding functions of biological importance. (a) The complexes isolated from cells frequently have three or four branches, suggestive of local preferential initiation at more than one site (C. W. Gray, unpublished results). (b) A (G+C)-rich hairpin of 32 base pairs in the intergenic region is oriented at one end of the g5p·ssDNA intracellular complex (
<italic toggle="yes">
<xref rid="bi010109zb00011" ref-type="bibr"></xref>
</italic>
) and maintains the same orientation in the mature virus after being packaged (
<italic toggle="yes">
<xref rid="bi010109zb00012" ref-type="bibr"></xref>
</italic>
). (c) The g5p inhibits the “−” strand synthesis and synthesis of replicative form (RF) dsDNA, but not merely by sequestering genomic “+” strands. Fulford and Model (
<italic toggle="yes">
<xref rid="bi010109zb00013" ref-type="bibr"></xref>
</italic>
) proposed a competitive melting by g5p and stabilization by g2p of hairpins at the “−” strand origin as a switching mechanism that controls synthesis of RF dsDNA. (d) Fulford and Model (
<italic toggle="yes">
<xref rid="bi010109zb00013" ref-type="bibr"></xref>
</italic>
) also showed that low levels of g5p provide immunity to Ff superinfection, inconsistent with simple saturation of the infecting ssDNA by g5p. (e) The g5p binds to the mRNA leader sequences of genes 1, 2, 3, 5, and 10 to regulate their translation (
<italic toggle="yes">
<xref rid="bi010109zb00014" ref-type="bibr"></xref>
</italic>
). Binding sites in the gene 2 and 3 leader sequences contain G-rich blocks of four or five purines surrounded by blocks of pyrimidines. (f) The g5p has been shown to repress the translation of gene 2 mRNA both in vitro and in vivo (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi010109zb00015" ref-type="bibr"></xref>
,
<xref rid="bi010109zb00016" ref-type="bibr"></xref>
</named-content>
</italic>
). Michel and Zinder (
<italic toggle="yes">
<xref rid="bi010109zb00017" ref-type="bibr"></xref>
</italic>
) have defined a sequence of 16 nucleotides in the gene 2 mRNA that is required in vivo for repression by g5p. They also found that, in vitro, an RNA carrying this sequence is at least 10-fold higher in affinity for g5p binding than is an RNA lacking it. The preferential binding of g5p to an RNA carrying the 16-mer sequence is affected by mutations that abolish gene 2 translational repression in vivo (
<italic toggle="yes">
<xref rid="bi010109zb00018" ref-type="bibr"></xref>
</italic>
). (g) A direct measurement by mass spectrometry shows that two g5p dimers bind to a DNA analogue of this 16-mer RNA, bending it to form a hairpin (
<italic toggle="yes">
<xref rid="bi010109zb00019" ref-type="bibr"></xref>
</italic>
). Therefore, as shown by these examples, g5p plays a role in regulation of viral DNA synthesis and viral gene expression, probably through structure- and/or sequence-specific binding. </p>
<p>The SELEX methodology was originally developed to select from an in vitro library (a pool of RNA sequences with a randomized region and two flanking constant sequences) those sequences having high affinity for a protein (
<italic toggle="yes">
<xref rid="bi010109zb00020" ref-type="bibr"></xref>
</italic>
) or immobilized dyes (
<italic toggle="yes">
<xref rid="bi010109zb00021" ref-type="bibr"></xref>
</italic>
). SELEX has also been applied to the selection of DNA molecules from double- and single-stranded DNA libraries. The targets that have been used for SELEX include (a) nucleic acid-binding proteins, (b) proteins that are not thought to bind nucleic acids naturally, and (c) small molecules such as nucleotides, amino acids, cofactors, and dyes (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi010109zb00022" ref-type="bibr"></xref>
<xref rid="bi010109zb00023" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bi010109zb00024" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bi010109zb00025" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bi010109zb00026" ref-type="bibr"></xref>
</named-content>
</italic>
). The first example of SELEX using an ssDNA library was with thrombin, a protease that was considered not to interact physiologically with nucleic acids (
<italic toggle="yes">
<xref rid="bi010109zb00027" ref-type="bibr"></xref>
</italic>
). Aptamers of ssDNA that bind thrombin with high affinities display a highly conserved region of 14−17 nucleotides, of which one typical sequence folds into a unimolecular quadruplex containing two G-quartets, as determined by NMR spectroscopy (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi010109zb00028" ref-type="bibr"></xref>
,
<xref rid="bi010109zb00029" ref-type="bibr"></xref>
</named-content>
</italic>
). </p>
<p>In this report, we present the first application of SELEX using a cooperative ssDNA binding protein, the Ff g5p. The g5p binds with a large, positive cooperativity factor, ω, so that the protein tends to saturate all nucleic acid sequences. Nevertheless, our results show that the SELEX strategy can be used to efficiently select high-affinity ssDNA sequences. The gist of our results is that the initiation of cooperative binding, when the binding is least dependent on ω, can be very dependent on the ssDNA sequence and structure. </p>
</sec>
<sec id="d7e231">
<title>Experimental Procedures</title>
<p>
<italic toggle="yes">SELEX, PCR, and Sequencing.</italic>
The SELEX procedure applied in this paper was derived from that used by Gold and co-workers (
<italic toggle="yes">
<xref rid="bi010109zb00030" ref-type="bibr"></xref>
</italic>
). A synthesized library of 58-mer ssDNA, called PV-58, was used for SELEX selection. PV-58 DNA was synthesized with the following sequence:  5‘-CGGGATCCAACGTTTT-N
<sub>26</sub>
-AAGAGGCAGAATTCGC-3‘ (Oligos Etc.). A, G, C, and T were randomly incorporated in the central 26 nucleotides (N
<sub>26</sub>
). The two flanking constant 16-mer sequences were used as primer annealing sites for PCR amplification. The g5p was isolated and purified as in previous work (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi010109zb00007" ref-type="bibr"></xref>
,
<xref rid="bi010109zb00010" ref-type="bibr"></xref>
</named-content>
</italic>
). </p>
<p>For the initial selection, 1 nmol (6 × 10
<sup>14</sup>
sequences) of PV-58 (a small portion was
<sup>32</sup>
P-labeled at the 5‘ end with T4 polynucleotide kinase; see below) was incubated with g5p in 200 mM NaCl at 37 °C for 15 min in TE buffer (10 mM Tris-HCl, pH 7.4, 1 mM EDTA). The amount of g5p was adjusted to give a selection ratio (complexed DNA/total DNA) of 0.005 to 0.05 for each round of selection. G5p·DNA complexes were separated from free DNAs on the basis of EMSA (see below), except that the gels were not fixed. Instead, the resulting wet gel was exposed briefly to a storage phosphor screen (Molecular Dynamics). Superimposing the gel with the printed image enabled the position of complexed DNA to be located. The band corresponding to a saturated complex was excised from the wet agarose gel and the excised gel slice was liquefied by treatment with β-agarase (FMC BioProducts) at 45 °C for 1−2 h. The g5p-bound DNA was extracted by phenol/chloroform and then ethanol-precipitated. </p>
<p>PCR was performed to amplify the selected DNA with 5‘ primer (5‘-CGGGATCCAACGTTTT-3‘) and biotin-conjugated 3‘ primer (biotin-5‘-GCGAATTCTGCCTCTT-3‘) (Midland) under the following conditions:  95 °C for 2 min; 16 cycles at 95 °C for 1 min, 50 °C for 1 min, and 72 °C for 2 min; the final extension was at 72 °C for 10 min. [α
<sup>32</sup>
P]dCTP (ICN) was included in the PCR mixture to internally label the DNA. PCR products were purified in agarose gels with the
<italic toggle="yes">QIAEX II</italic>
kit (QIAGEN). To isolate the target ssDNA (extended with the 5‘ primer), an immobilized streptavidin agarose bead matrix (Pierce) was added to bind the purified biotin-conjugated dsDNA, which was then denatured by 0.12 N NaOH at 37 °C for 15 min. Since the biotin−streptavidin interaction was not disrupted by this alkaline solution, only the target ssDNA was released from the matrix (
<italic toggle="yes">
<xref rid="bi010109zb00030" ref-type="bibr"></xref>
</italic>
). The ssDNA was finally recovered by ethanol precipitation. Generally, 200−300 pmol of the enriched ssDNA was used for the following round of SELEX. </p>
<p>DNAs from the fourth, sixth, and eighth rounds of selection, as well as the original sample of PV-58, were cloned with the
<italic toggle="yes">TOPO TA Cloning</italic>
kit (Invitrogen) and sequenced with the
<italic toggle="yes">fmol DNA Sequencing System</italic>
(Promega). </p>
<p>
<italic toggle="yes">EMSA.</italic>
The I-3 DNA sequence (5‘-CGGGATCCAACGTTTT-GGGGTCAGGCTGGGGTTGTGCAGGTC-AAGAGGCAGAATTCGC-3‘) (Oligos Etc.) was
<sup>32</sup>
P-labeled at the 5‘ end using T4 polynucleotide kinase (Invitrogen) and [γ
<sup>32</sup>
P]ATP (ICN). For titrations with g5p, 1 μM of labeled I-3 was incubated with 0−21 μM of g5p at 37 °C for 15 min in TE buffer containing 10 or 200 mM NaCl. Mixtures were loaded on 2.5% low-melting agarose gels (FMC BioProducts) in TAE buffer (40 mM Tris-acetate, pH 8.3, 1 mM EDTA), followed by electrophoresis at 8−10 V/cm for 80 min. DNA that was complexed with g5p had reduced electrophoretic mobility and was shifted to higher molecular-weight positions on gels. The gels were fixed with 10% acetic acid/50% methanol for 2 h, dried, and exposed to a storage phosphor screen. The bands were quantitated and analyzed with ImageQuant, v. 5.0 (Molecular Dynamics). </p>
<p>For competition experiments, 1 μM of
<sup>32</sup>
P-labeled I-3 was incubated in TE buffer with 14 μM of g5p in the absence or presence of 2 μM of an unlabeled competitor, I-7, at 37 °C for 15 min. I-7 (Oligos Etc.) differed from I-3 in that its central 26 nucleotide segment had the sequence 5‘-GTGCCACCCTCCTCTCTTGTTCTTGT-3‘. The NaCl concentrations were 10, 50, 100, and 200 mM. After electrophoresis of the samples, the gels were fixed and quantitated as described above. </p>
<p>To determine the apparent binding affinities, Kω
<sub>app</sub>
, for a g5p dimer, EMSA titrations of ssDNA (I-3 or PV-58) with g5p were quantitated and the apparent g5p binding affinity was determined as Kω
<sub>app</sub>
= 1/(2
<italic toggle="yes">L</italic>
), where
<italic toggle="yes">L</italic>
is the free g5p dimer concentration at which 50% of labeled DNA was saturated with g5p. This binding affinity is for binding of a g5p dimer in one orientation, and the binding is assumed to be all-or-none (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi010109zb00007" ref-type="bibr"></xref>
,
<xref rid="bi010109zb00010" ref-type="bibr"></xref>
</named-content>
</italic>
). Free g5p concentrations were estimated using the assumption that four nucleotides were bound per g5p monomer in the
<italic toggle="yes">n</italic>
= 4 binding mode. </p>
<p>
<italic toggle="yes">CD Measurements.</italic>
CD spectra were measured in a Jasco model J710 spectropolarimeter, smoothed, and plotted at 1-nm intervals as molar CD (ε
<sub>L</sub>
− ε
<sub>R</sub>
) in units of M
<sup>-1</sup>
cm
<sup>-1</sup>
, per mole of nucleotide, as in previous work (
<italic toggle="yes">
<xref rid="bi010109zb00010" ref-type="bibr"></xref>
</italic>
), except that spectra were smoothed by the method of fast Fourier transformation (Jasco). </p>
<p>
<italic toggle="yes">Primer-Annealing and Serial Dilution Experiments.</italic>
To determine the strand stoichiometry of I-3 in its free state and in the initiation complex with g5p, 1 μM of
<sup>32</sup>
P-labeled I-3 was incubated with 0−4 μM of the 3‘ primer in 200 mM NaCl at 37 °C for 30 min. For the formation of complexes, g5p was added to give a final concentration of 7 μM for the final 15 min of the incubation. Control experiments were performed by reverse additions, preincubating I-3 with g5p for 15 min prior to the addition of the 3‘ primer for another 15-min incubation. The 3‘ primer sequence was the one described above but without conjugated biotin. Mixtures were subjected to electrophoresis (10 V/cm) in 12% polyacrylamide (acrylamide/bis = 19:1) gels in TBE buffer (90 mM Tris-borate, pH 8.3, 2 mM EDTA) for 4 h. Gels were fixed with 10% acetic acid for 10 min, dried, and exposed to a storage phosphor screen. </p>
<p>For serial dilutions, I-3 was diluted in 10 or 200 mM NaCl to final concentrations of 4, 1, 0.25, 0.063, and 0.016 μM strand. A trace amount of
<sup>32</sup>
P-labeled I-3 was added to each dilution. Samples were heated at 90 °C for 3 min, cooled at room temperature, and then subjected to electrophoresis as described above. </p>
<p>
<italic toggle="yes">Stoichiometry of Protein and DNA in g5p•I-3 Complexes.</italic>
To determine the stoichiometric ratio of protein to DNA, g5p and I-3 in the complexes were quantitated together by the following procedure: 
<sup>32</sup>
P-labeled I-3 was mixed with g5p at 10 mM NaCl (6 μM I-3 per 32 μM g5p) or 200 mM NaCl (12.5 μM I-3 per 80 μM g5p). Mixtures were incubated at 37 °C for 15 min and electrophoresed in low-melting agarose gels as described above. The bands of g5p·I-3 complexes were isolated and heated with SDS loading buffer at final concentrations of 50 mM Tris-HCl, pH 6.8, 100 mM dithiothreitol, 2% SDS, 0.1% bromophenol blue, and 10% glycerol. The melted agarose solution was loaded on a 15% polyacrylamide gel, and SDS−PAGE was performed by the method of Laemmli (
<italic toggle="yes">
<xref rid="bi010109zb00031" ref-type="bibr"></xref>
</italic>
). A series of standard amounts of g5p and
<sup>32</sup>
P-labeled I-3 were also run in the same gel. For g5p quantitation, the gel was stained with SYPRO Red (BioWhittaker Molecular Applications;
<italic toggle="yes">32</italic>
) for 2 h, destained with 7.5% acetic acid for 10 min, and scanned with a STORM 860 (red fluorescence mode; Molecular Dynamics). For I-3 quantitation, the same gel was dried and exposed to a storage phosphor screen. Calibration curves were plotted with the standards, and the respective amounts of g5p and I-3 in the complexes were calculated. </p>
<p>
<italic toggle="yes">Quantitative Nuclease S1 Footprinting.</italic>
To determine the initiation sites on structured I-3 (in 200 mM NaCl), nuclease S1 (Promega) digestion was carried out under conditions such that only the initiation “band 2” complex existed and the saturated “band 1” complex did not. 1 μM of 5‘ end
<sup>32</sup>
P-labeled I-3 was incubated in the presence or absence of 1.4 μM g5p in 10 μL of 200 mM NaCl (in 10 mM Tris-HCl, pH 7.4) at 37 °C for 15 min. A nuclease S1 mixture was added to give a final concentration of 0.67 unit/μL of nuclease S1 and 1 mM ZnCl
<sub>2</sub>
. The reaction mixture was incubated for 1 min and stopped by adding an equal volume of 88% formamide and 30 mM EDTA. The nuclease-digested samples were briefly heated and then resolved in 12% denaturing polyacrylamide gels (containing 7.6 M urea; acrylamide/bis = 19:1). After being dried, the gel was exposed to a storage phosphor screen. The bands were quantitated, and their positions were assigned according to four parallel reference sequencing lanes of A, G, C, and T. </p>
<p>Since the amount of I-3 complexed with g5p under these conditions accounted for only 10% of the total I-3 (see Results), most signals were contributed by free I-3, and quantitative analysis was needed. Each band of the g5p-bound I-3 and the control lane was quantitated, and the percent protection of the corresponding base by g5p was calculated according to the following equation:  100% × (quantity in band without g5p − quantity in band with g5p)/(quantity in band without g5p). Those sequence positions protected by g5p gave positive values of the percent protection. </p>
<p>
<italic toggle="yes">Determination of End Boundaries of I-3 in the Initiation Complex.</italic>
To determine the 3‘-end boundary of the region of I-3 needed to form the initiation complex with g5p, I-3 was
<sup>32</sup>
P-labeled at the 5‘ end with T4 polynucleotide kinase. Partial nuclease S1 (0.1 unit/μL) digestion was performed at room temperature for 5 min to generate random I-3 fragments. I-3 fragments at a total nucleotide concentration ≈ 50 μM were incubated with 0−14 μM g5p at 37 °C for 15 min in TE buffer containing 200 mM NaCl. The mixtures were applied to a membrane filter (0.45 μm, HAWP, containing nitrocellulose; Millipore) to selectively bind protein and protein-containing complexes. The bound DNA was extracted from the filter with phenol/chloroform, ethanol-precipitated, and then resolved in 12% denaturing polyacrylamide gels. The gels were dried and exposed to a storage phosphor screen. Band positions were assigned according to four parallel reference sequencing lanes of A, G, C, and T. </p>
<p>For 5‘-end boundary determination, I-3 was labeled at the 3‘ end by employing T4 RNA ligase (Promega) and [5‘-
<sup>32</sup>
P]pCp (ICN). The same procedure described above was applied except that the range of g5p concentrations was 0−40 μM. Since specific length markers were not available, band positions were assigned by counting each band of the fragment starting from the intact I-3 on a high-resolution phosphor image. This assignment was based on the assumption that each phosphodiester bond of I-3 was accessible to nuclease S1. </p>
</sec>
<sec id="d7e391">
<title>Results</title>
<p>
<italic toggle="yes">ssDNA Sequences Selected using SELEX.</italic>
SELEX was used to select high-affinity g5p-binding sequences from an ssDNA library of 58-mers, PV-58, that contained a central stretch of 26 nucleotides with approximately random incorporation of the four nucleotides. One nanomole of PV-58 (6 × 10
<sup>14</sup>
sequences) was used for the initial selection. To approximate physiological conditions, the selection was performed at 37 °C in a buffer containing 200 mM NaCl, pH 7.4. After eight rounds, 36 sequences were cloned and sequenced (Table
<xref rid="bi010109zt00001"></xref>
). Nineteen clones had an identical sequence (named “I-3”), and seven additional ones differed from I-3 by one base. Although g5p is known to prefer to bind to pyrimidines, 32 of the 36 independently cloned oligonucleotides surprisingly were G-rich. G-centered motifs with three to five purines, CPuGGPy, TPuGGGPy, and PyPuPuGGGPy (Pu stands for A or G, and Py for C or T), repeatedly appeared among most of these sequences (Table
<xref rid="bi010109zt00001"></xref>
). The information content (
<italic toggle="yes">
<xref rid="bi010109zb00033" ref-type="bibr"></xref>
</italic>
) for the variable region after selection was 25.3 bits, which was an average of 0.97 bit per position. Since the information content of the unselected material averaged only 0.07 bit per position, there was a significant enrichment of sequences during the selection procedure. For example, if each position comprised 80% of a specific base and 20% of equal numbers of the other three bases, the information content would be 0.96 bit per position. For the calculation of information content, all the sequences were aligned as shown in Table
<xref rid="bi010109zt00001"></xref>
, were weighted by the number of identical clones, and were corrected for sampling uncertainty (
<italic toggle="yes">
<xref rid="bi010109zb00033" ref-type="bibr"></xref>
</italic>
).
<table-wrap id="bi010109zt00001" position="float" orientation="portrait">
<label>1</label>
<caption>
<p>36 ssDNA Sequences Recovered after Eight Rounds of SELEX Selection</p>
</caption>
<oasis:table colsep="2" rowsep="2">
<oasis:tgroup cols="1">
<oasis:colspec colnum="1" colname="1"></oasis:colspec>
<oasis:tbody>
<oasis:row>
<oasis:entry colname="1">
<graphic xlink:href="bi010109zu00001a.tif" position="float" orientation="portrait"></graphic>
</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
<table-wrap-foot>
<p>
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
 Clones for sequencing were designated by a letter for the agar plate and a number for the clone from that plate. Where more than one clone had the same sequence, the sequence is named for the first clone.
<italic toggle="yes">
<sup>b</sup>
</italic>
<sup></sup>
 Only the sequences of the N
<sub>26</sub>
variable region are shown from 5‘ to 3‘. Numbering is from the 5‘ end of the complete PV-58 sequence. The “t” at the 5‘ end of some sequences is from the constant region. Repeated motifs:  boxed for CPuGGPy, shaded for TPuGGGPy, and double-underlined for PyPuPuGGGPy (Pu stands for A or G; Py for C or T).
<italic toggle="yes">
<sup>c</sup>
</italic>
<sup></sup>
 Bases in just the variable region.
<italic toggle="yes">
<sup>d</sup>
</italic>
<sup></sup>
 The figures in parentheses refer to the numbers of clones with identical sequences.</p>
</table-wrap-foot>
</table-wrap>
</p>
<p>The predominant sequence I-3 had two TG
<sub>4</sub>
T and two CAG
<sub>2</sub>
Py motifs, which gave I-3 an unexpected resemblance to a combination of the
<italic toggle="yes">Tetrahymena</italic>
telomeric repeat (TG
<sub>4</sub>
T;
<italic toggle="yes">34</italic>
) and the human telomeric repeat (TAG
<sub>3</sub>
T;
<italic toggle="yes">35</italic>
). I-3 was chemically synthesized for further characterization. </p>
<p>To explore the evolution of the G-rich sequences during SELEX, analyses of the cloned sequences and their base distribution for the intermediate rounds of selection were performed. As shown in Table
<xref rid="bi010109zt00002"></xref>
, the variable region of the synthetic PV-58 library was slightly higher in G content than the expected 25%. A preference for guanine in randomly synthesized DNA has been reported elsewhere (
<italic toggle="yes">
<xref rid="bi010109zb00024" ref-type="bibr"></xref>
</italic>
). After four rounds of selection, each of the 24 cloned sequences was pyrimidine-rich and the G content dropped to 13%. Thus, the early rounds of selection were for moderately high affinity pyrimidine-rich sequences, as expected. Then, the guanine population increased dramatically between the sixth and eighth rounds. The final selected sequences had specific G-rich patterns that evolved from the SELEX procedure and were different from the majority of G-rich sequences in the PV-58 library.
<table-wrap id="bi010109zt00002" position="float" orientation="portrait">
<label>2</label>
<caption>
<p>Base Distributions in the Variable N
<sub>26</sub>
Region after Different Numbers of Rounds of SELEX</p>
</caption>
<oasis:table colsep="2" rowsep="2">
<oasis:tgroup cols="8">
<oasis:colspec colnum="1" colname="1"></oasis:colspec>
<oasis:colspec colnum="2" colname="2"></oasis:colspec>
<oasis:colspec colnum="3" colname="3"></oasis:colspec>
<oasis:colspec colnum="4" colname="4"></oasis:colspec>
<oasis:colspec colnum="5" colname="5"></oasis:colspec>
<oasis:colspec colnum="6" colname="6"></oasis:colspec>
<oasis:colspec colnum="7" colname="7"></oasis:colspec>
<oasis:colspec colnum="8" colname="8"></oasis:colspec>
<oasis:tbody>
<oasis:row>
<oasis:entry colname="1"></oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry namest="3" nameend="8">averaged base population per strand (%)</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">SELEX round</oasis:entry>
<oasis:entry colname="2"># of cloned sequences</oasis:entry>
<oasis:entry colname="3">A</oasis:entry>
<oasis:entry colname="4">G</oasis:entry>
<oasis:entry colname="5">C</oasis:entry>
<oasis:entry colname="6">T</oasis:entry>
<oasis:entry colname="7">Pu</oasis:entry>
<oasis:entry colname="8">Py </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">0 </oasis:entry>
<oasis:entry colname="2">16 </oasis:entry>
<oasis:entry colname="3">18.5 </oasis:entry>
<oasis:entry colname="4">32.9 </oasis:entry>
<oasis:entry colname="5">22.4 </oasis:entry>
<oasis:entry colname="6">26.2 </oasis:entry>
<oasis:entry colname="7">51.4 </oasis:entry>
<oasis:entry colname="8">48.6 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">4 </oasis:entry>
<oasis:entry colname="2">24 </oasis:entry>
<oasis:entry colname="3">16.2 </oasis:entry>
<oasis:entry colname="4">13.1 </oasis:entry>
<oasis:entry colname="5">35.9 </oasis:entry>
<oasis:entry colname="6">34.8 </oasis:entry>
<oasis:entry colname="7">29.3 </oasis:entry>
<oasis:entry colname="8">70.7 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">6 </oasis:entry>
<oasis:entry colname="2">13 </oasis:entry>
<oasis:entry colname="3">11.2 </oasis:entry>
<oasis:entry colname="4">16.0 </oasis:entry>
<oasis:entry colname="5">41.7 </oasis:entry>
<oasis:entry colname="6">31.1 </oasis:entry>
<oasis:entry colname="7">27.2 </oasis:entry>
<oasis:entry colname="8">72.8 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">8 </oasis:entry>
<oasis:entry colname="2">36 </oasis:entry>
<oasis:entry colname="3">9.2 </oasis:entry>
<oasis:entry colname="4">49.8 </oasis:entry>
<oasis:entry colname="5">19.2 </oasis:entry>
<oasis:entry colname="6">21.8 </oasis:entry>
<oasis:entry colname="7">59.0 </oasis:entry>
<oasis:entry colname="8">41.0</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
</table-wrap>
</p>
<p>
<italic toggle="yes">G5p Binds Differently to I-3 at 10 and 200 mM NaCl.</italic>
In initial experiments to determine the binding affinity of g5p for I-3, I-3 titrations with g5p were analyzed by EMSA. The I-3 (1 μM) was
<sup>32</sup>
P-labeled at the 5‘ end and incubated with increasing concentrations (0 to 21 μM) of g5p in 10 and 200 mM NaCl at 37 °C (Figure
<xref rid="bi010109zf00001"></xref>
). At 10 mM NaCl, one band of complex appeared (Figure
<xref rid="bi010109zf00001"></xref>
A). Since only a minor amount of radioactivity (≤10%) appeared between the complexed and free DNA bands, this binding was approximately all-or-none, reflecting the high cooperativity of g5p. Because one band of complexed I-3 persisted throughout the titration, it was identified as a saturated complex. A slight retardation in the mobility of the saturated complex was always observed in the presence of excess g5p, as shown in lane 10 of Figure
<xref rid="bi010109zf00001"></xref>
A. This possibly was due to a well-known switch in binding mode from
<italic toggle="yes">n</italic>
= 4 to
<italic toggle="yes">n</italic>
= 3 in the presence of excess g5p (
<italic toggle="yes">
<xref rid="bi010109zb00006" ref-type="bibr"></xref>
</italic>
).
<fig id="bi010109zf00001" position="float" orientation="portrait">
<label>1</label>
<caption>
<p>EMSA of g5p titrations of I-3 in 10 and 200 mM NaCl.
<sup>32</sup>
P-labeled I-3 (1 μM) was titrated at 37 °C with increasing concentrations of g5p in (A) 10 mM NaCl or (B) 200 mM NaCl. Samples were subjected to 2.5% agarose gel electrophoresis in TAE buffer. The gels were fixed, dried, and analyzed as described in Experimental Procedures. The concentrations of g5p were (from left to right in both panels) 0, 1.4, 2.8, 4.2, 5.6, 8.4, 11.2, 14, 16.8, and 21 μM (per monomer). 14 μM of g5p (lane 8) was a concentration theoretically sufficient to saturate I-3 in the
<italic toggle="yes">n</italic>
= 4 binding mode. That is, the [protein monomer]/[nucleotide] ratio was P/N = 0.25 in lane 8.</p>
</caption>
<graphic xlink:href="bi010109zf00001.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>At 200 mM NaCl, the salt concentration at which SELEX selection was performed, we were surprised to observe an additional band (band 2) of complex that was formed at low g5p concentrations (Figure
<xref rid="bi010109zf00001"></xref>
B). The band 2 complex appeared prior to the appearance of the saturated (band 1) complex (Figure
<xref rid="bi010109zf00001"></xref>
B, lane 2), reached a plateau in the middle of the titration (lanes 4−6), and essentially disappeared before the end of titration (lane 8). The concentration of g5p in lane 8 was sufficient to saturate the I-3 in an
<italic toggle="yes">n</italic>
= 4 binding mode. Therefore, the band 2 complex appeared to be an intermediate to the formation of a saturated band 1 complex. Since the intermediate complex was not saturated with g5p, we designate it an initiation complex. </p>
<p>
<italic toggle="yes">Salt Effects on g5p-Binding Affinity of I-3.</italic>
That the selected DNA sequence I-3 could form different complexes with g5p at different salt concentrations was unusual. The binding affinity of g5p for I-3 was >100-fold higher at 200 mM NaCl than at 10 mM NaCl, whereas the affinity of g5p for PV-58 was slightly reduced at the higher salt concentration (Table
<xref rid="bi010109zt00003"></xref>
). These results, combined with the results in Figure
<xref rid="bi010109zf00001"></xref>
, suggested that the high affinity of g5p for I-3 was achieved through the formation of the initiation complex at 200 mM NaCl.
<table-wrap id="bi010109zt00003" position="float" orientation="portrait">
<label>3</label>
<caption>
<p>Apparent Binding Affinities of the g5p Dimer for I-3 and PV-58 in 10 and 200 mM NaCl</p>
</caption>
<oasis:table colsep="2" rowsep="2">
<oasis:tgroup cols="5">
<oasis:colspec colnum="1" colname="1"></oasis:colspec>
<oasis:colspec colnum="2" colname="2"></oasis:colspec>
<oasis:colspec colnum="3" colname="3"></oasis:colspec>
<oasis:colspec colnum="4" colname="4"></oasis:colspec>
<oasis:colspec colnum="5" colname="5"></oasis:colspec>
<oasis:tbody>
<oasis:row>
<oasis:entry colname="1"></oasis:entry>
<oasis:entry namest="2" nameend="3">I-3</oasis:entry>
<oasis:entry namest="4" nameend="5">PV-58</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">NaCl</oasis:entry>
<oasis:entry colname="2">10 mM</oasis:entry>
<oasis:entry colname="3">200 mM</oasis:entry>
<oasis:entry colname="4">10 mM</oasis:entry>
<oasis:entry colname="5">200 mM </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">
<sub>app </sub>
 (× 10
<sup>-5</sup>
 M
<sup>-1</sup>
) </oasis:entry>
<oasis:entry colname="2">3.0 ± 0.7
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
</oasis:entry>
<oasis:entry colname="3">>300
<italic toggle="yes">
<sup>b</sup>
</italic>
<sup></sup>
</oasis:entry>
<oasis:entry colname="4">2.4 ± 0.2
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
</oasis:entry>
<oasis:entry colname="5">2.1 ± 0.1
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
<table-wrap-foot>
<p>
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
 Values were obtained from EMSA titrations; see Experimental Procedures. Data are the averages of two independent experiments. Errors are the range of values from the two experiments.
<italic toggle="yes">
<sup>b</sup>
</italic>
<sup></sup>
 This is a minimal value and was estimated from the concentration of PV-58 needed to dissociate 50% of the g5p•I-3 band 1 complex in a competition experiment in 200 mM NaCl.</p>
</table-wrap-foot>
</table-wrap>
</p>
<p>EMSA was used to further explore the salt effects on the binding affinity of g5p for I-3. The
<sup>32</sup>
P-labeled I-3 was incubated with g5p and with increasing concentrations of NaCl in the presence or absence of an unlabeled competitor, I-7 (Figure
<xref rid="bi010109zf00002"></xref>
). I-7 was the most pyrimidine-rich sequence obtained from the eighth round of SELEX; Table
<xref rid="bi010109zt00001"></xref>
. As shown in Figure
<xref rid="bi010109zf00002"></xref>
, the competitiveness of I-7 for g5p binding decreased with increasing concentrations of NaCl. Moreover, the initiation complex (band 2) only appeared when the NaCl concentration was ≥ 50 mM. Therefore, the g5p-binding affinity of I-3 was salt-dependent, and the formation of the initiation complex was correlated with higher affinity binding, relative to the pyrimidine-rich sequence I-7, at higher salt concentrations.
<fig id="bi010109zf00002" position="float" orientation="portrait">
<label>2</label>
<caption>
<p>Effects of NaCl concentration on g5p affinity for I-3. (A) EMSA of
<sup>32</sup>
P-labeled I-3 (1 μM) that was incubated with 14 μM of g5p at 37 °C for 15 min in the presence (lanes 2, 4, 6, and 8) or absence (lanes 1, 3, 5, and 7) of a competitor (2 μM of I-7). The NaCl concentrations during the incubation were 10, 50, 100, and 200 mM, as shown at the bottom of the figure. Gels were run and analyzed as for Figure
<xref rid="bi010109zf00001"></xref>
. The band 2 complex appeared under competitive conditions in which NaCl concentrations were at least 50 mM (lanes 4, 6, and 8). (B) Chart showing the relative percentages of band 1 and band 2 complexes in lanes 2, 4, 6, and 8. The percentages were normalized to lanes 1, 3, 5, and 7, respectively. The data were the averages of two independent experiments, except that only one experiment was performed at 100 mM NaCl. The error bars show the range of values from the two experiments.</p>
</caption>
<graphic xlink:href="bi010109zf00002.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>
<italic toggle="yes">CD Titrations of I-3 with g5p at 10 and 200 mM NaCl.</italic>
CD titrations were used to further characterize the g5p-binding properties of I-3 at 10 and 200 mM NaCl at 37 °C. As shown in Figure
<xref rid="bi010109zf00003"></xref>
A, the free I-3 (solid line) in 10 mM NaCl showed a typical CD spectrum of single stranded DNA, and the spectral changes above 245 nm upon addition of g5p were monotonic and were similar to those found for titrations of other ssDNAs with g5p at low salt concentrations (
<italic toggle="yes">
<xref rid="bi010109zb00036" ref-type="bibr"></xref>
</italic>
). The end point of this titration was at a P/N ratio of 0.25−0.34 (one g5p monomer per 4 to 3 nucleotides; Figure
<xref rid="bi010109zf00003"></xref>
A, inset).
<fig id="bi010109zf00003" position="float" orientation="portrait">
<label>3</label>
<caption>
<p>CD spectra of the full-length and truncated I-3. The full-length I-3 (about 1 μM strand concentration) was titrated with g5p in 10 mM NaCl (A) or 200 mM NaCl (B) at 37 °C. Representative spectra taken during the titrations are shown. (A) CD spectra at 10 mM NaCl of free I-3 () and g5p·I-3 complexes at P/N ratios of 0.07 (○), 0.15 (▪), 0.25 (▵), and 0.34 (▾). (B) CD spectra at 200 mM NaCl of free I-3 () and g5p·I-3 complexes at P/N ratios of 0.02 (○), 0.06 (▪), 0.14 (▵), and 0.29 (▾). Insets show CD values at 260 nm as a function of P/N ratio. (C) CD spectra of the truncated I-3 in 10 mM KCl (○), 200 mM KCl (▪), 10 mM NaCl (▵), and 200 mM NaCl (▾) at 37 °C. All spectra are plotted as ε
<sub>L</sub>
− ε
<sub>R</sub>
in units of M
<sup>-1</sup>
cm
<sup>-1</sup>
, per mole of nucleotide, with values on the left-hand scales. In addition, the right-hand scale for panel C shows nucleotide molar values reduced by a factor of 26/58, which allows a more direct comparison of band magnitudes for the truncated I-3 sequence (panel C) and the full I-3 sequence (panel B) when both are at 200 mM NaCl.</p>
</caption>
<graphic xlink:href="bi010109zf00003.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>At 200 mM NaCl, CD titrations showed two modes of binding, one at P/N ratios < 0.1 (less than one g5p monomer per 10 nucleotides), followed by the stoichiometric saturation of I-3 at a P/N ratio close to 0.25 (one g5p monomer per 4 nucleotides; Figure
<xref rid="bi010109zf00003"></xref>
B, inset). These binding modes were consistent with the results of EMSA (see Figure
<xref rid="bi010109zf00001"></xref>
) and with the formation of the initiation complex at low g5p concentrations (smaller P/N ratios), followed by the formation of the saturated complex with increasing concentrations of g5p (larger P/N ratios). In addition, the spectrum of free I-3 in 200 mM NaCl showed two positive bands at about 260 and 290 nm (see Figure
<xref rid="bi010109zf00003"></xref>
B, solid line). Since there are four copies of telomeric and telomere-like sequence motifs in the variable region of I-3 (Table
<xref rid="bi010109zt00001"></xref>
), I-3 may form an intrastranded G-quartet structure (interstranded interaction was ruled out because I-3 existed in a unimolecular form; see below). Parallel G-quadruplexes have a characteristic CD spectrum with a positive band at 260−265 nm (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi010109zb00037" ref-type="bibr"></xref>
,
<xref rid="bi010109zb00038" ref-type="bibr"></xref>
</named-content>
</italic>
), while antiparallel G-quadruplexes show a positive band at 290−295 nm and a negative band close to 260 nm (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi010109zb00037" ref-type="bibr"></xref>
,
<xref rid="bi010109zb00038" ref-type="bibr"></xref>
</named-content>
</italic>
). Therefore, unbound I-3 in 200 mM NaCl showed a combination of the CD spectral features of two types of G-quadruplexes. The overall spectrum of free I-3 was most like that previously reported for an
<italic toggle="yes">Oxytricha </italic>
(T
<sub>4</sub>
G
<sub>4</sub>
)
<sub>2</sub>
hairpin (
<italic toggle="yes">
<xref rid="bi010109zb00039" ref-type="bibr"></xref>
</italic>
). </p>
<p>These two positive CD bands were present, but with different intensities, when I-3 was saturated with g5p (see Figure
<xref rid="bi010109zf00003"></xref>
B, P/N = 0.29), suggesting that the overall structure of I-3 was not substantially altered by g5p binding. </p>
<p>
<italic toggle="yes">CD Spectra of a Truncated I-3 Sequence.</italic>
To further test whether the G-rich central segment could be responsible for the CD spectral features of I-3 in 200 mM NaCl, CD spectra were obtained for a truncated I-3 sequence (5‘-GGGGTCAGGCTGGGGTTGTGCAGGTC-3‘), denoted I-3c26. This sequence consisted of only the central 26 nucleotides of I-3 and contained 14 G's (see Table
<xref rid="bi010109zt00001"></xref>
). CD spectra of I-3c26 displayed large changes as the NaCl concentration was increased from 10 to 200 mM. At 200 mM NaCl, I-3c26 acquired CD bands at about 255 and 292 nm (Figure
<xref rid="bi010109zf00003"></xref>
C, solid triangles) that were close to those of the full-length I-3 under the same conditions (Figure
<xref rid="bi010109zf00003"></xref>
B, solid line). The magnitudes of the positive CD bands of I-3 and I-3c26 were also in reasonable agreement (ranging from 0.9 to 1.4 M
<sup>-1</sup>
cm
<sup>-1</sup>
), if the reduced number of nucleotides in the truncated I-3c26 sequence was taken into account by multiplying the I-3c26 spectrum by a factor of 26/58. (Compare the left-hand scale of Figure
<xref rid="bi010109zf00003"></xref>
B with the right-hand scale of Figure
<xref rid="bi010109zf00003"></xref>
C). These CD data supported the view that the CD spectrum of the I-3 sequence in 200 mM NaCl was dominated by G-quartets within the central sequence of 26 nucleotides. </p>
<p>The I-3c26 sequence can potentially form a variety of structures containing G-quartets, depending on which G's are involved. It is also known that G-quadruplex structures are influenced by whether the cation is Na
<sup>+</sup>
or K
<sup>+</sup>
(
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi010109zb00040" ref-type="bibr"></xref>
,
<xref rid="bi010109zb00041" ref-type="bibr"></xref>
</named-content>
</italic>
). Intramolecular chair-type structures appear to require the presence of potassium (
<italic toggle="yes">
<xref rid="bi010109zb00041" ref-type="bibr"></xref>
</italic>
). As I-3c26 was titrated from 10 to 200 mM KCl, the 292-nm positive band increased, a negative band appeared at 260 nm, and a small positive band appeared above 240 nm (Figure
<xref rid="bi010109zf00003"></xref>
C). These features were remarkably similar to those in the CD spectrum of a thrombin binding aptamer in 25 mM KCl (
<italic toggle="yes">
<xref rid="bi010109zb00042" ref-type="bibr"></xref>
</italic>
), which is known to fold into an intramolecular chair-form G-quadruplex in which adjacent guanosines along and between strands alternate in their glycosyl (
<italic toggle="yes">syn</italic>
or
<italic toggle="yes">anti</italic>
) conformations (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi010109zb00028" ref-type="bibr"></xref>
,
<xref rid="bi010109zb00029" ref-type="bibr"></xref>
</named-content>
</italic>
). This provided strong evidence that I-3c26 can indeed form a G-quadruplex structure that is probably an intramolecular chair fold. The specific G-quadruplex fold that might be formed by I-3c26 and the full-length I-3 in the presence of Na
<sup>+</sup>
ion is not known, but it could conceivably be an intramolecular basket-type fold. The positive 260 nm CD band in the presence of Na
<sup>+</sup>
could then have its origin in the nonalternating arrangement of glycosyl bonds within the G-tetramers in such a fold (
<italic toggle="yes">
<xref rid="bi010109zb00028" ref-type="bibr"></xref>
</italic>
) and/or in a sodium-dependent stacking of nontetrameric G's. </p>
<p>
<italic toggle="yes">Stoichiometry of the Initiation Complex.</italic>
Primer-annealing experiments were performed to determine the strand stoichiometry of I-3 in the initiation complex. The method was similar to that used by others to study G-quartet complexes (
<italic toggle="yes">
<xref rid="bi010109zb00043" ref-type="bibr"></xref>
</italic>
).
<sup>32</sup>
P-labeled I-3 was incubated with various concentrations of the 16-mer primer that was complementary to the 3‘ end of I-3. If I-3 existed as a unimolecular form, one retarded band with I-3 plus an annealed primer, in addition to the primer-free band, should appear during gel electrophoresis. If I-3 existed in an n-stranded form, up to n bands, in addition to the primer-free band, could appear during electrophoresis. Figure
<xref rid="bi010109zf00004"></xref>
A, lanes 1−4, shows that only one additional band was detected when the 3‘ primer was annealed to free I-3.
<fig id="bi010109zf00004" position="float" orientation="portrait">
<label>4</label>
<caption>
<p>Stoichiometry of free and g5p-complexed I-3. (A) Primer annealing of free and g5p-complexed I-3. The 3‘ primer (0, 0.5, 2, and 4 μM, as shown at the bottom of the figure) was incubated with 1 μM of
<sup>32</sup>
P-labeled free I-3 (lanes 1−4) or I-3 complexed with 7 μM g5p (lanes 5−8) in 200 mM NaCl buffer. Reaction mixtures were resolved in 12% polyacrylamide gels in TBE buffer. The gels were then fixed, dried, and analyzed. Details are given in Experimental Procedures. (B) Serial dilution of free I-3. Four-fold dilutions of I-3 were made in 200 mM NaCl (lanes 1−5) and 10 mM NaCl (lanes 6−10). A trace amount of
<sup>32</sup>
P-labeled I-3 was added to each dilution. The final I-3 concentrations are shown at the bottom of the figure. Electrophoresis was performed as for panel A.</p>
</caption>
<graphic xlink:href="bi010109zf00004.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>Figure
<xref rid="bi010109zf00004"></xref>
A, lanes 5−8, further shows that, after the addition of g5p to form an initiation band 2 complex, only one additional band 2 complex appeared upon addition of the 3‘ primer. This strongly suggested that free I-3 existed in a unimolecular form in a solution of 200 mM NaCl and that the intermediate with g5p contained one I-3 strand with a free 3‘ end. The order of addition of the primer and g5p to I-3 was not important (data not shown), further suggesting that the primer-annealing and g5p-binding sites on I-3 were not overlapping and that about 16 nucleotides at the 3‘ end of I-3 were not involved in g5p binding to form the initiation complex. In other experiments, mixtures of I-3 and various concentrations of the 3‘ primer were pretreated by heating to 95 °C and slow cooling to room temperature. The results of these experiments (not shown) were essentially identical to lanes 1−4 of Figure
<xref rid="bi010109zf00004"></xref>
A. Therefore, it was unlikely that two or more I-3 strands folded asymmetrically so that only one 3‘ end was accessible. Finally, gel electrophoresis of serial dilutions of I-3 provided additional evidence that I-3 existed in a unimolecular form at both low and high sodium concentrations. As shown in Figure
<xref rid="bi010109zf00004"></xref>
B, when diluted over a 250-fold concentration range of 4 to 0.016 μM in either 10 or 200 mM NaCl, I-3 migrated as a single band in a native gel. </p>
<p>The molar ratio of protein to DNA in the intermediate band 2 complex was determined by extraction of the band 2 complex, performing SDS−PAGE, and quantitating the amount of stained protein and labeled I-3. Results are tabulated in Table
<xref rid="bi010109zt00004"></xref>
. Together with the primer-annealing data, these data revealed that the initiation complex consisted of one I-3 strand and about three g5p dimers (six monomers). In contrast, the saturation complex, formed at 10 or 200 mM NaCl, had a stoichiometry that averaged about 15 g5p monomers per I-3 strand (Table
<xref rid="bi010109zt00004"></xref>
), consistent with a g5p binding mode of
<italic toggle="yes">n</italic>
= 4.
<table-wrap id="bi010109zt00004" position="float" orientation="portrait">
<label>4</label>
<caption>
<p>Protein/DNA Stoichiometries of the Initiation and Saturation Complexes</p>
</caption>
<oasis:table colsep="2" rowsep="2">
<oasis:tgroup cols="4">
<oasis:colspec colnum="1" colname="1"></oasis:colspec>
<oasis:colspec colnum="2" colname="2"></oasis:colspec>
<oasis:colspec colnum="3" colname="3"></oasis:colspec>
<oasis:colspec colnum="4" colname="4"></oasis:colspec>
<oasis:tbody>
<oasis:row>
<oasis:entry namest="1" nameend="1"></oasis:entry>
<oasis:entry namest="2" nameend="2">saturation complex (10 mM NaCl)</oasis:entry>
<oasis:entry namest="3" nameend="3">initiation complex (200 mM NaCl)</oasis:entry>
<oasis:entry namest="4" nameend="4">saturation complex (200 mM NaCl) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">g5p monomer per I-3 strand
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
</oasis:entry>
<oasis:entry colname="2">15.5 ± 0.6 </oasis:entry>
<oasis:entry colname="3">6.4 ± 1.2 </oasis:entry>
<oasis:entry colname="4">14.8 ± 2.8</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
<table-wrap-foot>
<p>
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
 Data are shown as mean ± SD from at least three measurements.</p>
</table-wrap-foot>
</table-wrap>
</p>
<p>
<italic toggle="yes">The g5p-Binding Sites within the Initiation Complex.</italic>
The above results showed that g5p did not saturate the whole I-3 sequence within the initiation complex. Nuclease S1 footprinting was used to investigate whether g5p bound directly to the central G-rich region of the selected sequence or whether the g5p bound to and protected the 5‘ and 3‘ primer ends of some type of folded I-3 structure that was stabilized by the G-rich center. To avoid interference by the band 1 complex, conditions for complex formation were chosen such that the initiation complex was formed but the saturated complex was not formed, i.e., the conditions were the same as in lane 2 of Figure
<xref rid="bi010109zf00001"></xref>
B. Results shown in Figure
<xref rid="bi010109zf00005"></xref>
established that the dominant g5p protection was directly within the central G-rich region, extending from nucleotide 17 to 42. With the exception of nucleotide 35, the most highly protected nucleotides were all G's and included two G's in the 3‘ region (Figure
<xref rid="bi010109zf00005"></xref>
, horizontal bars).
<fig id="bi010109zf00005" position="float" orientation="portrait">
<label>5</label>
<caption>
<p>Quantitative nuclease S1 footprinting. The 5‘ end
<sup>32</sup>
P-labeled I-3 (1 μM) was preincubated with or without 1.4 μM g5p in 200 mM NaCl at 37 °C for 15 min. After treatment with nuclease S1 for 1 min, the mixtures were resolved in 12% denaturing polyacrylamide gels. Quantitative analysis was carried out and the percent protection was plotted as a function of base position of I-3. (See Experimental Procedures for details.) The percent protection is from the average of three independent experiments and standard deviations are shown. The horizontal bars on the top indicate nucleotides that were protected by at least half of the maximum protection (which was 47%).</p>
</caption>
<graphic xlink:href="bi010109zf00005.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>
<italic toggle="yes">End Boundaries of I-3 in the Initiation Complex.</italic>
Nuclease S1 footprinting (Figure
<xref rid="bi010109zf00005"></xref>
) suggested that the variable region of I-3 contained the actual sites bound by g5p to form the initiation complex. However, protection from nuclease S1 digestion could partially be an indirect effect of g5p binding. Therefore, the sequence boundaries of the variable region that were required for formation of the initiation complex were more exactly defined. To determine the 3‘-end boundary, I-3 was
<sup>32</sup>
P-labeled at the 5‘ end and partially digested by nuclease S1 to generate fragments of variable lengths that extended from a fixed, labeled 5‘ end. When incubated at 200 mM NaCl with decreasing concentrations of g5p, fragments that had reduced g5p-binding affinity were not bound and could not be recovered by filter binding (see Experimental Procedures). The left lane of Figure
<xref rid="bi010109zf00006"></xref>
A shows that, as expected, a large range of sequence lengths, including those that were truncated into the variable region, were isolated at saturating concentrations of g5p. At lower concentrations of g5p at which formation of the initiation complex dominated, the lengths of DNA that were isolated (and that could be detected) were longer, representing the loss of successive nucleotides from the 3‘ unlabeled end. A discrete boundary was identified, between nucleotides T41 and C42 at 7 μM g5p, or between C42 and A43 at lower g5p concentrations, that represented the 3‘ end of the sequence needed to form the initiation complex. This boundary was within a nucleotide of the junction between the variable and 3‘ primer region, which was between C42 and A43. The clear identification of this 3‘ boundary indicated that G47 and G48, which were relatively protected in the nuclease S1 footprinting experiments (Figure
<xref rid="bi010109zf00005"></xref>
), were not part of the actual binding site and were possibly indirectly protected by the bound g5p.
<fig id="bi010109zf00006" position="float" orientation="portrait">
<label>6</label>
<caption>
<p>End boundaries of the I-3 sequence in the initiation complex with g5p. I-3 was labeled (A) at the 5‘ end for determining the 3‘-end boundary, and (B) at the 3‘ end for determining the 5‘-end boundary. Labeled I-3 was partially digested by nuclease S1 and incubated with various concentrations of g5p as shown on the figure. The fragments that could form complexes with g5p were selected by membrane filtration and resolved on 12% denaturing polyacrylamide gels, as described in Experimental Procedures. Bands were assigned, and the variable and two primer regions were identified and are marked on the figure. The nucleotide marking a given band is the last nucleotide (farthest from the labeled end) that is on that fragment.</p>
</caption>
<graphic xlink:href="bi010109zf00006.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>In the reverse experiment, I-3 was labeled at the 3‘ end to determine the 5‘-end boundary. Figure
<xref rid="bi010109zf00006"></xref>
B shows that there was also a discrete 5‘ boundary, between T16 and G17 at 3.5−14 μM g5p, or between T16 and T15 at 0.9 μM g5p, where the former was at the junction between the variable and 5‘ primer region. Therefore, the boundary experiments confirmed that g5p bound directly to the variable region to form the initiation complex and that the minimum motif for forming an initiation complex with g5p essentially encompassed the entire variable sequence between the junctions with the two primer regions. </p>
</sec>
<sec id="d7e959">
<title>Discussion</title>
<p>
<italic toggle="yes">SELEX of a Cooperative ssDNA Binding Protein.</italic>
SELEX has been successfully used to isolate, from an ssDNA library of 58-mers (PV-58), those sequences that bind g5p with high-affinity under physiologically relevant conditions (200 mM NaCl, 37 °C, and pH 7.4). The variable region of PV-58 molecules consisted of the central 26 nucleotides. The selection of sequences by g5p was based on the formation of a discrete electrophoretic band of apparently saturated g5p•ssDNA complexes during competitive binding of PV-58 sequences to a limited amount of g5p. Owing to its high cooperativity, g5p will usually bind to and saturate every site on most PV-58 sequences, including the two flanking 16-mer constant sequences. In terms of applying SELEX, this behavior is the major difference between cooperative DNA binding proteins (such as g5p) and specific DNA-binding proteins. The latter type of protein generally binds with one protein molecule per DNA strand, and the binding site is usually selected from and located within the variable region, although part of the primer sequence can be involved in binding (
<italic toggle="yes">
<xref rid="bi010109zb00030" ref-type="bibr"></xref>
</italic>
). Given the fact that the binding site for g5p is relatively small (three to four nucleotides per g5p monomer;
<italic toggle="yes">6</italic>
), the stretch of 26 selectable nucleotides in the central, variable region of PV-58 was apparently long enough to create a structured site that favored the initial binding of several g5p dimers. Thus, the cooperative binding nature of g5p, which led to subsequent saturation of the constant sequences, did not prevent the selection of sequences that bound with high affinity. </p>
<p>
<italic toggle="yes">Characterization of an I-3 Selected Sequence and an Initiation Complex.</italic>
After eight rounds of selection, most SELEX-derived sequences for g5p binding were G-rich and had one or more similar motifs such as CPuGGPy, TPuGGGPy, and PyPuPuGGGPy (see Table
<xref rid="bi010109zt00001"></xref>
). This was surprising because g5p is well-known to bind with higher affinity to synthetic oligonucleotides that are pyrimidine-rich than to those that are purine-rich (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi010109zb00009" ref-type="bibr"></xref>
,
<xref rid="bi010109zb00010" ref-type="bibr"></xref>
</named-content>
</italic>
). However, analyses of the cloned sequences from intermediate rounds of selection showed that the selected G-rich sequences were finally selected from larger pools of intermediate sequences that were indeed pyrimidine rich (Table
<xref rid="bi010109zt00002"></xref>
). In addition, under the selection conditions of 200 mM NaCl and 37 °C, the g5p-binding affinities for ssDNA sequences that are purine-rich are weakened, because the binding to purine-rich sequences is largely driven by ion release and ionic interactions. Nevertheless, for a predominant selected sequence, I-3, the g5p binding affinity was increased by over 2 orders of magnitude as compared with its averaged binding affinity to the original mixture of PV-58 sequences (Table
<xref rid="bi010109zt00003"></xref>
). </p>
<p>Titrations of I-3 with g5p were performed and monitored independently by EMSA (Figure
<xref rid="bi010109zf00001"></xref>
) and by CD spectroscopy (Figure
<xref rid="bi010109zf00003"></xref>
). The results were consistent in showing that, prior to saturation, an intermediate initiation complex was formed at 200 mM but not at 10 mM NaCl. The formation of this initiation complex appeared to be a key factor that resulted in a higher binding affinity of g5p for I-3 at 200 mM than at 10 mM NaCl (Table
<xref rid="bi010109zt00003"></xref>
). CD spectroscopy also suggested that, at 200 mM NaCl, free I-3 formed a structure, probably involving a G-quadruplex, to which, according to the data in Table
<xref rid="bi010109zt00004"></xref>
, about three g5p dimers bound to form the initiation complex. The initiation complex was apparently formed in an all-or-none fashion, because there were no intermediate bands between the free I-3 and band 2 on agarose gels (Figure
<xref rid="bi010109zf00001"></xref>
). That is, it appeared that all three g5p simultaneously bound to form a core initiation complex for further saturation. Moreover, CD spectroscopy showed that the I-3 structure was maintained largely intact within the saturated complex. </p>
<p>The binding site for the g5p dimers that form an initiation complex was essentially identical to the 26-mer, central G-rich selected region of I-3 (Figures
<xref rid="bi010109zf00003"></xref>
,
<xref rid="bi010109zf00005"></xref>
, and 6). Our knowledge about the initiation structure is illustrated in Figure
<xref rid="bi010109zf00007"></xref>
. One I-3 molecule is involved. The central 26-mer (nucleotides 17−42) is G-rich, and this sequence has the potential to be folded into one of several unimolecular G-quadruplexes, such as the chair form described for the thrombin aptamer in the presence of K
<sup>+</sup>
(
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi010109zb00028" ref-type="bibr"></xref>
,
<xref rid="bi010109zb00029" ref-type="bibr"></xref>
</named-content>
</italic>
). Although the structure of I-3 in the presence of Na
<sup>+</sup>
is not known, it is not likely to be a simple chair G-quadruplex (Figure
<xref rid="bi010109zf00003"></xref>
). Three g5p dimers bind directly to this central region to form an initiation complex that migrates as “band 2” in EMSA experiments. We assume that the 3‘ and 5‘ primer ends are juxtaposed in an antiparallel fashion for subsequent saturation by additional g5p dimers (which have rotationally symmetric binding sites) to form the “band 1” complex. A key point is that the putative G-quadruplex structure may not only stabilize a desirable template for binding, but the structure itself appears to be the actual initial g5p binding site.
<fig id="bi010109zf00007" position="float" orientation="portrait">
<label>7</label>
<caption>
<p>Schematic of the alignment of the I-3 sequence when complexed with g5p at 200 mM NaCl. There are two major regions to the structure. Region (1) consists of nucleotides 16−42 and is essentially identical with the selected G-rich variable region. This region may form a structure by folding into a unimolecular G-quadruplex. About three g5p dimers bind directly to this region to form the band 2 initiation complex detected by EMSA. The shaded bar highlights the nucleotides that are at the 3‘- and 5‘-end boundaries. Region (2) consists of the 5‘ and 3‘ primer sequences. These presumably are oriented in an antiparallel fashion and provide binding sites that are subsequently saturated to form the band 1 complex in EMSA experiments.</p>
</caption>
<graphic xlink:href="bi010109zf00007.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>
<italic toggle="yes">Biological Relevance.</italic>
The abilities of Ff g5p to form both a cooperatively saturated complex through nonspecific binding and an unsaturated complex through specific binding correspond to the biological functions of g5p in sequestering the viral genome and regulating the translation of viral mRNAs, respectively. The g5p is known to saturate the nascent Ff ssDNA genome for phage genome packaging (
<italic toggle="yes">
<xref rid="bi010109zb00001" ref-type="bibr"></xref>
</italic>
). In this sense, g5p acts as a non-sequence-specific ssDNA binding protein and binds in a cooperative manner, even though the nucleation process is still unknown. On the other hand, g5p is also involved in translational regulation of some viral mRNAs, such as gene 2 mRNA, by binding to a specific sequence in the 5‘-end untranslated region of the mRNA (see below). The behavior of g5p binding to the SELEX-derived sequences can provide insight into how cooperative interactions are initiated under physiological conditions and into the types of sequences and/or structures of DNA or RNA that might be specific binding sites. </p>
<p>In addition to the in vitro-selected I-3 sequence, a naturally occurring sequence has also been found to form an unsaturated intermediate complex with g5p. Michel and Zinder (
<italic toggle="yes">
<xref rid="bi010109zb00017" ref-type="bibr"></xref>
</italic>
) showed that the first 16 nucleotides (5‘-GUUUUUGGGGCUUUUC-3‘) of the Ff gene 2 mRNA leader sequence is required for g5p-mediated translational repression of this mRNA and that an RNA (208−211 bases in length) containing this leader sequence forms an intermediate complex in gel electrophoresis before a saturated complex is formed (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi010109zb00017" ref-type="bibr"></xref>
,
<xref rid="bi010109zb00018" ref-type="bibr"></xref>
</named-content>
</italic>
). The g5p binds to this RNA with a 10-fold higher affinity than to the control RNA. How g5p binds specifically to this sequence is still not clear, but the apparent lack of structure in this region was originally thought to be a dominant factor (
<italic toggle="yes">
<xref rid="bi010109zb00014" ref-type="bibr"></xref>
</italic>
). However, a likely tetraplex structure with a central block of G-quartets has recently been shown to form with four strands of the gene 2 leader sequence or with its DNA analogue (
<italic toggle="yes">
<xref rid="bi010109zb00044" ref-type="bibr"></xref>
</italic>
). Kneale and co-workers also demonstrated preferential binding of g5p to this structure (
<italic toggle="yes">
<xref rid="bi010109zb00045" ref-type="bibr"></xref>
</italic>
). They propose that tails of four antiparallel strands, held together by G-quartets, are separated by the right distance to occupy the two symmetry-related binding sites on a g5p dimer and thus to initiate g5p binding (
<italic toggle="yes">
<xref rid="bi010109zb00045" ref-type="bibr"></xref>
</italic>
). In their model, g5p does not bind directly to the G-quartet structure. </p>
<p>Our data with I-3 provides support for the idea that g5p prefers to bind to a structured sequence, but in a somewhat different manner than that proposed by Oliver et al. (
<italic toggle="yes">
<xref rid="bi010109zb00045" ref-type="bibr"></xref>
</italic>
) for the gene 2 leader sequence. The I-3 structure is formed with only one strand (Figure
<xref rid="bi010109zf00004"></xref>
). Moreover, our data show that G
<sub>4</sub>
blocks play a direct role in the high affinity binding (Figures
<xref rid="bi010109zf00005"></xref>
and
<xref rid="bi010109zf00006"></xref>
). The conformation of I-3 in the initiation complex presumably orients two antiparallel strands (the 5‘ and 3‘ primer strands; see Figure
<xref rid="bi010109zf00007"></xref>
) to form additional g5p dimer binding sites that are subsequently saturated; however, these are not the first sites to be bound by g5p, as might be expected by analogy with the structure of the gene 2 leader sequence. </p>
<p>It remains to be seen whether the (g5p)
<sub>3</sub>
·I-3 initiation complex has a biological counterpart or whether such a complex would be formed with RNA. It is relevant to point out that an intrastrand interaction could occur between the gene 2 leader 16-mer and nearby sequences of the gene 2 mRNA to form a secondary structure. Specifically, in the gene 2 leader sequence there is another G
<sub>4</sub>
block (part of the Shine-Dalgarno sequence) that is downstream and separated from the G
<sub>4</sub>
block in the leader 16-mer by only 18 bases (
<italic toggle="yes">
<xref rid="bi010109zb00046" ref-type="bibr"></xref>
</italic>
). Interaction of these two G
<sub>4</sub>
blocks through antiparallel G:G pairing could plausibly form a structure to facilitate g5p binding. On the other hand, we found that the specific SELEX-selected motifs (such as CAGGPy and NGGGN; see Table
<xref rid="bi010109zt00001"></xref>
) occurred less frequently in the Ff genome (60 times) than in a random sequence of 6000 nucleotides (88 times) and that the motifs did not have an unusual distribution. Therefore, the biological relevance of these specific motifs within the Ff genome remains uncertain. </p>
<p>
<italic toggle="yes">Protein Binding to G-rich Sequences.</italic>
G-quartets are also found in other SELEX-derived aptamers for thrombin (
<italic toggle="yes">
<xref rid="bi010109zb00027" ref-type="bibr"></xref>
</italic>
), elastase (
<italic toggle="yes">
<xref rid="bi010109zb00047" ref-type="bibr"></xref>
</italic>
), and IgE (
<italic toggle="yes">
<xref rid="bi010109zb00048" ref-type="bibr"></xref>
</italic>
). G-rich telomere sequences are bound by α and β telomere-binding proteins and by the Cdc13p telomerase-loading protein (
<italic toggle="yes">39</italic>
,
<italic toggle="yes"> 49−51</italic>
). Human DNA topoisomerases I and II interact with G-quartet structures (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi010109zb00052" ref-type="bibr"></xref>
,
<xref rid="bi010109zb00053" ref-type="bibr"></xref>
</named-content>
</italic>
) and other proteins that interact with G-quartets have been reviewed (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi010109zb00052" ref-type="bibr"></xref>
,
<xref rid="bi010109zb00054" ref-type="bibr"></xref>
</named-content>
</italic>
). Loops on intrastrand G-quartet or hairpin structures can be the sites for target binding (
<italic toggle="yes">
<xref rid="bi010109zb00022" ref-type="bibr"></xref>
</italic>
). In the case of I-3, some of the loop nucleotides may just be responsible for connecting g5p-binding sites and positioning them in an appropriate three-dimensional conformation, since they appear not to be protected by g5p from nuclease digestion (Figure
<xref rid="bi010109zf00005"></xref>
). Nevertheless, the many examples of proteins that bind to G-rich sequences suggest that G-rich motifs selected by the g5p may have features that are recognized by other proteins, and the study of g5p•ssDNA initiation complexes could be of general importance for understanding the binding, or initiation of cooperative binding, of other single-stranded DNA-binding proteins. </p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>We are grateful to Dr. Tung-Chung Mou (University of Texas at Dallas) for generously providing purified wild-type g5p and to Dr. Andy Peek of Cytoclonal Pharmaceutics, Inc. (Dallas) for generating a random DNA sequence. We have appreciated the advice and encouragement of Drs. Larry Gold (Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO), Dennis L. Miller (University of Texas at Dallas), and Thomas C. Terwilliger (Los Alamos National Laboratory, Los Alamos, NM) throughout the course of this work. </p>
</ack>
<ref-list>
<title>References</title>
<ref id="bi010109zb00001">
<mixed-citation>
<name name-style="western">
<surname>Model</surname>
<given-names>P.</given-names>
</name>
,
<name name-style="western">
<surname>and Russel</surname>
<given-names>M.</given-names>
</name>
(1988) in
<italic toggle="yes">The Bacteriophages</italic>
(
<name name-style="western">
<surname>Calendar</surname>
<given-names>R.</given-names>
</name>
, Ed.) pp 386−390, Plenum Press, New York.</mixed-citation>
</ref>
<ref id="bi010109zb00002">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Terwilliger</surname>
<given-names>T. C.</given-names>
</name>
<source>Biochemistry</source>
<year>1996</year>
<volume>35</volume>
<fpage>16652</fpage>
<lpage>16664</lpage>
<pub-id pub-id-type="doi">10.1021/bi961050c</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00003">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Alberts</surname>
<given-names>B.</given-names>
</name>
<name name-style="western">
<surname>Frey</surname>
<given-names>L.</given-names>
</name>
<name name-style="western">
<surname>Delius</surname>
<given-names>H.</given-names>
</name>
<source>J. Mol. Biol.</source>
<year>1972</year>
<volume>68</volume>
<fpage>139</fpage>
<lpage>152</lpage>
<pub-id pub-id-type="doi">10.1016/0022-2836(72)90269-0</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00004">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Gray</surname>
<given-names>C. W.</given-names>
</name>
<source>J. Mol. Biol.</source>
<year>1989</year>
<volume>208</volume>
<fpage>57</fpage>
<lpage>64</lpage>
<pub-id pub-id-type="doi">10.1016/0022-2836(89)90087-9</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00005">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Skinner</surname>
<given-names>M. M.</given-names>
</name>
<name name-style="western">
<surname>Zhang</surname>
<given-names>H.</given-names>
</name>
<name name-style="western">
<surname>Leshnitzer</surname>
<given-names>D. H.</given-names>
</name>
<name name-style="western">
<surname>Guan</surname>
<given-names>Y.</given-names>
</name>
<name name-style="western">
<surname>Bellamy</surname>
<given-names>H.</given-names>
</name>
<name name-style="western">
<surname>Sweet</surname>
<given-names>R. A.</given-names>
</name>
<name name-style="western">
<surname>Gray</surname>
<given-names>C. W.</given-names>
</name>
<name name-style="western">
<surname>Konings</surname>
<given-names>R. N. H.</given-names>
</name>
<name name-style="western">
<surname>Wang</surname>
<given-names>A. H.-J.</given-names>
</name>
<name name-style="western">
<surname>Terwilliger</surname>
<given-names>T. C.</given-names>
</name>
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<year>1994</year>
<volume>91</volume>
<fpage>2071</fpage>
<lpage>2075</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.91.6.2071</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00006">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Kansy</surname>
<given-names>J. W.</given-names>
</name>
<name name-style="western">
<surname>Clack</surname>
<given-names>B. A.</given-names>
</name>
<name name-style="western">
<surname>Gray</surname>
<given-names>D. M.</given-names>
</name>
<source>J. Biomol. Struct. Dyn.</source>
<year>1986</year>
<volume>3</volume>
<fpage>1079</fpage>
<lpage>1110</lpage>
</element-citation>
</ref>
<ref id="bi010109zb00007">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Thompson</surname>
<given-names>T. M.</given-names>
</name>
<name name-style="western">
<surname>Mark</surname>
<given-names>B. L.</given-names>
</name>
<name name-style="western">
<surname>Gray</surname>
<given-names>C. W.</given-names>
</name>
<name name-style="western">
<surname>Terwilliger</surname>
<given-names>T. C.</given-names>
</name>
<name name-style="western">
<surname>Sreerama</surname>
<given-names>N.</given-names>
</name>
<name name-style="western">
<surname>Woody</surname>
<given-names>R. W.</given-names>
</name>
<name name-style="western">
<surname>Gray</surname>
<given-names>D. M.</given-names>
</name>
<source>Biochemistry</source>
<year>1998</year>
<volume>37</volume>
<fpage>7463</fpage>
<lpage>7477</lpage>
<pub-id pub-id-type="doi">10.1021/bi972545k</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00008">
<mixed-citation>
<name name-style="western">
<surname>Kowalczykowski</surname>
<given-names>S. C.</given-names>
</name>
,
<name name-style="western">
<surname>Bear</surname>
<given-names>D. G.</given-names>
</name>
,
<name name-style="western">
<surname>and von Hippel</surname>
<given-names>P. H.</given-names>
</name>
(1981) in
<italic toggle="yes">The Enzymes</italic>
(
<name name-style="western">
<surname>Boyer</surname>
<given-names>P. D.</given-names>
</name>
, Ed.) pp 373−444, Academic Press, New York.</mixed-citation>
</ref>
<ref id="bi010109zb00009">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Bulsink</surname>
<given-names>H.</given-names>
</name>
<name name-style="western">
<surname>Harmsen</surname>
<given-names>B. J.</given-names>
</name>
<name name-style="western">
<surname>Hilbers</surname>
<given-names>C. W.</given-names>
</name>
<source>J. Biomol. Struct. Dyn.</source>
<year>1985</year>
<volume>3</volume>
<fpage>227</fpage>
<lpage>247</lpage>
</element-citation>
</ref>
<ref id="bi010109zb00010">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Mou</surname>
<given-names>T. C.</given-names>
</name>
<name name-style="western">
<surname>Gray</surname>
<given-names>C. W.</given-names>
</name>
<name name-style="western">
<surname>Gray</surname>
<given-names>D. M.</given-names>
</name>
<source>Biophys. J.</source>
<year>1999</year>
<volume>76</volume>
<fpage>1537</fpage>
<lpage>1551</lpage>
<pub-id pub-id-type="doi">10.1016/S0006-3495(99)77313-3</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00011">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Bauer</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Smith</surname>
<given-names>G. P.</given-names>
</name>
<source>Virology</source>
<year>1988</year>
<volume>167</volume>
<fpage>166</fpage>
<lpage>175</lpage>
<pub-id pub-id-type="doi">10.1016/0042-6822(88)90066-9</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00012">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Webster</surname>
<given-names>R. E.</given-names>
</name>
<name name-style="western">
<surname>Grant</surname>
<given-names>R. A.</given-names>
</name>
<name name-style="western">
<surname>Hamilton</surname>
<given-names>L. A.</given-names>
</name>
<source>J. Mol. Biol.</source>
<year>1981</year>
<volume>152</volume>
<fpage>357</fpage>
<lpage>374</lpage>
<pub-id pub-id-type="doi">10.1016/0022-2836(81)90247-3</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00013">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Fulford</surname>
<given-names>W.</given-names>
</name>
<name name-style="western">
<surname>Model</surname>
<given-names>P.</given-names>
</name>
<source>J. Mol. Biol.</source>
<year>1988</year>
<volume>203</volume>
<fpage>39</fpage>
<lpage>48</lpage>
<pub-id pub-id-type="doi">10.1016/0022-2836(88)90089-7</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00014">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Zaman</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Smetsers</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Kaan</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Schoenmakers</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Konings</surname>
<given-names>R.</given-names>
</name>
<source>Biochim. Biophys. Acta</source>
<year>1991</year>
<volume>1089</volume>
<fpage>183</fpage>
<lpage>192</lpage>
</element-citation>
</ref>
<ref id="bi010109zb00015">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Model</surname>
<given-names>P.</given-names>
</name>
<name name-style="western">
<surname>McGill</surname>
<given-names>C.</given-names>
</name>
<name name-style="western">
<surname>Mazur</surname>
<given-names>B.</given-names>
</name>
<name name-style="western">
<surname>Fulford</surname>
<given-names>W. D.</given-names>
</name>
<source>Cell</source>
<year>1982</year>
<volume>29</volume>
<fpage>329</fpage>
<lpage>335</lpage>
<pub-id pub-id-type="doi">10.1016/0092-8674(82)90149-0</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00016">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Yen</surname>
<given-names>T. S.</given-names>
</name>
<name name-style="western">
<surname>Webster</surname>
<given-names>R. E.</given-names>
</name>
<source>Cell</source>
<year>1982</year>
<volume>29</volume>
<fpage>337</fpage>
<lpage>345</lpage>
<pub-id pub-id-type="doi">10.1016/0092-8674(82)90150-7</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00017">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Michel</surname>
<given-names>B.</given-names>
</name>
<name name-style="western">
<surname>Zinder</surname>
<given-names>N. D.</given-names>
</name>
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<year>1989</year>
<volume>86</volume>
<fpage>4002</fpage>
<lpage>4006</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.86.11.4002</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00018">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Michel</surname>
<given-names>B.</given-names>
</name>
<name name-style="western">
<surname>Zinder</surname>
<given-names>N. D.</given-names>
</name>
<source>Nucleic Acids Res.</source>
<year>1989</year>
<volume>17</volume>
<fpage>7333</fpage>
<lpage>7344</lpage>
<pub-id pub-id-type="doi">10.1093/nar/17.18.7333</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00019">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Cheng</surname>
<given-names>X.</given-names>
</name>
<name name-style="western">
<surname>Harms</surname>
<given-names>A. C.</given-names>
</name>
<name name-style="western">
<surname>Goudreau</surname>
<given-names>P. N.</given-names>
</name>
<name name-style="western">
<surname>Terwilliger</surname>
<given-names>T. C.</given-names>
</name>
<name name-style="western">
<surname>Smith</surname>
<given-names>R. D.</given-names>
</name>
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<year>1996</year>
<volume>93</volume>
<fpage>7022</fpage>
<lpage>7027</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.93.14.7022</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00020">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Tuerk</surname>
<given-names>C.</given-names>
</name>
<name name-style="western">
<surname>Gold</surname>
<given-names>L.</given-names>
</name>
<source>Science</source>
<year>1990</year>
<volume>249</volume>
<fpage>505</fpage>
<lpage>510</lpage>
<pub-id pub-id-type="doi">10.1126/science.2200121</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00021">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Ellington</surname>
<given-names>A. D.</given-names>
</name>
<name name-style="western">
<surname>Szostak</surname>
<given-names>J. W.</given-names>
</name>
<source>Nature</source>
<year>1990</year>
<volume>346</volume>
<fpage>818</fpage>
<lpage>822</lpage>
<pub-id pub-id-type="doi">10.1038/346818a0</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00022">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Gold</surname>
<given-names>L.</given-names>
</name>
<name name-style="western">
<surname>Polisky</surname>
<given-names>B.</given-names>
</name>
<name name-style="western">
<surname>Uhlenbeck</surname>
<given-names>O.</given-names>
</name>
<name name-style="western">
<surname>Yarus</surname>
<given-names>M.</given-names>
</name>
<source>Annu. Rev. Biochem.</source>
<year>1995</year>
<volume>64</volume>
<fpage>763</fpage>
<lpage>797</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.bi.64.070195.003555</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00023">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Louhan</surname>
<given-names>C. T.</given-names>
</name>
<name name-style="western">
<surname>Szostak</surname>
<given-names>J. W.</given-names>
</name>
<source>J. Am. Chem. Soc.</source>
<year>1995</year>
<volume>117</volume>
<fpage>1246</fpage>
<lpage>1257</lpage>
<pub-id pub-id-type="doi">10.1021/ja00109a008</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00024">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Bianchi</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Stansel</surname>
<given-names>R. M.</given-names>
</name>
<name name-style="western">
<surname>Fairall</surname>
<given-names>L.</given-names>
</name>
<name name-style="western">
<surname>Griffith</surname>
<given-names>J. D.</given-names>
</name>
<name name-style="western">
<surname>Rhodes</surname>
<given-names>D.</given-names>
</name>
<name name-style="western">
<surname>de Lange</surname>
<given-names>T.</given-names>
</name>
<source>EMBO J.</source>
<year>1999</year>
<volume>18</volume>
<fpage>5735</fpage>
<lpage>5744</lpage>
<pub-id pub-id-type="doi">10.1093/emboj/18.20.5735</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00025">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Hermann</surname>
<given-names>T.</given-names>
</name>
<name name-style="western">
<surname>Patel</surname>
<given-names>D. J.</given-names>
</name>
<source>Science</source>
<year>2000</year>
<volume>287</volume>
<fpage>820</fpage>
<lpage>825</lpage>
<pub-id pub-id-type="doi">10.1126/science.287.5454.820</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00026">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Wilson</surname>
<given-names>D. S.</given-names>
</name>
<name name-style="western">
<surname>Szostak</surname>
<given-names>J. W.</given-names>
</name>
<source>Ann. Rev. Biochem.</source>
<year>1999</year>
<volume>68</volume>
<fpage>611</fpage>
<lpage>647</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.biochem.68.1.611</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00027">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Bock</surname>
<given-names>L. C.</given-names>
</name>
<name name-style="western">
<surname>Griffin</surname>
<given-names>L. C.</given-names>
</name>
<name name-style="western">
<surname>Latham</surname>
<given-names>J. A.</given-names>
</name>
<name name-style="western">
<surname>Vermaas</surname>
<given-names>E. H.</given-names>
</name>
<name name-style="western">
<surname>Toole</surname>
<given-names>J. J.</given-names>
</name>
<source>Nature</source>
<year>1992</year>
<volume>355</volume>
<fpage>564</fpage>
<lpage>566</lpage>
<pub-id pub-id-type="doi">10.1038/355564a0</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00028">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Macaya</surname>
<given-names>R. F.</given-names>
</name>
<name name-style="western">
<surname>Schultze</surname>
<given-names>P.</given-names>
</name>
<name name-style="western">
<surname>Smith</surname>
<given-names>F. W.</given-names>
</name>
<name name-style="western">
<surname>Roe</surname>
<given-names>J. A.</given-names>
</name>
<name name-style="western">
<surname>Feigon</surname>
<given-names>J.</given-names>
</name>
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<year>1993</year>
<volume>90</volume>
<fpage>3745</fpage>
<lpage>3749</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.90.8.3745</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00029">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Wang</surname>
<given-names>K. Y.</given-names>
</name>
<name name-style="western">
<surname>McCurdy</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Shea</surname>
<given-names>R. G.</given-names>
</name>
<name name-style="western">
<surname>Swaminathan</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Bolton</surname>
<given-names>P. H.</given-names>
</name>
<source>Biochemistry</source>
<year>1993</year>
<volume>32</volume>
<fpage>1899</fpage>
<lpage>1904</lpage>
<pub-id pub-id-type="doi">10.1021/bi00059a003</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00030">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Schneider</surname>
<given-names>D. J.</given-names>
</name>
<name name-style="western">
<surname>Feigon</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Hostomsky</surname>
<given-names>Z.</given-names>
</name>
<name name-style="western">
<surname>Gold</surname>
<given-names>L.</given-names>
</name>
<source>Biochemistry</source>
<year>1995</year>
<volume>34</volume>
<fpage>9599</fpage>
<lpage>9610</lpage>
<pub-id pub-id-type="doi">10.1021/bi00029a037</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00031">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Laemmli</surname>
<given-names>U. K.</given-names>
</name>
<source>Nature</source>
<year>1970</year>
<volume>227</volume>
<fpage>680</fpage>
<lpage>685</lpage>
<pub-id pub-id-type="doi">10.1038/227680a0</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00032">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Steinberg</surname>
<given-names>T. H.</given-names>
</name>
<name name-style="western">
<surname>Jones</surname>
<given-names>L. J.</given-names>
</name>
<name name-style="western">
<surname>Haugland</surname>
<given-names>R. P.</given-names>
</name>
<name name-style="western">
<surname>Singer</surname>
<given-names>V. L.</given-names>
</name>
<source>Anal. Biochem.</source>
<year>1996</year>
<volume>239</volume>
<fpage>223</fpage>
<lpage>237</lpage>
<pub-id pub-id-type="doi">10.1006/abio.1996.0319</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00033">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Schneider</surname>
<given-names>T. D.</given-names>
</name>
<name name-style="western">
<surname>Stormo</surname>
<given-names>G. D.</given-names>
</name>
<name name-style="western">
<surname>Gold</surname>
<given-names>L.</given-names>
</name>
<source>J. Mol. Biol.</source>
<year>1986</year>
<volume>188</volume>
<fpage>415</fpage>
<lpage>431</lpage>
<pub-id pub-id-type="doi">10.1016/0022-2836(86)90165-8</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00034">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Blackburn</surname>
<given-names>E. H.</given-names>
</name>
<name name-style="western">
<surname>Gall</surname>
<given-names>J. G.</given-names>
</name>
<source>J. Mol. Biol.</source>
<year>1978</year>
<volume>120</volume>
<fpage>33</fpage>
<lpage>53</lpage>
<pub-id pub-id-type="doi">10.1016/0022-2836(78)90294-2</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00035">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Moyzis</surname>
<given-names>R. K.</given-names>
</name>
<name name-style="western">
<surname>Buckingham</surname>
<given-names>J. M.</given-names>
</name>
<name name-style="western">
<surname>Cram</surname>
<given-names>L. S.</given-names>
</name>
<name name-style="western">
<surname>Dani</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Deaven</surname>
<given-names>L. L.</given-names>
</name>
<name name-style="western">
<surname>Jones</surname>
<given-names>M. D.</given-names>
</name>
<name name-style="western">
<surname>Meyne</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Ratliff</surname>
<given-names>R. L.</given-names>
</name>
<name name-style="western">
<surname>Wu</surname>
<given-names>J. R.</given-names>
</name>
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<year>1988</year>
<volume>85</volume>
<fpage>6622</fpage>
<lpage>6626</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.85.18.6622</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00036">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Mark</surname>
<given-names>B. L.</given-names>
</name>
<name name-style="western">
<surname>Terwilliger</surname>
<given-names>T. C.</given-names>
</name>
<name name-style="western">
<surname>Vaughan</surname>
<given-names>M. R.</given-names>
</name>
<name name-style="western">
<surname>Gray</surname>
<given-names>D. M.</given-names>
</name>
<source>Biochemistry</source>
<year>1995</year>
<volume>34</volume>
<fpage>12854</fpage>
<lpage>12865</lpage>
<pub-id pub-id-type="doi">10.1021/bi00039a047</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00037">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Balagurumoorthy</surname>
<given-names>P.</given-names>
</name>
<name name-style="western">
<surname>Brahmachari</surname>
<given-names>S. K.</given-names>
</name>
<name name-style="western">
<surname>Mohanty</surname>
<given-names>D.</given-names>
</name>
<name name-style="western">
<surname>Bansal</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Sasisekharan</surname>
<given-names>V.</given-names>
</name>
<source>Nucleic Acids Res.</source>
<year>1992</year>
<volume>20</volume>
<fpage>4061</fpage>
<lpage>4067</lpage>
<pub-id pub-id-type="doi">10.1093/nar/20.15.4061</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00038">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Lu</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Guo</surname>
<given-names>Q.</given-names>
</name>
<name name-style="western">
<surname>Kallenbach</surname>
<given-names>N. R.</given-names>
</name>
<source>Biochemistry</source>
<year>1993</year>
<volume>32</volume>
<fpage>598</fpage>
<lpage>601</lpage>
<pub-id pub-id-type="doi">10.1021/bi00053a027</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00039">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Laporte</surname>
<given-names>L.</given-names>
</name>
<name name-style="western">
<surname>Benevides</surname>
<given-names>J. M.</given-names>
</name>
<name name-style="western">
<surname>Thomas</surname>
<given-names>G. J.</given-names>
<suffix>Jr.</suffix>
</name>
<source>Biochemistry</source>
<year>1999</year>
<volume>38</volume>
<fpage>582</fpage>
<lpage>588</lpage>
<pub-id pub-id-type="doi">10.1021/bi9819024</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00040">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Hardin</surname>
<given-names>C. C.</given-names>
</name>
<name name-style="western">
<surname>Henderson</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Watson</surname>
<given-names>T.</given-names>
</name>
<name name-style="western">
<surname>Prosser</surname>
<given-names>J. K.</given-names>
</name>
<source>Biochemistry</source>
<year>1991</year>
<volume>30</volume>
<fpage>4460</fpage>
<lpage>4472</lpage>
<pub-id pub-id-type="doi">10.1021/bi00232a013</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00041">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Marathias</surname>
<given-names>V. M.</given-names>
</name>
<name name-style="western">
<surname>Bolton</surname>
<given-names>P. H.</given-names>
</name>
<source>Nucleic Acids Res.</source>
<year>2000</year>
<volume>28</volume>
<fpage>1969</fpage>
<lpage>1977</lpage>
<pub-id pub-id-type="doi">10.1093/nar/28.9.1969</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00042">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Smirnov</surname>
<given-names>I.</given-names>
</name>
<name name-style="western">
<surname>Shafer</surname>
<given-names>R. H.</given-names>
</name>
<source>Biochemistry</source>
<year>2000</year>
<volume>39</volume>
<fpage>1462</fpage>
<lpage>1468</lpage>
<pub-id pub-id-type="doi">10.1021/bi9919044</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00043">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Venczel</surname>
<given-names>E. A.</given-names>
</name>
<name name-style="western">
<surname>Sen</surname>
<given-names>D.</given-names>
</name>
<source>Biochemistry</source>
<year>1993</year>
<volume>32</volume>
<fpage>6220</fpage>
<lpage>6228</lpage>
<pub-id pub-id-type="doi">10.1021/bi00075a015</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00044">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Oliver</surname>
<given-names>A. W.</given-names>
</name>
<name name-style="western">
<surname>Kneale</surname>
<given-names>G. G.</given-names>
</name>
<source>Biochem. J.</source>
<year>1999</year>
<volume>339</volume>
<fpage>525</fpage>
<lpage>531</lpage>
<pub-id pub-id-type="doi">10.1042/0264-6021:3390525</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00045">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Oliver</surname>
<given-names>A. W.</given-names>
</name>
<name name-style="western">
<surname>Bogdarina</surname>
<given-names>I.</given-names>
</name>
<name name-style="western">
<surname>Schroeder</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Taylor</surname>
<given-names>I. A.</given-names>
</name>
<name name-style="western">
<surname>Kneale</surname>
<given-names>G. G.</given-names>
</name>
<source>J. Mol. Biol.</source>
<year>2000</year>
<volume>301</volume>
<fpage>575</fpage>
<lpage>584</lpage>
<pub-id pub-id-type="doi">10.1006/jmbi.2000.3991</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00046">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Beck</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Zink</surname>
<given-names>B.</given-names>
</name>
<source>Gene</source>
<year>1981</year>
<volume>16</volume>
<fpage>35</fpage>
<lpage>58</lpage>
<pub-id pub-id-type="doi">10.1016/0378-1119(81)90059-7</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00047">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Lin</surname>
<given-names>Y.</given-names>
</name>
<name name-style="western">
<surname>Padmapriya</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Morden</surname>
<given-names>K. M.</given-names>
</name>
<name name-style="western">
<surname>Jayasena</surname>
<given-names>S. D.</given-names>
</name>
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<year>1995</year>
<volume>92</volume>
<fpage>11044</fpage>
<lpage>11048</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.92.24.11044</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00048">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Wiegand</surname>
<given-names>T. W.</given-names>
</name>
<name name-style="western">
<surname>Williams</surname>
<given-names>P. B.</given-names>
</name>
<name name-style="western">
<surname>Dreskin</surname>
<given-names>S. C.</given-names>
</name>
<name name-style="western">
<surname>Jouvin</surname>
<given-names>M. H.</given-names>
</name>
<name name-style="western">
<surname>Kinet</surname>
<given-names>J. P.</given-names>
</name>
<name name-style="western">
<surname>Tasset</surname>
<given-names>D.</given-names>
</name>
<source>J. Immunol.</source>
<year>1996</year>
<volume>157</volume>
<fpage>221</fpage>
<lpage>230</lpage>
</element-citation>
</ref>
<ref id="bi010109zb00049">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Fang</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Gray</surname>
<given-names>J. T.</given-names>
</name>
<name name-style="western">
<surname>Cech</surname>
<given-names>T. R.</given-names>
</name>
<source>Genes Devel.</source>
<year>1993</year>
<volume>7</volume>
<fpage>870</fpage>
<lpage>882</lpage>
<pub-id pub-id-type="doi">10.1101/gad.7.5.870</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00050">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Hemann</surname>
<given-names>M. T.</given-names>
</name>
<name name-style="western">
<surname>Greider</surname>
<given-names>C. W.</given-names>
</name>
<source>Nucleic Acids Res.</source>
<year>1999</year>
<volume>27</volume>
<fpage>3964</fpage>
<lpage>3969</lpage>
<pub-id pub-id-type="doi">10.1093/nar/27.20.3964</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00051">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Nugent</surname>
<given-names>C. I.</given-names>
</name>
<name name-style="western">
<surname>Hughes</surname>
<given-names>T. R.</given-names>
</name>
<name name-style="western">
<surname>Lue</surname>
<given-names>N. F.</given-names>
</name>
<name name-style="western">
<surname>Lundblad</surname>
<given-names>V.</given-names>
</name>
<source>Science</source>
<year>1996</year>
<volume>274</volume>
<fpage>249</fpage>
<lpage>252</lpage>
<pub-id pub-id-type="doi">10.1126/science.274.5285.249</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00052">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Arimondo</surname>
<given-names>P. B.</given-names>
</name>
<name name-style="western">
<surname>Riou</surname>
<given-names>J.-F.</given-names>
</name>
<name name-style="western">
<surname>Mergny</surname>
<given-names>J.-L.</given-names>
</name>
<name name-style="western">
<surname>Tazi</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Sun</surname>
<given-names>J.-S.</given-names>
</name>
<name name-style="western">
<surname>Garestier</surname>
<given-names>T.</given-names>
</name>
<name name-style="western">
<surname>Hélène</surname>
<given-names>C.</given-names>
</name>
<source>Nucleic Acids Res.</source>
<year>2000</year>
<volume>28</volume>
<fpage>4832</fpage>
<lpage>4838</lpage>
<pub-id pub-id-type="doi">10.1093/nar/28.24.4832</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00053">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Chung</surname>
<given-names>I. K.</given-names>
</name>
<name name-style="western">
<surname>Mehta</surname>
<given-names>V. B.</given-names>
</name>
<name name-style="western">
<surname>Spitzner</surname>
<given-names>J. R.</given-names>
</name>
<name name-style="western">
<surname>Muller</surname>
<given-names>M. T.</given-names>
</name>
<source>Nucleic Acids Res.</source>
<year>1992</year>
<volume>20</volume>
<fpage>1973</fpage>
<lpage>1977</lpage>
<pub-id pub-id-type="doi">10.1093/nar/20.8.1973</pub-id>
</element-citation>
</ref>
<ref id="bi010109zb00054">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Williamson</surname>
<given-names>J. R.</given-names>
</name>
<source>Annu. Rev. Biophys. Biomol. Struct.</source>
<year>1994</year>
<volume>23</volume>
<fpage>703</fpage>
<lpage>730</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.bb.23.060194.003415</pub-id>
</element-citation>
</ref>
<ref id="bi010109zn00001">
<mixed-citation>
<comment>Abbreviations:  aptamer, a nucleic acid sequence selected to have high affinity for a protein or other substance; CD, circular dichroism; EMSA, electrophoretic mobility shift assay; Ff phages, three closely related filamentous viruses f1, fd, and M13 that specifically infect F
<sup>+</sup>
strains of
<italic toggle="yes">Escherichia coli</italic>
; g5p, gene 5 protein; Kω, the intrinsic binding constant (K) times a cooperativity factor (ω); PCR, polymerase chain reaction; P/N, the [protein monomer]/[nucleotide] molar ratio; SDS−PAGE, sodium dodecyl sulfate−polyacrylamide gel electrophoresis; SELEX, Systematic Evolution of Ligands by Exponential enrichment; ssDNA, single-stranded DNA; TAE buffer, 40 mM Tris-acetate, pH 8.3, 1 mM EDTA; TBE buffer, 90 mM Tris-borate, pH 8.3, 2 mM EDTA; TE buffer, 10 mM Tris-HCl, pH 7.4, 1 mM EDTA.</comment>
</mixed-citation>
</ref>
</ref-list>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>SELEX Selection of High-Affinity Oligonucleotides for Bacteriophage Ff Gene 5 Protein†</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>SELEX Selection of High-Affinity Oligonucleotides for Bacteriophage Ff Gene 5 Protein†</title>
</titleInfo>
<name type="personal">
<namePart type="family">WEN</namePart>
<namePart type="given">Jin-Der</namePart>
<affiliation>Department of Molecular and Cell Biology, The University of Texas at Dallas, Box 830688, Richardson, Texas 75083-0688</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">GRAY</namePart>
<namePart type="given">Carla W.</namePart>
<affiliation>Department of Molecular and Cell Biology, The University of Texas at Dallas, Box 830688, Richardson, Texas 75083-0688</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal" displayLabel="corresp">
<namePart type="family">GRAY</namePart>
<namePart type="given">Donald M.</namePart>
<affiliation>Department of Molecular and Cell Biology, The University of Texas at Dallas, Box 830688, Richardson, Texas 75083-0688</affiliation>
<affiliation> To whom correspondence should be addressed. Department ofMolecular and Cell Biology, Mail Stop FO 3.1, The University of Texasat Dallas, Box 830688, Richardson, TX 75083-0688; (972) 883-2513;FAX (972) 883-2409; e-mail:  dongray@utdallas.edu.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>American Chemical Society</publisher>
<dateCreated encoding="w3cdtf">2001-07-12</dateCreated>
<dateIssued encoding="w3cdtf">2001-08-07</dateIssued>
<copyrightDate encoding="w3cdtf">2001</copyrightDate>
</originInfo>
<note type="footnote" ID="bi010109zAF2"> This work was performed by J.-D.W. in partial fulfillment of the requirements for the Ph.D. degree in the Department of Molecular and Cell Biology, The University of Texas at Dallas. Support was provided by grants from the Robert A. Welch Foundation (AT-503) and the Texas Advanced Technology Program (009741-0021-1999).</note>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract>The Ff gene 5 protein (g5p) is a cooperative ssDNA-binding protein. SELEX was used to identify DNA sequences favorable for g5p binding at physiological ionic strength (200 mM NaCl) and 37 °C. Sequences were selected from a library of 58-mers that contained a central variable segment of 26 nucleotides. DNA sequences selected after eight rounds of SELEX were mostly G-rich, with multiple copies of CPuGGPy, TPuGGGPy, and/or PyPuPuGGGPy motifs. This was unexpected, since g5p has higher binding affinities for polypyrimidine than for polypurine sequences. The most recurrent G-rich sequence, named I-3, was found to have g5p-binding properties that were correlated with a structural transition. At 10 mM NaCl, I-3 existed in a single-stranded form that was saturated by g5p in an all-or-none fashion. At 200 mM NaCl, I-3 existed in a structured form that showed CD spectral features of G-quadruplexes. The g5p binding affinity for this structured form of I-3 was >100-fold higher than for the single-stranded form. Moreover, the structured I-3 was saturated by g5p in two steps, the first of which was the formation of an apparent initiation complex consisting of one I-3 strand and about three g5p dimers. Nuclease S1 footprinting and other experiments showed that g5p molecules in the initiation complex at 200 mM NaCl were bound directly to the G-rich variable segment and that the structure of I-3 was retained after saturation by g5p. Thus, G-rich motifs may form structures favorable for initiation of g5p binding and also provide the actual g5p-binding sites.</abstract>
<note type="footnote" ID="bi010109zAF2"> This work was performed by J.-D.W. in partial fulfillment of the requirements for the Ph.D. degree in the Department of Molecular and Cell Biology, The University of Texas at Dallas. Support was provided by grants from the Robert A. Welch Foundation (AT-503) and the Texas Advanced Technology Program (009741-0021-1999).</note>
<relatedItem type="host">
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Biochemistry</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0006-2960</identifier>
<identifier type="eISSN">1520-4995</identifier>
<identifier type="acspubs">bi</identifier>
<identifier type="coden">BICHAW</identifier>
<identifier type="uri">pubs.acs.org/biochemistry</identifier>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>40</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>31</number>
</detail>
<extent unit="pages">
<start>9300</start>
<end>9310</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00001" displayLabel="bibbi010109zb00001">
<name type="personal">
<namePart type="family">MODEL</namePart>
<namePart type="given">P.</namePart>
</name>
<name type="personal">
<namePart type="family">AND RUSSEL</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">CALENDAR</namePart>
<namePart type="given">R.</namePart>
</name>
<titleInfo>
<title>The Bacteriophages</title>
</titleInfo>
<note type="content-in-line">ModelP., and RusselM. (1988) in The Bacteriophages (CalendarR., Ed.) pp 386−390, Plenum Press, New York.</note>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00002" displayLabel="bibbi010109zb00002">
<name type="personal">
<namePart type="family">TERWILLIGER</namePart>
<namePart type="given">T. C.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Terwilliger T. C. Biochemistry 1996 35 16652 16664 10.1021/bi961050c</note>
<identifier type="doi">10.1021/bi961050c</identifier>
<part>
<date>1996</date>
<detail type="volume">
<caption>vol.</caption>
<number>35</number>
</detail>
<extent unit="pages">
<start>16652</start>
<end>16664</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00003" displayLabel="bibbi010109zb00003">
<name type="personal">
<namePart type="family">ALBERTS</namePart>
<namePart type="given">B.</namePart>
</name>
<name type="personal">
<namePart type="family">FREY</namePart>
<namePart type="given">L.</namePart>
</name>
<name type="personal">
<namePart type="family">DELIUS</namePart>
<namePart type="given">H.</namePart>
</name>
<titleInfo>
<title>J. Mol. Biol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Alberts B. Frey L. Delius H. J. Mol. Biol. 1972 68 139 152 10.1016/0022-2836(72)90269-0</note>
<identifier type="doi">10.1016/0022-2836(72)90269-0</identifier>
<part>
<date>1972</date>
<detail type="volume">
<caption>vol.</caption>
<number>68</number>
</detail>
<extent unit="pages">
<start>139</start>
<end>152</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00004" displayLabel="bibbi010109zb00004">
<name type="personal">
<namePart type="family">GRAY</namePart>
<namePart type="given">C. W.</namePart>
</name>
<titleInfo>
<title>J. Mol. Biol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Gray C. W. J. Mol. Biol. 1989 208 57 64 10.1016/0022-2836(89)90087-9</note>
<identifier type="doi">10.1016/0022-2836(89)90087-9</identifier>
<part>
<date>1989</date>
<detail type="volume">
<caption>vol.</caption>
<number>208</number>
</detail>
<extent unit="pages">
<start>57</start>
<end>64</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00005" displayLabel="bibbi010109zb00005">
<name type="personal">
<namePart type="family">SKINNER</namePart>
<namePart type="given">M. M.</namePart>
</name>
<name type="personal">
<namePart type="family">ZHANG</namePart>
<namePart type="given">H.</namePart>
</name>
<name type="personal">
<namePart type="family">LESHNITZER</namePart>
<namePart type="given">D. H.</namePart>
</name>
<name type="personal">
<namePart type="family">GUAN</namePart>
<namePart type="given">Y.</namePart>
</name>
<name type="personal">
<namePart type="family">BELLAMY</namePart>
<namePart type="given">H.</namePart>
</name>
<name type="personal">
<namePart type="family">SWEET</namePart>
<namePart type="given">R. A.</namePart>
</name>
<name type="personal">
<namePart type="family">GRAY</namePart>
<namePart type="given">C. W.</namePart>
</name>
<name type="personal">
<namePart type="family">KONINGS</namePart>
<namePart type="given">R. N. H.</namePart>
</name>
<name type="personal">
<namePart type="family">WANG</namePart>
<namePart type="given">A. H.-J.</namePart>
</name>
<name type="personal">
<namePart type="family">TERWILLIGER</namePart>
<namePart type="given">T. C.</namePart>
</name>
<titleInfo>
<title>Proc. Natl. Acad. Sci. U.S.A.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Skinner M. M. Zhang H. Leshnitzer D. H. Guan Y. Bellamy H. Sweet R. A. Gray C. W. Konings R. N. H. Wang A. H.-J. Terwilliger T. C. Proc. Natl. Acad. Sci. U.S.A. 1994 91 2071 2075 10.1073/pnas.91.6.2071</note>
<identifier type="doi">10.1073/pnas.91.6.2071</identifier>
<part>
<date>1994</date>
<detail type="volume">
<caption>vol.</caption>
<number>91</number>
</detail>
<extent unit="pages">
<start>2071</start>
<end>2075</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00006" displayLabel="bibbi010109zb00006">
<name type="personal">
<namePart type="family">KANSY</namePart>
<namePart type="given">J. W.</namePart>
</name>
<name type="personal">
<namePart type="family">CLACK</namePart>
<namePart type="given">B. A.</namePart>
</name>
<name type="personal">
<namePart type="family">GRAY</namePart>
<namePart type="given">D. M.</namePart>
</name>
<titleInfo>
<title>J. Biomol. Struct. Dyn.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Kansy J. W. Clack B. A. Gray D. M. J. Biomol. Struct. Dyn. 1986 3 1079 1110</note>
<part>
<date>1986</date>
<detail type="volume">
<caption>vol.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>1079</start>
<end>1110</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00007" displayLabel="bibbi010109zb00007">
<name type="personal">
<namePart type="family">THOMPSON</namePart>
<namePart type="given">T. M.</namePart>
</name>
<name type="personal">
<namePart type="family">MARK</namePart>
<namePart type="given">B. L.</namePart>
</name>
<name type="personal">
<namePart type="family">GRAY</namePart>
<namePart type="given">C. W.</namePart>
</name>
<name type="personal">
<namePart type="family">TERWILLIGER</namePart>
<namePart type="given">T. C.</namePart>
</name>
<name type="personal">
<namePart type="family">SREERAMA</namePart>
<namePart type="given">N.</namePart>
</name>
<name type="personal">
<namePart type="family">WOODY</namePart>
<namePart type="given">R. W.</namePart>
</name>
<name type="personal">
<namePart type="family">GRAY</namePart>
<namePart type="given">D. M.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Thompson T. M. Mark B. L. Gray C. W. Terwilliger T. C. Sreerama N. Woody R. W. Gray D. M. Biochemistry 1998 37 7463 7477 10.1021/bi972545k</note>
<identifier type="doi">10.1021/bi972545k</identifier>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>37</number>
</detail>
<extent unit="pages">
<start>7463</start>
<end>7477</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00008" displayLabel="bibbi010109zb00008">
<name type="personal">
<namePart type="family">KOWALCZYKOWSKI</namePart>
<namePart type="given">S. C.</namePart>
</name>
<name type="personal">
<namePart type="family">BEAR</namePart>
<namePart type="given">D. G.</namePart>
</name>
<name type="personal">
<namePart type="family">AND VON HIPPEL</namePart>
<namePart type="given">P. H.</namePart>
</name>
<name type="personal">
<namePart type="family">BOYER</namePart>
<namePart type="given">P. D.</namePart>
</name>
<titleInfo>
<title>The Enzymes</title>
</titleInfo>
<note type="content-in-line">KowalczykowskiS. C., BearD. G., and von HippelP. H. (1981) in The Enzymes (BoyerP. D., Ed.) pp 373−444, Academic Press, New York.</note>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00009" displayLabel="bibbi010109zb00009">
<name type="personal">
<namePart type="family">BULSINK</namePart>
<namePart type="given">H.</namePart>
</name>
<name type="personal">
<namePart type="family">HARMSEN</namePart>
<namePart type="given">B. J.</namePart>
</name>
<name type="personal">
<namePart type="family">HILBERS</namePart>
<namePart type="given">C. W.</namePart>
</name>
<titleInfo>
<title>J. Biomol. Struct. Dyn.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Bulsink H. Harmsen B. J. Hilbers C. W. J. Biomol. Struct. Dyn. 1985 3 227 247</note>
<part>
<date>1985</date>
<detail type="volume">
<caption>vol.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>227</start>
<end>247</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00010" displayLabel="bibbi010109zb00010">
<name type="personal">
<namePart type="family">MOU</namePart>
<namePart type="given">T. C.</namePart>
</name>
<name type="personal">
<namePart type="family">GRAY</namePart>
<namePart type="given">C. W.</namePart>
</name>
<name type="personal">
<namePart type="family">GRAY</namePart>
<namePart type="given">D. M.</namePart>
</name>
<titleInfo>
<title>Biophys. J.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Mou T. C. Gray C. W. Gray D. M. Biophys. J. 1999 76 1537 1551 10.1016/S0006-3495(99)77313-3</note>
<identifier type="doi">10.1016/S0006-3495(99)77313-3</identifier>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>76</number>
</detail>
<extent unit="pages">
<start>1537</start>
<end>1551</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00011" displayLabel="bibbi010109zb00011">
<name type="personal">
<namePart type="family">BAUER</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">SMITH</namePart>
<namePart type="given">G. P.</namePart>
</name>
<titleInfo>
<title>Virology</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Bauer M. Smith G. P. Virology 1988 167 166 175 10.1016/0042-6822(88)90066-9</note>
<identifier type="doi">10.1016/0042-6822(88)90066-9</identifier>
<part>
<date>1988</date>
<detail type="volume">
<caption>vol.</caption>
<number>167</number>
</detail>
<extent unit="pages">
<start>166</start>
<end>175</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00012" displayLabel="bibbi010109zb00012">
<name type="personal">
<namePart type="family">WEBSTER</namePart>
<namePart type="given">R. E.</namePart>
</name>
<name type="personal">
<namePart type="family">GRANT</namePart>
<namePart type="given">R. A.</namePart>
</name>
<name type="personal">
<namePart type="family">HAMILTON</namePart>
<namePart type="given">L. A.</namePart>
</name>
<titleInfo>
<title>J. Mol. Biol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Webster R. E. Grant R. A. Hamilton L. A. J. Mol. Biol. 1981 152 357 374 10.1016/0022-2836(81)90247-3</note>
<identifier type="doi">10.1016/0022-2836(81)90247-3</identifier>
<part>
<date>1981</date>
<detail type="volume">
<caption>vol.</caption>
<number>152</number>
</detail>
<extent unit="pages">
<start>357</start>
<end>374</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00013" displayLabel="bibbi010109zb00013">
<name type="personal">
<namePart type="family">FULFORD</namePart>
<namePart type="given">W.</namePart>
</name>
<name type="personal">
<namePart type="family">MODEL</namePart>
<namePart type="given">P.</namePart>
</name>
<titleInfo>
<title>J. Mol. Biol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Fulford W. Model P. J. Mol. Biol. 1988 203 39 48 10.1016/0022-2836(88)90089-7</note>
<identifier type="doi">10.1016/0022-2836(88)90089-7</identifier>
<part>
<date>1988</date>
<detail type="volume">
<caption>vol.</caption>
<number>203</number>
</detail>
<extent unit="pages">
<start>39</start>
<end>48</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00014" displayLabel="bibbi010109zb00014">
<name type="personal">
<namePart type="family">ZAMAN</namePart>
<namePart type="given">G.</namePart>
</name>
<name type="personal">
<namePart type="family">SMETSERS</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">KAAN</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">SCHOENMAKERS</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">KONINGS</namePart>
<namePart type="given">R.</namePart>
</name>
<titleInfo>
<title>Biochim. Biophys. Acta</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Zaman G. Smetsers A. Kaan A. Schoenmakers J. Konings R. Biochim. Biophys. Acta 1991 1089 183 192</note>
<part>
<date>1991</date>
<detail type="volume">
<caption>vol.</caption>
<number>1089</number>
</detail>
<extent unit="pages">
<start>183</start>
<end>192</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00015" displayLabel="bibbi010109zb00015">
<name type="personal">
<namePart type="family">MODEL</namePart>
<namePart type="given">P.</namePart>
</name>
<name type="personal">
<namePart type="family">MCGILL</namePart>
<namePart type="given">C.</namePart>
</name>
<name type="personal">
<namePart type="family">MAZUR</namePart>
<namePart type="given">B.</namePart>
</name>
<name type="personal">
<namePart type="family">FULFORD</namePart>
<namePart type="given">W. D.</namePart>
</name>
<titleInfo>
<title>Cell</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Model P. McGill C. Mazur B. Fulford W. D. Cell 1982 29 329 335 10.1016/0092-8674(82)90149-0</note>
<identifier type="doi">10.1016/0092-8674(82)90149-0</identifier>
<part>
<date>1982</date>
<detail type="volume">
<caption>vol.</caption>
<number>29</number>
</detail>
<extent unit="pages">
<start>329</start>
<end>335</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00016" displayLabel="bibbi010109zb00016">
<name type="personal">
<namePart type="family">YEN</namePart>
<namePart type="given">T. S.</namePart>
</name>
<name type="personal">
<namePart type="family">WEBSTER</namePart>
<namePart type="given">R. E.</namePart>
</name>
<titleInfo>
<title>Cell</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Yen T. S. Webster R. E. Cell 1982 29 337 345 10.1016/0092-8674(82)90150-7</note>
<identifier type="doi">10.1016/0092-8674(82)90150-7</identifier>
<part>
<date>1982</date>
<detail type="volume">
<caption>vol.</caption>
<number>29</number>
</detail>
<extent unit="pages">
<start>337</start>
<end>345</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00017" displayLabel="bibbi010109zb00017">
<name type="personal">
<namePart type="family">MICHEL</namePart>
<namePart type="given">B.</namePart>
</name>
<name type="personal">
<namePart type="family">ZINDER</namePart>
<namePart type="given">N. D.</namePart>
</name>
<titleInfo>
<title>Proc. Natl. Acad. Sci. U.S.A.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Michel B. Zinder N. D. Proc. Natl. Acad. Sci. U.S.A. 1989 86 4002 4006 10.1073/pnas.86.11.4002</note>
<identifier type="doi">10.1073/pnas.86.11.4002</identifier>
<part>
<date>1989</date>
<detail type="volume">
<caption>vol.</caption>
<number>86</number>
</detail>
<extent unit="pages">
<start>4002</start>
<end>4006</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00018" displayLabel="bibbi010109zb00018">
<name type="personal">
<namePart type="family">MICHEL</namePart>
<namePart type="given">B.</namePart>
</name>
<name type="personal">
<namePart type="family">ZINDER</namePart>
<namePart type="given">N. D.</namePart>
</name>
<titleInfo>
<title>Nucleic Acids Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Michel B. Zinder N. D. Nucleic Acids Res. 1989 17 7333 7344 10.1093/nar/17.18.7333</note>
<identifier type="doi">10.1093/nar/17.18.7333</identifier>
<part>
<date>1989</date>
<detail type="volume">
<caption>vol.</caption>
<number>17</number>
</detail>
<extent unit="pages">
<start>7333</start>
<end>7344</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00019" displayLabel="bibbi010109zb00019">
<name type="personal">
<namePart type="family">CHENG</namePart>
<namePart type="given">X.</namePart>
</name>
<name type="personal">
<namePart type="family">HARMS</namePart>
<namePart type="given">A. C.</namePart>
</name>
<name type="personal">
<namePart type="family">GOUDREAU</namePart>
<namePart type="given">P. N.</namePart>
</name>
<name type="personal">
<namePart type="family">TERWILLIGER</namePart>
<namePart type="given">T. C.</namePart>
</name>
<name type="personal">
<namePart type="family">SMITH</namePart>
<namePart type="given">R. D.</namePart>
</name>
<titleInfo>
<title>Proc. Natl. Acad. Sci. U.S.A.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Cheng X. Harms A. C. Goudreau P. N. Terwilliger T. C. Smith R. D. Proc. Natl. Acad. Sci. U.S.A. 1996 93 7022 7027 10.1073/pnas.93.14.7022</note>
<identifier type="doi">10.1073/pnas.93.14.7022</identifier>
<part>
<date>1996</date>
<detail type="volume">
<caption>vol.</caption>
<number>93</number>
</detail>
<extent unit="pages">
<start>7022</start>
<end>7027</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00020" displayLabel="bibbi010109zb00020">
<name type="personal">
<namePart type="family">TUERK</namePart>
<namePart type="given">C.</namePart>
</name>
<name type="personal">
<namePart type="family">GOLD</namePart>
<namePart type="given">L.</namePart>
</name>
<titleInfo>
<title>Science</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Tuerk C. Gold L. Science 1990 249 505 510 10.1126/science.2200121</note>
<identifier type="doi">10.1126/science.2200121</identifier>
<part>
<date>1990</date>
<detail type="volume">
<caption>vol.</caption>
<number>249</number>
</detail>
<extent unit="pages">
<start>505</start>
<end>510</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00021" displayLabel="bibbi010109zb00021">
<name type="personal">
<namePart type="family">ELLINGTON</namePart>
<namePart type="given">A. D.</namePart>
</name>
<name type="personal">
<namePart type="family">SZOSTAK</namePart>
<namePart type="given">J. W.</namePart>
</name>
<titleInfo>
<title>Nature</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Ellington A. D. Szostak J. W. Nature 1990 346 818 822 10.1038/346818a0</note>
<identifier type="doi">10.1038/346818a0</identifier>
<part>
<date>1990</date>
<detail type="volume">
<caption>vol.</caption>
<number>346</number>
</detail>
<extent unit="pages">
<start>818</start>
<end>822</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00022" displayLabel="bibbi010109zb00022">
<name type="personal">
<namePart type="family">GOLD</namePart>
<namePart type="given">L.</namePart>
</name>
<name type="personal">
<namePart type="family">POLISKY</namePart>
<namePart type="given">B.</namePart>
</name>
<name type="personal">
<namePart type="family">UHLENBECK</namePart>
<namePart type="given">O.</namePart>
</name>
<name type="personal">
<namePart type="family">YARUS</namePart>
<namePart type="given">M.</namePart>
</name>
<titleInfo>
<title>Annu. Rev. Biochem.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Gold L. Polisky B. Uhlenbeck O. Yarus M. Annu. Rev. Biochem. 1995 64 763 797 10.1146/annurev.bi.64.070195.003555</note>
<identifier type="doi">10.1146/annurev.bi.64.070195.003555</identifier>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>64</number>
</detail>
<extent unit="pages">
<start>763</start>
<end>797</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00023" displayLabel="bibbi010109zb00023">
<name type="personal">
<namePart type="family">LOUHAN</namePart>
<namePart type="given">C. T.</namePart>
</name>
<name type="personal">
<namePart type="family">SZOSTAK</namePart>
<namePart type="given">J. W.</namePart>
</name>
<titleInfo>
<title>J. Am. Chem. Soc.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Louhan C. T. Szostak J. W. J. Am. Chem. Soc. 1995 117 1246 1257 10.1021/ja00109a008</note>
<identifier type="doi">10.1021/ja00109a008</identifier>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>117</number>
</detail>
<extent unit="pages">
<start>1246</start>
<end>1257</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00024" displayLabel="bibbi010109zb00024">
<name type="personal">
<namePart type="family">BIANCHI</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">STANSEL</namePart>
<namePart type="given">R. M.</namePart>
</name>
<name type="personal">
<namePart type="family">FAIRALL</namePart>
<namePart type="given">L.</namePart>
</name>
<name type="personal">
<namePart type="family">GRIFFITH</namePart>
<namePart type="given">J. D.</namePart>
</name>
<name type="personal">
<namePart type="family">RHODES</namePart>
<namePart type="given">D.</namePart>
</name>
<name type="personal">
<namePart type="family">DE LANGE</namePart>
<namePart type="given">T.</namePart>
</name>
<titleInfo>
<title>EMBO J.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Bianchi A. Stansel R. M. Fairall L. Griffith J. D. Rhodes D. de Lange T. EMBO J. 1999 18 5735 5744 10.1093/emboj/18.20.5735</note>
<identifier type="doi">10.1093/emboj/18.20.5735</identifier>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>18</number>
</detail>
<extent unit="pages">
<start>5735</start>
<end>5744</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00025" displayLabel="bibbi010109zb00025">
<name type="personal">
<namePart type="family">HERMANN</namePart>
<namePart type="given">T.</namePart>
</name>
<name type="personal">
<namePart type="family">PATEL</namePart>
<namePart type="given">D. J.</namePart>
</name>
<titleInfo>
<title>Science</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Hermann T. Patel D. J. Science 2000 287 820 825 10.1126/science.287.5454.820</note>
<identifier type="doi">10.1126/science.287.5454.820</identifier>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>287</number>
</detail>
<extent unit="pages">
<start>820</start>
<end>825</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00026" displayLabel="bibbi010109zb00026">
<name type="personal">
<namePart type="family">WILSON</namePart>
<namePart type="given">D. S.</namePart>
</name>
<name type="personal">
<namePart type="family">SZOSTAK</namePart>
<namePart type="given">J. W.</namePart>
</name>
<titleInfo>
<title>Ann. Rev. Biochem.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Wilson D. S. Szostak J. W. Ann. Rev. Biochem. 1999 68 611 647 10.1146/annurev.biochem.68.1.611</note>
<identifier type="doi">10.1146/annurev.biochem.68.1.611</identifier>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>68</number>
</detail>
<extent unit="pages">
<start>611</start>
<end>647</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00027" displayLabel="bibbi010109zb00027">
<name type="personal">
<namePart type="family">BOCK</namePart>
<namePart type="given">L. C.</namePart>
</name>
<name type="personal">
<namePart type="family">GRIFFIN</namePart>
<namePart type="given">L. C.</namePart>
</name>
<name type="personal">
<namePart type="family">LATHAM</namePart>
<namePart type="given">J. A.</namePart>
</name>
<name type="personal">
<namePart type="family">VERMAAS</namePart>
<namePart type="given">E. H.</namePart>
</name>
<name type="personal">
<namePart type="family">TOOLE</namePart>
<namePart type="given">J. J.</namePart>
</name>
<titleInfo>
<title>Nature</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Bock L. C. Griffin L. C. Latham J. A. Vermaas E. H. Toole J. J. Nature 1992 355 564 566 10.1038/355564a0</note>
<identifier type="doi">10.1038/355564a0</identifier>
<part>
<date>1992</date>
<detail type="volume">
<caption>vol.</caption>
<number>355</number>
</detail>
<extent unit="pages">
<start>564</start>
<end>566</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00028" displayLabel="bibbi010109zb00028">
<name type="personal">
<namePart type="family">MACAYA</namePart>
<namePart type="given">R. F.</namePart>
</name>
<name type="personal">
<namePart type="family">SCHULTZE</namePart>
<namePart type="given">P.</namePart>
</name>
<name type="personal">
<namePart type="family">SMITH</namePart>
<namePart type="given">F. W.</namePart>
</name>
<name type="personal">
<namePart type="family">ROE</namePart>
<namePart type="given">J. A.</namePart>
</name>
<name type="personal">
<namePart type="family">FEIGON</namePart>
<namePart type="given">J.</namePart>
</name>
<titleInfo>
<title>Proc. Natl. Acad. Sci. U.S.A.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Macaya R. F. Schultze P. Smith F. W. Roe J. A. Feigon J. Proc. Natl. Acad. Sci. U.S.A. 1993 90 3745 3749 10.1073/pnas.90.8.3745</note>
<identifier type="doi">10.1073/pnas.90.8.3745</identifier>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>90</number>
</detail>
<extent unit="pages">
<start>3745</start>
<end>3749</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00029" displayLabel="bibbi010109zb00029">
<name type="personal">
<namePart type="family">WANG</namePart>
<namePart type="given">K. Y.</namePart>
</name>
<name type="personal">
<namePart type="family">MCCURDY</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">SHEA</namePart>
<namePart type="given">R. G.</namePart>
</name>
<name type="personal">
<namePart type="family">SWAMINATHAN</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">BOLTON</namePart>
<namePart type="given">P. H.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Wang K. Y. McCurdy S. Shea R. G. Swaminathan S. Bolton P. H. Biochemistry 1993 32 1899 1904 10.1021/bi00059a003</note>
<identifier type="doi">10.1021/bi00059a003</identifier>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>32</number>
</detail>
<extent unit="pages">
<start>1899</start>
<end>1904</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00030" displayLabel="bibbi010109zb00030">
<name type="personal">
<namePart type="family">SCHNEIDER</namePart>
<namePart type="given">D. J.</namePart>
</name>
<name type="personal">
<namePart type="family">FEIGON</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">HOSTOMSKY</namePart>
<namePart type="given">Z.</namePart>
</name>
<name type="personal">
<namePart type="family">GOLD</namePart>
<namePart type="given">L.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Schneider D. J. Feigon J. Hostomsky Z. Gold L. Biochemistry 1995 34 9599 9610 10.1021/bi00029a037</note>
<identifier type="doi">10.1021/bi00029a037</identifier>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>34</number>
</detail>
<extent unit="pages">
<start>9599</start>
<end>9610</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00031" displayLabel="bibbi010109zb00031">
<name type="personal">
<namePart type="family">LAEMMLI</namePart>
<namePart type="given">U. K.</namePart>
</name>
<titleInfo>
<title>Nature</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Laemmli U. K. Nature 1970 227 680 685 10.1038/227680a0</note>
<identifier type="doi">10.1038/227680a0</identifier>
<part>
<date>1970</date>
<detail type="volume">
<caption>vol.</caption>
<number>227</number>
</detail>
<extent unit="pages">
<start>680</start>
<end>685</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00032" displayLabel="bibbi010109zb00032">
<name type="personal">
<namePart type="family">STEINBERG</namePart>
<namePart type="given">T. H.</namePart>
</name>
<name type="personal">
<namePart type="family">JONES</namePart>
<namePart type="given">L. J.</namePart>
</name>
<name type="personal">
<namePart type="family">HAUGLAND</namePart>
<namePart type="given">R. P.</namePart>
</name>
<name type="personal">
<namePart type="family">SINGER</namePart>
<namePart type="given">V. L.</namePart>
</name>
<titleInfo>
<title>Anal. Biochem.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Steinberg T. H. Jones L. J. Haugland R. P. Singer V. L. Anal. Biochem. 1996 239 223 237 10.1006/abio.1996.0319</note>
<identifier type="doi">10.1006/abio.1996.0319</identifier>
<part>
<date>1996</date>
<detail type="volume">
<caption>vol.</caption>
<number>239</number>
</detail>
<extent unit="pages">
<start>223</start>
<end>237</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00033" displayLabel="bibbi010109zb00033">
<name type="personal">
<namePart type="family">SCHNEIDER</namePart>
<namePart type="given">T. D.</namePart>
</name>
<name type="personal">
<namePart type="family">STORMO</namePart>
<namePart type="given">G. D.</namePart>
</name>
<name type="personal">
<namePart type="family">GOLD</namePart>
<namePart type="given">L.</namePart>
</name>
<titleInfo>
<title>J. Mol. Biol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Schneider T. D. Stormo G. D. Gold L. J. Mol. Biol. 1986 188 415 431 10.1016/0022-2836(86)90165-8</note>
<identifier type="doi">10.1016/0022-2836(86)90165-8</identifier>
<part>
<date>1986</date>
<detail type="volume">
<caption>vol.</caption>
<number>188</number>
</detail>
<extent unit="pages">
<start>415</start>
<end>431</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00034" displayLabel="bibbi010109zb00034">
<name type="personal">
<namePart type="family">BLACKBURN</namePart>
<namePart type="given">E. H.</namePart>
</name>
<name type="personal">
<namePart type="family">GALL</namePart>
<namePart type="given">J. G.</namePart>
</name>
<titleInfo>
<title>J. Mol. Biol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Blackburn E. H. Gall J. G. J. Mol. Biol. 1978 120 33 53 10.1016/0022-2836(78)90294-2</note>
<identifier type="doi">10.1016/0022-2836(78)90294-2</identifier>
<part>
<date>1978</date>
<detail type="volume">
<caption>vol.</caption>
<number>120</number>
</detail>
<extent unit="pages">
<start>33</start>
<end>53</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00035" displayLabel="bibbi010109zb00035">
<name type="personal">
<namePart type="family">MOYZIS</namePart>
<namePart type="given">R. K.</namePart>
</name>
<name type="personal">
<namePart type="family">BUCKINGHAM</namePart>
<namePart type="given">J. M.</namePart>
</name>
<name type="personal">
<namePart type="family">CRAM</namePart>
<namePart type="given">L. S.</namePart>
</name>
<name type="personal">
<namePart type="family">DANI</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">DEAVEN</namePart>
<namePart type="given">L. L.</namePart>
</name>
<name type="personal">
<namePart type="family">JONES</namePart>
<namePart type="given">M. D.</namePart>
</name>
<name type="personal">
<namePart type="family">MEYNE</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">RATLIFF</namePart>
<namePart type="given">R. L.</namePart>
</name>
<name type="personal">
<namePart type="family">WU</namePart>
<namePart type="given">J. R.</namePart>
</name>
<titleInfo>
<title>Proc. Natl. Acad. Sci. U.S.A.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Moyzis R. K. Buckingham J. M. Cram L. S. Dani M. Deaven L. L. Jones M. D. Meyne J. Ratliff R. L. Wu J. R. Proc. Natl. Acad. Sci. U.S.A. 1988 85 6622 6626 10.1073/pnas.85.18.6622</note>
<identifier type="doi">10.1073/pnas.85.18.6622</identifier>
<part>
<date>1988</date>
<detail type="volume">
<caption>vol.</caption>
<number>85</number>
</detail>
<extent unit="pages">
<start>6622</start>
<end>6626</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00036" displayLabel="bibbi010109zb00036">
<name type="personal">
<namePart type="family">MARK</namePart>
<namePart type="given">B. L.</namePart>
</name>
<name type="personal">
<namePart type="family">TERWILLIGER</namePart>
<namePart type="given">T. C.</namePart>
</name>
<name type="personal">
<namePart type="family">VAUGHAN</namePart>
<namePart type="given">M. R.</namePart>
</name>
<name type="personal">
<namePart type="family">GRAY</namePart>
<namePart type="given">D. M.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Mark B. L. Terwilliger T. C. Vaughan M. R. Gray D. M. Biochemistry 1995 34 12854 12865 10.1021/bi00039a047</note>
<identifier type="doi">10.1021/bi00039a047</identifier>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>34</number>
</detail>
<extent unit="pages">
<start>12854</start>
<end>12865</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00037" displayLabel="bibbi010109zb00037">
<name type="personal">
<namePart type="family">BALAGURUMOORTHY</namePart>
<namePart type="given">P.</namePart>
</name>
<name type="personal">
<namePart type="family">BRAHMACHARI</namePart>
<namePart type="given">S. K.</namePart>
</name>
<name type="personal">
<namePart type="family">MOHANTY</namePart>
<namePart type="given">D.</namePart>
</name>
<name type="personal">
<namePart type="family">BANSAL</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">SASISEKHARAN</namePart>
<namePart type="given">V.</namePart>
</name>
<titleInfo>
<title>Nucleic Acids Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Balagurumoorthy P. Brahmachari S. K. Mohanty D. Bansal M. Sasisekharan V. Nucleic Acids Res. 1992 20 4061 4067 10.1093/nar/20.15.4061</note>
<identifier type="doi">10.1093/nar/20.15.4061</identifier>
<part>
<date>1992</date>
<detail type="volume">
<caption>vol.</caption>
<number>20</number>
</detail>
<extent unit="pages">
<start>4061</start>
<end>4067</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00038" displayLabel="bibbi010109zb00038">
<name type="personal">
<namePart type="family">LU</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">GUO</namePart>
<namePart type="given">Q.</namePart>
</name>
<name type="personal">
<namePart type="family">KALLENBACH</namePart>
<namePart type="given">N. R.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Lu M. Guo Q. Kallenbach N. R. Biochemistry 1993 32 598 601 10.1021/bi00053a027</note>
<identifier type="doi">10.1021/bi00053a027</identifier>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>32</number>
</detail>
<extent unit="pages">
<start>598</start>
<end>601</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00039" displayLabel="bibbi010109zb00039">
<name type="personal">
<namePart type="family">LAPORTE</namePart>
<namePart type="given">L.</namePart>
</name>
<name type="personal">
<namePart type="family">BENEVIDES</namePart>
<namePart type="given">J. M.</namePart>
</name>
<name type="personal">
<namePart type="family">THOMAS</namePart>
<namePart type="given">G. J.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Laporte L. Benevides J. M. Thomas G. J. Jr. Biochemistry 1999 38 582 588 10.1021/bi9819024</note>
<identifier type="doi">10.1021/bi9819024</identifier>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>38</number>
</detail>
<extent unit="pages">
<start>582</start>
<end>588</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00040" displayLabel="bibbi010109zb00040">
<name type="personal">
<namePart type="family">HARDIN</namePart>
<namePart type="given">C. C.</namePart>
</name>
<name type="personal">
<namePart type="family">HENDERSON</namePart>
<namePart type="given">E.</namePart>
</name>
<name type="personal">
<namePart type="family">WATSON</namePart>
<namePart type="given">T.</namePart>
</name>
<name type="personal">
<namePart type="family">PROSSER</namePart>
<namePart type="given">J. K.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Hardin C. C. Henderson E. Watson T. Prosser J. K. Biochemistry 1991 30 4460 4472 10.1021/bi00232a013</note>
<identifier type="doi">10.1021/bi00232a013</identifier>
<part>
<date>1991</date>
<detail type="volume">
<caption>vol.</caption>
<number>30</number>
</detail>
<extent unit="pages">
<start>4460</start>
<end>4472</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00041" displayLabel="bibbi010109zb00041">
<name type="personal">
<namePart type="family">MARATHIAS</namePart>
<namePart type="given">V. M.</namePart>
</name>
<name type="personal">
<namePart type="family">BOLTON</namePart>
<namePart type="given">P. H.</namePart>
</name>
<titleInfo>
<title>Nucleic Acids Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Marathias V. M. Bolton P. H. Nucleic Acids Res. 2000 28 1969 1977 10.1093/nar/28.9.1969</note>
<identifier type="doi">10.1093/nar/28.9.1969</identifier>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>28</number>
</detail>
<extent unit="pages">
<start>1969</start>
<end>1977</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00042" displayLabel="bibbi010109zb00042">
<name type="personal">
<namePart type="family">SMIRNOV</namePart>
<namePart type="given">I.</namePart>
</name>
<name type="personal">
<namePart type="family">SHAFER</namePart>
<namePart type="given">R. H.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Smirnov I. Shafer R. H. Biochemistry 2000 39 1462 1468 10.1021/bi9919044</note>
<identifier type="doi">10.1021/bi9919044</identifier>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>39</number>
</detail>
<extent unit="pages">
<start>1462</start>
<end>1468</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00043" displayLabel="bibbi010109zb00043">
<name type="personal">
<namePart type="family">VENCZEL</namePart>
<namePart type="given">E. A.</namePart>
</name>
<name type="personal">
<namePart type="family">SEN</namePart>
<namePart type="given">D.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Venczel E. A. Sen D. Biochemistry 1993 32 6220 6228 10.1021/bi00075a015</note>
<identifier type="doi">10.1021/bi00075a015</identifier>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>32</number>
</detail>
<extent unit="pages">
<start>6220</start>
<end>6228</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00044" displayLabel="bibbi010109zb00044">
<name type="personal">
<namePart type="family">OLIVER</namePart>
<namePart type="given">A. W.</namePart>
</name>
<name type="personal">
<namePart type="family">KNEALE</namePart>
<namePart type="given">G. G.</namePart>
</name>
<titleInfo>
<title>Biochem. J.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Oliver A. W. Kneale G. G. Biochem. J. 1999 339 525 531 10.1042/0264-6021:3390525</note>
<identifier type="doi">10.1042/0264-6021:3390525</identifier>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>339</number>
</detail>
<extent unit="pages">
<start>525</start>
<end>531</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00045" displayLabel="bibbi010109zb00045">
<name type="personal">
<namePart type="family">OLIVER</namePart>
<namePart type="given">A. W.</namePart>
</name>
<name type="personal">
<namePart type="family">BOGDARINA</namePart>
<namePart type="given">I.</namePart>
</name>
<name type="personal">
<namePart type="family">SCHROEDER</namePart>
<namePart type="given">E.</namePart>
</name>
<name type="personal">
<namePart type="family">TAYLOR</namePart>
<namePart type="given">I. A.</namePart>
</name>
<name type="personal">
<namePart type="family">KNEALE</namePart>
<namePart type="given">G. G.</namePart>
</name>
<titleInfo>
<title>J. Mol. Biol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Oliver A. W. Bogdarina I. Schroeder E. Taylor I. A. Kneale G. G. J. Mol. Biol. 2000 301 575 584 10.1006/jmbi.2000.3991</note>
<identifier type="doi">10.1006/jmbi.2000.3991</identifier>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>301</number>
</detail>
<extent unit="pages">
<start>575</start>
<end>584</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00046" displayLabel="bibbi010109zb00046">
<name type="personal">
<namePart type="family">BECK</namePart>
<namePart type="given">E.</namePart>
</name>
<name type="personal">
<namePart type="family">ZINK</namePart>
<namePart type="given">B.</namePart>
</name>
<titleInfo>
<title>Gene</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Beck E. Zink B. Gene 1981 16 35 58 10.1016/0378-1119(81)90059-7</note>
<identifier type="doi">10.1016/0378-1119(81)90059-7</identifier>
<part>
<date>1981</date>
<detail type="volume">
<caption>vol.</caption>
<number>16</number>
</detail>
<extent unit="pages">
<start>35</start>
<end>58</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00047" displayLabel="bibbi010109zb00047">
<name type="personal">
<namePart type="family">LIN</namePart>
<namePart type="given">Y.</namePart>
</name>
<name type="personal">
<namePart type="family">PADMAPRIYA</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">MORDEN</namePart>
<namePart type="given">K. M.</namePart>
</name>
<name type="personal">
<namePart type="family">JAYASENA</namePart>
<namePart type="given">S. D.</namePart>
</name>
<titleInfo>
<title>Proc. Natl. Acad. Sci. U.S.A.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Lin Y. Padmapriya A. Morden K. M. Jayasena S. D. Proc. Natl. Acad. Sci. U.S.A. 1995 92 11044 11048 10.1073/pnas.92.24.11044</note>
<identifier type="doi">10.1073/pnas.92.24.11044</identifier>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>92</number>
</detail>
<extent unit="pages">
<start>11044</start>
<end>11048</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00048" displayLabel="bibbi010109zb00048">
<name type="personal">
<namePart type="family">WIEGAND</namePart>
<namePart type="given">T. W.</namePart>
</name>
<name type="personal">
<namePart type="family">WILLIAMS</namePart>
<namePart type="given">P. B.</namePart>
</name>
<name type="personal">
<namePart type="family">DRESKIN</namePart>
<namePart type="given">S. C.</namePart>
</name>
<name type="personal">
<namePart type="family">JOUVIN</namePart>
<namePart type="given">M. H.</namePart>
</name>
<name type="personal">
<namePart type="family">KINET</namePart>
<namePart type="given">J. P.</namePart>
</name>
<name type="personal">
<namePart type="family">TASSET</namePart>
<namePart type="given">D.</namePart>
</name>
<titleInfo>
<title>J. Immunol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Wiegand T. W. Williams P. B. Dreskin S. C. Jouvin M. H. Kinet J. P. Tasset D. J. Immunol. 1996 157 221 230</note>
<part>
<date>1996</date>
<detail type="volume">
<caption>vol.</caption>
<number>157</number>
</detail>
<extent unit="pages">
<start>221</start>
<end>230</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00049" displayLabel="bibbi010109zb00049">
<name type="personal">
<namePart type="family">FANG</namePart>
<namePart type="given">G.</namePart>
</name>
<name type="personal">
<namePart type="family">GRAY</namePart>
<namePart type="given">J. T.</namePart>
</name>
<name type="personal">
<namePart type="family">CECH</namePart>
<namePart type="given">T. R.</namePart>
</name>
<titleInfo>
<title>Genes Devel.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Fang G. Gray J. T. Cech T. R. Genes Devel. 1993 7 870 882 10.1101/gad.7.5.870</note>
<identifier type="doi">10.1101/gad.7.5.870</identifier>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>7</number>
</detail>
<extent unit="pages">
<start>870</start>
<end>882</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00050" displayLabel="bibbi010109zb00050">
<name type="personal">
<namePart type="family">HEMANN</namePart>
<namePart type="given">M. T.</namePart>
</name>
<name type="personal">
<namePart type="family">GREIDER</namePart>
<namePart type="given">C. W.</namePart>
</name>
<titleInfo>
<title>Nucleic Acids Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Hemann M. T. Greider C. W. Nucleic Acids Res. 1999 27 3964 3969 10.1093/nar/27.20.3964</note>
<identifier type="doi">10.1093/nar/27.20.3964</identifier>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>27</number>
</detail>
<extent unit="pages">
<start>3964</start>
<end>3969</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00051" displayLabel="bibbi010109zb00051">
<name type="personal">
<namePart type="family">NUGENT</namePart>
<namePart type="given">C. I.</namePart>
</name>
<name type="personal">
<namePart type="family">HUGHES</namePart>
<namePart type="given">T. R.</namePart>
</name>
<name type="personal">
<namePart type="family">LUE</namePart>
<namePart type="given">N. F.</namePart>
</name>
<name type="personal">
<namePart type="family">LUNDBLAD</namePart>
<namePart type="given">V.</namePart>
</name>
<titleInfo>
<title>Science</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Nugent C. I. Hughes T. R. Lue N. F. Lundblad V. Science 1996 274 249 252 10.1126/science.274.5285.249</note>
<identifier type="doi">10.1126/science.274.5285.249</identifier>
<part>
<date>1996</date>
<detail type="volume">
<caption>vol.</caption>
<number>274</number>
</detail>
<extent unit="pages">
<start>249</start>
<end>252</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00052" displayLabel="bibbi010109zb00052">
<name type="personal">
<namePart type="family">ARIMONDO</namePart>
<namePart type="given">P. B.</namePart>
</name>
<name type="personal">
<namePart type="family">RIOU</namePart>
<namePart type="given">J.-F.</namePart>
</name>
<name type="personal">
<namePart type="family">MERGNY</namePart>
<namePart type="given">J.-L.</namePart>
</name>
<name type="personal">
<namePart type="family">TAZI</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">SUN</namePart>
<namePart type="given">J.-S.</namePart>
</name>
<name type="personal">
<namePart type="family">GARESTIER</namePart>
<namePart type="given">T.</namePart>
</name>
<name type="personal">
<namePart type="family">HéLèNE</namePart>
<namePart type="given">C.</namePart>
</name>
<titleInfo>
<title>Nucleic Acids Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Arimondo P. B. Riou J.-F. Mergny J.-L. Tazi J. Sun J.-S. Garestier T. Hélène C. Nucleic Acids Res. 2000 28 4832 4838 10.1093/nar/28.24.4832</note>
<identifier type="doi">10.1093/nar/28.24.4832</identifier>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>28</number>
</detail>
<extent unit="pages">
<start>4832</start>
<end>4838</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00053" displayLabel="bibbi010109zb00053">
<name type="personal">
<namePart type="family">CHUNG</namePart>
<namePart type="given">I. K.</namePart>
</name>
<name type="personal">
<namePart type="family">MEHTA</namePart>
<namePart type="given">V. B.</namePart>
</name>
<name type="personal">
<namePart type="family">SPITZNER</namePart>
<namePart type="given">J. R.</namePart>
</name>
<name type="personal">
<namePart type="family">MULLER</namePart>
<namePart type="given">M. T.</namePart>
</name>
<titleInfo>
<title>Nucleic Acids Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Chung I. K. Mehta V. B. Spitzner J. R. Muller M. T. Nucleic Acids Res. 1992 20 1973 1977 10.1093/nar/20.8.1973</note>
<identifier type="doi">10.1093/nar/20.8.1973</identifier>
<part>
<date>1992</date>
<detail type="volume">
<caption>vol.</caption>
<number>20</number>
</detail>
<extent unit="pages">
<start>1973</start>
<end>1977</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zb00054" displayLabel="bibbi010109zb00054">
<name type="personal">
<namePart type="family">WILLIAMSON</namePart>
<namePart type="given">J. R.</namePart>
</name>
<titleInfo>
<title>Annu. Rev. Biophys. Biomol. Struct.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Williamson J. R. Annu. Rev. Biophys. Biomol. Struct. 1994 23 703 730 10.1146/annurev.bb.23.060194.003415</note>
<identifier type="doi">10.1146/annurev.bb.23.060194.003415</identifier>
<part>
<date>1994</date>
<detail type="volume">
<caption>vol.</caption>
<number>23</number>
</detail>
<extent unit="pages">
<start>703</start>
<end>730</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi010109zn00001" displayLabel="bibbi010109zn00001">
<titleInfo>
<title>Abbreviations:  aptamer, a nucleic acid sequence selected to have high affinity for a protein or other substance; CD, circular dichroism; EMSA, electrophoretic mobility shift assay; Ff phages, three closely related filamentous viruses f1, fd, and M13 that specifically infect F+strains ofEscherichia coli; g5p, gene 5 protein; Kω, the intrinsic binding constant (K) times a cooperativity factor (ω); PCR, polymerase chain reaction; P/N, the [protein monomer]/[nucleotide] molar ratio; SDS−PAGE, sodium dodecyl sulfate−polyacrylamide gel electrophoresis; SELEX, Systematic Evolution of Ligands by Exponential enrichment; ssDNA, single-stranded DNA; TAE buffer, 40 mM Tris-acetate, pH 8.3, 1 mM EDTA; TBE buffer, 90 mM Tris-borate, pH 8.3, 2 mM EDTA; TE buffer, 10 mM Tris-HCl, pH 7.4, 1 mM EDTA.</title>
</titleInfo>
<note type="content-in-line">Abbreviations:  aptamer, a nucleic acid sequence selected to have high affinity for a protein or other substance; CD, circular dichroism; EMSA, electrophoretic mobility shift assay; Ff phages, three closely related filamentous viruses f1, fd, and M13 that specifically infect F+ strains of Escherichia coli; g5p, gene 5 protein; Kω, the intrinsic binding constant (K) times a cooperativity factor (ω); PCR, polymerase chain reaction; P/N, the [protein monomer]/[nucleotide] molar ratio; SDS−PAGE, sodium dodecyl sulfate−polyacrylamide gel electrophoresis; SELEX, Systematic Evolution of Ligands by Exponential enrichment; ssDNA, single-stranded DNA; TAE buffer, 40 mM Tris-acetate, pH 8.3, 1 mM EDTA; TBE buffer, 90 mM Tris-borate, pH 8.3, 2 mM EDTA; TE buffer, 10 mM Tris-HCl, pH 7.4, 1 mM EDTA.</note>
</relatedItem>
<identifier type="istex">373A64E897640F4570DDCACBFFC388C995F2720C</identifier>
<identifier type="ark">ark:/67375/TPS-KD58MTD9-V</identifier>
<identifier type="DOI">10.1021/bi010109z</identifier>
<accessCondition type="use and reproduction" contentType="restricted">Copyright © 2001 American Chemical Society</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-X5HBJWF8-J">acs</recordContentSource>
<recordOrigin>Converted from (version 1.2.10) to MODS version 3.6.</recordOrigin>
<recordCreationDate encoding="w3cdtf">2020-04-10</recordCreationDate>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-KD58MTD9-V/record.json</uri>
</json:item>
</metadata>
<annexes>
<json:item>
<extension>tiff</extension>
<original>true</original>
<mimetype>image/tiff</mimetype>
<uri>https://api.istex.fr/document/373A64E897640F4570DDCACBFFC388C995F2720C/annexes/tiff</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D62 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000D62 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:373A64E897640F4570DDCACBFFC388C995F2720C
   |texte=   SELEX Selection of High-Affinity Oligonucleotides for Bacteriophage Ff Gene 5 Protein†
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021