Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Constructing Treatment Portfolios Using Affinity Propagation

Identifieur interne : 000B69 ( Istex/Corpus ); précédent : 000B68; suivant : 000B70

Constructing Treatment Portfolios Using Affinity Propagation

Auteurs : Delbert Dueck ; Brendan J. Frey ; Nebojsa Jojic ; Vladimir Jojic ; Guri Giaever ; Andrew Emili ; Gabe Musso ; Robert Hegele

Source :

RBID : ISTEX:4E2DB7E9E3E0FA02EC2790BF840D404B35FFA7E1

Abstract

Abstract: A key problem of interest to biologists and medical researchers is the selection of a subset of queries or treatments that provide maximum utility for a population of targets. For example, when studying how gene deletion mutants respond to each of thousands of drugs, it is desirable to identify a small subset of genes that nearly uniquely define a drug ‘footprint’ that provides maximum predictability about the organism’s response to the drugs. As another example, when designing a cocktail of HIV genome sequences to be used as a vaccine, it is desirable to identify a small number of sequences that provide maximum immunological protection to a specified population of recipients. We refer to this task as ‘treatment portfolio design’ and formalize it as a facility location problem. Finding a treatment portfolio is NP-hard in the size of portfolio and number of targets, but a variety of greedy algorithms can be applied. We introduce a new algorithm for treatment portfolio design based on similar insights that made the recently-published affinity propagation algorithm work quite well for clustering tasks. We demonstrate this method using the two problems described above: selecting a subset of yeast genes that act as a drug-response footprint, and selecting a subset of vaccine sequences that provide maximum epitope coverage for an HIV genome population.

Url:
DOI: 10.1007/978-3-540-78839-3_31

Links to Exploration step

ISTEX:4E2DB7E9E3E0FA02EC2790BF840D404B35FFA7E1

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Constructing Treatment Portfolios Using Affinity Propagation</title>
<author>
<name sortKey="Dueck, Delbert" sort="Dueck, Delbert" uniqKey="Dueck D" first="Delbert" last="Dueck">Delbert Dueck</name>
<affiliation>
<mods:affiliation>Electrical and Computer Engineering, University of Toronto, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Frey, Brendan J" sort="Frey, Brendan J" uniqKey="Frey B" first="Brendan J." last="Frey">Brendan J. Frey</name>
<affiliation>
<mods:affiliation>Electrical and Computer Engineering, University of Toronto, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Center for Cellular and Biomolecular Research, University of Toronto, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jojic, Nebojsa" sort="Jojic, Nebojsa" uniqKey="Jojic N" first="Nebojsa" last="Jojic">Nebojsa Jojic</name>
<affiliation>
<mods:affiliation>Machine Learning and Statistics, Microsoft Research, Redmond, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jojic, Vladimir" sort="Jojic, Vladimir" uniqKey="Jojic V" first="Vladimir" last="Jojic">Vladimir Jojic</name>
<affiliation>
<mods:affiliation>Electrical and Computer Engineering, University of Toronto, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Machine Learning and Statistics, Microsoft Research, Redmond, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Computer Science, Stanford University, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Giaever, Guri" sort="Giaever, Guri" uniqKey="Giaever G" first="Guri" last="Giaever">Guri Giaever</name>
<affiliation>
<mods:affiliation>Center for Cellular and Biomolecular Research, University of Toronto, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Emili, Andrew" sort="Emili, Andrew" uniqKey="Emili A" first="Andrew" last="Emili">Andrew Emili</name>
<affiliation>
<mods:affiliation>Center for Cellular and Biomolecular Research, University of Toronto, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Musso, Gabe" sort="Musso, Gabe" uniqKey="Musso G" first="Gabe" last="Musso">Gabe Musso</name>
<affiliation>
<mods:affiliation>Center for Cellular and Biomolecular Research, University of Toronto, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hegele, Robert" sort="Hegele, Robert" uniqKey="Hegele R" first="Robert" last="Hegele">Robert Hegele</name>
<affiliation>
<mods:affiliation>Cardiovascular Genetics Laboratory, Robarts Research Institute, London, Canada</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:4E2DB7E9E3E0FA02EC2790BF840D404B35FFA7E1</idno>
<date when="2008" year="2008">2008</date>
<idno type="doi">10.1007/978-3-540-78839-3_31</idno>
<idno type="url">https://api.istex.fr/ark:/67375/HCB-SSMVNFLT-L/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000B69</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000B69</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Constructing Treatment Portfolios Using Affinity Propagation</title>
<author>
<name sortKey="Dueck, Delbert" sort="Dueck, Delbert" uniqKey="Dueck D" first="Delbert" last="Dueck">Delbert Dueck</name>
<affiliation>
<mods:affiliation>Electrical and Computer Engineering, University of Toronto, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Frey, Brendan J" sort="Frey, Brendan J" uniqKey="Frey B" first="Brendan J." last="Frey">Brendan J. Frey</name>
<affiliation>
<mods:affiliation>Electrical and Computer Engineering, University of Toronto, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Center for Cellular and Biomolecular Research, University of Toronto, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jojic, Nebojsa" sort="Jojic, Nebojsa" uniqKey="Jojic N" first="Nebojsa" last="Jojic">Nebojsa Jojic</name>
<affiliation>
<mods:affiliation>Machine Learning and Statistics, Microsoft Research, Redmond, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jojic, Vladimir" sort="Jojic, Vladimir" uniqKey="Jojic V" first="Vladimir" last="Jojic">Vladimir Jojic</name>
<affiliation>
<mods:affiliation>Electrical and Computer Engineering, University of Toronto, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Machine Learning and Statistics, Microsoft Research, Redmond, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Computer Science, Stanford University, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Giaever, Guri" sort="Giaever, Guri" uniqKey="Giaever G" first="Guri" last="Giaever">Guri Giaever</name>
<affiliation>
<mods:affiliation>Center for Cellular and Biomolecular Research, University of Toronto, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Emili, Andrew" sort="Emili, Andrew" uniqKey="Emili A" first="Andrew" last="Emili">Andrew Emili</name>
<affiliation>
<mods:affiliation>Center for Cellular and Biomolecular Research, University of Toronto, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Musso, Gabe" sort="Musso, Gabe" uniqKey="Musso G" first="Gabe" last="Musso">Gabe Musso</name>
<affiliation>
<mods:affiliation>Center for Cellular and Biomolecular Research, University of Toronto, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hegele, Robert" sort="Hegele, Robert" uniqKey="Hegele R" first="Robert" last="Hegele">Robert Hegele</name>
<affiliation>
<mods:affiliation>Cardiovascular Genetics Laboratory, Robarts Research Institute, London, Canada</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="s" type="main" xml:lang="en">Lecture Notes in Computer Science</title>
<idno type="ISSN">0302-9743</idno>
<idno type="eISSN">1611-3349</idno>
<idno type="ISSN">0302-9743</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0302-9743</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: A key problem of interest to biologists and medical researchers is the selection of a subset of queries or treatments that provide maximum utility for a population of targets. For example, when studying how gene deletion mutants respond to each of thousands of drugs, it is desirable to identify a small subset of genes that nearly uniquely define a drug ‘footprint’ that provides maximum predictability about the organism’s response to the drugs. As another example, when designing a cocktail of HIV genome sequences to be used as a vaccine, it is desirable to identify a small number of sequences that provide maximum immunological protection to a specified population of recipients. We refer to this task as ‘treatment portfolio design’ and formalize it as a facility location problem. Finding a treatment portfolio is NP-hard in the size of portfolio and number of targets, but a variety of greedy algorithms can be applied. We introduce a new algorithm for treatment portfolio design based on similar insights that made the recently-published affinity propagation algorithm work quite well for clustering tasks. We demonstrate this method using the two problems described above: selecting a subset of yeast genes that act as a drug-response footprint, and selecting a subset of vaccine sequences that provide maximum epitope coverage for an HIV genome population.</div>
</front>
</TEI>
<istex>
<corpusName>springer-ebooks</corpusName>
<keywords>
<teeft>
<json:string>affinity propagation</json:string>
<json:string>portfolio</json:string>
<json:string>algorithm</json:string>
<json:string>epitope</json:string>
<json:string>vaccine</json:string>
<json:string>subset</json:string>
<json:string>immune</json:string>
<json:string>treatment portfolio</json:string>
<json:string>immune system</json:string>
<json:string>dueck</json:string>
<json:string>datum</json:string>
<json:string>treatment portfolio design</json:string>
<json:string>affinity propagation algorithm</json:string>
<json:string>facility location problem</json:string>
<json:string>natural strain</json:string>
<json:string>datum point</json:string>
<json:string>vertex substitution heuristic</json:string>
<json:string>exemplar</json:string>
<json:string>query</json:string>
<json:string>greedy method</json:string>
<json:string>treatment cost</json:string>
<json:string>affinity</json:string>
<json:string>computational</json:string>
<json:string>random restarts</json:string>
<json:string>natural strain cocktail</json:string>
<json:string>exposure time</json:string>
<json:string>other point</json:string>
<json:string>medical researcher</json:string>
<json:string>vaccine design</json:string>
<json:string>approximation algorithm</json:string>
<json:string>propagation</json:string>
<json:string>test drug</json:string>
<json:string>yeast gene</json:string>
<json:string>greedy algorithm</json:string>
<json:string>potential cluster center</json:string>
<json:string>small number</json:string>
<json:string>potential exemplar</json:string>
<json:string>high utility</json:string>
<json:string>yeast strain</json:string>
<json:string>laboratory procedure</json:string>
<json:string>different dosage level</json:string>
<json:string>utility function</json:string>
<json:string>immunological protection</json:string>
<json:string>total number</json:string>
<json:string>test datum</json:string>
<json:string>good solution</json:string>
<json:string>linear program</json:string>
<json:string>disease condition</json:string>
<json:string>epitope recognizable</json:string>
<json:string>single patient</json:string>
<json:string>single color</json:string>
<json:string>high coverage</json:string>
<json:string>vaccine component</json:string>
<json:string>facility location</json:string>
<json:string>higher coverage</json:string>
<json:string>large number</json:string>
<json:string>random initialization</json:string>
<json:string>other treatment</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Delbert Dueck</name>
<affiliations>
<json:string>Electrical and Computer Engineering, University of Toronto, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>Brendan J. Frey</name>
<affiliations>
<json:string>Electrical and Computer Engineering, University of Toronto, Canada</json:string>
<json:string>Center for Cellular and Biomolecular Research, University of Toronto, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>Nebojsa Jojic</name>
<affiliations>
<json:string>Machine Learning and Statistics, Microsoft Research, Redmond, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Vladimir Jojic</name>
<affiliations>
<json:string>Electrical and Computer Engineering, University of Toronto, Canada</json:string>
<json:string>Machine Learning and Statistics, Microsoft Research, Redmond, USA</json:string>
<json:string>Computer Science, Stanford University, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Guri Giaever</name>
<affiliations>
<json:string>Center for Cellular and Biomolecular Research, University of Toronto, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>Andrew Emili</name>
<affiliations>
<json:string>Center for Cellular and Biomolecular Research, University of Toronto, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>Gabe Musso</name>
<affiliations>
<json:string>Center for Cellular and Biomolecular Research, University of Toronto, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>Robert Hegele</name>
<affiliations>
<json:string>Cardiovascular Genetics Laboratory, Robarts Research Institute, London, Canada</json:string>
</affiliations>
</json:item>
</author>
<arkIstex>ark:/67375/HCB-SSMVNFLT-L</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>OriginalPaper</json:string>
</originalGenre>
<abstract>Abstract: A key problem of interest to biologists and medical researchers is the selection of a subset of queries or treatments that provide maximum utility for a population of targets. For example, when studying how gene deletion mutants respond to each of thousands of drugs, it is desirable to identify a small subset of genes that nearly uniquely define a drug ‘footprint’ that provides maximum predictability about the organism’s response to the drugs. As another example, when designing a cocktail of HIV genome sequences to be used as a vaccine, it is desirable to identify a small number of sequences that provide maximum immunological protection to a specified population of recipients. We refer to this task as ‘treatment portfolio design’ and formalize it as a facility location problem. Finding a treatment portfolio is NP-hard in the size of portfolio and number of targets, but a variety of greedy algorithms can be applied. We introduce a new algorithm for treatment portfolio design based on similar insights that made the recently-published affinity propagation algorithm work quite well for clustering tasks. We demonstrate this method using the two problems described above: selecting a subset of yeast genes that act as a drug-response footprint, and selecting a subset of vaccine sequences that provide maximum epitope coverage for an HIV genome population.</abstract>
<qualityIndicators>
<score>9.597</score>
<pdfWordCount>4993</pdfWordCount>
<pdfCharCount>28518</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>12</pdfPageCount>
<pdfPageSize>430 x 660 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<abstractWordCount>217</abstractWordCount>
<abstractCharCount>1378</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Constructing Treatment Portfolios Using Affinity Propagation</title>
<chapterId>
<json:string>31</json:string>
<json:string>Chap31</json:string>
</chapterId>
<genre>
<json:string>conference</json:string>
</genre>
<serie>
<title>Lecture Notes in Computer Science</title>
<language>
<json:string>unknown</json:string>
</language>
<copyrightDate>2008</copyrightDate>
<issn>
<json:string>0302-9743</json:string>
</issn>
<eissn>
<json:string>1611-3349</json:string>
</eissn>
</serie>
<host>
<title>Research in Computational Molecular Biology</title>
<language>
<json:string>unknown</json:string>
</language>
<copyrightDate>2008</copyrightDate>
<doi>
<json:string>10.1007/978-3-540-78839-3</json:string>
</doi>
<issn>
<json:string>0302-9743</json:string>
</issn>
<eissn>
<json:string>1611-3349</json:string>
</eissn>
<eisbn>
<json:string>978-3-540-78839-3</json:string>
</eisbn>
<bookId>
<json:string>978-3-540-78839-3</json:string>
</bookId>
<isbn>
<json:string>978-3-540-78838-6</json:string>
</isbn>
<volume>4955</volume>
<pages>
<first>360</first>
<last>371</last>
</pages>
<genre>
<json:string>book-series</json:string>
</genre>
<editor>
<json:item>
<name>Martin Vingron</name>
</json:item>
<json:item>
<name>Limsoon Wong</name>
</json:item>
</editor>
<subject>
<json:item>
<value>Computer Science</value>
</json:item>
<json:item>
<value>Computer Science</value>
</json:item>
<json:item>
<value>Algorithm Analysis and Problem Complexity</value>
</json:item>
<json:item>
<value>Data Structures</value>
</json:item>
<json:item>
<value>Discrete Mathematics in Computer Science</value>
</json:item>
<json:item>
<value>Database Management</value>
</json:item>
<json:item>
<value>Artificial Intelligence (incl. Robotics)</value>
</json:item>
<json:item>
<value>Computational Biology/Bioinformatics</value>
</json:item>
</subject>
</host>
<ark>
<json:string>ark:/67375/HCB-SSMVNFLT-L</json:string>
</ark>
<categories>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>2008</publicationDate>
<copyrightDate>2008</copyrightDate>
<doi>
<json:string>10.1007/978-3-540-78839-3_31</json:string>
</doi>
<id>4E2DB7E9E3E0FA02EC2790BF840D404B35FFA7E1</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/HCB-SSMVNFLT-L/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/HCB-SSMVNFLT-L/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/HCB-SSMVNFLT-L/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Constructing Treatment Portfolios Using Affinity Propagation</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<availability>
<licence>Springer-Verlag Berlin Heidelberg</licence>
</availability>
<date when="2008">2008</date>
</publicationStmt>
<notesStmt>
<note type="conference" source="proceedings" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-BFHXPBJJ-3">conference</note>
<note type="publication-type" subtype="book-series" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0G6R5W5T-Z">book-series</note>
</notesStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Constructing Treatment Portfolios Using Affinity Propagation</title>
<author>
<persName>
<forename type="first">Delbert</forename>
<surname>Dueck</surname>
</persName>
<affiliation>
<orgName type="department">Electrical and Computer Engineering</orgName>
<orgName type="institution">University of Toronto</orgName>
<address>
<country key="CA">CANADA</country>
</address>
</affiliation>
</author>
<author>
<persName>
<forename type="first">Brendan</forename>
<forename type="first">J.</forename>
<surname>Frey</surname>
</persName>
<affiliation>
<orgName type="department">Electrical and Computer Engineering</orgName>
<orgName type="institution">University of Toronto</orgName>
<address>
<country key="CA">CANADA</country>
</address>
</affiliation>
<affiliation>
<orgName type="department">Center for Cellular and Biomolecular Research</orgName>
<orgName type="institution">University of Toronto</orgName>
<address>
<country key="CA">CANADA</country>
</address>
</affiliation>
</author>
<author>
<persName>
<forename type="first">Nebojsa</forename>
<surname>Jojic</surname>
</persName>
<affiliation>
<orgName type="department">Machine Learning and Statistics</orgName>
<orgName type="institution">Microsoft Research</orgName>
<address>
<settlement>Redmond</settlement>
<country key="US">UNITED STATES</country>
</address>
</affiliation>
</author>
<author>
<persName>
<forename type="first">Vladimir</forename>
<surname>Jojic</surname>
</persName>
<affiliation>
<orgName type="department">Electrical and Computer Engineering</orgName>
<orgName type="institution">University of Toronto</orgName>
<address>
<country key="CA">CANADA</country>
</address>
</affiliation>
<affiliation>
<orgName type="department">Machine Learning and Statistics</orgName>
<orgName type="institution">Microsoft Research</orgName>
<address>
<settlement>Redmond</settlement>
<country key="US">UNITED STATES</country>
</address>
</affiliation>
<affiliation>
<orgName type="department">Computer Science</orgName>
<orgName type="institution">Stanford University</orgName>
<address>
<country key="US">UNITED STATES</country>
</address>
</affiliation>
</author>
<author>
<persName>
<forename type="first">Guri</forename>
<surname>Giaever</surname>
</persName>
<affiliation>
<orgName type="department">Center for Cellular and Biomolecular Research</orgName>
<orgName type="institution">University of Toronto</orgName>
<address>
<country key="CA">CANADA</country>
</address>
</affiliation>
</author>
<author>
<persName>
<forename type="first">Andrew</forename>
<surname>Emili</surname>
</persName>
<affiliation>
<orgName type="department">Center for Cellular and Biomolecular Research</orgName>
<orgName type="institution">University of Toronto</orgName>
<address>
<country key="CA">CANADA</country>
</address>
</affiliation>
</author>
<author>
<persName>
<forename type="first">Gabe</forename>
<surname>Musso</surname>
</persName>
<affiliation>
<orgName type="department">Center for Cellular and Biomolecular Research</orgName>
<orgName type="institution">University of Toronto</orgName>
<address>
<country key="CA">CANADA</country>
</address>
</affiliation>
</author>
<author>
<persName>
<forename type="first">Robert</forename>
<surname>Hegele</surname>
</persName>
<affiliation>
<orgName type="department">Cardiovascular Genetics Laboratory</orgName>
<orgName type="institution">Robarts Research Institute</orgName>
<address>
<settlement>London</settlement>
<country key="CA">CANADA</country>
</address>
</affiliation>
</author>
<idno type="istex">4E2DB7E9E3E0FA02EC2790BF840D404B35FFA7E1</idno>
<idno type="ark">ark:/67375/HCB-SSMVNFLT-L</idno>
<idno type="DOI">10.1007/978-3-540-78839-3_31</idno>
</analytic>
<monogr>
<title level="m" type="main">Research in Computational Molecular Biology</title>
<title level="m" type="sub">12th Annual International Conference, RECOMB 2008, Singapore, March 30 - April 2, 2008. Proceedings</title>
<idno type="DOI">10.1007/978-3-540-78839-3</idno>
<idno type="book-id">978-3-540-78839-3</idno>
<idno type="ISBN">978-3-540-78838-6</idno>
<idno type="eISBN">978-3-540-78839-3</idno>
<idno type="chapter-id">Chap31</idno>
<editor>
<persName>
<forename type="first">Martin</forename>
<surname>Vingron</surname>
</persName>
<email>martin.vingron@molgen.mpg.de</email>
</editor>
<editor>
<persName>
<forename type="first">Limsoon</forename>
<surname>Wong</surname>
</persName>
<email>wongls@comp.nus.edu.sg</email>
</editor>
<imprint>
<biblScope unit="vol">4955</biblScope>
<biblScope unit="page" from="360">360</biblScope>
<biblScope unit="page" to="371">371</biblScope>
<biblScope unit="chapter-count">41</biblScope>
</imprint>
</monogr>
<series>
<title level="s" type="main" xml:lang="en">Lecture Notes in Computer Science</title>
<idno type="pISSN">0302-9743</idno>
<idno type="eISSN">1611-3349</idno>
<idno type="seriesID">558</idno>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en">
<head>Abstract</head>
<p>A key problem of interest to biologists and medical researchers is the selection of a subset of queries or treatments that provide maximum utility for a population of targets. For example, when studying how gene deletion mutants respond to each of thousands of drugs, it is desirable to identify a small subset of genes that nearly uniquely define a drug ‘footprint’ that provides maximum predictability about the organism’s response to the drugs. As another example, when designing a cocktail of HIV genome sequences to be used as a vaccine, it is desirable to identify a small number of sequences that provide maximum immunological protection to a specified population of recipients. We refer to this task as ‘treatment portfolio design’ and formalize it as a facility location problem. Finding a treatment portfolio is NP-hard in the size of portfolio and number of targets, but a variety of greedy algorithms can be applied. We introduce a new algorithm for treatment portfolio design based on similar insights that made the recently-published affinity propagation algorithm work quite well for clustering tasks. We demonstrate this method using the two problems described above: selecting a subset of yeast genes that act as a drug-response footprint, and selecting a subset of vaccine sequences that provide maximum epitope coverage for an HIV genome population.</p>
</abstract>
<textClass ana="subject">
<keywords scheme="book-subject-collection">
<list>
<label>SUCO11645</label>
<item>
<term>Computer Science</term>
</item>
</list>
</keywords>
</textClass>
<textClass ana="subject">
<keywords scheme="book-subject">
<list>
<label>I</label>
<item>
<term type="Primary">Computer Science</term>
</item>
<label>I16021</label>
<item>
<term type="Secondary" subtype="priority-1">Algorithm Analysis and Problem Complexity</term>
</item>
<label>I15017</label>
<item>
<term type="Secondary" subtype="priority-2">Data Structures</term>
</item>
<label>I17028</label>
<item>
<term type="Secondary" subtype="priority-3">Discrete Mathematics in Computer Science</term>
</item>
<label>I18024</label>
<item>
<term type="Secondary" subtype="priority-4">Database Management</term>
</item>
<label>I21017</label>
<item>
<term type="Secondary" subtype="priority-5">Artificial Intelligence (incl. Robotics)</term>
</item>
<label>I23050</label>
<item>
<term type="Secondary" subtype="priority-6">Computational Biology/Bioinformatics</term>
</item>
</list>
</keywords>
</textClass>
<langUsage>
<language ident="EN"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/HCB-SSMVNFLT-L/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus springer-ebooks not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//Springer-Verlag//DTD A++ V2.4//EN" URI="http://devel.springer.de/A++/V2.4/DTD/A++V2.4.dtd" name="istex:docType"></istex:docType>
<istex:document>
<Publisher>
<PublisherInfo>
<PublisherName>Springer Berlin Heidelberg</PublisherName>
<PublisherLocation>Berlin, Heidelberg</PublisherLocation>
</PublisherInfo>
<Series>
<SeriesInfo SeriesType="Series" TocLevels="0">
<SeriesID>558</SeriesID>
<SeriesPrintISSN>0302-9743</SeriesPrintISSN>
<SeriesElectronicISSN>1611-3349</SeriesElectronicISSN>
<SeriesTitle Language="En">Lecture Notes in Computer Science</SeriesTitle>
</SeriesInfo>
<SubSeries>
<SubSeriesInfo>
<SubSeriesID>5381</SubSeriesID>
<SubSeriesPrintISSN>0302-9743</SubSeriesPrintISSN>
<SubSeriesElectronicISSN>1611-3349</SubSeriesElectronicISSN>
<SubSeriesTitle Language="En">Lecture Notes in Bioinformatics</SubSeriesTitle>
</SubSeriesInfo>
<SubSeriesHeader>
<EditorGroup>
<Editor>
<EditorName DisplayOrder="Western">
<GivenName>Sorin</GivenName>
<FamilyName>Istrail</FamilyName>
</EditorName>
</Editor>
<Editor>
<EditorName DisplayOrder="Western">
<GivenName>Pavel</GivenName>
<FamilyName>Pevzner</FamilyName>
</EditorName>
</Editor>
<Editor>
<EditorName DisplayOrder="Western">
<GivenName>Michael</GivenName>
<GivenName>S.</GivenName>
<FamilyName>Waterman</FamilyName>
</EditorName>
</Editor>
</EditorGroup>
</SubSeriesHeader>
</SubSeries>
<Book Language="En">
<BookInfo BookProductType="Proceedings" ContainsESM="No" Language="En" MediaType="eBook" NumberingStyle="Unnumbered" OutputMedium="All" TocLevels="0">
<BookID>978-3-540-78839-3</BookID>
<BookTitle>Research in Computational Molecular Biology</BookTitle>
<BookSubTitle>12th Annual International Conference, RECOMB 2008, Singapore, March 30 - April 2, 2008. Proceedings</BookSubTitle>
<BookVolumeNumber>4955</BookVolumeNumber>
<BookSequenceNumber>4955</BookSequenceNumber>
<BookDOI>10.1007/978-3-540-78839-3</BookDOI>
<BookTitleID>160874</BookTitleID>
<BookPrintISBN>978-3-540-78838-6</BookPrintISBN>
<BookElectronicISBN>978-3-540-78839-3</BookElectronicISBN>
<BookChapterCount>41</BookChapterCount>
<BookCopyright>
<CopyrightHolderName>Springer-Verlag Berlin Heidelberg</CopyrightHolderName>
<CopyrightYear>2008</CopyrightYear>
</BookCopyright>
<BookSubjectGroup>
<BookSubject Code="I" Type="Primary">Computer Science</BookSubject>
<BookSubject Code="I16021" Priority="1" Type="Secondary">Algorithm Analysis and Problem Complexity</BookSubject>
<BookSubject Code="I15017" Priority="2" Type="Secondary">Data Structures</BookSubject>
<BookSubject Code="I17028" Priority="3" Type="Secondary">Discrete Mathematics in Computer Science</BookSubject>
<BookSubject Code="I18024" Priority="4" Type="Secondary">Database Management</BookSubject>
<BookSubject Code="I21017" Priority="5" Type="Secondary">Artificial Intelligence (incl. Robotics)</BookSubject>
<BookSubject Code="I23050" Priority="6" Type="Secondary">Computational Biology/Bioinformatics</BookSubject>
<SubjectCollection Code="SUCO11645">Computer Science</SubjectCollection>
</BookSubjectGroup>
</BookInfo>
<BookHeader>
<EditorGroup>
<Editor>
<EditorName DisplayOrder="Western">
<GivenName>Martin</GivenName>
<FamilyName>Vingron</FamilyName>
</EditorName>
<Contact>
<Email>martin.vingron@molgen.mpg.de</Email>
</Contact>
</Editor>
<Editor>
<EditorName DisplayOrder="Western">
<GivenName>Limsoon</GivenName>
<FamilyName>Wong</FamilyName>
</EditorName>
<Contact>
<Email>wongls@comp.nus.edu.sg</Email>
</Contact>
</Editor>
</EditorGroup>
</BookHeader>
<Chapter ID="Chap31" Language="En">
<ChapterInfo ChapterType="OriginalPaper" ContainsESM="No" NumberingStyle="Unnumbered" TocLevels="0">
<ChapterID>31</ChapterID>
<ChapterDOI>10.1007/978-3-540-78839-3_31</ChapterDOI>
<ChapterSequenceNumber>31</ChapterSequenceNumber>
<ChapterTitle Language="En">Constructing Treatment Portfolios Using Affinity Propagation</ChapterTitle>
<ChapterFirstPage>360</ChapterFirstPage>
<ChapterLastPage>371</ChapterLastPage>
<ChapterCopyright>
<CopyrightHolderName>Springer-Verlag Berlin Heidelberg</CopyrightHolderName>
<CopyrightYear>2008</CopyrightYear>
</ChapterCopyright>
<ChapterGrants Type="Regular">
<MetadataGrant Grant="OpenAccess"></MetadataGrant>
<AbstractGrant Grant="OpenAccess"></AbstractGrant>
<BodyPDFGrant Grant="Restricted"></BodyPDFGrant>
<BodyHTMLGrant Grant="Restricted"></BodyHTMLGrant>
<BibliographyGrant Grant="Restricted"></BibliographyGrant>
<ESMGrant Grant="Restricted"></ESMGrant>
</ChapterGrants>
<ChapterContext>
<SeriesID>558</SeriesID>
<BookID>978-3-540-78839-3</BookID>
<BookTitle>Research in Computational Molecular Biology</BookTitle>
</ChapterContext>
</ChapterInfo>
<ChapterHeader>
<AuthorGroup>
<Author AffiliationIDS="Aff1">
<AuthorName DisplayOrder="Western">
<GivenName>Delbert</GivenName>
<FamilyName>Dueck</FamilyName>
</AuthorName>
</Author>
<Author AffiliationIDS="Aff1 Aff2">
<AuthorName DisplayOrder="Western">
<GivenName>Brendan</GivenName>
<GivenName>J.</GivenName>
<FamilyName>Frey</FamilyName>
</AuthorName>
</Author>
<Author AffiliationIDS="Aff3">
<AuthorName DisplayOrder="Western">
<GivenName>Nebojsa</GivenName>
<FamilyName>Jojic</FamilyName>
</AuthorName>
</Author>
<Author AffiliationIDS="Aff1 Aff3 Aff4">
<AuthorName DisplayOrder="Western">
<GivenName>Vladimir</GivenName>
<FamilyName>Jojic</FamilyName>
</AuthorName>
</Author>
<Author AffiliationIDS="Aff2">
<AuthorName DisplayOrder="Western">
<GivenName>Guri</GivenName>
<FamilyName>Giaever</FamilyName>
</AuthorName>
</Author>
<Author AffiliationIDS="Aff2">
<AuthorName DisplayOrder="Western">
<GivenName>Andrew</GivenName>
<FamilyName>Emili</FamilyName>
</AuthorName>
</Author>
<Author AffiliationIDS="Aff2">
<AuthorName DisplayOrder="Western">
<GivenName>Gabe</GivenName>
<FamilyName>Musso</FamilyName>
</AuthorName>
</Author>
<Author AffiliationIDS="Aff5">
<AuthorName DisplayOrder="Western">
<GivenName>Robert</GivenName>
<FamilyName>Hegele</FamilyName>
</AuthorName>
</Author>
<Affiliation ID="Aff1">
<OrgDivision>Electrical and Computer Engineering</OrgDivision>
<OrgName>University of Toronto</OrgName>
<OrgAddress>
<Country>Canada</Country>
</OrgAddress>
</Affiliation>
<Affiliation ID="Aff2">
<OrgDivision>Center for Cellular and Biomolecular Research</OrgDivision>
<OrgName>University of Toronto</OrgName>
<OrgAddress>
<Country>Canada</Country>
</OrgAddress>
</Affiliation>
<Affiliation ID="Aff3">
<OrgDivision>Machine Learning and Statistics</OrgDivision>
<OrgName>Microsoft Research</OrgName>
<OrgAddress>
<City>Redmond</City>
<Country>USA</Country>
</OrgAddress>
</Affiliation>
<Affiliation ID="Aff4">
<OrgDivision>Computer Science</OrgDivision>
<OrgName>Stanford University</OrgName>
<OrgAddress>
<Country>USA</Country>
</OrgAddress>
</Affiliation>
<Affiliation ID="Aff5">
<OrgDivision>Cardiovascular Genetics Laboratory</OrgDivision>
<OrgName>Robarts Research Institute</OrgName>
<OrgAddress>
<City>London</City>
<Country>Canada</Country>
</OrgAddress>
</Affiliation>
</AuthorGroup>
<Abstract ID="Abs1" Language="En">
<Heading>Abstract</Heading>
<Para>A key problem of interest to biologists and medical researchers is the selection of a subset of queries or treatments that provide maximum utility for a population of targets. For example, when studying how gene deletion mutants respond to each of thousands of drugs, it is desirable to identify a small subset of genes that nearly uniquely define a drug ‘footprint’ that provides maximum predictability about the organism’s response to the drugs. As another example, when designing a cocktail of HIV genome sequences to be used as a vaccine, it is desirable to identify a small number of sequences that provide maximum immunological protection to a specified population of recipients. We refer to this task as ‘treatment portfolio design’ and formalize it as a facility location problem. Finding a treatment portfolio is NP-hard in the size of portfolio and number of targets, but a variety of greedy algorithms can be applied. We introduce a new algorithm for treatment portfolio design based on similar insights that made the recently-published affinity propagation algorithm work quite well for clustering tasks. We demonstrate this method using the two problems described above: selecting a subset of yeast genes that act as a drug-response footprint, and selecting a subset of vaccine sequences that provide maximum epitope coverage for an HIV genome population.</Para>
</Abstract>
</ChapterHeader>
<NoBody></NoBody>
</Chapter>
</Book>
</Series>
</Publisher>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Constructing Treatment Portfolios Using Affinity Propagation</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Constructing Treatment Portfolios Using Affinity Propagation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Delbert</namePart>
<namePart type="family">Dueck</namePart>
<affiliation>Electrical and Computer Engineering, University of Toronto, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brendan</namePart>
<namePart type="given">J.</namePart>
<namePart type="family">Frey</namePart>
<affiliation>Electrical and Computer Engineering, University of Toronto, Canada</affiliation>
<affiliation>Center for Cellular and Biomolecular Research, University of Toronto, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nebojsa</namePart>
<namePart type="family">Jojic</namePart>
<affiliation>Machine Learning and Statistics, Microsoft Research, Redmond, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vladimir</namePart>
<namePart type="family">Jojic</namePart>
<affiliation>Electrical and Computer Engineering, University of Toronto, Canada</affiliation>
<affiliation>Machine Learning and Statistics, Microsoft Research, Redmond, USA</affiliation>
<affiliation>Computer Science, Stanford University, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guri</namePart>
<namePart type="family">Giaever</namePart>
<affiliation>Center for Cellular and Biomolecular Research, University of Toronto, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">Emili</namePart>
<affiliation>Center for Cellular and Biomolecular Research, University of Toronto, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabe</namePart>
<namePart type="family">Musso</namePart>
<affiliation>Center for Cellular and Biomolecular Research, University of Toronto, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert</namePart>
<namePart type="family">Hegele</namePart>
<affiliation>Cardiovascular Genetics Laboratory, Robarts Research Institute, London, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre displayLabel="OriginalPaper" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" type="conference" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-BFHXPBJJ-3">conference</genre>
<originInfo>
<publisher>Springer Berlin Heidelberg</publisher>
<place>
<placeTerm type="text">Berlin, Heidelberg</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2008</dateIssued>
<copyrightDate encoding="w3cdtf">2008</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<abstract lang="en">Abstract: A key problem of interest to biologists and medical researchers is the selection of a subset of queries or treatments that provide maximum utility for a population of targets. For example, when studying how gene deletion mutants respond to each of thousands of drugs, it is desirable to identify a small subset of genes that nearly uniquely define a drug ‘footprint’ that provides maximum predictability about the organism’s response to the drugs. As another example, when designing a cocktail of HIV genome sequences to be used as a vaccine, it is desirable to identify a small number of sequences that provide maximum immunological protection to a specified population of recipients. We refer to this task as ‘treatment portfolio design’ and formalize it as a facility location problem. Finding a treatment portfolio is NP-hard in the size of portfolio and number of targets, but a variety of greedy algorithms can be applied. We introduce a new algorithm for treatment portfolio design based on similar insights that made the recently-published affinity propagation algorithm work quite well for clustering tasks. We demonstrate this method using the two problems described above: selecting a subset of yeast genes that act as a drug-response footprint, and selecting a subset of vaccine sequences that provide maximum epitope coverage for an HIV genome population.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Research in Computational Molecular Biology</title>
<subTitle>12th Annual International Conference, RECOMB 2008, Singapore, March 30 - April 2, 2008. Proceedings</subTitle>
</titleInfo>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Vingron</namePart>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Limsoon</namePart>
<namePart type="family">Wong</namePart>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<genre type="book-series" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0G6R5W5T-Z">book-series</genre>
<originInfo>
<publisher>Springer</publisher>
<copyrightDate encoding="w3cdtf">2008</copyrightDate>
<issuance>monographic</issuance>
</originInfo>
<subject>
<genre>Book-Subject-Collection</genre>
<topic authority="SpringerSubjectCodes" authorityURI="SUCO11645">Computer Science</topic>
</subject>
<subject>
<genre>Book-Subject-Group</genre>
<topic authority="SpringerSubjectCodes" authorityURI="I">Computer Science</topic>
<topic authority="SpringerSubjectCodes" authorityURI="I16021">Algorithm Analysis and Problem Complexity</topic>
<topic authority="SpringerSubjectCodes" authorityURI="I15017">Data Structures</topic>
<topic authority="SpringerSubjectCodes" authorityURI="I17028">Discrete Mathematics in Computer Science</topic>
<topic authority="SpringerSubjectCodes" authorityURI="I18024">Database Management</topic>
<topic authority="SpringerSubjectCodes" authorityURI="I21017">Artificial Intelligence (incl. Robotics)</topic>
<topic authority="SpringerSubjectCodes" authorityURI="I23050">Computational Biology/Bioinformatics</topic>
</subject>
<identifier type="DOI">10.1007/978-3-540-78839-3</identifier>
<identifier type="ISBN">978-3-540-78838-6</identifier>
<identifier type="eISBN">978-3-540-78839-3</identifier>
<identifier type="ISSN">0302-9743</identifier>
<identifier type="eISSN">1611-3349</identifier>
<identifier type="BookTitleID">160874</identifier>
<identifier type="BookID">978-3-540-78839-3</identifier>
<identifier type="BookChapterCount">41</identifier>
<identifier type="BookVolumeNumber">4955</identifier>
<identifier type="BookSequenceNumber">4955</identifier>
<part>
<date>2008</date>
<detail type="volume">
<number>4955</number>
<caption>vol.</caption>
</detail>
<extent unit="pages">
<start>360</start>
<end>371</end>
</extent>
</part>
<recordInfo>
<recordOrigin>Springer-Verlag Berlin Heidelberg, 2008</recordOrigin>
</recordInfo>
</relatedItem>
<relatedItem type="series">
<titleInfo>
<title>Lecture Notes in Computer Science</title>
</titleInfo>
<originInfo>
<publisher>Springer</publisher>
<copyrightDate encoding="w3cdtf">2008</copyrightDate>
<issuance>serial</issuance>
</originInfo>
<relatedItem type="constituent">
<titleInfo>
<title>Lecture Notes in Bioinformatics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sorin</namePart>
<namePart type="family">Istrail</namePart>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pavel</namePart>
<namePart type="family">Pevzner</namePart>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="given">S.</namePart>
<namePart type="family">Waterman</namePart>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Vingron</namePart>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Limsoon</namePart>
<namePart type="family">Wong</namePart>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<genre type="sub-series"></genre>
<identifier type="ISSN">0302-9743</identifier>
<identifier type="eISSN">1611-3349</identifier>
<identifier type="SubSeriesID">5381</identifier>
</relatedItem>
<identifier type="ISSN">0302-9743</identifier>
<identifier type="eISSN">1611-3349</identifier>
<identifier type="SeriesID">558</identifier>
<recordInfo>
<recordOrigin>Springer-Verlag Berlin Heidelberg, 2008</recordOrigin>
</recordInfo>
</relatedItem>
<identifier type="istex">4E2DB7E9E3E0FA02EC2790BF840D404B35FFA7E1</identifier>
<identifier type="ark">ark:/67375/HCB-SSMVNFLT-L</identifier>
<identifier type="DOI">10.1007/978-3-540-78839-3_31</identifier>
<identifier type="ChapterID">31</identifier>
<identifier type="ChapterID">Chap31</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Springer-Verlag Berlin Heidelberg, 2008</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-RLRX46XW-4">springer</recordContentSource>
<recordOrigin>Springer-Verlag Berlin Heidelberg, 2008</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/HCB-SSMVNFLT-L/record.json</uri>
</json:item>
</metadata>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B69 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000B69 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:4E2DB7E9E3E0FA02EC2790BF840D404B35FFA7E1
   |texte=   Constructing Treatment Portfolios Using Affinity Propagation
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021