Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Synthesis, Biophysical Characterization, and Anti-HIV Activity of Glyco-Conjugated G-Quadruplex-Forming Oligonucleotides

Identifieur interne : 000B22 ( Istex/Corpus ); précédent : 000B21; suivant : 000B23

Synthesis, Biophysical Characterization, and Anti-HIV Activity of Glyco-Conjugated G-Quadruplex-Forming Oligonucleotides

Auteurs : Jennifer D Nofrio ; Luigi Petraccone ; Luigi Martino ; Giovanni Di Fabio ; Alfonso Iadonisi ; Jan Balzarini ; Concetta Giancola ; Daniela Montesarchio

Source :

RBID : ISTEX:AF50A7F65416CAC5493803F32EB82BD90783A4D2

Abstract

Novel hybrid oligonucleotides carrying the G-quadruplex-forming d(5′TGGGAG3′) sequence, conjugated with mono- or disaccharides at the 3′ or 5′-end through phosphodiester bonds, have been synthesized as potential anti-HIV agents, via a fully automated, online phosphoramidite-based solid-phase strategy. CD-monitored thermal denaturation studies on the resulting quadruplexes indicated the insertion of a single monosaccharide at the 3′-end as the optimal modification, conferring improved stability to the quadruplex complex. In addition, the 3′-conjugation with glucose or mannose converted the anti-HIV inactive unmodified oligomer into active compounds. On the contrary, the 5′-tethering with these monosaccharides, as well as the conjugation, either at the 5′ or 3′-end, with sucrose, were in all cases detrimental to quadruplex stability and did not improve the biological activity. On the basis of the assumption that the kinetically and thermodynamically favored formation of the quadruplex complex is a prerequisite for efficient antiviral activity, a novel bis-conjugated oligonucleotide was designed. This combined a mannose residue at the 3′-phosphate end with bulky aromatic tert-butyldiphenylsilyl (TBDPS) group at the 5′-end, previously shown to markedly favor the formation of quadruplex complexes. The 5′,3′-bis-conjugated 6-mer, for which a detailed biophysical characterization has been carried out, resulted in 3-fold greater antiviral activity against HIV-1 than the sole 3′-glyco-conjugated oligonucleotide.

Url:
DOI: 10.1021/bc7003395

Links to Exploration step

ISTEX:AF50A7F65416CAC5493803F32EB82BD90783A4D2

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Synthesis, Biophysical Characterization, and Anti-HIV Activity of Glyco-Conjugated G-Quadruplex-Forming Oligonucleotides</title>
<author>
<name sortKey="D Nofrio, Jennifer" sort="D Nofrio, Jennifer" uniqKey="D Nofrio J" first="Jennifer" last="D Nofrio">Jennifer D Nofrio</name>
<affiliation>
<mods:affiliation>Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroederstraat, B-3000 Leuven, Belgium</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Dipartimento di Chimica Organica e Biochimica, Università degli Studi di Napoli “Federico II”.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Petraccone, Luigi" sort="Petraccone, Luigi" uniqKey="Petraccone L" first="Luigi" last="Petraccone">Luigi Petraccone</name>
<affiliation>
<mods:affiliation>Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroederstraat, B-3000 Leuven, Belgium</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Martino, Luigi" sort="Martino, Luigi" uniqKey="Martino L" first="Luigi" last="Martino">Luigi Martino</name>
<affiliation>
<mods:affiliation>Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroederstraat, B-3000 Leuven, Belgium</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fabio, Giovanni Di" sort="Fabio, Giovanni Di" uniqKey="Fabio G" first="Giovanni Di" last="Fabio">Giovanni Di Fabio</name>
<affiliation>
<mods:affiliation>Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroederstraat, B-3000 Leuven, Belgium</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Dipartimento di Chimica Organica e Biochimica, Università degli Studi di Napoli “Federico II”.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Iadonisi, Alfonso" sort="Iadonisi, Alfonso" uniqKey="Iadonisi A" first="Alfonso" last="Iadonisi">Alfonso Iadonisi</name>
<affiliation>
<mods:affiliation>Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroederstraat, B-3000 Leuven, Belgium</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Dipartimento di Chimica Organica e Biochimica, Università degli Studi di Napoli “Federico II”.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Balzarini, Jan" sort="Balzarini, Jan" uniqKey="Balzarini J" first="Jan" last="Balzarini">Jan Balzarini</name>
<affiliation>
<mods:affiliation>Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroederstraat, B-3000 Leuven, Belgium</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Katholieke Universiteit Leuven.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Giancola, Concetta" sort="Giancola, Concetta" uniqKey="Giancola C" first="Concetta" last="Giancola">Concetta Giancola</name>
<affiliation>
<mods:affiliation>Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroederstraat, B-3000 Leuven, Belgium</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: daniela.montesarchio@unina.it</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Montesarchio, Daniela" sort="Montesarchio, Daniela" uniqKey="Montesarchio D" first="Daniela" last="Montesarchio">Daniela Montesarchio</name>
<affiliation>
<mods:affiliation>Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroederstraat, B-3000 Leuven, Belgium</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Dipartimento di Chimica Organica e Biochimica, Università degli Studi di Napoli “Federico II”.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: daniela.montesarchio@unina.it</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:AF50A7F65416CAC5493803F32EB82BD90783A4D2</idno>
<date when="2008" year="2008">2008</date>
<idno type="doi">10.1021/bc7003395</idno>
<idno type="url">https://api.istex.fr/ark:/67375/TPS-LWH5T68N-7/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000B22</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000B22</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Synthesis, Biophysical Characterization, and Anti-HIV Activity of Glyco-Conjugated G-Quadruplex-Forming Oligonucleotides</title>
<author>
<name sortKey="D Nofrio, Jennifer" sort="D Nofrio, Jennifer" uniqKey="D Nofrio J" first="Jennifer" last="D Nofrio">Jennifer D Nofrio</name>
<affiliation>
<mods:affiliation>Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroederstraat, B-3000 Leuven, Belgium</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Dipartimento di Chimica Organica e Biochimica, Università degli Studi di Napoli “Federico II”.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Petraccone, Luigi" sort="Petraccone, Luigi" uniqKey="Petraccone L" first="Luigi" last="Petraccone">Luigi Petraccone</name>
<affiliation>
<mods:affiliation>Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroederstraat, B-3000 Leuven, Belgium</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Martino, Luigi" sort="Martino, Luigi" uniqKey="Martino L" first="Luigi" last="Martino">Luigi Martino</name>
<affiliation>
<mods:affiliation>Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroederstraat, B-3000 Leuven, Belgium</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fabio, Giovanni Di" sort="Fabio, Giovanni Di" uniqKey="Fabio G" first="Giovanni Di" last="Fabio">Giovanni Di Fabio</name>
<affiliation>
<mods:affiliation>Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroederstraat, B-3000 Leuven, Belgium</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Dipartimento di Chimica Organica e Biochimica, Università degli Studi di Napoli “Federico II”.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Iadonisi, Alfonso" sort="Iadonisi, Alfonso" uniqKey="Iadonisi A" first="Alfonso" last="Iadonisi">Alfonso Iadonisi</name>
<affiliation>
<mods:affiliation>Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroederstraat, B-3000 Leuven, Belgium</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Dipartimento di Chimica Organica e Biochimica, Università degli Studi di Napoli “Federico II”.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Balzarini, Jan" sort="Balzarini, Jan" uniqKey="Balzarini J" first="Jan" last="Balzarini">Jan Balzarini</name>
<affiliation>
<mods:affiliation>Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroederstraat, B-3000 Leuven, Belgium</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Katholieke Universiteit Leuven.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Giancola, Concetta" sort="Giancola, Concetta" uniqKey="Giancola C" first="Concetta" last="Giancola">Concetta Giancola</name>
<affiliation>
<mods:affiliation>Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroederstraat, B-3000 Leuven, Belgium</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: daniela.montesarchio@unina.it</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Montesarchio, Daniela" sort="Montesarchio, Daniela" uniqKey="Montesarchio D" first="Daniela" last="Montesarchio">Daniela Montesarchio</name>
<affiliation>
<mods:affiliation>Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroederstraat, B-3000 Leuven, Belgium</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Dipartimento di Chimica Organica e Biochimica, Università degli Studi di Napoli “Federico II”.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: daniela.montesarchio@unina.it</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Bioconjugate Chemistry</title>
<title level="j" type="abbrev">Bioconjugate Chem.</title>
<idno type="ISSN">1043-1802</idno>
<idno type="eISSN">1520-4812</idno>
<imprint>
<publisher>American Chemical Society</publisher>
<date type="e-published">2008</date>
<date type="published">2008</date>
<biblScope unit="vol">19</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="607">607</biblScope>
<biblScope unit="page" to="616">616</biblScope>
</imprint>
<idno type="ISSN">1043-1802</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1043-1802</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Novel hybrid oligonucleotides carrying the G-quadruplex-forming d(5′TGGGAG3′) sequence, conjugated with mono- or disaccharides at the 3′ or 5′-end through phosphodiester bonds, have been synthesized as potential anti-HIV agents, via a fully automated, online phosphoramidite-based solid-phase strategy. CD-monitored thermal denaturation studies on the resulting quadruplexes indicated the insertion of a single monosaccharide at the 3′-end as the optimal modification, conferring improved stability to the quadruplex complex. In addition, the 3′-conjugation with glucose or mannose converted the anti-HIV inactive unmodified oligomer into active compounds. On the contrary, the 5′-tethering with these monosaccharides, as well as the conjugation, either at the 5′ or 3′-end, with sucrose, were in all cases detrimental to quadruplex stability and did not improve the biological activity. On the basis of the assumption that the kinetically and thermodynamically favored formation of the quadruplex complex is a prerequisite for efficient antiviral activity, a novel bis-conjugated oligonucleotide was designed. This combined a mannose residue at the 3′-phosphate end with bulky aromatic tert-butyldiphenylsilyl (TBDPS) group at the 5′-end, previously shown to markedly favor the formation of quadruplex complexes. The 5′,3′-bis-conjugated 6-mer, for which a detailed biophysical characterization has been carried out, resulted in 3-fold greater antiviral activity against HIV-1 than the sole 3′-glyco-conjugated oligonucleotide.</div>
</front>
</TEI>
<istex>
<corpusName>acs</corpusName>
<keywords>
<teeft>
<json:string>quadruplex</json:string>
<json:string>oligonucleotides</json:string>
<json:string>oligonucleotide</json:string>
<json:string>chem</json:string>
<json:string>antiviral</json:string>
<json:string>odns</json:string>
<json:string>quadruplex complex</json:string>
<json:string>viii</json:string>
<json:string>bioconjugate chem</json:string>
<json:string>bioconjugate</json:string>
<json:string>mannose</json:string>
<json:string>phosphoramidite</json:string>
<json:string>napoli</json:string>
<json:string>tbdps</json:string>
<json:string>oligomer</json:string>
<json:string>oligomers</json:string>
<json:string>hplc</json:string>
<json:string>quadruplex formation</json:string>
<json:string>datum</json:string>
<json:string>quadruplexes</json:string>
<json:string>quadruplex dissociation</json:string>
<json:string>activation energy</json:string>
<json:string>quadruplex structure</json:string>
<json:string>xxxx</json:string>
<json:string>kinetic parameter</json:string>
<json:string>quadruplex concentration</json:string>
<json:string>biological activity</json:string>
<json:string>test compound</json:string>
<json:string>carbohydrate</json:string>
<json:string>linear gradient</json:string>
<json:string>biophysical characterization</json:string>
<json:string>effective concentration</json:string>
<json:string>compound concentration</json:string>
<json:string>degli studi</json:string>
<json:string>kinetic constant</json:string>
<json:string>different temperature</json:string>
<json:string>mannose residue</json:string>
<json:string>cell culture</json:string>
<json:string>syncytium formation</json:string>
<json:string>corresponding quadruplex complex</json:string>
<json:string>molar ellipticity</json:string>
<json:string>unmodified</json:string>
<json:string>oligonucleotide chain</json:string>
<json:string>thermal denaturation study</json:string>
<json:string>synthetic scheme</json:string>
<json:string>temperature range</json:string>
<json:string>flow rate</json:string>
<json:string>antiviral activity</json:string>
<json:string>initial loading</json:string>
<json:string>antiviral property</json:string>
<json:string>phosphoramidite building block</json:string>
<json:string>thermal stability</json:string>
<json:string>chimica organica</json:string>
<json:string>potassium phosphate</json:string>
<json:string>inhibitory concentration</json:string>
<json:string>cell proliferation</json:string>
<json:string>selectivity index</json:string>
<json:string>disaccharide tail</json:string>
<json:string>best modification</json:string>
<json:string>more active</json:string>
<json:string>tbdps group</json:string>
<json:string>human immunodeficiency virus type</json:string>
<json:string>active compound</json:string>
<json:string>building block</json:string>
<json:string>single strand</json:string>
<json:string>sole oligonucleotide</json:string>
<json:string>reaction order</json:string>
<json:string>time profile</json:string>
<json:string>katholieke universiteit leuven</json:string>
<json:string>paolo corradini</json:string>
<json:string>novel antiviral</json:string>
<json:string>reaction mixture</json:string>
<json:string>amersham pharmacia biotech</json:string>
<json:string>trichloroacetic acid</json:string>
<json:string>inhibitory activity</json:string>
<json:string>cellular uptake</json:string>
<json:string>biological property</json:string>
<json:string>temperature value</json:string>
<json:string>unmodified sequence</json:string>
<json:string>same modification</json:string>
<json:string>dramatic destabilization</json:string>
<json:string>oligonucleotide viii</json:string>
<json:string>hplc purification</json:string>
<json:string>pharmacological profile</json:string>
<json:string>association reaction</json:string>
<json:string>cytostatic property</json:string>
<json:string>daniela montesarchio</json:string>
<json:string>kinetic profile</json:string>
<json:string>tetrahedron lett</json:string>
<json:string>solid phase synthesis</json:string>
<json:string>immunodeficiency virus type</json:string>
<json:string>potassium phosphate buffer</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>D’ONOFRIO Jennifer</name>
<affiliations>
<json:string>Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroederstraat, B-3000 Leuven, Belgium</json:string>
<json:string>Dipartimento di Chimica Organica e Biochimica, Università degli Studi di Napoli “Federico II”.</json:string>
</affiliations>
</json:item>
<json:item>
<name>PETRACCONE Luigi</name>
<affiliations>
<json:string>Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroederstraat, B-3000 Leuven, Belgium</json:string>
<json:string>Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”.</json:string>
</affiliations>
</json:item>
<json:item>
<name>MARTINO Luigi</name>
<affiliations>
<json:string>Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroederstraat, B-3000 Leuven, Belgium</json:string>
<json:string>Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”.</json:string>
</affiliations>
</json:item>
<json:item>
<name>FABIO Giovanni Di</name>
<affiliations>
<json:string>Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroederstraat, B-3000 Leuven, Belgium</json:string>
<json:string>Dipartimento di Chimica Organica e Biochimica, Università degli Studi di Napoli “Federico II”.</json:string>
</affiliations>
</json:item>
<json:item>
<name>IADONISI Alfonso</name>
<affiliations>
<json:string>Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroederstraat, B-3000 Leuven, Belgium</json:string>
<json:string>Dipartimento di Chimica Organica e Biochimica, Università degli Studi di Napoli “Federico II”.</json:string>
</affiliations>
</json:item>
<json:item>
<name>BALZARINI Jan</name>
<affiliations>
<json:string>Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroederstraat, B-3000 Leuven, Belgium</json:string>
<json:string>Katholieke Universiteit Leuven.</json:string>
</affiliations>
</json:item>
<json:item>
<name>GIANCOLA Concetta</name>
<affiliations>
<json:string>Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroederstraat, B-3000 Leuven, Belgium</json:string>
<json:string>Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”.</json:string>
<json:string>E-mail: daniela.montesarchio@unina.it</json:string>
</affiliations>
</json:item>
<json:item>
<name>MONTESARCHIO Daniela</name>
<affiliations>
<json:string>Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroederstraat, B-3000 Leuven, Belgium</json:string>
<json:string>Dipartimento di Chimica Organica e Biochimica, Università degli Studi di Napoli “Federico II”.</json:string>
<json:string>E-mail: daniela.montesarchio@unina.it</json:string>
</affiliations>
</json:item>
</author>
<arkIstex>ark:/67375/TPS-LWH5T68N-7</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Article</json:string>
</originalGenre>
<abstract>Novel hybrid oligonucleotides carrying the G-quadruplex-forming d(5′TGGGAG3′) sequence, conjugated with mono- or disaccharides at the 3′ or 5′-end through phosphodiester bonds, have been synthesized as potential anti-HIV agents, via a fully automated, online phosphoramidite-based solid-phase strategy. CD-monitored thermal denaturation studies on the resulting quadruplexes indicated the insertion of a single monosaccharide at the 3′-end as the optimal modification, conferring improved stability to the quadruplex complex. In addition, the 3′-conjugation with glucose or mannose converted the anti-HIV inactive unmodified oligomer into active compounds. On the contrary, the 5′-tethering with these monosaccharides, as well as the conjugation, either at the 5′ or 3′-end, with sucrose, were in all cases detrimental to quadruplex stability and did not improve the biological activity. On the basis of the assumption that the kinetically and thermodynamically favored formation of the quadruplex complex is a prerequisite for efficient antiviral activity, a novel bis-conjugated oligonucleotide was designed. This combined a mannose residue at the 3′-phosphate end with bulky aromatic tert-butyldiphenylsilyl (TBDPS) group at the 5′-end, previously shown to markedly favor the formation of quadruplex complexes. The 5′,3′-bis-conjugated 6-mer, for which a detailed biophysical characterization has been carried out, resulted in 3-fold greater antiviral activity against HIV-1 than the sole 3′-glyco-conjugated oligonucleotide.</abstract>
<qualityIndicators>
<score>9.424</score>
<pdfWordCount>5900</pdfWordCount>
<pdfCharCount>40134</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>10</pdfPageCount>
<pdfPageSize>589 x 783 pts</pdfPageSize>
<pdfWordsPerPage>590</pdfWordsPerPage>
<pdfText>true</pdfText>
<refBibsNative>true</refBibsNative>
<abstractWordCount>202</abstractWordCount>
<abstractCharCount>1528</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Synthesis, Biophysical Characterization, and Anti-HIV Activity of Glyco-Conjugated G-Quadruplex-Forming Oligonucleotides</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Bioconjugate Chemistry</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>1043-1802</json:string>
</issn>
<eissn>
<json:string>1520-4812</json:string>
</eissn>
<volume>19</volume>
<issue>3</issue>
<pages>
<first>607</first>
<last>616</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<ark>
<json:string>ark:/67375/TPS-LWH5T68N-7</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - chemistry, organic</json:string>
<json:string>2 - chemistry, multidisciplinary</json:string>
<json:string>2 - biochemistry & molecular biology</json:string>
<json:string>2 - biochemical research methods</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - chemistry</json:string>
<json:string>3 - organic chemistry</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Chemistry</json:string>
<json:string>3 - Organic Chemistry</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Pharmacology, Toxicology and Pharmaceutics</json:string>
<json:string>3 - Pharmaceutical Science</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Pharmacology, Toxicology and Pharmaceutics</json:string>
<json:string>3 - Pharmacology</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Engineering</json:string>
<json:string>3 - Biomedical Engineering</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Chemical Engineering</json:string>
<json:string>3 - Bioengineering</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Biotechnology</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences medicales</json:string>
</inist>
</categories>
<publicationDate>2008</publicationDate>
<copyrightDate>2008</copyrightDate>
<doi>
<json:string>10.1021/bc7003395</json:string>
</doi>
<id>AF50A7F65416CAC5493803F32EB82BD90783A4D2</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-LWH5T68N-7/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-LWH5T68N-7/bundle.zip</uri>
</json:item>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-LWH5T68N-7/fulltext.txt</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/TPS-LWH5T68N-7/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Synthesis, Biophysical Characterization, and Anti-HIV Activity of Glyco-Conjugated G-Quadruplex-Forming Oligonucleotides</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>American Chemical Society</publisher>
<availability>
<licence>Copyright © 2008 American Chemical Society</licence>
<p>American Chemical Society</p>
</availability>
<date type="published">2008</date>
<date type="Copyright" when="2008">2008</date>
</publicationStmt>
<notesStmt>
<note type="content-type" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Synthesis, Biophysical Characterization, and Anti-HIV Activity of Glyco-Conjugated G-Quadruplex-Forming Oligonucleotides</title>
<title level="a" type="short">Glyco-Conjugated G-Quadruplex-Forming Oligonucleotides.</title>
<author xml:id="author-0000">
<persName>
<surname>D’Onofrio</surname>
<forename type="first">Jennifer</forename>
</persName>
<affiliation>
<orgName type="division">Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”</orgName>
<orgName type="institution">Università degli Studi di Napoli “Federico II”</orgName>
<address>
<addrLine>Via Cintia 4</addrLine>
<addrLine>I-80126 Napoli</addrLine>
<country key="IT" xml:lang="en">ITALY</country>
<addrLine>and Rega Institute for Medical Research</addrLine>
<addrLine>Katholieke Universiteit Leuven</addrLine>
<addrLine>10 Minderbroederstraat</addrLine>
<addrLine>B-3000 Leuven</addrLine>
<country key="BE" xml:lang="en">BELGIUM</country>
</address>
</affiliation>
<note place="foot" n="afn1">
<ref></ref>
<p>Dipartimento di Chimica Organica e Biochimica, Università degli Studi di Napoli “Federico II”.</p>
</note>
</author>
<author xml:id="author-0001">
<persName>
<surname>Petraccone</surname>
<forename type="first">Luigi</forename>
</persName>
<affiliation>
<orgName type="division">Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”</orgName>
<orgName type="institution">Università degli Studi di Napoli “Federico II”</orgName>
<address>
<addrLine>Via Cintia 4</addrLine>
<addrLine>I-80126 Napoli</addrLine>
<country key="IT" xml:lang="en">ITALY</country>
<addrLine>and Rega Institute for Medical Research</addrLine>
<addrLine>Katholieke Universiteit Leuven</addrLine>
<addrLine>10 Minderbroederstraat</addrLine>
<addrLine>B-3000 Leuven</addrLine>
<country key="BE" xml:lang="en">BELGIUM</country>
</address>
</affiliation>
<note place="foot" n="afn2">
<ref></ref>
<p>Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”.</p>
</note>
</author>
<author xml:id="author-0002">
<persName>
<surname>Martino</surname>
<forename type="first">Luigi</forename>
</persName>
<affiliation>
<orgName type="division">Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”</orgName>
<orgName type="institution">Università degli Studi di Napoli “Federico II”</orgName>
<address>
<addrLine>Via Cintia 4</addrLine>
<addrLine>I-80126 Napoli</addrLine>
<country key="IT" xml:lang="en">ITALY</country>
<addrLine>and Rega Institute for Medical Research</addrLine>
<addrLine>Katholieke Universiteit Leuven</addrLine>
<addrLine>10 Minderbroederstraat</addrLine>
<addrLine>B-3000 Leuven</addrLine>
<country key="BE" xml:lang="en">BELGIUM</country>
</address>
</affiliation>
<note place="foot" n="afn2">
<ref></ref>
<p>Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”.</p>
</note>
</author>
<author xml:id="author-0003">
<persName>
<surname>Fabio</surname>
<forename type="first">Giovanni Di</forename>
</persName>
<affiliation>
<orgName type="division">Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”</orgName>
<orgName type="institution">Università degli Studi di Napoli “Federico II”</orgName>
<address>
<addrLine>Via Cintia 4</addrLine>
<addrLine>I-80126 Napoli</addrLine>
<country key="IT" xml:lang="en">ITALY</country>
<addrLine>and Rega Institute for Medical Research</addrLine>
<addrLine>Katholieke Universiteit Leuven</addrLine>
<addrLine>10 Minderbroederstraat</addrLine>
<addrLine>B-3000 Leuven</addrLine>
<country key="BE" xml:lang="en">BELGIUM</country>
</address>
</affiliation>
<note place="foot" n="afn1">
<ref></ref>
<p>Dipartimento di Chimica Organica e Biochimica, Università degli Studi di Napoli “Federico II”.</p>
</note>
</author>
<author xml:id="author-0004">
<persName>
<surname>Iadonisi</surname>
<forename type="first">Alfonso</forename>
</persName>
<affiliation>
<orgName type="division">Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”</orgName>
<orgName type="institution">Università degli Studi di Napoli “Federico II”</orgName>
<address>
<addrLine>Via Cintia 4</addrLine>
<addrLine>I-80126 Napoli</addrLine>
<country key="IT" xml:lang="en">ITALY</country>
<addrLine>and Rega Institute for Medical Research</addrLine>
<addrLine>Katholieke Universiteit Leuven</addrLine>
<addrLine>10 Minderbroederstraat</addrLine>
<addrLine>B-3000 Leuven</addrLine>
<country key="BE" xml:lang="en">BELGIUM</country>
</address>
</affiliation>
<note place="foot" n="afn1">
<ref></ref>
<p>Dipartimento di Chimica Organica e Biochimica, Università degli Studi di Napoli “Federico II”.</p>
</note>
</author>
<author xml:id="author-0005">
<persName>
<surname>Balzarini</surname>
<forename type="first">Jan</forename>
</persName>
<affiliation>
<orgName type="division">Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”</orgName>
<orgName type="institution">Università degli Studi di Napoli “Federico II”</orgName>
<address>
<addrLine>Via Cintia 4</addrLine>
<addrLine>I-80126 Napoli</addrLine>
<country key="IT" xml:lang="en">ITALY</country>
<addrLine>and Rega Institute for Medical Research</addrLine>
<addrLine>Katholieke Universiteit Leuven</addrLine>
<addrLine>10 Minderbroederstraat</addrLine>
<addrLine>B-3000 Leuven</addrLine>
<country key="BE" xml:lang="en">BELGIUM</country>
</address>
</affiliation>
<note place="foot" n="afn3">
<ref>§</ref>
<p>Katholieke Universiteit Leuven.</p>
</note>
</author>
<author xml:id="author-0006" role="corresp">
<persName>
<surname>Giancola</surname>
<forename type="first">Concetta</forename>
</persName>
<note place="foot" n="afn2">
<ref></ref>
<p>Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”.</p>
</note>
</author>
<author xml:id="author-0007" role="corresp">
<persName>
<surname>Montesarchio</surname>
<forename type="first">Daniela</forename>
</persName>
<note place="foot" n="afn1">
<ref></ref>
<p>Dipartimento di Chimica Organica e Biochimica, Università degli Studi di Napoli “Federico II”.</p>
</note>
</author>
<idno type="istex">AF50A7F65416CAC5493803F32EB82BD90783A4D2</idno>
<idno type="ark">ark:/67375/TPS-LWH5T68N-7</idno>
<idno type="DOI">10.1021/bc7003395</idno>
</analytic>
<monogr>
<title level="j" type="main">Bioconjugate Chemistry</title>
<title level="j" type="abbrev">Bioconjugate Chem.</title>
<idno type="acspubs">bc</idno>
<idno type="coden">bcches</idno>
<idno type="pISSN">1043-1802</idno>
<idno type="eISSN">1520-4812</idno>
<imprint>
<publisher>American Chemical Society</publisher>
<date type="e-published">2008</date>
<date type="published">2008</date>
<biblScope unit="vol">19</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="607">607</biblScope>
<biblScope unit="page" to="616">616</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<encodingDesc>
<schemaRef type="ODD" url="https://xml-schema.delivery.istex.fr/tei-istex.odd"></schemaRef>
<appInfo>
<application ident="pub2tei" version="1.0.41" when="2020-04-06">
<label>pub2TEI-ISTEX</label>
<desc>A set of style sheets for converting XML documents encoded in various scientific publisher formats into a common TEI format.
<ref target="http://www.tei-c.org/">We use TEI</ref>
</desc>
</application>
</appInfo>
</encodingDesc>
<profileDesc>
<abstract>
<p>Novel hybrid oligonucleotides carrying the G-quadruplex-forming d(
<hi rend="superscript">5</hi>
′TGGGAG
<hi rend="superscript">3</hi>
′) sequence, conjugated with mono- or disaccharides at the 3′ or 5′-end through phosphodiester bonds, have been synthesized as potential anti-HIV agents,
<hi rend="italic">via</hi>
a fully automated, online phosphoramidite-based solid-phase strategy. CD-monitored thermal denaturation studies on the resulting quadruplexes indicated the insertion of a single monosaccharide at the 3′-end as the optimal modification, conferring improved stability to the quadruplex complex. In addition, the 3′-conjugation with glucose or mannose converted the anti-HIV inactive unmodified oligomer into active compounds. On the contrary, the 5′-tethering with these monosaccharides, as well as the conjugation, either at the 5′ or 3′-end, with sucrose, were in all cases detrimental to quadruplex stability and did not improve the biological activity. On the basis of the assumption that the kinetically and thermodynamically favored formation of the quadruplex complex is a prerequisite for efficient antiviral activity, a novel bis-conjugated oligonucleotide was designed. This combined a mannose residue at the 3′-phosphate end with bulky aromatic
<hi rend="italic">tert</hi>
-butyldiphenylsilyl (TBDPS) group at the 5′-end, previously shown to markedly favor the formation of quadruplex complexes. The 5′,3′-bis-conjugated 6-mer, for which a detailed biophysical characterization has been carried out, resulted in 3-fold greater antiviral activity against HIV-1 than the sole 3′-glyco-conjugated oligonucleotide.</p>
</abstract>
<textClass ana="subject">
<keywords scheme="document-type-name">
<term>Article</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
<revisionDesc>
<change when="2020-04-06" who="#istex" xml:id="pub2tei">formatting</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus acs not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:document>
<article dtd-version="1.1d1">
<front>
<journal-meta>
<journal-id journal-id-type="acspubs">bc</journal-id>
<journal-id journal-id-type="coden">bcches</journal-id>
<journal-title-group>
<journal-title>Bioconjugate Chemistry</journal-title>
<abbrev-journal-title>Bioconjugate Chem.</abbrev-journal-title>
</journal-title-group>
<issn pub-type="ppub">1043-1802</issn>
<issn pub-type="epub">1520-4812</issn>
<publisher>
<publisher-name>American Chemical Society</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1021/bc7003395</article-id>
<article-categories>
<subj-group subj-group-type="document-type-name">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Synthesis, Biophysical Characterization, and Anti-HIV Activity of Glyco-Conjugated G-Quadruplex-Forming Oligonucleotides</article-title>
<alt-title alt-title-type="short">Glyco-Conjugated G-Quadruplex-Forming Oligonucleotides.</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" id="ath1">
<name name-style="western">
<surname>D’Onofrio</surname>
<given-names>Jennifer</given-names>
</name>
<xref rid="afn1"></xref>
</contrib>
<contrib contrib-type="author" id="ath2">
<name name-style="western">
<surname>Petraccone</surname>
<given-names>Luigi</given-names>
</name>
<xref rid="afn2"></xref>
</contrib>
<contrib contrib-type="author" id="ath3">
<name name-style="western">
<surname>Martino</surname>
<given-names>Luigi</given-names>
</name>
<xref rid="afn2"></xref>
</contrib>
<contrib contrib-type="author" id="ath4">
<name name-style="western">
<surname>Fabio</surname>
<given-names>Giovanni Di</given-names>
</name>
<xref rid="afn1"></xref>
</contrib>
<contrib contrib-type="author" id="ath5">
<name name-style="western">
<surname>Iadonisi</surname>
<given-names>Alfonso</given-names>
</name>
<xref rid="afn1"></xref>
</contrib>
<contrib contrib-type="author" id="ath6">
<name name-style="western">
<surname>Balzarini</surname>
<given-names>Jan</given-names>
</name>
<xref rid="afn3"></xref>
</contrib>
<contrib contrib-type="author" corresp="yes" id="ath7">
<name name-style="western">
<surname>Giancola</surname>
<given-names>Concetta</given-names>
</name>
<xref rid="cor1"></xref>
<xref rid="afn2"></xref>
</contrib>
<contrib contrib-type="author" corresp="yes" id="ath8">
<name name-style="western">
<surname>Montesarchio</surname>
<given-names>Daniela</given-names>
</name>
<xref rid="cor1"></xref>
<xref rid="afn1"></xref>
</contrib>
<aff id="aff1">Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroederstraat, B-3000 Leuven, Belgium</aff>
</contrib-group>
<author-notes>
<corresp id="cor1">
<label>*</label>
Corresponding author. Prof. Daniela Montesarchio, PhD, Dipartimento di Chimica Organica e Biochimica, Complesso Universitario di Monte S.Angelo, Via Cynthia, 4, I-80126 Napoli, Italy, FAX number:
<fax>+39-081-674393</fax>
, e-mail address:
<email>daniela.montesarchio@unina.it</email>
.</corresp>
<fn id="afn1">
<label></label>
<p>Dipartimento di Chimica Organica e Biochimica, Università degli Studi di Napoli “Federico II”.</p>
</fn>
<fn id="afn2">
<label></label>
<p>Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”.</p>
</fn>
<fn id="afn3">
<label>§</label>
<p>Katholieke Universiteit Leuven.</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>07</day>
<month>02</month>
<year>2008</year>
</pub-date>
<pub-date pub-type="ppub">
<day>19</day>
<month>03</month>
<year>2008</year>
</pub-date>
<volume>19</volume>
<issue>3</issue>
<fpage>607</fpage>
<lpage>616</lpage>
<supplementary-material xlink:href="bc7003395-File001.pdf" id="si10" orientation="portrait" position="float"></supplementary-material>
<history>
<date date-type="issue-pub">
<day>19</day>
<month>03</month>
<year>2008</year>
</date>
<date date-type="asap">
<day>07</day>
<month>02</month>
<year>2008</year>
</date>
<date date-type="received">
<day>04</day>
<month>09</month>
<year>2007</year>
</date>
<date date-type="rev-recd">
<day>11</day>
<month>12</month>
<year>2007</year>
</date>
<date date-type="production-recd">
<day>11</day>
<month>12</month>
<year>2007</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2008 American Chemical Society</copyright-statement>
<copyright-year>2008</copyright-year>
<copyright-holder>American Chemical Society</copyright-holder>
</permissions>
<abstract>
<p>Novel hybrid oligonucleotides carrying the G-quadruplex-forming d(
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′) sequence, conjugated with mono- or disaccharides at the 3′ or 5′-end through phosphodiester bonds, have been synthesized as potential anti-HIV agents,
<italic toggle="yes">via</italic>
a fully automated, online phosphoramidite-based solid-phase strategy. CD-monitored thermal denaturation studies on the resulting quadruplexes indicated the insertion of a single monosaccharide at the 3′-end as the optimal modification, conferring improved stability to the quadruplex complex. In addition, the 3′-conjugation with glucose or mannose converted the anti-HIV inactive unmodified oligomer into active compounds. On the contrary, the 5′-tethering with these monosaccharides, as well as the conjugation, either at the 5′ or 3′-end, with sucrose, were in all cases detrimental to quadruplex stability and did not improve the biological activity. On the basis of the assumption that the kinetically and thermodynamically favored formation of the quadruplex complex is a prerequisite for efficient antiviral activity, a novel bis-conjugated oligonucleotide was designed. This combined a mannose residue at the 3′-phosphate end with bulky aromatic
<italic toggle="yes">tert</italic>
-butyldiphenylsilyl (TBDPS) group at the 5′-end, previously shown to markedly favor the formation of quadruplex complexes. The 5′,3′-bis-conjugated 6-mer, for which a detailed biophysical characterization has been carried out, resulted in 3-fold greater antiviral activity against HIV-1 than the sole 3′-glyco-conjugated oligonucleotide.</p>
</abstract>
<custom-meta-group>
<custom-meta>
<meta-name>document-id-old-9</meta-name>
<meta-value>bc7003395</meta-value>
</custom-meta>
<custom-meta>
<meta-name>document-id-new-14</meta-name>
<meta-value>bc-2007-003395</meta-value>
</custom-meta>
<custom-meta>
<meta-name>ccc-price</meta-name>
<meta-value>40.75</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="sec1" sec-type="introduction">
<title>Introduction</title>
<p>Glyco-conjugates participate in a variety of biological processes of paramount importance, including molecular recognition, signal trafficking, and recognition of cell surface through carbohydrate-binding proteins, as well as intracellular lectins in a sugar-dependent manner
<named-content content-type="bibref-group">
<xref rid="ref1" ref-type="bibr"></xref>
<xref rid="ref2" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="ref3" ref-type="bibr"></xref>
</named-content>
. Synthetic glyco-conjugates are therefore useful diagnostic tools to identify and characterize endogenous sugar-binding proteins, but they can also show high potential in several therapeutic applications for specific drug delivery
<named-content content-type="bibref-group">
<xref rid="ref4" ref-type="bibr"></xref>
,
<xref rid="ref5" ref-type="bibr"></xref>
</named-content>
. Methods to obtain glyco-conjugatessuch as neoglycoproteins, glycosylated polymers, or glycopeptideshave been largely developed; on the contrary, synthetic strategies to prepare glyco-oligonucleotides are still far from being fully optimized
<xref rid="ref6" ref-type="bibr"></xref>
.</p>
<p>Indeed, for several
<italic toggle="yes">in vivo</italic>
applications of oligonucleotides (ODNs), end derivatization with carbohydrates can result in a very convenient strategy to improve their otherwise poor internalization, eliciting specific sugar-binding processes to cell membranes and thus finally enhancing their cellular uptake by endocytosis. Through glyco-conjugation, further desirable properties can be conveyed to oligonucleotide-based drugs, as increased bioavailability, due to protection toward nucleases, and reduction of unwanted aggregation. DNA−carbohydrate conjugates have been prepared by direct, online solid-phase glycosidation of the 5′-end of oligonucleotides with suitable trichloroacetimidate sugar scaffolds
<named-content content-type="bibref-group">
<xref rid="ref7" ref-type="bibr"></xref>
,
<xref rid="ref8" ref-type="bibr"></xref>
</named-content>
. A convenient procedure involved the use of unprotected carbohydrates, conjugated to 5′-amino-modified oligonucleotides by exploiting a reductive amination procedure
<xref rid="ref9" ref-type="bibr"></xref>
. Recently, site-specifically galactosylated oligonucleotides, obtained from a 2′-deoxyuridine phosphoramidite carrying one galactose unit on the base, were synthesized, and periodic glycoclusters using a half-sliding oligonucleotide strategy could be obtained
<named-content content-type="bibref-group">
<xref rid="ref10" ref-type="bibr"></xref>
,
<xref rid="ref11" ref-type="bibr"></xref>
</named-content>
. An alternative strategy to efficiently conjugate carbohydrates to ODNs was first explored by Akhtar and co-workers, who synthesized a suitable phosphoramidite derivative of mannose, incorporated onto the 5′-OH terminus of the solid-supported ODN by standard phosphoramidite chemistry
<xref rid="ref12" ref-type="bibr"></xref>
. A similar approach has been recently proposed also by Joyce et al., who designed a new class of DNA−carbohydrate conjugates, called nucleo-glyco-conjugates, based on the synthesis of three new phosphoramidite carbohydrate derivatives, inserted at the extremities or at defined, internal positions of the growing oligonucleotide chain
<named-content content-type="bibref-group">
<xref rid="ref13" ref-type="bibr"></xref>
,
<xref rid="ref14" ref-type="bibr"></xref>
</named-content>
. In this frame, we recently synthesized suitably protected phosphoramidite derivatives of model mono- or disaccharides. When used in conjunction with DMT
<xref rid="fn1"></xref>
<fn id="fn1">
<label>1</label>
<p>Abbreviations: Ac = acetyl; CE = 2-cyanoethyl; CPG = controlled pore glass; DBB = 3,4-dibenzyloxybenzyl; DCC =
<italic toggle="yes">N</italic>
,
<italic toggle="yes">N</italic>
-dicyclohexylcarbodiimide; DIPEA =
<italic toggle="yes">N</italic>
,
<italic toggle="yes">N</italic>
-diisopropylethylamine; DMAP = 4-dimethylaminopyridine; DMT = 4,4′-dimethoxytriphenylmethyl; LCAA = long chain alkylamine; TBDPS =
<italic toggle="yes">tert</italic>
-butyldiphenylsilyl; TEA = triethylamine; TEAB = triethylammonium bicarbonate.</p>
</fn>
-protected sugars immobilized on solid supports, they allowed us to prepare, through an online automated oligonucleotide synthesis protocol, a variety of 5′- and 3′-glycoconjugates of ODNs with stable phosphodiester linkages connecting the saccharide residues to one or both OH termini of the oligonucleotide chain
<named-content content-type="bibref-group">
<xref rid="ref15" ref-type="bibr"></xref>
,
<xref rid="ref16" ref-type="bibr"></xref>
</named-content>
. In all the studied cases, the presence of the saccharide dangling ends was shown to protect the ODN chains from nuclease digestion, while not hampering their specific recognition properties.</p>
<p>In the search for ODNs endowed with significant antiviral properties, Hotoda and his group recently investigated a series of G-quadruplex-forming ODNs, finally focusing their research interest on modified oligonucleotides of sequence d(
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′). These were found to exhibit potent anti-HIV activity associated with low cytotoxicity when carrying at the 5′-end bulky aromatic residues, as the 3,4-dibenzyloxybenzyl (DBB) or
<italic toggle="yes">tert</italic>
-butyldiphenylsilyl (TBDPS) groups
<named-content content-type="bibref-group">
<xref rid="ref17" ref-type="bibr"></xref>
,
<xref rid="ref18" ref-type="bibr"></xref>
</named-content>
. Structure–activity relationship analysis indicated that G-quadruplex formation, as well as the presence of large aromatic substituents at the 5′-end, were both essential for their antiviral activity. In this frame, we studied a selected set of Hotoda’s 5′-modified ODNs: our data, combining CD, DSC, and molecular modeling studies on the modified G-quadruplexes in comparison with the unmodified one, showed that the overall stability of the investigated complexes correlated well with the reported IC
<sub>50</sub>
values, thus furnishing quantitative evidence, even if still indirect, to the hypothesis that the G-quadruplex structures are the ultimate active species, effectively responsible for the desired antiviral effects
<xref rid="ref19" ref-type="bibr"></xref>
.</p>
<p>Aiming at the preparation of novel oligonucleotide-based antivirals, we adopted the d(
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′) sequence as a suitable platform to investigate the effect of glyco-conjugation on both quadruplex formation and biological properties of G-rich ODNs. Here, we here describe the synthesis, biophysical characterization, and biological properties of d(
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′) oligomers, carrying a monosaccharide or disaccharide tail (with glucose, mannose, and sucrose chosen here as model carbohydrates) at either the 5′ or 3′-end. The best modification, in terms of both quadruplex formation and antiviral activity enhancement, i.e., the 3′-conjugation with a mannose residue, was then combined with the insertion of TBDPS at the 5′-end. The resulting 5′,3′-bis-conjugated TBDPS-
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′-
<italic toggle="yes">p</italic>
-mannose was found to be 3-fold more active than the sole 3′-conjugated
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′-
<italic toggle="yes">p</italic>
-mannose oligonucleotide. To gain a deeper insight into the thermodynamic and kinetic parameters governing the quadruplex association/dissociation processes in solution, detailed CD analysis and CD-monitored thermal denaturation studies for the 5′,3′-bis-conjugated d(
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′) have been carried out and discussed.</p>
</sec>
<sec id="sec2" sec-type="experimental-proc">
<title>Experimental Procedures</title>
<sec id="sec2.1">
<title>Synthesis and Characterization of Oligonucleotides
<bold>I</bold>
<bold>IX</bold>
</title>
<p>DMT-protected succinylated sugars
<bold>13</bold>
,
<bold>14</bold>
, and
<bold>15</bold>
; phosphoramidite building blocks
<bold>16</bold>
,
<bold>17</bold>
, and
<bold>18</bold>
; and functionalized solid supports
<bold>19</bold>
,
<bold>20</bold>
, and
<bold>21</bold>
were synthesized following the reactions described in Scheme
<xref rid="sch1"></xref>
, according to previously reported protocols
<named-content content-type="bibref-group">
<xref rid="ref15" ref-type="bibr"></xref>
,
<xref rid="ref16" ref-type="bibr"></xref>
</named-content>
. Oligonucleotides
<bold>I</bold>
<bold>IX</bold>
were synthesized using standard solid-phase β-cyanoethyl phosphoramidite chemistry on a 15 µmol scale, in all cases adopting DMT-off protocols. In the case of oligomer
<bold>I</bold>
, starting from 100 mg of commercially available 2′-deoxyguanosine-functionalized controlled pore glass (CPG-dG) support with 0.10 mequiv/g initial loading, the sequence
<sup>5</sup>
′d(TGGGAG)
<sup>3
<sup></sup>
</sup>
was assembled by exploiting standard commercially available 3′-phosphoramidite 2′-deoxynucleoside monomers. As depicted in Scheme
<xref rid="sch2"></xref>
, the synthesis of oligomers
<bold>III</bold>
,
<bold>V</bold>
, and
<bold>VII</bold>
was realized starting from 100 mg of functionalized CPG supports
<bold>19</bold>
,
<bold>20</bold>
, and
<bold>21</bold>
, respectively, with 0.06–0.08 mequiv/g initial loading, on which the sequence
<sup>5</sup>
′d(TGGGAG)
<sup>3
<sup></sup>
</sup>
was assembled in a standard manner. In the case of oligomers
<bold>II</bold>
,
<bold>IV</bold>
, and
<bold>VI</bold>
, starting from 100 mg of commercially available CPG-dG support with 0.10 mequiv/g initial loading, after the assembly of the sequence
<sup>5</sup>
′d(TGGGAG)
<sup>3</sup>
′, an additional coupling with phosphoramidite building blocks
<bold>16</bold>
,
<bold>17</bold>
, or
<bold>18</bold>
, respectively, was then realized. The synthesis of oligomer
<bold>IX</bold>
was achieved starting from functionalized support
<bold>21</bold>
, as described in Scheme
<xref rid="sch3"></xref>
, which was first used in the solid-phase assembly of the sequence
<sup>5</sup>
′d(GGGAG)
<sup>3</sup>
′, then coupled with 5′-TBDPS-thymidine-3′-phosphoramidite building block
<bold>29</bold>
, synthesized as previously described
<xref rid="ref19" ref-type="bibr"></xref>
. Once the chain elongation was complete, target oligomers
<bold>I</bold>
<bold>IX</bold>
were detached from the solid support and deprotected by standard treatment with conc aq ammonia at 55 °C for 12 h.</p>
<fig id="sch1" position="float" fig-type="scheme" orientation="portrait">
<label>1</label>
<caption>
<title>Synthetic Scheme for the Preparation of Phosphoramidite Building Blocks
<bold>16</bold>
,
<bold>17</bold>
, and
<bold>18</bold>
, and of Functionalized CPG Solid Supports
<bold>19</bold>
,
<bold>20</bold>
, and
<bold>21</bold>
</title>
</caption>
<graphic xlink:href="bc-2007-003395_0001.tif" position="float" orientation="portrait"></graphic>
</fig>
<fig id="sch2" position="float" fig-type="scheme" orientation="portrait">
<label>2</label>
<caption>
<title></title>
<p>Synthetic Scheme for the Preparation of Glyco-Conjugated Oligonucleotides
<bold>II</bold>
-
<bold>VII</bold>
</p>
</caption>
<graphic xlink:href="bc-2007-003395_0002.tif" position="float" orientation="portrait"></graphic>
</fig>
<fig id="sch3" position="float" fig-type="scheme" orientation="portrait">
<label>3</label>
<caption>
<title>Synthetic Scheme for the Preparation of 5′,3′-Bis-Conjugated Oligonucleotide
<bold>IX</bold>
</title>
</caption>
<graphic xlink:href="bc-2007-003395_0003.tif" position="float" orientation="portrait"></graphic>
</fig>
<p>The combined filtrates and washings were concentrated under reduced pressure, redissolved in H
<sub>2</sub>
O, and analyzed and purified by HPLC. Purification of the crude natural oligomer
<bold>I</bold>
and of conjugated oligonucleotides
<bold>II</bold>
<bold>VII</bold>
was carried out on an analytical anion exchange Nucleogel SAX column (Macherey-Nagel, 1000–8/46, 4.6 × 50 mm, 5 µm), adopting the following eluents: buffer A, 20 mM KH
<sub>2</sub>
PO
<sub>4</sub>
/K
<sub>2</sub>
HPO
<sub>4</sub>
aq solution (pH 7.0), containing 20% (v/v) CH
<sub>3</sub>
CN; buffer B, 1 M KCl, 20 mM KH
<sub>2</sub>
PO
<sub>4</sub>
/K
<sub>2</sub>
HPO
<sub>4</sub>
aq solution (pH 7.0), containing 20% (v/v) CH
<sub>3</sub>
CN. In all cases, using a linear gradient from 0% to 100% B in 40 min, flow rate 0.8 mL/min, and detection at λ = 260 nm, two main peaks were observed. As previously found
<named-content content-type="bibref-group">
<xref rid="ref18" ref-type="bibr"></xref>
,
<xref rid="ref19" ref-type="bibr"></xref>
</named-content>
, in all the purification attempts on an anionic exchange HPLC column, the fastest eluting peak, attributed to the single-strand 6-mer, was always accompanied by a major peak, having a higher retention time, due to G-quadruplex aggregates generated under HPLC elution conditions.</p>
<p>Oligonucleotide
<bold>VIII</bold>
, synthesized as previously described
<xref rid="ref19" ref-type="bibr"></xref>
, was purified by HPLC on a NUCLEOSIL RP18 column (Supelco, 100–5, C18, 4.6 × 250 mm, 7 µm), using a linear gradient of CH
<sub>3</sub>
CN in 0.1 M TEAB in H
<sub>2</sub>
O, pH 7.0, from 20% to 100% in 20 min, flow rate 0.8 mL/min, with detection at λ = 260 nm. Oligonucleotide
<bold>IX</bold>
was purified by HPLC on a RP18 Eclipse column (Agilent, XD8-C18); buffer A, 0.1 M TEAB in H
<sub>2</sub>
O, pH 7.0; buffer B, CH
<sub>3</sub>
CN; a linear gradient from 20% to 100% B in 20 min, flow rate 0.8 mL/min, with detection at λ = 260 nm, was used. The isolated oligomers had the retention times reported in Table
<xref rid="tbl1"></xref>
. After HPLC purification, the oligonucleotide samples were desalted on a Sephadex G25 column eluted with H
<sub>2</sub>
O/EtOH (4:1, v/v). Successively, HPLC analysis of the desalted oligomers
<bold>I</bold>
<bold>IX</bold>
on a Partisphere Whatman RP18 analytical column (125 × 4.0 mm, 5 µm), eluted with a linear gradient from 0% to 100% in 60 min of CH
<sub>3</sub>
CN in TEAB buffer (0.1 M, pH 7.0), flow = 0.8 mL/min, confirmed the expected purity for all the samples (higher than 98%). The modified oligonucleotides were characterized by ESI-MS mass spectrometry in the negative mode, in all cases giving masses in accordance with the expected values (Table
<xref rid="tbl1"></xref>
).</p>
<table-wrap id="tbl1" position="float" orientation="portrait">
<label>1</label>
<caption>
<title>Oligonucleotide Characterization</title>
</caption>
<oasis:table>
<oasis:tgroup cols="4">
<oasis:colspec align="left" colname="col1"></oasis:colspec>
<oasis:colspec align="char" char="." colname="col2"></oasis:colspec>
<oasis:colspec align="left" colname="col3"></oasis:colspec>
<oasis:colspec align="char" char="." colname="col4"></oasis:colspec>
<oasis:thead valign="middle">
<oasis:row rowsep="1">
<oasis:entry align="center">sequence (5′−3′)</oasis:entry>
<oasis:entry align="center">HPLC
<xref rid="tbl1-fn1"></xref>
retention time, min</oasis:entry>
<oasis:entry align="center">MS data calcd</oasis:entry>
<oasis:entry align="center">ESI-MS data found</oasis:entry>
</oasis:row>
</oasis:thead>
<oasis:tbody>
<oasis:row>
<oasis:entry>
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′ (
<bold>I</bold>
)</oasis:entry>
<oasis:entry>15.5; 26.7</oasis:entry>
<oasis:entry>C
<sub>60</sub>
H
<sub>74</sub>
N
<sub>27</sub>
O
<sub>34</sub>
P
<sub>5</sub>
: 1872.26</oasis:entry>
<oasis:entry>1872.01</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>Glucose-
<italic toggle="yes">p</italic>
-
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′ (
<bold>II</bold>
)</oasis:entry>
<oasis:entry>16.9; 24.8</oasis:entry>
<oasis:entry>C
<sub>67</sub>
H
<sub>86</sub>
N
<sub>27</sub>
O
<sub>42</sub>
P
<sub>6</sub>
: 2127.40</oasis:entry>
<oasis:entry>2128.08</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′-
<italic toggle="yes">p</italic>
-glucose (
<bold>III</bold>
)</oasis:entry>
<oasis:entry>17.5; 22.3</oasis:entry>
<oasis:entry>C
<sub>67</sub>
H
<sub>86</sub>
N
<sub>27</sub>
O
<sub>42</sub>
P
<sub>6</sub>
: 2127.40</oasis:entry>
<oasis:entry>2128.27</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>sucrose-
<italic toggle="yes">p</italic>
-
<sup>5</sup>
′TGGGAG
<sup>3
<sup></sup>
</sup>
(
<bold>IV</bold>
)</oasis:entry>
<oasis:entry>16.6; 27.2</oasis:entry>
<oasis:entry>C
<sub>72</sub>
H
<sub>95</sub>
N
<sub>27</sub>
O
<sub>47</sub>
P
<sub>6</sub>
: 2276.52</oasis:entry>
<oasis:entry>2277.10</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′-
<italic toggle="yes">p</italic>
-sucrose (
<bold>V</bold>
)</oasis:entry>
<oasis:entry>16.0; 21.8</oasis:entry>
<oasis:entry>C
<sub>72</sub>
H
<sub>95</sub>
N
<sub>27</sub>
O
<sub>47</sub>
P
<sub>6</sub>
: 2276.52</oasis:entry>
<oasis:entry>2276.88</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>mannose-
<italic toggle="yes">p</italic>
-
<sup>5</sup>
′TGGGAG
<sup>3
<sup></sup>
</sup>
(
<bold>VI</bold>
)</oasis:entry>
<oasis:entry>15.9; 26.4</oasis:entry>
<oasis:entry>C
<sub>67</sub>
H
<sub>86</sub>
N
<sub>27</sub>
O
<sub>42</sub>
P
<sub>6:</sub>
2127.40</oasis:entry>
<oasis:entry>2127.88</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′-
<italic toggle="yes">p</italic>
-mannose (
<bold>VII</bold>
)</oasis:entry>
<oasis:entry>16.2; 23.8</oasis:entry>
<oasis:entry>C
<sub>67</sub>
H
<sub>86</sub>
N
<sub>27</sub>
O
<sub>42</sub>
P
<sub>6:</sub>
2127.40</oasis:entry>
<oasis:entry>2127.79</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>TBDPS-
<sup>5</sup>
′TGGGAG
<sup>3
<sup></sup>
</sup>
(
<bold>VIII</bold>
)</oasis:entry>
<oasis:entry>14.0</oasis:entry>
<oasis:entry>C
<sub>76</sub>
H
<sub>92</sub>
SiN
<sub>27</sub>
O
<sub>34</sub>
P
<sub>5</sub>
: 2109.48</oasis:entry>
<oasis:entry>2110.96</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>TBDPS-
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′-
<italic toggle="yes">p</italic>
-mannose (
<bold>IX</bold>
)</oasis:entry>
<oasis:entry>9.2; 11.5</oasis:entry>
<oasis:entry>C
<sub>83</sub>
H
<sub>105</sub>
SiN
<sub>27</sub>
O
<sub>42</sub>
P
<sub>6:</sub>
2366.81</oasis:entry>
<oasis:entry>2366.28</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
<table-wrap-foot>
<fn id="tbl1-fn1">
<label>a</label>
<p>For HPLC conditions, see Experimental Procedures.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>In a typical experiment, starting from 100 mg of commercially available CPG-dG supports, or of sugar-functionalized supports
<bold>19</bold>
,
<bold>20</bold>
, or
<bold>21</bold>
, 80–120 OD units of purified
<bold>I</bold>
<bold>IX</bold>
could be obtained.</p>
</sec>
<sec id="sec2.2">
<title>Quadruplex Preparation</title>
<p>The quadruplex complexes were obtained by dissolving the lyophilized oligonucleotide in the appropriate buffer, annealed by heating at 95 °C for 5 min and slow cooling to room temperature. The buffer used was 10 mM potassium phosphate, 200 mM KCl, 0.1 mM EDTA at pH = 7.0. The concentration of the dissolved oligonucleotides
<bold>I</bold>
<bold>VII</bold>
was determined by UV measurements at 260 nm and at 95 °C, using, as the molar extinction coefficients, the values calculated by the nearest neighbor model
<xref rid="ref20" ref-type="bibr"></xref>
for the sequence
<sup>5</sup>
′d(TGGGAG)
<sup>3</sup>
′, assuming the contribution of the terminal sugar residues to be negligible at this wavelength. For oligonucleotide
<bold>IX</bold>
, the contribution of the TBDPS group at the 5′-end was taken into account, as previously described in the case of
<bold>VIII</bold>
<xref rid="ref19" ref-type="bibr"></xref>
.</p>
</sec>
<sec id="sec2.3">
<title>CD Experiments</title>
<p>All circular dichroism (CD) experiments were registered on a JASCO J-715 spectrophotometer equipped with a thermostatically controlled cuvette holder (JASCO PTC-348), in a 0.2 cm or 0.5 path length cuvette. CD spectra were collected from 220 to 340 nm, at 20 nm/min, with a response time of 4 s and at 1 nm bandwidth. The molar ellipticity was calculated from the equation [θ] = 100·θ /
<italic toggle="yes">cl</italic>
where θ is the ellipticity value,
<italic toggle="yes">c</italic>
is the quadruplex concentration (5.0 × 10
<sup>−5</sup>
M), and
<italic toggle="yes">l</italic>
is the path length of the cell in cm. Thermal dissociation of the studied quadruplexes was monitored by following the CD signal at 263 nm upon increasing the temperature.</p>
<p>The quadruplex dissociation kinetics was measured by rapidly increasing the temperature and following the change of the CD signal at 263 nm with time. All the experiments were performed in a temperature and concentration range where the reassociation reaction can be neglected. The kinetic constants were obtained by fitting the recorded time-dependent decrease in CD signal with a single exponential function. For each sequence, the kinetic constant was determined at five different temperatures.</p>
<p>The structural transition from the single strands to the tetramolecular quadruplex was monitored in the temperature range 10–30 °C by recording the CD spectra as a function of time. The samples were incubated at 90 °C for 5 min and then rapidly cooled. The kinetic constant and reaction order were obtained by analyzing the CD vs time profiles as previously described
<xref rid="ref21" ref-type="bibr"></xref>
.</p>
</sec>
<sec id="sec2.4">
<title>Biological Assays</title>
<p>For the anti-HIV assays, CEM cells (4.5 × 10
<sup>5</sup>
cells/mL) were suspended in fresh culture medium and infected with HIV-1 at 100 CCID
<sub>50</sub>
per mL of cell suspension in the presence of appropriate dilutions of the test compounds. After 4 to 5 days incubation at 37 °C, giant cell formation was recorded microscopically in the CEM cell cultures. The 50% effective concentration (EC
<sub>50</sub>
) corresponds to the compound concentrations required to prevent syncytium formation by 50% in the virus-infected CEM cell cultures.</p>
<p>To determine the cytostatic activity, all assays were performed in 96-well microtiter plates. To each well were added (5–7.5) × 10
<sup>4</sup>
CEM cells and a given amount of the test compound. The cells were allowed to proliferate for 72 h at 37 °C in a humidified CO
<sub>2</sub>
-controlled atmosphere. At the end of the incubation period, the cells were counted in a Coulter counter. The CC
<sub>50</sub>
(50% inhibitory concentration) was defined as the concentration of the compound that inhibited CEM cell proliferation by 50%.</p>
<p>In the cocultivation assays, 5 × 10
<sup>4</sup>
persistently HIV-1-infected HUT-78 cells (designated HUT-78/HIV-1) were mixed with 5 × 10
<sup>4</sup>
Sup-T1 cells, along with appropriate concentrations of the test compounds. After 16 to 20 h, marked syncytium formation was noted in the control cell cultures, and the number of syncytia was determined under a microscope.</p>
<p>For determination of the 50% inhibitory concentration (IC
<sub>50</sub>
) of the test compounds against HIV-1 RT, the RNA-dependent DNA polymerase assay was performed as follows: the reaction mixture (50 µL) contained 50 mM Tris·HCl (pH 7.8), 5 mM DTT, 300 µM glutathione, 500 µM EDTA, 150 mM KCl, 5 mM MgCl
<sub>2</sub>
, 1.25 µg of bovine serum albumin, a fixed concentration of the labeled substrate [
<sup>3</sup>
H]dGTP (1.6 µM, 1 µCi; specific activity, 12.6 Ci/mmol; Amersham Pharmacia Biotech), a fixed concentration of the template/primer poly(rC)·oligo(dG)
<sub>12–18</sub>
(0.1 mM; Amersham Pharmacia Biotech), 0.06% Triton X-100, 5 µL of the inhibitor solution [containing various concentrations (5-fold dilutions) of the compounds], and 5 µL of the RT preparations. The reaction mixtures were incubated at 37 °C for 30 min, at which time 200 µL of yeast RNA (2 mg/mL) and 1 mL of trichloroacetic acid (5%, v/v) in water were added. The solutions were kept on ice for at least 30 min, after which the acid-insoluble material was filtered over Whatman GF/C glass-fiber filters and washed 10 times with 2 mL of 5% trichloroacetic acid in water and once with 70% ethanol. The filters were then analyzed for radioactivity in a liquid scintillation counter (Canberra Packard, Zellik, Belgium). The IC
<sub>50</sub>
for each test compound was determined as the compound concentration that inhibited HIV-1 RT activity by 50%.</p>
</sec>
</sec>
<sec id="sec3" sec-type="results">
<title>Results</title>
<p>Several modified oligonucleotides have been shown to inhibit HIV-1 in cell culture. If, in most cases, a non-sequence-specific inhibition is hypothesized, sequence-specific effects are also invoked for aptamers
<xref rid="ref22" ref-type="bibr"></xref>
. Particularly, for G-rich ODNs the putative mechanism of action is based on the interference/inhibition of both cell-to-cell and virus-to-cell transmission of HIV-1 by interaction with the V3 loop and the CD4 binding site on viral gp120
<named-content content-type="bibref-group">
<xref rid="ref23" ref-type="bibr"></xref>
<xref rid="ref24" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="ref25" ref-type="bibr"></xref>
</named-content>
. As it is accepted that G-rich ODNs exert their anti-HIV activity through formation of G-quadruplex complexes, the correlation between thermodynamic stability and rate of formation of the quadruplexes, on one end, and the antiviral properties, on the other, was assumed here as the basis for the rational design of novel oligonucleotide-based antivirals.</p>
<p>Starting from the model oligonucleotide d(
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′), indicated here as
<bold>I</bold>
, a small library of 5′- and 3′-glyco-conjugates carrying the same sequence was synthesized and their ability to generate four-stranded quadruplexes analyzed by CD-monitored thermal denaturation experiments. 5′- and 3′-conjugated 6-mers
<bold>II</bold>
<bold>VII</bold>
, as well as unmodified 6-mer
<bold>I</bold>
(Scheme
<xref rid="sch2"></xref>
and Table
<xref rid="tbl1"></xref>
), were synthesized using standard solid-phase β-cyanoethyl phosphoramidite chemistry protocols on a 15 µmol scale
<xref rid="ref26" ref-type="bibr"></xref>
. Glucose and sucrose-containing-phosphoramidites
<bold>16</bold>
and
<bold>17</bold>
, as well as sugar-functionalized supports
<bold>19</bold>
and
<bold>20</bold>
, were prepared essentially as previously reported
<named-content content-type="bibref-group">
<xref rid="ref15" ref-type="bibr"></xref>
,
<xref rid="ref16" ref-type="bibr"></xref>
</named-content>
. Novel mannose building block
<bold>18</bold>
and mannose-functionalized support
<bold>21</bold>
were synthesized in analogy with the corresponding glucose and sucrose derivatives and exploited for the synthesis of mannose-containing oligomers
<bold>VI</bold>
and
<bold>VII</bold>
, respectively, here chosen as examples of glyco-conjugates which can find a direct application for lectin recognition. In all cases, starting from 100 mg of commercially available DMT-protected guanosine-functionalized CPG support (0.10 mequiv/g, used in connection with phosphoramidites
<bold>16</bold>
<bold>18</bold>
for the synthesis of 5′-conjugated oligomers) or from LCAA-CPG functionalized with the appropriate DMT-protected sugar residue (
<bold>19</bold>
<bold>21</bold>
, 0.06–0.08 mequiv/g, used for the 3′-conjugation), on average, 80–120 OD units of pure
<bold>I</bold>
<bold>VII</bold>
could be isolated, after HPLC purification, and characterized by ESI-MS data (Table
<xref rid="tbl1"></xref>
).</p>
<p>CD spectra at 20 °C for all the studied sequences were diagnostic of parallel-stranded quadruplex structures showing a positive band at 263 nm and a negative band at 243 nm (Figure
<xref rid="fig1"></xref>
)
<named-content content-type="bibref-group">
<xref rid="ref18" ref-type="bibr"></xref>
,
<xref rid="ref19" ref-type="bibr"></xref>
,
<xref rid="ref27" ref-type="bibr"></xref>
</named-content>
. The melting temperatures and melting profiles for each system were largely influenced by the scan rate, revealing kinetic control of the quadruplex dissociation process. From the CD-monitored melting profiles for all the samples, registered at 263 nm (see
<xref rid="si1">Supporting Information</xref>
) at the slowest heating rate investigated (0.05 °C/min), the corresponding melting temperature values were determined (see Table
<xref rid="tbl2"></xref>
). Inspection of Table
<xref rid="tbl2"></xref>
reveals that 6-mers
<bold>III</bold>
and
<bold>VII</bold>
, carrying a monosaccharide residue at their 3′-end, formed quadruplex complexes with moderately increased stability with respect to unmodified sequence
<bold>I</bold>
<italic toggle="yes">T</italic>
<sub>m</sub>
= +3/+4 °C). Remarkably, the same modifications at the 5′-end of the ODN chain caused a dramatic destabilization, with Δ
<italic toggle="yes">T</italic>
<sub>m</sub>
of −15 and −10 °C for
<bold>II</bold>
and
<bold>VI</bold>
, respectively. When inserted at either the 5′ or 3′-end of the sequence, the disaccharide tail produced quadruplex complexes with comparable thermal stability; however, both
<bold>IV</bold>
and
<bold>V</bold>
showed lower melting temperature values than unmodified oligomer
<bold>I</bold>
<italic toggle="yes">T</italic>
<sub>m</sub>
= −6/−5 °C).</p>
<fig id="fig1" position="float" orientation="portrait">
<label>1</label>
<caption>
<p>CD spectra of the natural ODN
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′ (
<bold>I</bold>
) and of glyco-conjugated oligonucleotides
<bold>II</bold>
<bold>VII</bold>
. The spectra were recorded at 20 °C in a 10 mM potassium phosphate buffer (pH 7.0), supplemented with 200 mM KCl, at 5 × 10
<sup>−5</sup>
M quadruplex concentration.</p>
</caption>
<graphic xlink:href="bc-2007-003395_0004.tif" position="float" orientation="portrait"></graphic>
</fig>
<table-wrap id="tbl2" position="float" orientation="portrait">
<label>2</label>
<caption>
<title>Melting Temperatures of the Quadruplexes Formed by ODNs
<bold>I</bold>
<bold>IX</bold>
<xref rid="tbl2-fn2"></xref>
</title>
</caption>
<oasis:table>
<oasis:tgroup cols="2">
<oasis:colspec align="left" colname="col1"></oasis:colspec>
<oasis:colspec align="char" char="±" colname="col2"></oasis:colspec>
<oasis:thead valign="middle">
<oasis:row rowsep="1">
<oasis:entry align="center">oligonucleotide sequence (5′−3′)</oasis:entry>
<oasis:entry align="center">
<italic toggle="yes">T</italic>
<sub>m</sub>
(°C)</oasis:entry>
</oasis:row>
</oasis:thead>
<oasis:tbody>
<oasis:row>
<oasis:entry>
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′ (
<bold>I</bold>
)</oasis:entry>
<oasis:entry>41 ± 1</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>Glucose-
<italic toggle="yes">p</italic>
-
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′ (
<bold>II</bold>
)</oasis:entry>
<oasis:entry>26 ± 1</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′-
<italic toggle="yes">p</italic>
-glucose (
<bold>III</bold>
)</oasis:entry>
<oasis:entry>44 ± 1</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>sucrose-
<italic toggle="yes">p</italic>
-
<sup>5</sup>
′TGGGAG
<sup>3
<sup></sup>
</sup>
(
<bold>IV</bold>
)</oasis:entry>
<oasis:entry>35 ± 1</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′-
<italic toggle="yes">p</italic>
-sucrose (
<bold>V</bold>
)</oasis:entry>
<oasis:entry>36 ± 1</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>mannose-
<italic toggle="yes">p</italic>
-
<sup>5</sup>
′TGGGAG
<sup>3
<sup></sup>
</sup>
(
<bold>VI</bold>
)</oasis:entry>
<oasis:entry>31 ± 1</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′-
<italic toggle="yes">p</italic>
-mannose (
<bold>VII</bold>
)</oasis:entry>
<oasis:entry>45 ± 1</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>TBDPS-
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′ (
<bold>VIII</bold>
)</oasis:entry>
<oasis:entry>75 ± 1
<xref rid="tbl2-fn1"></xref>
</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>TBDPS-
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′-
<italic toggle="yes">p</italic>
-mannose (
<bold>IX</bold>
)</oasis:entry>
<oasis:entry>81 ± 1</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
<table-wrap-foot>
<fn id="tbl2-fn2">
<label>a</label>
<p>As determined by CD-monitored thermal denaturation studies (see also Figure 1 in Supporting Information).</p>
</fn>
<fn id="tbl2-fn1">
<label>b</label>
<p>Data from ref
<xref rid="ref19" ref-type="bibr"></xref>
.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>The activity of the synthesized glyco-conjugated oligonucleotides against-HIV-1 and HIV-2 was evaluated in human T-lymphocyte (CEM) cell cultures, as well as their cytotoxic properties. Interestingly, the EC
<sub>50</sub>
values of the glyco-conjugated oligonucleotides were found to correlate well with the thermal stabilities of the corresponding quadruplex complexes, and activity against HIV-1 in the 10–20 µM range for 3′-glyco-conjugated ODNs
<bold>III</bold>
and
<bold>VII</bold>
was observed (Table
<xref rid="tbl3"></xref>
). No obvious correlation was found between the lack of anti HIV RT activity, reported in Table
<xref rid="tbl4"></xref>
, and the anti-HIV activity. These data further confirmed that specific antiviral activity of G-quadruplex-forming ODNs, with well-defined three-dimensional structures, is not due to HIV-1 reverse transcriptase inhibition, but can be attributed to efficient interaction with the viral entry process. From the data in our hands, we concluded that, among the investigated conjugations, the insertion of a monosaccharide, and more specifically, of a mannose residue at the 3′-phosphate end of the studied ODN sequence, was the most promising modification in terms of both quadruplex formation and biological activity.</p>
<table-wrap id="tbl3" position="float" orientation="portrait">
<label>3</label>
<caption>
<title>Anti-HIV-1 and Anti-HIV-2 Activity and Cytostatic Properties of Oligonucleotides
<bold>II</bold>
-
<bold>VII</bold>
in Human T-Lymphocyte (CEM) Cells</title>
</caption>
<oasis:table>
<oasis:tgroup cols="5">
<oasis:colspec align="left" colname="col1"></oasis:colspec>
<oasis:colspec align="left" colname="col2"></oasis:colspec>
<oasis:colspec align="left" colname="col3"></oasis:colspec>
<oasis:colspec align="left" colname="col4"></oasis:colspec>
<oasis:colspec align="char" char="." colname="col5"></oasis:colspec>
<oasis:thead valign="middle">
<oasis:row rowsep="1">
<oasis:entry align="center" valign="bottom">oligonucleotide</oasis:entry>
<oasis:entry align="center" valign="bottom">EC
<sub>50</sub>
<xref rid="tbl3-fn1"></xref>
(µM) HIV-1(III
<sub>B</sub>
)</oasis:entry>
<oasis:entry align="center" valign="bottom">EC
<sub>50</sub>
<xref rid="tbl3-fn1"></xref>
(µM) HIV-2(ROD)</oasis:entry>
<oasis:entry align="center" valign="bottom">CC
<sub>50</sub>
<xref rid="tbl3-fn2"></xref>
(µM)</oasis:entry>
<oasis:entry align="center" valign="bottom">S.I.
<xref rid="tbl3-fn3"></xref>
</oasis:entry>
</oasis:row>
</oasis:thead>
<oasis:tbody>
<oasis:row>
<oasis:entry>glucose-
<italic toggle="yes">p</italic>
-
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′ (
<bold>II</bold>
)</oasis:entry>
<oasis:entry>87 ± 4.9</oasis:entry>
<oasis:entry>99 ± 70</oasis:entry>
<oasis:entry>110</oasis:entry>
<oasis:entry>1.30</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′-
<italic toggle="yes">p</italic>
-glucose (
<bold>III</bold>
)</oasis:entry>
<oasis:entry>21 ± 9.8</oasis:entry>
<oasis:entry>140</oasis:entry>
<oasis:entry>>140</oasis:entry>
<oasis:entry>>6.7</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>sucrose-
<italic toggle="yes">p</italic>
-
<sup>5</sup>
′TGGGAG
<sup>3
<sup></sup>
</sup>
(
<bold>IV</bold>
)</oasis:entry>
<oasis:entry>>30</oasis:entry>
<oasis:entry>>30</oasis:entry>
<oasis:entry>57 ± 13</oasis:entry>
<oasis:entry><1.9</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′-
<italic toggle="yes">p</italic>
-sucrose (
<bold>V</bold>
)</oasis:entry>
<oasis:entry>≥30</oasis:entry>
<oasis:entry>>30</oasis:entry>
<oasis:entry>74 ± 34</oasis:entry>
<oasis:entry>≤2.5</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>mannose-
<italic toggle="yes">p</italic>
-
<sup>5</sup>
′TGGGAG
<sup>3
<sup></sup>
</sup>
(
<bold>VI</bold>
)</oasis:entry>
<oasis:entry>>30</oasis:entry>
<oasis:entry>>30</oasis:entry>
<oasis:entry>41 ± 34</oasis:entry>
<oasis:entry><1.4</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′-
<italic toggle="yes">p</italic>
-mannose (
<bold>VII</bold>
)</oasis:entry>
<oasis:entry>14 ± 3.9</oasis:entry>
<oasis:entry>≥30</oasis:entry>
<oasis:entry>70 ± 3.2</oasis:entry>
<oasis:entry>5.0</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
<table-wrap-foot>
<fn id="tbl3-fn1">
<label>a</label>
<p>EC
<sub>50</sub>
= effective concentration or concentration required to protect CEM cells against the cytopathicity of HIV by 50%.</p>
</fn>
<fn id="tbl3-fn2">
<label>b</label>
<p>CC
<sub>50</sub>
= cytostatic concentration or concentration required to inhibit CEM cell proliferation by 50%.</p>
</fn>
<fn id="tbl3-fn3">
<label>c</label>
<p>S.I. = selectivity index for HIV-1, calculated as the ratio of CC
<sub>50</sub>
/EC
<sub>50</sub>
.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl4" position="float" orientation="portrait">
<label>4</label>
<caption>
<title>Anti-HIV-1 RT Activity for the Glyco-Conjugates Using Poly rC/dG as the Template and dGTP as the Substrate</title>
</caption>
<oasis:table>
<oasis:tgroup cols="2">
<oasis:colspec align="left" colname="col1"></oasis:colspec>
<oasis:colspec align="left" colname="col2"></oasis:colspec>
<oasis:thead valign="middle">
<oasis:row rowsep="1">
<oasis:entry align="center">oligonucleotide</oasis:entry>
<oasis:entry align="center">IC
<sub>50</sub>
<xref rid="tbl4-fn1"></xref>
</oasis:entry>
</oasis:row>
</oasis:thead>
<oasis:tbody>
<oasis:row>
<oasis:entry>Glucose-
<italic toggle="yes">p</italic>
-
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′ (
<bold>II</bold>
)</oasis:entry>
<oasis:entry>>140</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′-
<italic toggle="yes">p</italic>
-glucose (
<bold>III</bold>
)</oasis:entry>
<oasis:entry>>140</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>sucrose-
<italic toggle="yes">p</italic>
-
<sup>5</sup>
′TGGGAG
<sup>3
<sup></sup>
</sup>
(
<bold>IV</bold>
)</oasis:entry>
<oasis:entry>≥140</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′-
<italic toggle="yes">p</italic>
-sucrose (
<bold>V</bold>
)</oasis:entry>
<oasis:entry>64.9 ± 9.5</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>mannose-
<italic toggle="yes">p</italic>
-
<sup>5</sup>
′TGGGAG
<sup>3
<sup></sup>
</sup>
(
<bold>VI</bold>
)</oasis:entry>
<oasis:entry>>140</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′-
<italic toggle="yes">p</italic>
-mannose (
<bold>VII</bold>
)</oasis:entry>
<oasis:entry>>140</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>TBDPS-
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′-
<italic toggle="yes">p</italic>
-mannose (
<bold>IX</bold>
)</oasis:entry>
<oasis:entry>≥140</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
<table-wrap-foot>
<fn id="tbl4-fn1">
<label>a</label>
<p>IC
<sub>50</sub>
= 50% inhibitory concentration or compound concentration required to inhibit the HIV-1 RT-catalyzed reaction by 50%.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>Assuming
<bold>VII</bold>
as the best candidate for further drug optimization, we thought of combining the 3′-glyco-conjugation present in this oligomer with an additional 5′-tethering, chosen among the ones previously demonstrated by Hotoda et al. to convert the anti-HIV inactive
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′ into an active drug, effective at micromolar concentration
<xref rid="ref18" ref-type="bibr"></xref>
. In our previous work, the
<italic toggle="yes">tert</italic>
-butyldiphenylsilyl (TBDPS) group at the 5′-end of the
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′ sequence (
<bold>VIII</bold>
) was shown to markedly enhance both the equilibrium and the rate of formation of the quadruplex complexes, in comparison with the unmodified sequence
<xref rid="ref19" ref-type="bibr"></xref>
. In an effort to improve the biophysical and pharmacological profile of this G-rich oligonucleotide, we synthesized the oligonucleotide containing both the TBDPS residue at the 5′-end and the mannose moiety at the 3′-phosphate end, thus obtaining the oligomer TBDPS-
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′-
<italic toggle="yes">p</italic>
-mannose
<bold>IX</bold>
. The synthetic procedure to obtain
<bold>IX</bold>
, described in Scheme
<xref rid="sch3"></xref>
, is based on the usage of functionalized solid support
<bold>21</bold>
in conjunction with 5′-TBDPS-thymidine-3′-phosphoramidite building block
<bold>29</bold>
<named-content content-type="bibref-group">
<xref rid="ref18" ref-type="bibr"></xref>
,
<xref rid="ref19" ref-type="bibr"></xref>
</named-content>
, exploited in the last coupling of the solid-phase ODN assembly. Antiviral evaluation on
<bold>IX</bold>
showed that the insertion of the TBDPS group at the 5′-end of
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′-
<italic toggle="yes">p</italic>
-mannose notably affected its biological activity, with a 3-fold increase in the anti-HIV potency, with respect to ODN
<bold>VII</bold>
, carrying the sole mannose as the tethering group (Table
<xref rid="tbl5"></xref>
). However, bis-conjugate
<bold>IX</bold>
was found to be 2.3-fold less active than TBDPS-
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′ (
<bold>VIII</bold>
) on HIV-infected CEM cells. When the series of compounds were examined for their inhibitory activity against syncytium formation between persistently HIV-1-infected HUT-78/HIV-1 cells and uninfected SupT1 cells, only
<bold>IX</bold>
was measurably inhibitory (Table
<xref rid="tbl6"></xref>
). In order to gain a critical insight into the peculiar structural features of bis-conjugated ODN
<bold>IX</bold>
, a detailed physicochemical characterization of the corresponding quadruplex complex was therefore carried out and comparison with previously studied TBDPS-
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′ (
<bold>VIII</bold>
), to better investigate the role of the mannose−phosphate appendage at the 3′-end on the quadruplex structure, is reported here.</p>
<table-wrap id="tbl5" position="float" orientation="portrait">
<label>5</label>
<caption>
<title>Anti-HIV-1 and Anti-HIV-2 Activity and Cytostatic Properties of Oligonucleotide
<bold>IX</bold>
in Human T-Lymphocyte (CEM) and MT-4 Cells
<xref rid="tbl5-fn5"></xref>
</title>
</caption>
<oasis:table>
<oasis:tgroup cols="8">
<oasis:colspec align="left" colname="col1"></oasis:colspec>
<oasis:colspec align="left" colname="col2"></oasis:colspec>
<oasis:colspec align="left" colname="col3"></oasis:colspec>
<oasis:colspec align="left" colname="col4"></oasis:colspec>
<oasis:colspec align="left" colname="col5"></oasis:colspec>
<oasis:colspec align="left" colname="col6"></oasis:colspec>
<oasis:colspec align="left" colname="col7"></oasis:colspec>
<oasis:colspec align="left" colname="col8"></oasis:colspec>
<oasis:thead valign="middle">
<oasis:row>
<oasis:entry align="center"></oasis:entry>
<oasis:entry align="center" nameend="col5" namest="col2">EC
<sub>50</sub>
<xref rid="tbl5-fn1"></xref>
(µM)</oasis:entry>
<oasis:entry align="center" nameend="col7" namest="col6">CC
<sub>50</sub>
<xref rid="tbl5-fn2"></xref>
(µM)</oasis:entry>
<oasis:entry align="center"></oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry align="center"></oasis:entry>
<oasis:entry align="center" nameend="col3" namest="col2">MT-4</oasis:entry>
<oasis:entry align="center" nameend="col5" namest="col4">CEM</oasis:entry>
<oasis:entry align="center"></oasis:entry>
<oasis:entry align="center"></oasis:entry>
<oasis:entry align="center"></oasis:entry>
</oasis:row>
<oasis:row rowsep="1">
<oasis:entry align="center">oligonucleotide</oasis:entry>
<oasis:entry align="center">HIV-1</oasis:entry>
<oasis:entry align="center">HIV-2</oasis:entry>
<oasis:entry align="center">HIV-1 (III
<sub>B</sub>
)</oasis:entry>
<oasis:entry align="center">HIV-2 (ROD)</oasis:entry>
<oasis:entry align="center">MT-4</oasis:entry>
<oasis:entry align="center">CEM</oasis:entry>
<oasis:entry align="center">S.I.
<xref rid="tbl5-fn3"></xref>
</oasis:entry>
</oasis:row>
</oasis:thead>
<oasis:tbody>
<oasis:row>
<oasis:entry>TBDPS-
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′-
<italic toggle="yes">p</italic>
-mannose (
<bold>IX</bold>
)</oasis:entry>
<oasis:entry>6.7 ± 0.1</oasis:entry>
<oasis:entry>>70</oasis:entry>
<oasis:entry>4.2 ± 2.0</oasis:entry>
<oasis:entry>>70</oasis:entry>
<oasis:entry>>70</oasis:entry>
<oasis:entry>>70</oasis:entry>
<oasis:entry>>17 on CEM; >10 on MT-4</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>TBDPS-
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′ (
<bold>VIII</bold>
)</oasis:entry>
<oasis:entry>0.88 ± 0.070
<xref rid="tbl5-fn4"></xref>
</oasis:entry>
<oasis:entry></oasis:entry>
<oasis:entry>1.8 ± 0.5</oasis:entry>
<oasis:entry>>14</oasis:entry>
<oasis:entry>>40
<xref rid="tbl5-fn4"></xref>
</oasis:entry>
<oasis:entry>>14</oasis:entry>
<oasis:entry>>8 on CEM; >45 on MT-4
<xref rid="tbl5-fn4">
<italic toggle="yes"></italic>
</xref>
</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
<table-wrap-foot>
<fn id="tbl5-fn5">
<label>a</label>
<p>For comparison, data from ref
<xref rid="ref18" ref-type="bibr"></xref>
for oligonucleotide
<bold>VIII</bold>
, determined using MT-4 cells, are also reported.</p>
</fn>
<fn id="tbl5-fn1">
<label>b</label>
<p>EC
<sub>50</sub>
= effective concentration or concentration required to protect CEM cells against the cytopathicity of HIV by 50%.</p>
</fn>
<fn id="tbl5-fn2">
<label>c</label>
<p>CC
<sub>50</sub>
= cytotoxic concentration or concentration required to reduce CEM or MT4 cell viability by 50%.</p>
</fn>
<fn id="tbl5-fn3">
<label>d</label>
<p>S.I. = selectivity index for HIV-1, calculated as the ratio of CC
<sub>50</sub>
/EC
<sub>50</sub>
.</p>
</fn>
<fn id="tbl5-fn4">
<label>e</label>
<p>Data from ref
<xref rid="ref18" ref-type="bibr"></xref>
.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl6" position="float" orientation="portrait">
<label>6</label>
<caption>
<title>Inhibitory Activity of the Glyco-Conjugates against Syncytia Formation between Persistently HIV-1-Infected HUT-78/HIV-1 Cells and Uninfected SupT1 Cells</title>
</caption>
<oasis:table>
<oasis:tgroup cols="2">
<oasis:colspec align="left" colname="col1"></oasis:colspec>
<oasis:colspec align="left" colname="col2"></oasis:colspec>
<oasis:thead valign="middle">
<oasis:row rowsep="1">
<oasis:entry align="center">oligonucleotide</oasis:entry>
<oasis:entry align="center">EC
<sub>50</sub>
<xref rid="tbl6-fn1"></xref>
(µM)</oasis:entry>
</oasis:row>
</oasis:thead>
<oasis:tbody>
<oasis:row>
<oasis:entry>
<bold>II</bold>
</oasis:entry>
<oasis:entry>>140</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>
<bold>III</bold>
</oasis:entry>
<oasis:entry>>140</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>
<bold>IV</bold>
</oasis:entry>
<oasis:entry>>30</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>
<bold>V</bold>
</oasis:entry>
<oasis:entry>>140</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>
<bold>VI</bold>
</oasis:entry>
<oasis:entry>>140</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>
<bold>VII</bold>
</oasis:entry>
<oasis:entry>>140</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>
<bold>VIII</bold>
</oasis:entry>
<oasis:entry>>14</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>
<bold>IX</bold>
</oasis:entry>
<oasis:entry>1.3 ± 0.49</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
<table-wrap-foot>
<fn id="tbl6-fn1">
<label>a</label>
<p>EC
<sub>50</sub>
= 50% effective concentration or compound concentration required to prevent giant (syncytium) cell formation between HUT-78/HIV-1 and SupT1 cells by 50%.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>The CD spectrum of TBDPS-5′-TGGGAG-3′-
<italic toggle="yes">p</italic>
-mannose
<bold>IX</bold>
is consistent with the formation of a parallel quadruplex structure (Figure
<xref rid="fig2"></xref>
). From the CD melting profile obtained at 0.05 °C/min, shown in Figure
<xref rid="fig2"></xref>
, the melting temperature of the quadruplex complex was found to be 81 °C, with a Δ
<italic toggle="yes">T</italic>
<sub>m</sub>
of +40 °C with respect to unmodified
<bold>I</bold>
, and of +36 °C with respect to the quadruplex formed by
<bold>VII</bold>
, bearing mannose−phosphate tails at the 3′-ends (Table
<xref rid="tbl2"></xref>
). In order to especially focus on the kinetic aspects, recognized to primarily affect the
<italic toggle="yes">in vivo</italic>
existence of four-stranded quadruplex complexes, a complete biophysical characterization of the quadruplex formed by ODN
<bold>IX</bold>
was carried out. The obtained data were compared with those previously determined for TBDPS-
<sup>5</sup>
′TGGGAG
<sup>3</sup>
<bold>VIII</bold>
<xref rid="ref19" ref-type="bibr"></xref>
. The kinetics of TBDPS-
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′-
<italic toggle="yes">p</italic>
-mannose quadruplex association was investigated in detail. The rate of the association reaction was studied by monitoring the ellipticity at 263 nm as a function of time after heating the sample at 95 °C for 5 min followed by fast cooling. The molar ellipticity vs time profiles are shown in Figure
<xref rid="fig3"></xref>
. The experimental curves were fitted following a previously described procedure
<xref rid="ref21" ref-type="bibr"></xref>
. All the data were consistent with a reaction order of 4.0. The kinetic experiments were performed over the temperature range 15–30 °C. The activation energy (
<italic toggle="yes">E</italic>
<sub>o</sub>
<sub>n</sub>
) was derived from the slope of the Arrhenius plot (see
<xref rid="si1">Supporting Information</xref>
). The kinetic parameters are summarized in Table
<xref rid="tbl7"></xref>
. We found that the association rate decreased upon increasing the temperature, due to a negative value for the activation energy, in accordance with previously obtained data for the TBDPS-
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′ quadruplex. The activation energy for the formation of the quadruplex complex of
<bold>IX</bold>
is about half the activation energy determined in the case of
<bold>VIII</bold>
. In the 15–30 °C temperature range, the kinetic constants for the TBDPS-
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′ and TBDPS-
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′-
<italic toggle="yes">p</italic>
-mannose quadruplexes are comparable. However, when the values are extrapolated at higher temperatures, the association reaction for quadruplex formation in
<bold>IX</bold>
is much faster in comparison to
<bold>VIII</bold>
, due to the difference in the absolute value of their activation energies. The kinetics of quadruplex dissociation for TBDPS-
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′-
<italic toggle="yes">p</italic>
-mannose was also investigated by performing temperature-jump experiments. In each experiment, the temperature of the sample was rapidly increased and the rate of quadruplex dissociation was monitored by following the change of CD signal with time. The kinetic profiles at different temperatures are shown in Figure
<xref rid="fig4"></xref>
. The dissociation rate constants were then obtained by fitting these kinetic profiles with a single exponential curve. The activation energy (
<italic toggle="yes">E</italic>
<sub>o</sub>
<sub>f</sub>
<sub>f</sub>
) was derived from the corresponding Arrhenius plot (see
<xref rid="si1">Supporting Information</xref>
). The kinetic parameters for quadruplex dissociation are summarized in Table
<xref rid="tbl8"></xref>
. The quadruplex formed by
<bold>IX</bold>
has
<italic toggle="yes">k</italic>
<sub>off</sub>
values comparable with those previously determined for
<bold>VIII</bold>
. The
<italic toggle="yes">E</italic>
<sub>o</sub>
<sub>f</sub>
<sub>f</sub>
value for the quadruplex formed by
<bold>IX</bold>
is about 130 kJ mol
<sup>−1</sup>
higher than the value found for
<bold>VIII</bold>
.</p>
<fig id="fig2" position="float" orientation="portrait">
<label>2</label>
<caption>
<p>CD melting profile (on the left) and CD spectrum at 20 °C (on the right) of the 5′,3′-bis-conjugated oligonucleotide
<bold>IX</bold>
, at 5 × 10
<sup>−5</sup>
M quadruplex concentration.</p>
</caption>
<graphic xlink:href="bc-2007-003395_0005.tif" position="float" orientation="portrait"></graphic>
</fig>
<fig id="fig3" position="float" orientation="portrait">
<label>3</label>
<caption>
<p>Kinetics of quadruplex formation for 5′,3′-bis-conjugated
<bold>IX</bold>
at different temperatures. Quadruplex formation leads to an increase of molar ellipticity at 263 nm. Mathematical fits are showed in dotted lines. All the experiments were performed in 10 mM potassium phosphate buffer (pH 7.0), supplemented with 200 mM KCl, at 5 × 10
<sup>−6</sup>
M quadruplex concentration.</p>
</caption>
<graphic xlink:href="bc-2007-003395_0006.tif" position="float" orientation="portrait"></graphic>
</fig>
<table-wrap id="tbl7" position="float" orientation="portrait">
<label>7</label>
<caption>
<title>Kinetic Parameters for the Quadruplex Formation of
<bold>IX</bold>
with Respect to
<bold>VIII</bold>
<xref rid="tbl7-fn3"></xref>
</title>
</caption>
<oasis:table>
<oasis:tgroup cols="5">
<oasis:colspec align="left" colname="col1"></oasis:colspec>
<oasis:colspec align="char" char="." colname="col2"></oasis:colspec>
<oasis:colspec align="char" char="." colname="col3"></oasis:colspec>
<oasis:colspec align="left" colname="col4"></oasis:colspec>
<oasis:colspec align="char" char="±" colname="col5"></oasis:colspec>
<oasis:thead valign="middle">
<oasis:row rowsep="1">
<oasis:entry align="center" valign="bottom">quadruplex</oasis:entry>
<oasis:entry align="center" valign="bottom">temp (°C) ± 1</oasis:entry>
<oasis:entry align="center" valign="bottom">
<italic toggle="yes">n</italic>
</oasis:entry>
<oasis:entry align="center" valign="bottom">
<italic toggle="yes">k</italic>
<sub>on</sub>
(M
<sup>3</sup>
s
<sup>−1</sup>
)
<xref rid="tbl7-fn1"></xref>
</oasis:entry>
<oasis:entry align="center" valign="bottom">
<italic toggle="yes">E</italic>
<sub>on</sub>
(kJ mol
<sup>−1</sup>
)</oasis:entry>
</oasis:row>
</oasis:thead>
<oasis:tbody>
<oasis:row>
<oasis:entry>TBDPS-
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′-
<italic toggle="yes">p</italic>
-mannose</oasis:entry>
<oasis:entry>15</oasis:entry>
<oasis:entry>4</oasis:entry>
<oasis:entry>(9.8 ± 0.5) × 10
<sup>10</sup>
</oasis:entry>
<oasis:entry></oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry></oasis:entry>
<oasis:entry>20</oasis:entry>
<oasis:entry>4</oasis:entry>
<oasis:entry>(5.1 ± 0.6) × 10
<sup>10</sup>
</oasis:entry>
<oasis:entry></oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry></oasis:entry>
<oasis:entry>25</oasis:entry>
<oasis:entry>4</oasis:entry>
<oasis:entry>(3.6 ± 0.5) × 10
<sup>10</sup>
</oasis:entry>
<oasis:entry>−70 ± 19</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry></oasis:entry>
<oasis:entry>30</oasis:entry>
<oasis:entry>4</oasis:entry>
<oasis:entry>(2.3 ± 0.8) × 10
<sup>10</sup>
</oasis:entry>
<oasis:entry></oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>TBDPS-
<sup>5</sup>
′TGGGAG
<sup>3
<sup></sup>
<xref rid="tbl7-fn2"></xref>
</sup>
</oasis:entry>
<oasis:entry>15</oasis:entry>
<oasis:entry>4</oasis:entry>
<oasis:entry>(2.9 ± 0.5) × 10
<sup>11</sup>
</oasis:entry>
<oasis:entry></oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry></oasis:entry>
<oasis:entry>20</oasis:entry>
<oasis:entry>4</oasis:entry>
<oasis:entry>(1.5 ± 0.6) × 10
<sup>11</sup>
</oasis:entry>
<oasis:entry>−125 ± 19</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry></oasis:entry>
<oasis:entry>25</oasis:entry>
<oasis:entry>4</oasis:entry>
<oasis:entry>(8.6 ± 0.5) × 10
<sup>10</sup>
</oasis:entry>
<oasis:entry></oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry></oasis:entry>
<oasis:entry>30</oasis:entry>
<oasis:entry>4</oasis:entry>
<oasis:entry>(2.3 ± 0.8) × 10
<sup>10</sup>
</oasis:entry>
<oasis:entry></oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
<table-wrap-foot>
<fn id="tbl7-fn3">
<label>a</label>
<p>All the values have been determined in a 200 mM KCl, 10 mM potassium phosphate, pH 7.0 buffer.</p>
</fn>
<fn id="tbl7-fn1">
<label>b</label>
<p>
<italic toggle="yes">k</italic>
<sub>on</sub>
is defined as d[S]/d
<italic toggle="yes">t</italic>
= −4d[S
<sub>4</sub>
]/d
<italic toggle="yes">t</italic>
= -k
<sub>on</sub>
[S]
<sup>4</sup>
.</p>
</fn>
<fn id="tbl7-fn2">
<label>c</label>
<p>Data from ref
<xref rid="ref19" ref-type="bibr"></xref>
.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<fig id="fig4" position="float" orientation="portrait">
<label>4</label>
<caption>
<p>Kinetics of quadruplex dissociation for 5′,3′-bis-conjugated
<bold>IX</bold>
at different temperatures. Quadruplex dissociation leads to a decrease of molar ellipticity at 263 nm. Mathematical fits are showed in dotted lines. All the experiments were performed at 5 × 10
<sup>−5</sup>
M quadruplex concentration.</p>
</caption>
<graphic xlink:href="bc-2007-003395_0007.tif" position="float" orientation="portrait"></graphic>
</fig>
<table-wrap id="tbl8" position="float" orientation="portrait">
<label>8</label>
<caption>
<title>Kinetic Parameters for the Quadruplex Dissociation of IX with Respect to VIII
<xref rid="tbl8-fn3"></xref>
</title>
</caption>
<oasis:table>
<oasis:tgroup cols="4">
<oasis:colspec align="left" colname="col1"></oasis:colspec>
<oasis:colspec align="char" char="." colname="col2"></oasis:colspec>
<oasis:colspec align="char" char="." colname="col3"></oasis:colspec>
<oasis:colspec align="char" char="." colname="col4"></oasis:colspec>
<oasis:thead valign="middle">
<oasis:row rowsep="1">
<oasis:entry align="center">quadruplex</oasis:entry>
<oasis:entry align="center">temp (°C) ± 1</oasis:entry>
<oasis:entry align="center">
<italic toggle="yes">k</italic>
<sub>off</sub>
× 10
<sup>4</sup>
(s
<sup>−1</sup>
)
<xref rid="tbl8-fn1"></xref>
</oasis:entry>
<oasis:entry align="center">
<italic toggle="yes">E</italic>
<sub>off</sub>
(kJ mol
<sup>−1</sup>
)</oasis:entry>
</oasis:row>
</oasis:thead>
<oasis:tbody>
<oasis:row>
<oasis:entry>TBDPS-
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′-
<italic toggle="yes">p</italic>
-mannose</oasis:entry>
<oasis:entry>70</oasis:entry>
<oasis:entry>0.55 ± 0.03</oasis:entry>
<oasis:entry></oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry></oasis:entry>
<oasis:entry>73</oasis:entry>
<oasis:entry>1.5 ± 0.02</oasis:entry>
<oasis:entry></oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry></oasis:entry>
<oasis:entry>75</oasis:entry>
<oasis:entry>2.6 ± 0.4</oasis:entry>
<oasis:entry>250 ± 20</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry></oasis:entry>
<oasis:entry>77</oasis:entry>
<oasis:entry>4.0 ± 0.1</oasis:entry>
<oasis:entry></oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry></oasis:entry>
<oasis:entry>80</oasis:entry>
<oasis:entry>6.5 ± 0.3</oasis:entry>
<oasis:entry></oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry>TBDPS-
<sup>5</sup>
′TGGGAG
<sup>3</sup>
<xref rid="tbl8-fn2"></xref>
</oasis:entry>
<oasis:entry>70</oasis:entry>
<oasis:entry>0.50 ± 0.03</oasis:entry>
<oasis:entry></oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry></oasis:entry>
<oasis:entry>73</oasis:entry>
<oasis:entry>0.83 ± 0.02</oasis:entry>
<oasis:entry></oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry></oasis:entry>
<oasis:entry>75</oasis:entry>
<oasis:entry>1.4 ± 0.4</oasis:entry>
<oasis:entry>220 ± 20</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry></oasis:entry>
<oasis:entry>77</oasis:entry>
<oasis:entry>2.3 ± 0.1</oasis:entry>
<oasis:entry></oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry></oasis:entry>
<oasis:entry>80</oasis:entry>
<oasis:entry>3.5 ± 0.3</oasis:entry>
<oasis:entry></oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
<table-wrap-foot>
<fn id="tbl8-fn3">
<label>a</label>
<p>All the values have been determined in a 200 mM KCl, 10 mM potassium phosphate, pH 7.0 buffer.</p>
</fn>
<fn id="tbl8-fn1">
<label>b</label>
<p>
<italic toggle="yes">k</italic>
<sub>off</sub>
is defined as d[S]/d
<italic toggle="yes">t</italic>
= d[S
<sub>4</sub>
]/d
<italic toggle="yes">t</italic>
+
<italic toggle="yes">k</italic>
<sub>off</sub>
[S
<sub>4</sub>
].</p>
</fn>
<fn id="tbl8-fn2">
<label>c</label>
<p>Data from ref
<xref rid="ref19" ref-type="bibr"></xref>
.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>Taken together, these data showed that bis-conjugated TBDPS-
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′-
<italic toggle="yes">p</italic>
-mannose
<bold>IX</bold>
formed more kinetically and thermodynamically stable four-stranded quadruplex structures than TBDPS-
<sup>5</sup>
′TGGGAG
<sup>3
<sup></sup>
</sup>
(
<bold>VIII</bold>
). Therefore, we can conclude that the presence of mannose residues at the 3′-phosphate end of the G-rich oligonucleotide chain, in addition to providing several desirable properties for the
<italic toggle="yes">in vivo</italic>
activity, as increased resistance toward nucleases and improved cellular uptake, also significantly contributes to the overall stabilization of the quadruplex complex. However, contrarily to what we have found for monoconjugated 6-mers
<bold>II</bold>
<bold>VII</bold>
when referred to unmodified oligonucleotide
<bold>I</bold>
, in the comparison of
<bold>IX</bold>
vs
<bold>VIII</bold>
, the higher thermal stability for the quadruplex complex did not result in improved biological activity.</p>
<p>Further experiments, including a detailed NMR-based conformational analysis study, are currently underway to further clarify the structure–activity relationships of these short, four-stranded G-quadruplex-forming oligonucleotides.</p>
</sec>
<sec id="sec4" sec-type="discussion">
<title>Discussion</title>
<p>After more than two decades, the search for new chemically modified ODNs is a very active field of research, and novel structures are continuously being proposed. Aiming at ODNs endowed with potential anti-HIV activity, end-conjugation with sugars was investigated here as a strategy to improve the pharmacological profile of the oligonucleotide
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′, chosen as a model compound. G-rich oligonucleotides are thought to be active against HIV-1 through interactions of the corresponding G-quadruplex complexes with viral gp120 protein. Our results, furnishing an in-depth analysis of the stability and biological activity of the quadruplex structures formed by modified
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′ oligonucleotides, further corroborated this hypothesis, showing a good correlation between thermal stability of the corresponding quadruplex complexes and antiviral activity. In detail, the presence of a monosaccharide (glucose or mannose) at the 3′-phosphate end of the ODN chain was identified as the best modification, stabilizing the quadruplex structures and also converting the anti-HIV inactive natural oligomer into moderately active compounds. On the contrary, the same modification, when present at the 5′-end, led to a dramatic destabilization of the quadruplex structure. Still unclear is the reason behind this behavior, but a plausible explanation could be related to the fact that, in the case of 3′-conjugation, the sugar directly interacts with the G-quartet at the 3′-end of the sequence, which in the natural oligonucleotide would be exposed to the solvent. Therefore, in this case, stabilization of the quadruplex complex might arise from removal of the hydration spheres covering the hydrophobic surface of the G quartet due to the presence of the sugar. In the case of 5′-conjugation, this effect is not operative, since the sugar is attached to a dangling thymidine, not directly involved in the four-stranded quadruplex complex, and in turn other steric effects may be effective.</p>
<p>Starting from the most promising modified oligonucleotide investigated here, i.e., oligomer
<bold>VII</bold>
, further optimization of the target was obtained by conjugating the bulky aromatic group
<italic toggle="yes">tert</italic>
-butyldiphenylsilyl (TBDPS) group at its 5′-end, previously shown to markedly enhance the formation of quadruplex complexes. The 5′,3′-bis-conjugated TBDPS-
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′-
<italic toggle="yes">p</italic>
-mannose
<bold>IX</bold>
, onto which a detailed biophysical characterization has been carried out, has been shown to form a four-stranded quadruplex complex with remarkably improved stability, and was 3-fold more active than the sole 3′-glyco-conjugated oligonucleotide
<bold>VII</bold>
. The mechanism of antiviral action of TBDPS-
<sup>5</sup>
′TGGGAG
<sup>3</sup>
′-
<italic toggle="yes">p</italic>
-mannose is most likely inhibition of viral entry (fusion), as is evident from coculture experiments. When compared to the sole 5′-conjugated TBDPS-
<sup>5</sup>
′TGGGAG
<sup>3</sup>
<bold>VIII</bold>
, we determined that the 5′,3′-bis-conjugation sensibly favoredboth kinetically and thermodynamicallythe quadruplex formation, still
<bold>IX</bold>
exhibited lower anti-HIV activity.</p>
<p>This last result indicates that the antiviral properties of short G-quadruplex forming oligonucleotides are indeed subordinate to the formation of tetrameric complexes, but the
<italic toggle="yes">in vivo</italic>
picture is obviously much more complicated than simply expected on the basis of a single point of view. In all cases, the quadruplex formation can be considered as a fundamental prerequisite for the
<italic toggle="yes">in vivo</italic>
biological activity of G-rich oligomers; however, their activity does not exclusively rely on a favored equilibrium between single strands and quadruplex structures, with other mechanisms also successively involved. Therefore, in the search for antiviral properties in the libraries of modified G-rich oligonucleotides, the correlation between thermal stability of the corresponding quadruplex complexes and their anti-HIV activity can be helpful, but this has to be strictly intended only for a first level of prediction, since a variety of different, complex processes may eventually affect their
<italic toggle="yes">in vivo</italic>
behavior.</p>
<p>Taken together, these findings further expand the repertoire of known anti-HIV active oligonucleotides and can be useful for the future design of novel modified G-rich ODNs with improved antiviral activity.</p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>We acknowledge MUR (PRIN) for grants in support of this investigation. We also thank C.I.M.C.F., Università degli Studi di Napoli “Federico II”, for the NMR, MS, and CD facilities, and the Rega Centers of Excellence of the K.U.Leuven. This work is dedicated to Prof. Guido Barone and Matteo Adinolfi on the occasion of their 70th birthdays.</p>
</ack>
<notes id="si1" notes-type="si">
<p>General experimental methods; CD melting profiles for ODNs
<bold>II</bold>
<bold>VII</bold>
; Arrhenius plots for the association and for the dissociation of the 5′,3′-bis-conjugated quadruplex formed by ODN
<bold>IX</bold>
. This material is available free of charge via the Internet at
<uri>http://pubs.acs.org</uri>
.</p>
</notes>
<ref-list>
<title>References</title>
<ref id="ref1">
<element-citation publication-type="journal" id="cit1">
<name name-style="western">
<surname>Varki</surname>
<given-names>A.</given-names>
</name>
<year>1993</year>
<article-title>Biological roles of oligosaccharides: all of the theories are correct</article-title>
<source>Glycobiology</source>
<volume>3</volume>
<fpage>97</fpage>
<lpage>130</lpage>
</element-citation>
</ref>
<ref id="ref2">
<element-citation publication-type="journal" id="cit2">
<name name-style="western">
<surname>Koeller</surname>
<given-names>K. M.</given-names>
</name>
<name name-style="western">
<surname>Wong</surname>
<given-names>C. H.</given-names>
</name>
<year>2000</year>
<article-title>Emerging themes in medicinal glycoscience</article-title>
<source>Nat. Biotechnol.</source>
<volume>18</volume>
<fpage>835</fpage>
<lpage>841</lpage>
</element-citation>
</ref>
<ref id="ref3">
<mixed-citation publication-type="book" id="cit3">
<person-group person-group-type="allauthors">
<name name-style="western">
<surname>Varki</surname>
<given-names>A.</given-names>
</name>
,
<name name-style="western">
<surname>Cumming</surname>
<given-names>R.</given-names>
</name>
,
<name name-style="western">
<surname>Esko</surname>
<given-names>J.</given-names>
</name>
,
<name name-style="western">
<surname>Freeze</surname>
<given-names>H.</given-names>
</name>
,
<name name-style="western">
<surname>Hart</surname>
<given-names>G.</given-names>
</name>
, and
<name name-style="western">
<surname>Marth</surname>
<given-names>J.</given-names>
</name>
</person-group>
, Eds. (
<year>1999</year>
)
<source>Essentials of Glycobiology</source>
, pp 1–331, Chapters 1–21,
<publisher-name>Cold Spring Harbor Laboratory Press</publisher-name>
, Cold Spring Harbor,
<publisher-loc>NY, USA.</publisher-loc>
</mixed-citation>
</ref>
<ref id="ref4">
<element-citation publication-type="journal" id="cit4">
<name name-style="western">
<surname>Lee</surname>
<given-names>Y. C.</given-names>
</name>
<name name-style="western">
<surname>Lee</surname>
<given-names>R. T.</given-names>
</name>
<year>1995</year>
<article-title>Carbohydrate-protein interactions: basis of glycobiology</article-title>
<source>Acc. Chem. Res.</source>
<volume>28</volume>
<fpage>321</fpage>
<lpage>327</lpage>
</element-citation>
</ref>
<ref id="ref5">
<mixed-citation publication-type="book" id="cit5">
<person-group person-group-type="allauthors">
<name name-style="western">
<surname>Burkhalter</surname>
<given-names>N. F.</given-names>
</name>
,
<name name-style="western">
<surname>Dimick</surname>
<given-names>S. M.</given-names>
</name>
, and
<name name-style="western">
<surname>Toone</surname>
<given-names>E. J.</given-names>
</name>
</person-group>
(
<year>2000</year>
)
<article-title>Protein-carbohydrate interactions: fundamental considerations</article-title>
.
<source>Carbohydrates in Chemistry and Biology</source>
(
<person-group person-group-type="editor">
<name name-style="western">
<surname>Ernst</surname>
<given-names>B.</given-names>
</name>
,
<name name-style="western">
<surname>Hart</surname>
<given-names>G. W.</given-names>
</name>
, and
<name name-style="western">
<surname>Sinaÿ</surname>
<given-names>P.</given-names>
</name>
</person-group>
, Eds.) pp
<fpage>863</fpage>
<lpage>911</lpage>
, Chapter 31, Part I, Vol.
<volume>2</volume>
,
<publisher-name>Wiley-VCH</publisher-name>
,
<publisher-loc>Weinheim, Germany.</publisher-loc>
</mixed-citation>
</ref>
<ref id="ref6">
<element-citation publication-type="journal" id="cit6">
<name name-style="western">
<surname>Zatsepin</surname>
<given-names>T. S.</given-names>
</name>
<name name-style="western">
<surname>Oretskaya</surname>
<given-names>T. S.</given-names>
</name>
<year>2004</year>
<article-title>Synthesis and applications of oligonucleotide - carbohydrate conjugates</article-title>
<source>Chem. Biodiv.</source>
<volume>1</volume>
<issue>10</issue>
<fpage>1401</fpage>
<lpage>1417</lpage>
</element-citation>
</ref>
<ref id="ref7">
<element-citation publication-type="journal" id="cit7">
<name name-style="western">
<surname>Adinolfi</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Barone</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>De Napoli</surname>
<given-names>L.</given-names>
</name>
<name name-style="western">
<surname>Guariniello</surname>
<given-names>L.</given-names>
</name>
<name name-style="western">
<surname>Iadonisi</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Piccialli</surname>
<given-names>G.</given-names>
</name>
<year>1999</year>
<article-title>Solid phase glycosidation of oligonucleotides</article-title>
<source>Tetrahedron Lett.</source>
<volume>40</volume>
<fpage>2607</fpage>
<lpage>2610</lpage>
</element-citation>
</ref>
<ref id="ref8">
<element-citation publication-type="journal" id="cit8">
<name name-style="western">
<surname>Adinolfi</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>De Napoli</surname>
<given-names>L.</given-names>
</name>
<name name-style="western">
<surname>Di Fabio</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Guariniello</surname>
<given-names>L.</given-names>
</name>
<name name-style="western">
<surname>Iadonisi</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Messere</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Montesarchio</surname>
<given-names>D.</given-names>
</name>
<name name-style="western">
<surname>Piccialli</surname>
<given-names>G.</given-names>
</name>
<year>2001</year>
<article-title>Solid-phase synthesis of glyco-oligonucleotide conjugates</article-title>
<source>Synlett</source>
<volume>6</volume>
<fpage>745</fpage>
<lpage>748</lpage>
</element-citation>
</ref>
<ref id="ref9">
<element-citation publication-type="journal" id="cit9">
<name name-style="western">
<surname>Sando</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Matsui</surname>
<given-names>K.</given-names>
</name>
<name name-style="western">
<surname>Niinomi</surname>
<given-names>Y.</given-names>
</name>
<name name-style="western">
<surname>Sato</surname>
<given-names>N.</given-names>
</name>
<name name-style="western">
<surname>Aoyama</surname>
<given-names>Y.</given-names>
</name>
<year>2003</year>
<article-title>Facile preparation of DNA-tagged carbohydrates</article-title>
<source>Bio. Med. Chem. Lett.</source>
<volume>13</volume>
<fpage>2633</fpage>
<lpage>2636</lpage>
</element-citation>
</ref>
<ref id="ref10">
<element-citation publication-type="journal" id="cit10">
<name name-style="western">
<surname>Matsuura</surname>
<given-names>K.</given-names>
</name>
<name name-style="western">
<surname>Hibino</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Yamada</surname>
<given-names>Y.</given-names>
</name>
<name name-style="western">
<surname>Kobayashi</surname>
<given-names>K.</given-names>
</name>
<year>2001</year>
<article-title>Construction of glyco-clusters by self-organization of site-specifically glycosylated oligonucleotides and their cooperative amplification of lectin-recognition</article-title>
<source>J. Am. Chem. Soc.</source>
<volume>123</volume>
<fpage>357</fpage>
<lpage>358</lpage>
</element-citation>
</ref>
<ref id="ref11">
<element-citation publication-type="journal" id="cit11">
<name name-style="western">
<surname>Matsuura</surname>
<given-names>K.</given-names>
</name>
<name name-style="western">
<surname>Hibino</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Ikeda</surname>
<given-names>T.</given-names>
</name>
<name name-style="western">
<surname>Yamada</surname>
<given-names>Y.</given-names>
</name>
<name name-style="western">
<surname>Kobayashi</surname>
<given-names>K.</given-names>
</name>
<year>2004</year>
<article-title>Self-organized glycoclusters along DNA: effect of the spatial arrangement of galactoside residues on cooperative lectin recognition</article-title>
<source>Chem. Eur. J.</source>
<volume>10</volume>
<fpage>352</fpage>
<lpage>359</lpage>
</element-citation>
</ref>
<ref id="ref12">
<element-citation publication-type="journal" id="cit12">
<name name-style="western">
<surname>Akhtar</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Routledge</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Patel</surname>
<given-names>R.</given-names>
</name>
<name name-style="western">
<surname>Gardiner</surname>
<given-names>J. M.</given-names>
</name>
<year>1995</year>
<article-title>Synthesis of mono- and dimannoside phosphoramidite derivatives for solid-phase conjugation to oligonucleotides</article-title>
<source>Tetrahedron Lett.</source>
<volume>36</volume>
<fpage>7333</fpage>
<lpage>7336</lpage>
</element-citation>
</ref>
<ref id="ref13">
<element-citation publication-type="journal" id="cit13">
<name name-style="western">
<surname>Sheppard</surname>
<given-names>T. L.</given-names>
</name>
<name name-style="western">
<surname>Wong</surname>
<given-names>C.-H.</given-names>
</name>
<name name-style="western">
<surname>Joyce</surname>
<given-names>G. F.</given-names>
</name>
<year>2000</year>
<article-title>Nucleoglycoconjugates: design and synthesis of a new class of DNA - carbohydrate conjugates</article-title>
<source>Angew. Chem., Int. Ed. Engl.</source>
<volume>39</volume>
<fpage>3660</fpage>
<lpage>3663</lpage>
</element-citation>
</ref>
<ref id="ref14">
<element-citation publication-type="journal" id="cit14">
<name name-style="western">
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name name-style="western">
<surname>Sheppard</surname>
<given-names>T. L.</given-names>
</name>
<year>2003</year>
<article-title>Chemoenzymatic synthesis and antibody detection of DNA glycoconjugates</article-title>
<source>Bioconjugate Chem.</source>
<volume>14</volume>
<fpage>1314</fpage>
<lpage>1322</lpage>
</element-citation>
</ref>
<ref id="ref15">
<element-citation publication-type="journal" id="cit15">
<name name-style="western">
<surname>Adinolfi</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>De Napoli</surname>
<given-names>L.</given-names>
</name>
<name name-style="western">
<surname>Di Fabio</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Iadonisi</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Montesarchio</surname>
<given-names>D.</given-names>
</name>
<name name-style="western">
<surname>Piccialli</surname>
<given-names>G.</given-names>
</name>
<year>2002</year>
<article-title>Solid phase synthesis of oligonucleotides tethered to oligo-glucose phosphate tails</article-title>
<source>Tetrahedron</source>
<volume>58</volume>
<fpage>6697</fpage>
<lpage>6704</lpage>
</element-citation>
</ref>
<ref id="ref16">
<element-citation publication-type="journal" id="cit16">
<name name-style="western">
<surname>Adinolfi</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>De Napoli</surname>
<given-names>L.</given-names>
</name>
<name name-style="western">
<surname>Di Fabio</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Iadonisi</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Montesarchio</surname>
<given-names>D.</given-names>
</name>
<year>2004</year>
<article-title>Modulating the activity of oligonucleotides by carbohydrate conjugation: solid phase synthesis of sucrose-oligonucleotide hybrids</article-title>
<source>Org. Biol. Mol.</source>
<volume>2</volume>
<fpage>1879</fpage>
<lpage>1886</lpage>
</element-citation>
</ref>
<ref id="ref17">
<mixed-citation publication-type="patent" id="cit17">
<person-group person-group-type="allauthors">
<name name-style="western">
<surname>Koizumi</surname>
<given-names>M.</given-names>
</name>
,
<name name-style="western">
<surname>Kaneko</surname>
<given-names>M.</given-names>
</name>
,
<name name-style="western">
<surname>Ohmine</surname>
<given-names>T.</given-names>
</name>
,
<name name-style="western">
<surname>Furukawa</surname>
<given-names>H.</given-names>
</name>
, and
<name name-style="western">
<surname>Nishigaki</surname>
<given-names>T.</given-names>
</name>
</person-group>
<year>1999</year>
. Patent no.
<patent>JP98/04625</patent>
;
<patent>PCT/WO99/19474</patent>
.</mixed-citation>
</ref>
<ref id="ref18">
<element-citation publication-type="journal" id="cit18">
<name name-style="western">
<surname>Hotoda</surname>
<given-names>H.,</given-names>
</name>
<name name-style="western">
<surname>Koizumi</surname>
<given-names>M.,</given-names>
</name>
<name name-style="western">
<surname>Koga</surname>
<given-names>R.,</given-names>
</name>
<name name-style="western">
<surname>Kaneko</surname>
<given-names>M.,</given-names>
</name>
<name name-style="western">
<surname>Momota</surname>
<given-names>K.,</given-names>
</name>
<name name-style="western">
<surname>Ohmine</surname>
<given-names>T.,</given-names>
</name>
<name name-style="western">
<surname>Furukawa</surname>
<given-names>H.</given-names>
</name>
<name name-style="western">
<surname>Agatsuma</surname>
<given-names>T.</given-names>
</name>
<name name-style="western">
<surname>Nishigaki</surname>
<given-names>T.</given-names>
</name>
<name name-style="western">
<surname>Sone</surname>
<given-names>J.</given-names>
</name>
<year>1998</year>
<article-title>Biologically active oligodeoxyribonucleotides. 5. 5′-End-substituted d(TGGGAG) possesses anti-human immunodeficiency virus type 1 activity by forming a G-quadruplex structure</article-title>
<source>J. Med. Chem.</source>
<volume>41</volume>
<fpage>3655</fpage>
<lpage>3663</lpage>
</element-citation>
</ref>
<ref id="ref19">
<element-citation publication-type="journal" id="cit19">
<name name-style="western">
<surname>D’Onofrio</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Petraccone</surname>
<given-names>L.</given-names>
</name>
<name name-style="western">
<surname>Erra</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Martino</surname>
<given-names>L.</given-names>
</name>
<name name-style="western">
<surname>Di Fabio</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>De Napoli</surname>
<given-names>L.</given-names>
</name>
<name name-style="western">
<surname>Giancola</surname>
<given-names>C.</given-names>
</name>
<name name-style="western">
<surname>Montesarchio</surname>
<given-names>D.</given-names>
</name>
<year>2007</year>
<article-title>5′-Modified G-quadruplex forming oligonucleotides endowed with anti-HIV activity: synthesis and biophysical properties</article-title>
<source>Bioconjugate Chem.</source>
<volume>18</volume>
<issue>4</issue>
<fpage>1194</fpage>
<lpage>1204</lpage>
</element-citation>
</ref>
<ref id="ref20">
<element-citation publication-type="journal" id="cit20">
<name name-style="western">
<surname>Cantor</surname>
<given-names>C. R.</given-names>
</name>
<name name-style="western">
<surname>Warshaw</surname>
<given-names>M. M.</given-names>
</name>
<name name-style="western">
<surname>Shapiro</surname>
<given-names>H.</given-names>
</name>
<year>1970</year>
<article-title>Oligonucleotide interactions. 3. Circular dichroism studies of the conformation of deoxyoligonucleotides</article-title>
<source>Biopolymers</source>
<volume>9</volume>
<fpage>1059</fpage>
<lpage>1077</lpage>
</element-citation>
</ref>
<ref id="ref21">
<element-citation publication-type="journal" id="cit21">
<name name-style="western">
<surname>Petraccone</surname>
<given-names>L.</given-names>
</name>
<name name-style="western">
<surname>Pagano</surname>
<given-names>B.</given-names>
</name>
<name name-style="western">
<surname>Esposito</surname>
<given-names>V.</given-names>
</name>
<name name-style="western">
<surname>Randazzo</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Piccialli</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Barone</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Mattia</surname>
<given-names>C. A.</given-names>
</name>
<name name-style="western">
<surname>Giancola</surname>
<given-names>C.</given-names>
</name>
<year>2005</year>
<article-title>Thermodynamics and kinetics of PNA-DNA quadruplex-forming chimeras</article-title>
<source>J. Am. Chem. Soc.</source>
<volume>127</volume>
<fpage>16215</fpage>
<lpage>16223</lpage>
</element-citation>
</ref>
<ref id="ref22">
<element-citation publication-type="journal" id="cit22">
<name name-style="western">
<surname>Van Aerschot</surname>
<given-names>A.</given-names>
</name>
<year>2006</year>
<article-title>Oligonucleotides as antivirals: dream or realistic perspective?</article-title>
<source>Antiviral Res.</source>
<volume>71</volume>
<fpage>307</fpage>
<lpage>316</lpage>
</element-citation>
</ref>
<ref id="ref23">
<element-citation publication-type="journal" id="cit23">
<name name-style="western">
<surname>Agatsuma</surname>
<given-names>T.</given-names>
</name>
<name name-style="western">
<surname>Furukawa</surname>
<given-names>H.</given-names>
</name>
<name name-style="western">
<surname>Hotoda</surname>
<given-names>H.</given-names>
</name>
<name name-style="western">
<surname>Koizumi</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Koga</surname>
<given-names>R.</given-names>
</name>
<name name-style="western">
<surname>Kaneko</surname>
<given-names>M.</given-names>
</name>
<year>1997</year>
<article-title>Anti-human immunodeficiency virus type 1 activity of R-95288, a phosphodiester hexadeoxyribonucleotide modified by dibenzyloxybenzyl and hydroxyethyl residues at the 5′ and 3′-ends</article-title>
<source>Antivir. Chem. Chemother.</source>
<volume>8</volume>
<issue>5</issue>
<fpage>429</fpage>
<lpage>438</lpage>
</element-citation>
</ref>
<ref id="ref24">
<element-citation publication-type="journal" id="cit24">
<name name-style="western">
<surname>Cherepanov</surname>
<given-names>P.</given-names>
</name>
<name name-style="western">
<surname>Este</surname>
<given-names>J. A.</given-names>
</name>
<name name-style="western">
<surname>Rando</surname>
<given-names>R. F.</given-names>
</name>
<name name-style="western">
<surname>Ojwang</surname>
<given-names>J. O.</given-names>
</name>
<name name-style="western">
<surname>Reekmans</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Steinfeld</surname>
<given-names>R.</given-names>
</name>
<name name-style="western">
<surname>David</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>De Clercq</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Debyser</surname>
<given-names>Z.</given-names>
</name>
<year>1997</year>
<article-title>Mode of interaction of G-quartets with the integrase of human immunodeficiency virus type 1</article-title>
<source>Mol. Pharmacol.</source>
<volume>52</volume>
<fpage>771</fpage>
<lpage>780</lpage>
</element-citation>
</ref>
<ref id="ref25">
<element-citation publication-type="journal" id="cit25">
<name name-style="western">
<surname>Suzuki</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Miyano-Kurosaki</surname>
<given-names>N.</given-names>
</name>
<name name-style="western">
<surname>Kuwasaki</surname>
<given-names>T.</given-names>
</name>
<name name-style="western">
<surname>Takeuchi</surname>
<given-names>H.</given-names>
</name>
<name name-style="western">
<surname>Kawai</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Takaku</surname>
<given-names>H.</given-names>
</name>
<year>2002</year>
<article-title>Inhibition of human immunodeficiency virus type 1 activity in vitro by a new self-stabilized oligonucleotide with guanosine-thymidine quadruplex motifs</article-title>
<source>J. Virol.</source>
<volume>76</volume>
<fpage>3015</fpage>
<lpage>3022</lpage>
</element-citation>
</ref>
<ref id="ref26">
<mixed-citation publication-type="book" id="cit26">
<person-group person-group-type="allauthors">
<name name-style="western">
<surname>Brown</surname>
<given-names>T.</given-names>
</name>
, and
<name name-style="western">
<surname>Brown</surname>
<given-names>D. J. S.</given-names>
</name>
</person-group>
(
<year>1991</year>
)
<article-title>Modern machine-aided methods of oligodeoxyribonucleotide synthesis</article-title>
. In
<source>Oligonucleotides and analogues: a practical approach</source>
, (
<person-group person-group-type="editor">
<name name-style="western">
<surname>Eckstein</surname>
<given-names>F.</given-names>
</name>
</person-group>
, Ed.) pp
<fpage>1</fpage>
<lpage>23</lpage>
,
<publisher-name>IRL Press</publisher-name>
,
<publisher-loc>Oxford, UK.</publisher-loc>
</mixed-citation>
</ref>
<ref id="ref27">
<element-citation publication-type="journal" id="cit27">
<name name-style="western">
<surname>Petraccone</surname>
<given-names>L.</given-names>
</name>
<name name-style="western">
<surname>Erra</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Esposito</surname>
<given-names>V.</given-names>
</name>
<name name-style="western">
<surname>Randazzo</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Mayol</surname>
<given-names>L.</given-names>
</name>
<name name-style="western">
<surname>Nasti</surname>
<given-names>L.</given-names>
</name>
<name name-style="western">
<surname>Barone</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Giancola</surname>
<given-names>C.</given-names>
</name>
<year>2004</year>
<article-title>Stability and structure of telomeric DNA sequences forming quadruplexes containing four G-tetrads with different topological arrangements</article-title>
<source>Biochemistry</source>
<volume>43</volume>
<fpage>4877</fpage>
<lpage>4884</lpage>
</element-citation>
</ref>
</ref-list>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Synthesis, Biophysical Characterization, and Anti-HIV Activity of Glyco-Conjugated G-Quadruplex-Forming Oligonucleotides</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Synthesis, Biophysical Characterization, and Anti-HIV Activity of Glyco-Conjugated G-Quadruplex-Forming Oligonucleotides</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Glyco-Conjugated G-Quadruplex-Forming Oligonucleotides.</title>
</titleInfo>
<name type="personal">
<namePart type="family">D’ONOFRIO</namePart>
<namePart type="given">Jennifer</namePart>
<affiliation>Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroederstraat, B-3000 Leuven, Belgium</affiliation>
<affiliation>Dipartimento di Chimica Organica e Biochimica, Università degli Studi di Napoli “Federico II”.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">PETRACCONE</namePart>
<namePart type="given">Luigi</namePart>
<affiliation>Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroederstraat, B-3000 Leuven, Belgium</affiliation>
<affiliation>Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">MARTINO</namePart>
<namePart type="given">Luigi</namePart>
<affiliation>Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroederstraat, B-3000 Leuven, Belgium</affiliation>
<affiliation>Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">FABIO</namePart>
<namePart type="given">Giovanni Di</namePart>
<affiliation>Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroederstraat, B-3000 Leuven, Belgium</affiliation>
<affiliation>Dipartimento di Chimica Organica e Biochimica, Università degli Studi di Napoli “Federico II”.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">IADONISI</namePart>
<namePart type="given">Alfonso</namePart>
<affiliation>Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroederstraat, B-3000 Leuven, Belgium</affiliation>
<affiliation>Dipartimento di Chimica Organica e Biochimica, Università degli Studi di Napoli “Federico II”.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">BALZARINI</namePart>
<namePart type="given">Jan</namePart>
<affiliation>Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroederstraat, B-3000 Leuven, Belgium</affiliation>
<affiliation>Katholieke Universiteit Leuven.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal" displayLabel="corresp">
<namePart type="family">GIANCOLA</namePart>
<namePart type="given">Concetta</namePart>
<affiliation>Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroederstraat, B-3000 Leuven, Belgium</affiliation>
<affiliation>Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”.</affiliation>
<affiliation>E-mail: daniela.montesarchio@unina.it</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal" displayLabel="corresp">
<namePart type="family">MONTESARCHIO</namePart>
<namePart type="given">Daniela</namePart>
<affiliation>Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica “Paolo Corradini”, Università degli Studi di Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, 10 Minderbroederstraat, B-3000 Leuven, Belgium</affiliation>
<affiliation>Dipartimento di Chimica Organica e Biochimica, Università degli Studi di Napoli “Federico II”.</affiliation>
<affiliation>E-mail: daniela.montesarchio@unina.it</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>American Chemical Society</publisher>
<dateCreated encoding="w3cdtf">2008-02-07</dateCreated>
<dateIssued encoding="w3cdtf">2008-03-19</dateIssued>
<copyrightDate encoding="w3cdtf">2008</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract>Novel hybrid oligonucleotides carrying the G-quadruplex-forming d(5′TGGGAG3′) sequence, conjugated with mono- or disaccharides at the 3′ or 5′-end through phosphodiester bonds, have been synthesized as potential anti-HIV agents, via a fully automated, online phosphoramidite-based solid-phase strategy. CD-monitored thermal denaturation studies on the resulting quadruplexes indicated the insertion of a single monosaccharide at the 3′-end as the optimal modification, conferring improved stability to the quadruplex complex. In addition, the 3′-conjugation with glucose or mannose converted the anti-HIV inactive unmodified oligomer into active compounds. On the contrary, the 5′-tethering with these monosaccharides, as well as the conjugation, either at the 5′ or 3′-end, with sucrose, were in all cases detrimental to quadruplex stability and did not improve the biological activity. On the basis of the assumption that the kinetically and thermodynamically favored formation of the quadruplex complex is a prerequisite for efficient antiviral activity, a novel bis-conjugated oligonucleotide was designed. This combined a mannose residue at the 3′-phosphate end with bulky aromatic tert-butyldiphenylsilyl (TBDPS) group at the 5′-end, previously shown to markedly favor the formation of quadruplex complexes. The 5′,3′-bis-conjugated 6-mer, for which a detailed biophysical characterization has been carried out, resulted in 3-fold greater antiviral activity against HIV-1 than the sole 3′-glyco-conjugated oligonucleotide.</abstract>
<note type="si" ID="si1">General experimental methods; CD melting profiles for ODNs II−VII; Arrhenius plots for the association and for the dissociation of the 5′,3′-bis-conjugated quadruplex formed by ODN IX. This material is available free of charge via the Internet at http://pubs.acs.org.</note>
<relatedItem type="host">
<titleInfo>
<title>Bioconjugate Chemistry</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Bioconjugate Chem.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">1043-1802</identifier>
<identifier type="eISSN">1520-4812</identifier>
<identifier type="acspubs">bc</identifier>
<identifier type="coden">BCCHES</identifier>
<part>
<date>2008</date>
<detail type="volume">
<caption>vol.</caption>
<number>19</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>607</start>
<end>616</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="cit1" displayLabel="bib1">
<titleInfo>
<title>Biological roles of oligosaccharides: all of the theories are correct</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Biological roles of oligosaccharides: all of the theories are correct</title>
</titleInfo>
<name type="personal">
<namePart type="family">VARKI</namePart>
<namePart type="given">A.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Glycobiology</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>97</start>
<end>130</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="cit2" displayLabel="bib2">
<titleInfo>
<title>Emerging themes in medicinal glycoscience</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Emerging themes in medicinal glycoscience</title>
</titleInfo>
<name type="personal">
<namePart type="family">KOELLER</namePart>
<namePart type="given">K. M.</namePart>
</name>
<name type="personal">
<namePart type="family">WONG</namePart>
<namePart type="given">C. H.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Nat. Biotechnol.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>18</number>
</detail>
<extent unit="pages">
<start>835</start>
<end>841</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="cit3" displayLabel="bib3">
<name type="personal">
<namePart type="family">VARKI</namePart>
<namePart type="given">A.</namePart>
<role>
<roleTerm>author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">CUMMING</namePart>
<namePart type="given">R.</namePart>
<role>
<roleTerm>author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">ESKO</namePart>
<namePart type="given">J.</namePart>
<role>
<roleTerm>author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">FREEZE</namePart>
<namePart type="given">H.</namePart>
<role>
<roleTerm>author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">HART</namePart>
<namePart type="given">G.</namePart>
<role>
<roleTerm>author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">MARTH</namePart>
<namePart type="given">J.</namePart>
<role>
<roleTerm>author</roleTerm>
</role>
</name>
<titleInfo>
<title>Essentials of Glycobiology</title>
</titleInfo>
<genre type="book">book</genre>
<note type="content-in-line">VarkiA., CummingR., EskoJ., FreezeH., HartG., and MarthJ., Eds. (1999) Essentials of Glycobiology, pp 1–331, Chapters 1–21, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.</note>
<originInfo>
<publisher>Cold Spring Harbor Laboratory Press</publisher>
<place>
<placeTerm>NY, USA.</placeTerm>
</place>
</originInfo>
<part>
<date>1999</date>
</part>
</relatedItem>
<relatedItem type="references" ID="cit4" displayLabel="bib4">
<titleInfo>
<title>Carbohydrate-protein interactions: basis of glycobiology</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Carbohydrate-protein interactions: basis of glycobiology</title>
</titleInfo>
<name type="personal">
<namePart type="family">LEE</namePart>
<namePart type="given">Y. C.</namePart>
</name>
<name type="personal">
<namePart type="family">LEE</namePart>
<namePart type="given">R. T.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Acc. Chem. Res.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>28</number>
</detail>
<extent unit="pages">
<start>321</start>
<end>327</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="cit5" displayLabel="bib5">
<titleInfo>
<title>Protein-carbohydrate interactions: fundamental considerations</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Protein-carbohydrate interactions: fundamental considerations</title>
</titleInfo>
<name type="personal">
<namePart type="family">BURKHALTER</namePart>
<namePart type="given">N. F.</namePart>
<role>
<roleTerm>author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">DIMICK</namePart>
<namePart type="given">S. M.</namePart>
<role>
<roleTerm>author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">TOONE</namePart>
<namePart type="given">E. J.</namePart>
<role>
<roleTerm>author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">ERNST</namePart>
<namePart type="given">B.</namePart>
<role>
<roleTerm>editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">HART</namePart>
<namePart type="given">G. W.</namePart>
<role>
<roleTerm>editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">SINAÿ</namePart>
<namePart type="given">P.</namePart>
<role>
<roleTerm>editor</roleTerm>
</role>
</name>
<relatedItem type="host">
<titleInfo>
<title>Carbohydrates in Chemistry and Biology</title>
</titleInfo>
<genre>book</genre>
<originInfo>
<publisher>Wiley-VCH</publisher>
<place>
<placeTerm>Weinheim, Germany.</placeTerm>
</place>
</originInfo>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>2</number>
</detail>
<extent unit="pages">
<start>863</start>
<end>911</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="cit6" displayLabel="bib6">
<titleInfo>
<title>Synthesis and applications of oligonucleotide - carbohydrate conjugates</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Synthesis and applications of oligonucleotide - carbohydrate conjugates</title>
</titleInfo>
<name type="personal">
<namePart type="family">ZATSEPIN</namePart>
<namePart type="given">T. S.</namePart>
</name>
<name type="personal">
<namePart type="family">ORETSKAYA</namePart>
<namePart type="given">T. S.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Chem. Biodiv.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>1</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>10</number>
</detail>
<extent unit="pages">
<start>1401</start>
<end>1417</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="cit7" displayLabel="bib7">
<titleInfo>
<title>Solid phase glycosidation of oligonucleotides</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Solid phase glycosidation of oligonucleotides</title>
</titleInfo>
<name type="personal">
<namePart type="family">ADINOLFI</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">BARONE</namePart>
<namePart type="given">G.</namePart>
</name>
<name type="personal">
<namePart type="family">DE NAPOLI</namePart>
<namePart type="given">L.</namePart>
</name>
<name type="personal">
<namePart type="family">GUARINIELLO</namePart>
<namePart type="given">L.</namePart>
</name>
<name type="personal">
<namePart type="family">IADONISI</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">PICCIALLI</namePart>
<namePart type="given">G.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Tetrahedron Lett.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>40</number>
</detail>
<extent unit="pages">
<start>2607</start>
<end>2610</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="cit8" displayLabel="bib8">
<titleInfo>
<title>Solid-phase synthesis of glyco-oligonucleotide conjugates</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Solid-phase synthesis of glyco-oligonucleotide conjugates</title>
</titleInfo>
<name type="personal">
<namePart type="family">ADINOLFI</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">DE NAPOLI</namePart>
<namePart type="given">L.</namePart>
</name>
<name type="personal">
<namePart type="family">DI FABIO</namePart>
<namePart type="given">G.</namePart>
</name>
<name type="personal">
<namePart type="family">GUARINIELLO</namePart>
<namePart type="given">L.</namePart>
</name>
<name type="personal">
<namePart type="family">IADONISI</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">MESSERE</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">MONTESARCHIO</namePart>
<namePart type="given">D.</namePart>
</name>
<name type="personal">
<namePart type="family">PICCIALLI</namePart>
<namePart type="given">G.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Synlett</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>6</number>
</detail>
<extent unit="pages">
<start>745</start>
<end>748</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="cit9" displayLabel="bib9">
<titleInfo>
<title>Facile preparation of DNA-tagged carbohydrates</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Facile preparation of DNA-tagged carbohydrates</title>
</titleInfo>
<name type="personal">
<namePart type="family">SANDO</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">MATSUI</namePart>
<namePart type="given">K.</namePart>
</name>
<name type="personal">
<namePart type="family">NIINOMI</namePart>
<namePart type="given">Y.</namePart>
</name>
<name type="personal">
<namePart type="family">SATO</namePart>
<namePart type="given">N.</namePart>
</name>
<name type="personal">
<namePart type="family">AOYAMA</namePart>
<namePart type="given">Y.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Bio. Med. Chem. Lett.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>13</number>
</detail>
<extent unit="pages">
<start>2633</start>
<end>2636</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="cit10" displayLabel="bib10">
<titleInfo>
<title>Construction of glyco-clusters by self-organization of site-specifically glycosylated oligonucleotides and their cooperative amplification of lectin-recognition</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Construction of glyco-clusters by self-organization of site-specifically glycosylated oligonucleotides and their cooperative amplification of lectin-recognition</title>
</titleInfo>
<name type="personal">
<namePart type="family">MATSUURA</namePart>
<namePart type="given">K.</namePart>
</name>
<name type="personal">
<namePart type="family">HIBINO</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">YAMADA</namePart>
<namePart type="given">Y.</namePart>
</name>
<name type="personal">
<namePart type="family">KOBAYASHI</namePart>
<namePart type="given">K.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Am. Chem. Soc.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>123</number>
</detail>
<extent unit="pages">
<start>357</start>
<end>358</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="cit11" displayLabel="bib11">
<titleInfo>
<title>Self-organized glycoclusters along DNA: effect of the spatial arrangement of galactoside residues on cooperative lectin recognition</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Self-organized glycoclusters along DNA: effect of the spatial arrangement of galactoside residues on cooperative lectin recognition</title>
</titleInfo>
<name type="personal">
<namePart type="family">MATSUURA</namePart>
<namePart type="given">K.</namePart>
</name>
<name type="personal">
<namePart type="family">HIBINO</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">IKEDA</namePart>
<namePart type="given">T.</namePart>
</name>
<name type="personal">
<namePart type="family">YAMADA</namePart>
<namePart type="given">Y.</namePart>
</name>
<name type="personal">
<namePart type="family">KOBAYASHI</namePart>
<namePart type="given">K.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Chem. Eur. J.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>10</number>
</detail>
<extent unit="pages">
<start>352</start>
<end>359</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="cit12" displayLabel="bib12">
<titleInfo>
<title>Synthesis of mono- and dimannoside phosphoramidite derivatives for solid-phase conjugation to oligonucleotides</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Synthesis of mono- and dimannoside phosphoramidite derivatives for solid-phase conjugation to oligonucleotides</title>
</titleInfo>
<name type="personal">
<namePart type="family">AKHTAR</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">ROUTLEDGE</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">PATEL</namePart>
<namePart type="given">R.</namePart>
</name>
<name type="personal">
<namePart type="family">GARDINER</namePart>
<namePart type="given">J. M.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Tetrahedron Lett.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>36</number>
</detail>
<extent unit="pages">
<start>7333</start>
<end>7336</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="cit13" displayLabel="bib13">
<titleInfo>
<title>Nucleoglycoconjugates: design and synthesis of a new class of DNA - carbohydrate conjugates</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Nucleoglycoconjugates: design and synthesis of a new class of DNA - carbohydrate conjugates</title>
</titleInfo>
<name type="personal">
<namePart type="family">SHEPPARD</namePart>
<namePart type="given">T. L.</namePart>
</name>
<name type="personal">
<namePart type="family">WONG</namePart>
<namePart type="given">C.-H.</namePart>
</name>
<name type="personal">
<namePart type="family">JOYCE</namePart>
<namePart type="given">G. F.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Angew. Chem., Int. Ed. Engl.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>39</number>
</detail>
<extent unit="pages">
<start>3660</start>
<end>3663</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="cit14" displayLabel="bib14">
<titleInfo>
<title>Chemoenzymatic synthesis and antibody detection of DNA glycoconjugates</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Chemoenzymatic synthesis and antibody detection of DNA glycoconjugates</title>
</titleInfo>
<name type="personal">
<namePart type="family">WANG</namePart>
<namePart type="given">Y.</namePart>
</name>
<name type="personal">
<namePart type="family">SHEPPARD</namePart>
<namePart type="given">T. L.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Bioconjugate Chem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>14</number>
</detail>
<extent unit="pages">
<start>1314</start>
<end>1322</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="cit15" displayLabel="bib15">
<titleInfo>
<title>Solid phase synthesis of oligonucleotides tethered to oligo-glucose phosphate tails</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Solid phase synthesis of oligonucleotides tethered to oligo-glucose phosphate tails</title>
</titleInfo>
<name type="personal">
<namePart type="family">ADINOLFI</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">DE NAPOLI</namePart>
<namePart type="given">L.</namePart>
</name>
<name type="personal">
<namePart type="family">DI FABIO</namePart>
<namePart type="given">G.</namePart>
</name>
<name type="personal">
<namePart type="family">IADONISI</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">MONTESARCHIO</namePart>
<namePart type="given">D.</namePart>
</name>
<name type="personal">
<namePart type="family">PICCIALLI</namePart>
<namePart type="given">G.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Tetrahedron</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>58</number>
</detail>
<extent unit="pages">
<start>6697</start>
<end>6704</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="cit16" displayLabel="bib16">
<titleInfo>
<title>Modulating the activity of oligonucleotides by carbohydrate conjugation: solid phase synthesis of sucrose-oligonucleotide hybrids</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Modulating the activity of oligonucleotides by carbohydrate conjugation: solid phase synthesis of sucrose-oligonucleotide hybrids</title>
</titleInfo>
<name type="personal">
<namePart type="family">ADINOLFI</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">DE NAPOLI</namePart>
<namePart type="given">L.</namePart>
</name>
<name type="personal">
<namePart type="family">DI FABIO</namePart>
<namePart type="given">G.</namePart>
</name>
<name type="personal">
<namePart type="family">IADONISI</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">MONTESARCHIO</namePart>
<namePart type="given">D.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Org. Biol. Mol.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>2</number>
</detail>
<extent unit="pages">
<start>1879</start>
<end>1886</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="cit17" displayLabel="bib17">
<name type="personal">
<namePart type="family">KOIZUMI</namePart>
<namePart type="given">M.</namePart>
<role>
<roleTerm>author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">KANEKO</namePart>
<namePart type="given">M.</namePart>
<role>
<roleTerm>author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">OHMINE</namePart>
<namePart type="given">T.</namePart>
<role>
<roleTerm>author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">FURUKAWA</namePart>
<namePart type="given">H.</namePart>
<role>
<roleTerm>author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">NISHIGAKI</namePart>
<namePart type="given">T.</namePart>
<role>
<roleTerm>author</roleTerm>
</role>
</name>
<titleInfo>
<title>KoizumiM., KanekoM., OhmineT., FurukawaH., and NishigakiT. 1999. Patent no. JP98/04625; PCT/WO99/19474.</title>
</titleInfo>
<genre type="patent">patent</genre>
<note type="content-in-line">KoizumiM., KanekoM., OhmineT., FurukawaH., and NishigakiT. 1999. Patent no. JP98/04625; PCT/WO99/19474.</note>
<part>
<date>1999</date>
</part>
</relatedItem>
<relatedItem type="references" ID="cit18" displayLabel="bib18">
<titleInfo>
<title>Biologically active oligodeoxyribonucleotides. 5. 5′-End-substituted d(TGGGAG) possesses anti-human immunodeficiency virus type 1 activity by forming a G-quadruplex structure</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Biologically active oligodeoxyribonucleotides. 5. 5′-End-substituted d(TGGGAG) possesses anti-human immunodeficiency virus type 1 activity by forming a G-quadruplex structure</title>
</titleInfo>
<name type="personal">
<namePart type="family">HOTODA</namePart>
<namePart type="given">H.,</namePart>
</name>
<name type="personal">
<namePart type="family">KOIZUMI</namePart>
<namePart type="given">M.,</namePart>
</name>
<name type="personal">
<namePart type="family">KOGA</namePart>
<namePart type="given">R.,</namePart>
</name>
<name type="personal">
<namePart type="family">KANEKO</namePart>
<namePart type="given">M.,</namePart>
</name>
<name type="personal">
<namePart type="family">MOMOTA</namePart>
<namePart type="given">K.,</namePart>
</name>
<name type="personal">
<namePart type="family">OHMINE</namePart>
<namePart type="given">T.,</namePart>
</name>
<name type="personal">
<namePart type="family">FURUKAWA</namePart>
<namePart type="given">H.</namePart>
</name>
<name type="personal">
<namePart type="family">AGATSUMA</namePart>
<namePart type="given">T.</namePart>
</name>
<name type="personal">
<namePart type="family">NISHIGAKI</namePart>
<namePart type="given">T.</namePart>
</name>
<name type="personal">
<namePart type="family">SONE</namePart>
<namePart type="given">J.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Med. Chem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>41</number>
</detail>
<extent unit="pages">
<start>3655</start>
<end>3663</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="cit19" displayLabel="bib19">
<titleInfo>
<title>5′-Modified G-quadruplex forming oligonucleotides endowed with anti-HIV activity: synthesis and biophysical properties</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>5′-Modified G-quadruplex forming oligonucleotides endowed with anti-HIV activity: synthesis and biophysical properties</title>
</titleInfo>
<name type="personal">
<namePart type="family">D’ONOFRIO</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">PETRACCONE</namePart>
<namePart type="given">L.</namePart>
</name>
<name type="personal">
<namePart type="family">ERRA</namePart>
<namePart type="given">E.</namePart>
</name>
<name type="personal">
<namePart type="family">MARTINO</namePart>
<namePart type="given">L.</namePart>
</name>
<name type="personal">
<namePart type="family">DI FABIO</namePart>
<namePart type="given">G.</namePart>
</name>
<name type="personal">
<namePart type="family">DE NAPOLI</namePart>
<namePart type="given">L.</namePart>
</name>
<name type="personal">
<namePart type="family">GIANCOLA</namePart>
<namePart type="given">C.</namePart>
</name>
<name type="personal">
<namePart type="family">MONTESARCHIO</namePart>
<namePart type="given">D.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Bioconjugate Chem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2007</date>
<detail type="volume">
<caption>vol.</caption>
<number>18</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>4</number>
</detail>
<extent unit="pages">
<start>1194</start>
<end>1204</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="cit20" displayLabel="bib20">
<titleInfo>
<title>Oligonucleotide interactions. 3. Circular dichroism studies of the conformation of deoxyoligonucleotides</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Oligonucleotide interactions. 3. Circular dichroism studies of the conformation of deoxyoligonucleotides</title>
</titleInfo>
<name type="personal">
<namePart type="family">CANTOR</namePart>
<namePart type="given">C. R.</namePart>
</name>
<name type="personal">
<namePart type="family">WARSHAW</namePart>
<namePart type="given">M. M.</namePart>
</name>
<name type="personal">
<namePart type="family">SHAPIRO</namePart>
<namePart type="given">H.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Biopolymers</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1970</date>
<detail type="volume">
<caption>vol.</caption>
<number>9</number>
</detail>
<extent unit="pages">
<start>1059</start>
<end>1077</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="cit21" displayLabel="bib21">
<titleInfo>
<title>Thermodynamics and kinetics of PNA-DNA quadruplex-forming chimeras</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Thermodynamics and kinetics of PNA-DNA quadruplex-forming chimeras</title>
</titleInfo>
<name type="personal">
<namePart type="family">PETRACCONE</namePart>
<namePart type="given">L.</namePart>
</name>
<name type="personal">
<namePart type="family">PAGANO</namePart>
<namePart type="given">B.</namePart>
</name>
<name type="personal">
<namePart type="family">ESPOSITO</namePart>
<namePart type="given">V.</namePart>
</name>
<name type="personal">
<namePart type="family">RANDAZZO</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">PICCIALLI</namePart>
<namePart type="given">G.</namePart>
</name>
<name type="personal">
<namePart type="family">BARONE</namePart>
<namePart type="given">G.</namePart>
</name>
<name type="personal">
<namePart type="family">MATTIA</namePart>
<namePart type="given">C. A.</namePart>
</name>
<name type="personal">
<namePart type="family">GIANCOLA</namePart>
<namePart type="given">C.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Am. Chem. Soc.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>127</number>
</detail>
<extent unit="pages">
<start>16215</start>
<end>16223</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="cit22" displayLabel="bib22">
<titleInfo>
<title>Oligonucleotides as antivirals: dream or realistic perspective?</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Oligonucleotides as antivirals: dream or realistic perspective?</title>
</titleInfo>
<name type="personal">
<namePart type="family">VAN AERSCHOT</namePart>
<namePart type="given">A.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Antiviral Res.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>71</number>
</detail>
<extent unit="pages">
<start>307</start>
<end>316</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="cit23" displayLabel="bib23">
<titleInfo>
<title>Anti-human immunodeficiency virus type 1 activity of R-95288, a phosphodiester hexadeoxyribonucleotide modified by dibenzyloxybenzyl and hydroxyethyl residues at the 5′ and 3′-ends</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Anti-human immunodeficiency virus type 1 activity of R-95288, a phosphodiester hexadeoxyribonucleotide modified by dibenzyloxybenzyl and hydroxyethyl residues at the 5′ and 3′-ends</title>
</titleInfo>
<name type="personal">
<namePart type="family">AGATSUMA</namePart>
<namePart type="given">T.</namePart>
</name>
<name type="personal">
<namePart type="family">FURUKAWA</namePart>
<namePart type="given">H.</namePart>
</name>
<name type="personal">
<namePart type="family">HOTODA</namePart>
<namePart type="given">H.</namePart>
</name>
<name type="personal">
<namePart type="family">KOIZUMI</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">KOGA</namePart>
<namePart type="given">R.</namePart>
</name>
<name type="personal">
<namePart type="family">KANEKO</namePart>
<namePart type="given">M.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Antivir. Chem. Chemother.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1997</date>
<detail type="volume">
<caption>vol.</caption>
<number>8</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>429</start>
<end>438</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="cit24" displayLabel="bib24">
<titleInfo>
<title>Mode of interaction of G-quartets with the integrase of human immunodeficiency virus type 1</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Mode of interaction of G-quartets with the integrase of human immunodeficiency virus type 1</title>
</titleInfo>
<name type="personal">
<namePart type="family">CHEREPANOV</namePart>
<namePart type="given">P.</namePart>
</name>
<name type="personal">
<namePart type="family">ESTE</namePart>
<namePart type="given">J. A.</namePart>
</name>
<name type="personal">
<namePart type="family">RANDO</namePart>
<namePart type="given">R. F.</namePart>
</name>
<name type="personal">
<namePart type="family">OJWANG</namePart>
<namePart type="given">J. O.</namePart>
</name>
<name type="personal">
<namePart type="family">REEKMANS</namePart>
<namePart type="given">G.</namePart>
</name>
<name type="personal">
<namePart type="family">STEINFELD</namePart>
<namePart type="given">R.</namePart>
</name>
<name type="personal">
<namePart type="family">DAVID</namePart>
<namePart type="given">G.</namePart>
</name>
<name type="personal">
<namePart type="family">DE CLERCQ</namePart>
<namePart type="given">E.</namePart>
</name>
<name type="personal">
<namePart type="family">DEBYSER</namePart>
<namePart type="given">Z.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Mol. Pharmacol.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1997</date>
<detail type="volume">
<caption>vol.</caption>
<number>52</number>
</detail>
<extent unit="pages">
<start>771</start>
<end>780</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="cit25" displayLabel="bib25">
<titleInfo>
<title>Inhibition of human immunodeficiency virus type 1 activity in vitro by a new self-stabilized oligonucleotide with guanosine-thymidine quadruplex motifs</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Inhibition of human immunodeficiency virus type 1 activity in vitro by a new self-stabilized oligonucleotide with guanosine-thymidine quadruplex motifs</title>
</titleInfo>
<name type="personal">
<namePart type="family">SUZUKI</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">MIYANO-KUROSAKI</namePart>
<namePart type="given">N.</namePart>
</name>
<name type="personal">
<namePart type="family">KUWASAKI</namePart>
<namePart type="given">T.</namePart>
</name>
<name type="personal">
<namePart type="family">TAKEUCHI</namePart>
<namePart type="given">H.</namePart>
</name>
<name type="personal">
<namePart type="family">KAWAI</namePart>
<namePart type="given">G.</namePart>
</name>
<name type="personal">
<namePart type="family">TAKAKU</namePart>
<namePart type="given">H.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Virol.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>76</number>
</detail>
<extent unit="pages">
<start>3015</start>
<end>3022</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="cit26" displayLabel="bib26">
<titleInfo>
<title>Modern machine-aided methods of oligodeoxyribonucleotide synthesis</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Modern machine-aided methods of oligodeoxyribonucleotide synthesis</title>
</titleInfo>
<name type="personal">
<namePart type="family">BROWN</namePart>
<namePart type="given">T.</namePart>
<role>
<roleTerm>author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">BROWN</namePart>
<namePart type="given">D. J. S.</namePart>
<role>
<roleTerm>author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">ECKSTEIN</namePart>
<namePart type="given">F.</namePart>
<role>
<roleTerm>editor</roleTerm>
</role>
</name>
<relatedItem type="host">
<titleInfo>
<title>Oligonucleotides and analogues: a practical approach</title>
</titleInfo>
<genre>book</genre>
<originInfo>
<publisher>IRL Press</publisher>
<place>
<placeTerm>Oxford, UK.</placeTerm>
</place>
</originInfo>
<part>
<date>1991</date>
<extent unit="pages">
<start>1</start>
<end>23</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="cit27" displayLabel="bib27">
<titleInfo>
<title>Stability and structure of telomeric DNA sequences forming quadruplexes containing four G-tetrads with different topological arrangements</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Stability and structure of telomeric DNA sequences forming quadruplexes containing four G-tetrads with different topological arrangements</title>
</titleInfo>
<name type="personal">
<namePart type="family">PETRACCONE</namePart>
<namePart type="given">L.</namePart>
</name>
<name type="personal">
<namePart type="family">ERRA</namePart>
<namePart type="given">E.</namePart>
</name>
<name type="personal">
<namePart type="family">ESPOSITO</namePart>
<namePart type="given">V.</namePart>
</name>
<name type="personal">
<namePart type="family">RANDAZZO</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">MAYOL</namePart>
<namePart type="given">L.</namePart>
</name>
<name type="personal">
<namePart type="family">NASTI</namePart>
<namePart type="given">L.</namePart>
</name>
<name type="personal">
<namePart type="family">BARONE</namePart>
<namePart type="given">G.</namePart>
</name>
<name type="personal">
<namePart type="family">GIANCOLA</namePart>
<namePart type="given">C.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>43</number>
</detail>
<extent unit="pages">
<start>4877</start>
<end>4884</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<identifier type="istex">AF50A7F65416CAC5493803F32EB82BD90783A4D2</identifier>
<identifier type="ark">ark:/67375/TPS-LWH5T68N-7</identifier>
<identifier type="DOI">10.1021/bc7003395</identifier>
<accessCondition type="use and reproduction" contentType="restricted">Copyright © 2008 American Chemical Society</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-X5HBJWF8-J">acs</recordContentSource>
<recordOrigin>Converted from (version 1.2.10) to MODS version 3.6.</recordOrigin>
<recordCreationDate encoding="w3cdtf">2020-04-10</recordCreationDate>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-LWH5T68N-7/record.json</uri>
</json:item>
</metadata>
<annexes>
<json:item>
<extension>tiff</extension>
<original>true</original>
<mimetype>image/tiff</mimetype>
<uri>https://api.istex.fr/document/AF50A7F65416CAC5493803F32EB82BD90783A4D2/annexes/tiff</uri>
</json:item>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-LWH5T68N-7/annexes.pdf</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B22 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000B22 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:AF50A7F65416CAC5493803F32EB82BD90783A4D2
   |texte=   Synthesis, Biophysical Characterization, and Anti-HIV Activity of Glyco-Conjugated G-Quadruplex-Forming Oligonucleotides
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021