Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

RNA Dependent DNA Replication Fidelity of HIV-1 Reverse Transcriptase:  Evidence of Discrimination between DNA and RNA Substrates†

Identifieur interne : 000B19 ( Istex/Corpus ); précédent : 000B18; suivant : 000B20

RNA Dependent DNA Replication Fidelity of HIV-1 Reverse Transcriptase:  Evidence of Discrimination between DNA and RNA Substrates†

Auteurs : Stephen G. Kerr ; Karen S. Anderson

Source :

RBID : ISTEX:CABC69F131E4A9F0B6211788915355DF3130DEC7

Abstract

The RNA dependent DNA replication fidelity of HIV-1 reverse transcriptase has been investigated using pre-steady-state kinetics under single turnover conditions. In contrast to previous estimates of low replication fidelity of HIV-1 reverse transcriptase, the present study finds the enzyme to be more highly discriminating when an RNA/DNA template−primer is employed as compared with the corresponding DNA/DNA template−primer. The basis of this selectivity is due to extremely slow polymerization kinetics for incorporation of an incorrect deoxynucleotide. The maximum rates for misincorporation (kpol) of dGTP, dCTP, and dTTP opposite a template uridine were 0.2, 0.03, and 0.003 s-1, respectively. The equilibrium dissociation constants (Kd) for the incorrect nucleotide opposite a template uridine were 1.0, 1.1, and 0.7 mM for dGTP, dCTP, and dTTP, respectively. These kinetic values provide fidelity estimates of 26 000 for discrimination against dGTP, 176 000 for dCTP, and 1 × 106 for dTTP misincorporation at this position. Similar observations were obtained when incorrect nucleotide misincorporation was examined opposite a template adenine. Thus in a direct comparison of RNA/DNA and DNA/DNA template−primer substrates, HIV-1 RT exhibits approximately a 10−60-fold increase in fidelity. This study augments our current understanding of the similarities and differences of catalytic activity of HIV-1 reverse transcriptase using RNA and DNA substrates. Moreover, these studies lend further support for a model for nucleotide incorporation by HIV-1 reverse transcriptase involving a two-step binding mechanism governed by a rate-limiting conformational change for correct incorporation.

Url:
DOI: 10.1021/bi971385+

Links to Exploration step

ISTEX:CABC69F131E4A9F0B6211788915355DF3130DEC7

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>RNA Dependent DNA Replication Fidelity of HIV-1 Reverse Transcriptase:  Evidence of Discrimination between DNA and RNA Substrates†</title>
<author>
<name sortKey="Kerr, Stephen G" sort="Kerr, Stephen G" uniqKey="Kerr S" first="Stephen G." last="Kerr">Stephen G. Kerr</name>
<affiliation>
<mods:affiliation>Department of Pharmacology, 333 Cedar Street, Yale University School of Medicine, New Haven, Connecticut 06520-8066</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Present address:  Massachusetts College ofPharmacy & AlliedHealth Sciences, 179 Longwood Ave., Boston, MA 02115.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Anderson, Karen S" sort="Anderson, Karen S" uniqKey="Anderson K" first="Karen S." last="Anderson">Karen S. Anderson</name>
<affiliation>
<mods:affiliation>Department of Pharmacology, 333 Cedar Street, Yale University School of Medicine, New Haven, Connecticut 06520-8066</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Author to whom correspondence should be addressed.Telephone:(203)-785-4526. Fax: (203)-785-7670. email:karen.anderson@yale.edu.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:CABC69F131E4A9F0B6211788915355DF3130DEC7</idno>
<date when="1997" year="1997">1997</date>
<idno type="doi">10.1021/bi971385+</idno>
<idno type="url">https://api.istex.fr/ark:/67375/TPS-67D2GZM8-Q/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000B19</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000B19</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">RNA Dependent DNA Replication Fidelity of HIV-1 Reverse Transcriptase:  Evidence of Discrimination between DNA and RNA Substrates
<ref type="bib" target="#bi9713851AF2">
<hi rend="superscript"></hi>
</ref>
</title>
<author>
<name sortKey="Kerr, Stephen G" sort="Kerr, Stephen G" uniqKey="Kerr S" first="Stephen G." last="Kerr">Stephen G. Kerr</name>
<affiliation>
<mods:affiliation>Department of Pharmacology, 333 Cedar Street, Yale University School of Medicine, New Haven, Connecticut 06520-8066</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Present address:  Massachusetts College ofPharmacy & AlliedHealth Sciences, 179 Longwood Ave., Boston, MA 02115.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Anderson, Karen S" sort="Anderson, Karen S" uniqKey="Anderson K" first="Karen S." last="Anderson">Karen S. Anderson</name>
<affiliation>
<mods:affiliation>Department of Pharmacology, 333 Cedar Street, Yale University School of Medicine, New Haven, Connecticut 06520-8066</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Author to whom correspondence should be addressed.Telephone:(203)-785-4526. Fax: (203)-785-7670. email:karen.anderson@yale.edu.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Biochemistry</title>
<title level="j" type="abbrev">Biochemistry</title>
<idno type="ISSN">0006-2960</idno>
<idno type="eISSN">1520-4995</idno>
<imprint>
<publisher>American Chemical Society</publisher>
<date type="e-published">1997</date>
<date type="published">1997</date>
<biblScope unit="vol">36</biblScope>
<biblScope unit="issue">46</biblScope>
<biblScope unit="page" from="14056">14056</biblScope>
<biblScope unit="page" to="14063">14063</biblScope>
</imprint>
<idno type="ISSN">0006-2960</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0006-2960</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">The RNA dependent DNA replication fidelity of HIV-1 reverse transcriptase has been investigated using pre-steady-state kinetics under single turnover conditions. In contrast to previous estimates of low replication fidelity of HIV-1 reverse transcriptase, the present study finds the enzyme to be more highly discriminating when an RNA/DNA template−primer is employed as compared with the corresponding DNA/DNA template−primer. The basis of this selectivity is due to extremely slow polymerization kinetics for incorporation of an incorrect deoxynucleotide. The maximum rates for misincorporation (kpol) of dGTP, dCTP, and dTTP opposite a template uridine were 0.2, 0.03, and 0.003 s-1, respectively. The equilibrium dissociation constants (Kd) for the incorrect nucleotide opposite a template uridine were 1.0, 1.1, and 0.7 mM for dGTP, dCTP, and dTTP, respectively. These kinetic values provide fidelity estimates of 26 000 for discrimination against dGTP, 176 000 for dCTP, and 1 × 106 for dTTP misincorporation at this position. Similar observations were obtained when incorrect nucleotide misincorporation was examined opposite a template adenine. Thus in a direct comparison of RNA/DNA and DNA/DNA template−primer substrates, HIV-1 RT exhibits approximately a 10−60-fold increase in fidelity. This study augments our current understanding of the similarities and differences of catalytic activity of HIV-1 reverse transcriptase using RNA and DNA substrates. Moreover, these studies lend further support for a model for nucleotide incorporation by HIV-1 reverse transcriptase involving a two-step binding mechanism governed by a rate-limiting conformational change for correct incorporation.</div>
</front>
</TEI>
<istex>
<corpusName>acs</corpusName>
<keywords>
<teeft>
<json:string>kati</json:string>
<json:string>misincorporation</json:string>
<json:string>dctp</json:string>
<json:string>mismatch</json:string>
<json:string>dntp</json:string>
<json:string>dgtp</json:string>
<json:string>kpol</json:string>
<json:string>biochemistry</json:string>
<json:string>dttp</json:string>
<json:string>biol</json:string>
<json:string>datp</json:string>
<json:string>transcriptase</json:string>
<json:string>replication fidelity</json:string>
<json:string>replication</json:string>
<json:string>polymerase</json:string>
<json:string>chem</json:string>
<json:string>maximum rate</json:string>
<json:string>kinetics</json:string>
<json:string>rnase</json:string>
<json:string>fidelity estimate</json:string>
<json:string>mendelman</json:string>
<json:string>dependent polymerization</json:string>
<json:string>bebenek</json:string>
<json:string>preincubated</json:string>
<json:string>incorporation</json:string>
<json:string>correct incorporation</json:string>
<json:string>catalysis</json:string>
<json:string>heteroduplex</json:string>
<json:string>edta</json:string>
<json:string>single turnover condition</json:string>
<json:string>preincubated solution</json:string>
<json:string>conformational change</json:string>
<json:string>dependent replication fidelity</json:string>
<json:string>active site</json:string>
<json:string>template uridine</json:string>
<json:string>nucleotide</json:string>
<json:string>equilibrium dissociation constant</json:string>
<json:string>incorrect nucleotide incorporation</json:string>
<json:string>time course</json:string>
<json:string>cleavage product</json:string>
<json:string>dependent fidelity</json:string>
<json:string>kinetic parameter</json:string>
<json:string>datum</json:string>
<json:string>loeb</json:string>
<json:string>catalytic activity</json:string>
<json:string>solid line</json:string>
<json:string>high fidelity</json:string>
<json:string>rate constant</json:string>
<json:string>incorrect dntps</json:string>
<json:string>final concentration</json:string>
<json:string>fidelity</json:string>
<json:string>time point</json:string>
<json:string>dependent polymerization rate</json:string>
<json:string>present study</json:string>
<json:string>incorrect dntp</json:string>
<json:string>correct nucleotide incorporation</json:string>
<json:string>nucleotide incorporation</json:string>
<json:string>incorrect incorporation</json:string>
<json:string>dgtp concentration</json:string>
<json:string>higher fidelity</json:string>
<json:string>dissociation constant</json:string>
<json:string>cleavage</json:string>
<json:string>turnover</json:string>
<json:string>template</json:string>
<json:string>conformational</json:string>
<json:string>preston</json:string>
<json:string>incorrect</json:string>
<json:string>polymerization</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>KERR Stephen G.</name>
<affiliations>
<json:string>Department of Pharmacology, 333 Cedar Street, Yale University School of Medicine, New Haven, Connecticut 06520-8066</json:string>
<json:string>Present address:  Massachusetts College ofPharmacy & AlliedHealth Sciences, 179 Longwood Ave., Boston, MA 02115.</json:string>
</affiliations>
</json:item>
<json:item>
<name>ANDERSON Karen S.</name>
<affiliations>
<json:string>Department of Pharmacology, 333 Cedar Street, Yale University School of Medicine, New Haven, Connecticut 06520-8066</json:string>
<json:string>Author to whom correspondence should be addressed.Telephone:(203)-785-4526. Fax: (203)-785-7670. email:karen.anderson@yale.edu.</json:string>
</affiliations>
</json:item>
</author>
<arkIstex>ark:/67375/TPS-67D2GZM8-Q</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>The RNA dependent DNA replication fidelity of HIV-1 reverse transcriptase has been investigated using pre-steady-state kinetics under single turnover conditions. In contrast to previous estimates of low replication fidelity of HIV-1 reverse transcriptase, the present study finds the enzyme to be more highly discriminating when an RNA/DNA template−primer is employed as compared with the corresponding DNA/DNA template−primer. The basis of this selectivity is due to extremely slow polymerization kinetics for incorporation of an incorrect deoxynucleotide. The maximum rates for misincorporation (kpol) of dGTP, dCTP, and dTTP opposite a template uridine were 0.2, 0.03, and 0.003 s-1, respectively. The equilibrium dissociation constants (Kd) for the incorrect nucleotide opposite a template uridine were 1.0, 1.1, and 0.7 mM for dGTP, dCTP, and dTTP, respectively. These kinetic values provide fidelity estimates of 26 000 for discrimination against dGTP, 176 000 for dCTP, and 1 × 106 for dTTP misincorporation at this position. Similar observations were obtained when incorrect nucleotide misincorporation was examined opposite a template adenine. Thus in a direct comparison of RNA/DNA and DNA/DNA template−primer substrates, HIV-1 RT exhibits approximately a 10−60-fold increase in fidelity. This study augments our current understanding of the similarities and differences of catalytic activity of HIV-1 reverse transcriptase using RNA and DNA substrates. Moreover, these studies lend further support for a model for nucleotide incorporation by HIV-1 reverse transcriptase involving a two-step binding mechanism governed by a rate-limiting conformational change for correct incorporation.</abstract>
<qualityIndicators>
<score>9.808</score>
<pdfWordCount>6420</pdfWordCount>
<pdfCharCount>38826</pdfCharCount>
<pdfVersion>1.1</pdfVersion>
<pdfPageCount>8</pdfPageCount>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<pdfWordsPerPage>803</pdfWordsPerPage>
<pdfText>true</pdfText>
<refBibsNative>true</refBibsNative>
<abstractWordCount>234</abstractWordCount>
<abstractCharCount>1696</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>RNA Dependent DNA Replication Fidelity of HIV-1 Reverse Transcriptase:  Evidence of Discrimination between DNA and RNA Substrates†</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Biochemistry</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>0006-2960</json:string>
</issn>
<eissn>
<json:string>1520-4995</json:string>
</eissn>
<volume>36</volume>
<issue>46</issue>
<pages>
<first>14056</first>
<last>14063</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<ark>
<json:string>ark:/67375/TPS-67D2GZM8-Q</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - biochemistry & molecular biology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - biomedical research</json:string>
<json:string>3 - biochemistry & molecular biology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Biochemistry</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>1997</publicationDate>
<copyrightDate>1997</copyrightDate>
<doi>
<json:string>10.1021/bi971385+</json:string>
</doi>
<id>CABC69F131E4A9F0B6211788915355DF3130DEC7</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-67D2GZM8-Q/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-67D2GZM8-Q/bundle.zip</uri>
</json:item>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-67D2GZM8-Q/fulltext.txt</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/TPS-67D2GZM8-Q/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">RNA Dependent DNA Replication Fidelity of HIV-1 Reverse Transcriptase:  Evidence of Discrimination between DNA and RNA Substrates
<ref type="bib" target="#bi9713851AF2">
<hi rend="superscript"></hi>
</ref>
</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>American Chemical Society</publisher>
<availability>
<licence>Copyright © 1997 American Chemical Society</licence>
<p>American Chemical Society</p>
</availability>
<date type="published">1997</date>
<date type="Copyright" when="1997">1997</date>
</publicationStmt>
<notesStmt>
<note type="content-type" source="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="publication-type" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">RNA Dependent DNA Replication Fidelity of HIV-1 Reverse Transcriptase:  Evidence of Discrimination between DNA and RNA Substrates
<ref type="bib" target="#bi9713851AF2">
<hi rend="superscript"></hi>
</ref>
</title>
<author xml:id="author-0000">
<persName>
<surname>Kerr</surname>
<forename type="first">Stephen G.</forename>
</persName>
<affiliation>
<orgName type="department">Department of Pharmacology</orgName>
<address>
<addrLine>333 Cedar Street</addrLine>
<addrLine>Yale University School of Medicine</addrLine>
<addrLine>New Haven</addrLine>
<addrLine>Connecticut 06520-8066</addrLine>
</address>
</affiliation>
<note place="foot" n="bi9713851AF3">
<ref></ref>
<p>  Present address:  Massachusetts College of Pharmacy & Allied Health Sciences, 179 Longwood Ave., Boston, MA 02115.</p>
</note>
</author>
<author xml:id="author-0001" role="corresp">
<persName>
<surname>Anderson</surname>
<forename type="first">Karen S.</forename>
</persName>
<affiliation>
<orgName type="department">Department of Pharmacology</orgName>
<address>
<addrLine>333 Cedar Street</addrLine>
<addrLine>Yale University School of Medicine</addrLine>
<addrLine>New Haven</addrLine>
<addrLine>Connecticut 06520-8066</addrLine>
</address>
</affiliation>
<affiliation role="corresp"> Author to whom correspondence should be addressed. Telephone: (203)-785-4526. Fax: (203)-785-7670. email: karen.anderson@yale. edu.</affiliation>
</author>
<idno type="istex">CABC69F131E4A9F0B6211788915355DF3130DEC7</idno>
<idno type="ark">ark:/67375/TPS-67D2GZM8-Q</idno>
<idno type="DOI">10.1021/bi971385+</idno>
</analytic>
<monogr>
<title level="j" type="main">Biochemistry</title>
<title level="j" type="abbrev">Biochemistry</title>
<idno type="acspubs">bi</idno>
<idno type="coden">bichaw</idno>
<idno type="pISSN">0006-2960</idno>
<idno type="eISSN">1520-4995</idno>
<imprint>
<publisher>American Chemical Society</publisher>
<date type="e-published">1997</date>
<date type="published">1997</date>
<biblScope unit="vol">36</biblScope>
<biblScope unit="issue">46</biblScope>
<biblScope unit="page" from="14056">14056</biblScope>
<biblScope unit="page" to="14063">14063</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<encodingDesc>
<schemaRef type="ODD" url="https://xml-schema.delivery.istex.fr/tei-istex.odd"></schemaRef>
<appInfo>
<application ident="pub2tei" version="1.0.41" when="2020-04-06">
<label>pub2TEI-ISTEX</label>
<desc>A set of style sheets for converting XML documents encoded in various scientific publisher formats into a common TEI format.
<ref target="http://www.tei-c.org/">We use TEI</ref>
</desc>
</application>
</appInfo>
</encodingDesc>
<profileDesc>
<abstract>
<p>The RNA dependent DNA replication fidelity of HIV-1 reverse transcriptase has been investigated using pre-steady-state kinetics under single turnover conditions. In contrast to previous estimates of low replication fidelity of HIV-1 reverse transcriptase, the present study finds the enzyme to be more highly discriminating when an RNA/DNA template−primer is employed as compared with the corresponding DNA/DNA template−primer. The basis of this selectivity is due to extremely slow polymerization kinetics for incorporation of an incorrect deoxynucleotide. The maximum rates for misincorporation (
<hi rend="italic">k</hi>
<hi rend="subscript">pol</hi>
) of dGTP, dCTP, and dTTP opposite a template uridine were 0.2, 0.03, and 0.003 s
<hi rend="superscript">-1</hi>
, respectively. The equilibrium dissociation constants (
<hi rend="italic">K</hi>
<hi rend="subscript">d</hi>
) for the incorrect nucleotide opposite a template uridine were 1.0, 1.1, and 0.7 mM for dGTP, dCTP, and dTTP, respectively. These kinetic values provide fidelity estimates of 26 000 for discrimination against dGTP, 176 000 for dCTP, and 1 × 10
<hi rend="superscript">6</hi>
for dTTP misincorporation at this position. Similar observations were obtained when incorrect nucleotide misincorporation was examined opposite a template adenine. Thus in a direct comparison of RNA/DNA and DNA/DNA template−primer substrates, HIV-1 RT exhibits approximately a 10−60-fold increase in fidelity. This study augments our current understanding of the similarities and differences of catalytic activity of HIV-1 reverse transcriptase using RNA and DNA substrates. Moreover, these studies lend further support for a model for nucleotide incorporation by HIV-1 reverse transcriptase involving a two-step binding mechanism governed by a rate-limiting conformational change for correct incorporation. </p>
</abstract>
<textClass ana="subject">
<keywords scheme="document-type-name">
<term>Article</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
<revisionDesc>
<change when="2020-04-06" who="#istex" xml:id="pub2tei">formatting</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus acs not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:document>
<article article-type="research-article" specific-use="acs2jats-1.1.23" dtd-version="1.1d1">
<front>
<journal-meta>
<journal-id journal-id-type="acspubs">bi</journal-id>
<journal-id journal-id-type="coden">bichaw</journal-id>
<journal-title-group>
<journal-title>Biochemistry</journal-title>
<abbrev-journal-title>Biochemistry</abbrev-journal-title>
</journal-title-group>
<issn pub-type="ppub">0006-2960</issn>
<issn pub-type="epub">1520-4995</issn>
<publisher>
<publisher-name>American Chemical Society</publisher-name>
</publisher>
<self-uri>pubs.acs.org/biochemistry</self-uri>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1021/bi971385+</article-id>
<article-categories>
<subj-group subj-group-type="document-type-name">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>RNA Dependent DNA Replication Fidelity of HIV-1 Reverse Transcriptase:  Evidence of Discrimination between DNA and RNA Substrates
<xref rid="bi9713851AF2">
<sup></sup>
</xref>
</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name name-style="western">
<surname>Kerr</surname>
<given-names>Stephen G.</given-names>
</name>
<xref rid="bi9713851AF3">
<sup></sup>
</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name name-style="western">
<surname>Anderson</surname>
<given-names>Karen S.</given-names>
</name>
<xref rid="bi9713851AF1">*</xref>
</contrib>
<aff>Department of Pharmacology, 333 Cedar Street, Yale University School of Medicine, New Haven, Connecticut 06520-8066 </aff>
</contrib-group>
<author-notes>
<fn id="bi9713851AF3">
<label></label>
<p>  Present address:  Massachusetts College of Pharmacy & Allied Health Sciences, 179 Longwood Ave., Boston, MA 02115.</p>
</fn>
<corresp id="bi9713851AF1">  Author to whom correspondence should be addressed. Telephone: (203)-785-4526. Fax: (203)-785-7670. email: karen.anderson@yale. edu.</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>18</day>
<month>11</month>
<year>1997</year>
</pub-date>
<pub-date pub-type="ppub">
<day>18</day>
<month>11</month>
<year>1997</year>
</pub-date>
<volume>36</volume>
<issue>46</issue>
<fpage>14056</fpage>
<lpage>14063</lpage>
<history>
<date date-type="received">
<day>10</day>
<month>06</month>
<year>1997</year>
</date>
<date date-type="rev-recd">
<day>11</day>
<month>09</month>
<year>1997</year>
</date>
<date date-type="issue-pub">
<day>18</day>
<month>11</month>
<year>1997</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 1997 American Chemical Society</copyright-statement>
<copyright-year>1997</copyright-year>
<copyright-holder>American Chemical Society</copyright-holder>
</permissions>
<abstract>
<p>The RNA dependent DNA replication fidelity of HIV-1 reverse transcriptase has been investigated using pre-steady-state kinetics under single turnover conditions. In contrast to previous estimates of low replication fidelity of HIV-1 reverse transcriptase, the present study finds the enzyme to be more highly discriminating when an RNA/DNA template−primer is employed as compared with the corresponding DNA/DNA template−primer. The basis of this selectivity is due to extremely slow polymerization kinetics for incorporation of an incorrect deoxynucleotide. The maximum rates for misincorporation (
<italic toggle="yes">k</italic>
<sub>pol</sub>
) of dGTP, dCTP, and dTTP opposite a template uridine were 0.2, 0.03, and 0.003 s
<sup>-1</sup>
, respectively. The equilibrium dissociation constants (
<italic toggle="yes">K</italic>
<sub>d</sub>
) for the incorrect nucleotide opposite a template uridine were 1.0, 1.1, and 0.7 mM for dGTP, dCTP, and dTTP, respectively. These kinetic values provide fidelity estimates of 26 000 for discrimination against dGTP, 176 000 for dCTP, and 1 × 10
<sup>6</sup>
for dTTP misincorporation at this position. Similar observations were obtained when incorrect nucleotide misincorporation was examined opposite a template adenine. Thus in a direct comparison of RNA/DNA and DNA/DNA template−primer substrates, HIV-1 RT exhibits approximately a 10−60-fold increase in fidelity. This study augments our current understanding of the similarities and differences of catalytic activity of HIV-1 reverse transcriptase using RNA and DNA substrates. Moreover, these studies lend further support for a model for nucleotide incorporation by HIV-1 reverse transcriptase involving a two-step binding mechanism governed by a rate-limiting conformational change for correct incorporation. </p>
</abstract>
<custom-meta-group>
<custom-meta>
<meta-name>document-id-old-9</meta-name>
<meta-value>bi971385+</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
<notes id="bi9713851AF2">
<label></label>
<p>  This work was supported by NIH Grant GM 49551 to K.S.A.</p>
</notes>
<notes id="bi9713851AF7">
<label></label>
<p>  Abstract published in
<italic toggle="yes">Advance ACS Abstracts,</italic>
November 1, 1997.</p>
</notes>
</front>
<body>
<sec id="d7e134">
<title></title>
<p>HIV-1 reverse transcriptase (RT
<xref rid="atyp_ref1" ref-type="bibr"></xref>
) is a virally encoded enzyme essential for viral replication and the target of clinically useful drugs for treatment of aquired immunodeficiency syndrome (AIDS). An in-depth understanding of the catalytic mechanism of HIV-1 RT may ultimately aid in the development of better therapeutics. </p>
<p>Pre-steady-state kinetic techniques have been previously employed to determine the mechanism for polymerases and to provide estimates of replication fidelity (Kuchta et al., 1987; Kuchta et al., 1988). Such transient kinetic model systems have also been used to provide mechanistic information for HIV-1 RT (Kati et al., 1992; Reardon, 1992; Reardon, 1993; Hsieh et al., 1993). Earlier mechanistic studies on HIV-1 reverse transcriptase (RT) using rapid transient kinetic analysis suggest that catalysis at the active site is similar to other polymerases such as T7 DNA polymerase (Patel et al., 1991; Wong et al., 1991) involves an “induced fit” model for polymerization (Kati et al., 1992, Hsieh et al., 1993). Although the proposal of a two-step binding model involving a rate-limiting conformational change (Kati et al., 1992) has been challenged (Reardon, 1993), more recent transient kinetic studies on HIV-1 RT substantiate the validity of this model (Spence et al., 1995; Rittinger et al., 1995). This model describes the reaction pathway for deoxynucleotide triphosphate (dNTP) incorporation for HIV-1 RT in terms of a two-step binding process (Kati et al., 1992; Hsieh et al., 1993; Spence et al., 1995; Rittinger et al., 1995). The first step in dNTP binding comprises an initial binding complex in which the dNTP is base paired with the requisite base in the template strand. In the second step the enzyme checks for proper base pairing geometry in which only correct base pairs may induce the formation of a tight ternary complex leading to catalysis. The maximal rate of polymerization is governed by a rate-limiting conformational change which precedes the chemical catalytic step and is observed with both DNA/DNA template−primer substrates as well as RNA/DNA template−primer substrates. </p>
<p>This two-step mechanism controls the selectivity for correct versus incorrect dNTP incorporation. Whereas T7 DNA polymerase is considered to exhibit high DNA replication fidelity (Johnson, 1993), HIV-1 RT has been reported to have a low DNA replication fidelity (Preston et al., 1988; Roberts et al., 1988; Weber et al., 1989; Bebenek et al., 1989; Ji and Loeb, 1992, 1994; Perrino et al., 1989; Mendelman et al., 1989; Mendelman et al., 1990; Yu et al., 1992; Preston et al., 1997). The low estimates for DNA fidelity are based upon analysis of mutation frequency using assays involving transfection (Preston et al., 1988; Roberts et al., 1988; Weber et al., 1989; Bebenek et al., 1989; Ji and Loeb, 1992; Perrino et al., 1989) or steady-state kinetic gel shift systems (Preston et al., 1988; Mendelman et al., 1989; Mendelman et al., 1990; Ricchetti and Buc, 1990; Yu et al., 1992). Error-prone polymerization of RT has also been described in terms of errors initiated by template−primer misalignments (Roberts et al., 1988; Bebenek et al., 1989; Bebenek et al., 1993). These studies have provided insight toward our understanding of the biologically important reactions contributing to observed mutation frequencies. However, these studies do not provide a detailed mechanistic picture concerning how HIV-1 RT accommodates both RNA/DNA and DNA/DNA duplexes and controls DNA replication fidelity. </p>
<p>A rapid transient kinetic approach will provide an in-depth mechanistic understanding of factors governing replication fidelity for DNA dependent and RNA dependent polymerization. The DNA dependent replication fidelity of HIV-1 RT has been examined using rapid transient kinetic analysis (Kati et al., 1992; Zinnen et al., 1994). In an effort to further understand the similarities and differences for the catalytic activity of HIV-1 RT in utilizing DNA and RNA substrates, the present study was undertaken to examine the RNA dependent DNA replication fidelity of HIV-1 RT. The biological implications are important since it is likely that the RNA dependent DNA replication fidelity may play an essential role in successful viral survival. </p>
<p>In this report we provide a comparison of replication fidelity using DNA/DNA and RNA/DNA template−primer substrates. The fidelity estimates provided in this study reveal differences in DNA and RNA substrates and lend further support for an induced fit mechanism in which conformational coupling plays an important role in polymerase fidelity (Johnson, 1993). </p>
</sec>
<sec id="d7e150">
<title>Experimental Procedures</title>
<p>
<italic toggle="yes">Overexpression and Purification of Recombinant HIV-1 RT</italic>
. In these experiments, RT was purified from a clone generously provided by Barbara Müller and Roger Goody which expresses both subunits (66 and 51 kDa) of the protein (Müller et al., 1989). The
<italic toggle="yes">Escherichia coli </italic>
cells were grown up in 2× YT broth containing ampicillin (100 mg/L) at 37 °C for 4 h to an optical density of 0.5 unit at 595 nm. The growth was then induced by the addition of IPTG (1 mM), and the cells were allowed to grow for an additional 5−6 h. All purification steps were done in the cold, 0−4 °C. Cells were harvested by centrifugation at 4 °C and resuspended in buffer A (50 mM Tris-Cl, pH 8.0, 2 mM EDTA, 2 mM dithiothreitol, 1 mM phenylmethanesulfonyl fluoride, 10% glycerol) containing 0.5 M NaCl and 0.1% Triton X-100. The cells were lysed using a french pressure cell press (SLM Instruments) at 20 000 psi. The lysed cells were centrifuged at 15 000 rpm. The supernatant was decanted and the pellet extracted once more with the lysis buffer followed by centrifugation. The two supernatants were combined and nucleic acids precipitated by addition of 5% poly(ethyleneimine) to a final concentration of 0.3%. The precipitated nucleic acids were removed by centrifugation at 10 000 rpm. To the supernatant was then added ammonium sulfate (60%). Crude precipitated protein was centrifuged, resuspended, and dialyzed against buffer A. Crude RT was purified by column chromatography over a phosphocellulose column (Waters) using a linear gradient of 0.05−1 M NaCl in buffer A. Fractions containing RT were pooled and dialyzed against buffer A and subsequently loaded onto a Q-Sepharose (Pharmacia) column. RT was eluted using a linear gradient from 10 to 250 mM NaCl. The pooled RT fractions were combined, concentrated, and further purified by strong cation exchange FPLC using a Mono S 5/5 column (Pharmacia) as previously described (Stahlhut et al., 1994). This step has been shown to separate homodimeric p66 and p51 species from p66/p51 heterodimer and provide the desired heterodimer in a 1:1 ratio. The RT was dialyzed against buffer A containing 50 mM NaCl, concentrated, aliquoted, and stored at −70 °C. Enzyme concentration was estimated by UV at 280 nm using an extinction coefficient of 260 450 M
<sup>-1</sup>
cm
<sup>-1</sup>
as previously described (Kati et al., 1992). Concentrations of RT used in subsequent experiments were determined by an active site titration method as previously described (Kati et al., 1992). The preparation of RT with this system and purification procedure gave burst amplitudes of 30−40%, and the enzyme concentrations for all experiments were performed using the corrected active concentration. The RT obtained after this purification procedure was highly pure and free of contaminating exonuclease or RNAse activities. The exonuclease activity was judged by incubation of enzyme with radiolabeled DNA/DNA 45−25-mer for 30 min at 37 °C and the RNase activity was evaluated by incubation of enzyme with radiolabeled RNA 45-mer for 30 min at 37 °C. In each case <5% of the substrate was degraded to cleavage products. </p>
<p>
<italic toggle="yes">Nucleotide Triphosphates and Other Materials.</italic>
All dNTPs were obtained from Pharmacia LKB Biotechnology Inc. and determined to be >99% pure by anion-exchange HPLC. [γ-
<sup>32</sup>
P]ATP was obtained from Amersham Co. Biospin columns for purification of labeled oligomers were obtained from BioRad. </p>
<p>
<italic toggle="yes">Synthetic Oligonucleotides. </italic>
The DNA 25-mer and 22-mers (Table
<xref rid="bi9713851t00001"></xref>
) were synthesized on an Applied Biosystems 380A DNA synthesizer from the Yale DNA Synthesis Facility and purified by denaturing polyacrylamide gel electrophoresis (16%) as previously described (Kati et al., 1992). RNA 45-mer (Table
<xref rid="bi9713851t00001"></xref>
) was obtained from the Yale Synthesis Facility and purified as described (Kati et al., 1992) or obtained as the deprotected gel and HPLC purified material from New England Biolabs, Inc.
<table-wrap id="bi9713851t00001" position="float" orientation="portrait">
<label>1</label>
<caption>
<p>RNA and DNA Oligonucleotides Substrates</p>
</caption>
<oasis:table colsep="2" rowsep="2">
<oasis:tgroup cols="1">
<oasis:colspec colnum="1" colname="1"></oasis:colspec>
<oasis:tbody>
<oasis:row>
<oasis:entry colname="1">
<graphic xlink:href="bi9713851u00001a.tif" position="float" orientation="portrait"></graphic>
</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
</table-wrap>
</p>
<p>The heteroduplex RNA/DNA 45/25-mer template−primer strands were annealed using equimolar ratios of pure template−primer at 80 °C for 4 min and 50 °C for 30 min as previously described (Kati et al., 1992). Concentrations of the oligomers were estimated from UV absorbances at 260 nm using extinction coefficients of 507 960 and 249 040 M
<sup>-1</sup>
cm
<sup>-1</sup>
for the RNA 45-mer, and DNA 25-mer, respectively. The corresponding extinction coefficient for the DNA 22-mer was 218 390 M
<sup>-1</sup>
cm
<sup>-1</sup>
. </p>
<p>
<italic toggle="yes">Buffers. </italic>
All experimental procedures involving kinetic experiments of RT were done in 50 mM Tris-Cl, 50 mM NaCl, pH 7.5 at 37 °C, and used sterile buffers, reagents, and laboratory ware wherever possible. </p>
<p>
<italic toggle="yes">5</italic>
<italic toggle="yes">-[</italic>
<italic toggle="yes">
<sup>32</sup>
</italic>
<sup></sup>
<italic toggle="yes">P]-Labeling the 45/25-mers and 45/22-mers.</italic>
The RNA 45-mer, DNA 25-mer, and DNA 22-mer strands were 5‘-labeled with [γ-
<sup>32</sup>
P]ATP using T4 polynucleotide kinase (New England Biolabs, Inc.) according to previously described procedures (Kati et al., 1992). </p>
<p>
<italic toggle="yes">Rapid Quench Experiments.</italic>
Rapid quench experiments were carried out in an apparatus designed by Johnson (Johnson, 1986; Johnson, 1992) and built by Kintek Instruments (State College, PA). The apparatus was modified to allow small reaction volumes of 15 μL. Experiments were carried out as described (Kati et al., 1992). Briefly, 15 μL of substrate (RNA or DNA template−primer) preincubated with enzyme (RT) was loaded in one sample loop while the other loop contained an equal amount of the nucleotide to be incorporated, preincubated with Mg
<sup>2+</sup>
. Enzyme catalysis was initiated by rapidly mixing the two reactants together and was terminated by quenching with 0.3 M EDTA (final concentration) after time points ranging from milliseconds to several seconds. In the cases where long reaction times were required (as in the case for dTMP incorporation), manual quench experiments were undertaken in which the two solutions (substrate preincubated with RT and dTTP-Mg
<sup>2+</sup>
) were incubated at 37 °C, and at regular time intervals 30 μL of the reaction solution was removed and quenched with EDTA (0.3 M final concentration). All concentrations reported in the text are final concentrations after mixing. </p>
<p>
<italic toggle="yes">Product Analysis.</italic>
The products were analyzed by sequencing gel analyses (16% polyacrylamide gel in 8 M urea) where elongation products from the primer strand and the template strand and its degradation products could be resolved and quantitated. The products and substrates were quantitated by scanning the dried gel using a either a GS-250 Molecular Imager System (BioRad) or Betascope (Betagen). </p>
<p>
<italic toggle="yes">Data Analysis.</italic>
Data were fit by nonlinear regression analysis using the commercially available program KaleidaGraph (Synergy Software, Reading, PA) for the Macintosh computer. The data were fit to a burst equation, product =
<italic toggle="yes">A</italic>
(1 − exp(−
<italic toggle="yes">kt</italic>
)) +
<italic toggle="yes">mt</italic>
, where
<italic toggle="yes">A</italic>
is the amplitude of the burst,
<italic toggle="yes">k</italic>
is the observed first-order burst rate constant, and
<italic toggle="yes">m</italic>
is the linear steady-state rate constant; for pre-steady-state bursts experiments or, to a single exponential, product =
<italic toggle="yes">A</italic>
(1 − exp(−
<italic toggle="yes">kt</italic>
)) according to the mechanism previously described (Kati et al., 1992). The concentration dependence of the burst rate were fit to a hyperbolic function in which
<italic toggle="yes">k</italic>
=
<italic toggle="yes">k</italic>
<sub>pol</sub>
[dNTP]/(
<italic toggle="yes">K</italic>
<sub>d</sub>
+ [dNTP]), where
<italic toggle="yes">k</italic>
is the observed rate,
<italic toggle="yes">k</italic>
<sub>pol</sub>
is the maximum rate of incorporation and
<italic toggle="yes">K</italic>
<sub>d</sub>
is the equilibrium dissociation constant for the dNTP. The term
<italic toggle="yes">k</italic>
<sub>pol</sub>
is used even in cases where the rates are extremely slow since under single turnover conditions the observed rate is still a function of the maximum rate of nucleotide incorporation. Since
<italic toggle="yes">k</italic>
<sub>pol</sub>
is most likely defined by a slow conformational or chemical step, and not product release, it would be equivalent to
<italic toggle="yes">k</italic>
<sub>cat</sub>
. </p>
</sec>
<sec id="d7e312">
<title>Results</title>
<p>In this report we contrast the RNA dependent and DNA dependent replication fidelity of recombinant HIV-1 reverse transcriptase by examining the kinetics of incorrect nucleotide incorporation into a RNA/DNA template−primer as compared with the corresponding DNA/DNA template−primer substrate. Studies were conducted with two synthetic oligonucleotide substrates:  a 45/25 template−primer and a 45/22 template−primer (shown in Table
<xref rid="bi9713851t00001"></xref>
) . For the 45/25 template−primer, the mismatch involved incorporation of an incorrect dNTP (dGTP, dCTP, and dTTP) opposite a template uridine (U). This analysis was extended to a 45/22 template−primer to examine the incorporation of an incorrect dNTP (dGTP, dCTP, and dATP) opposite a template adenosine (A). The polymerization rate constants (
<italic toggle="yes">k</italic>
<sub>pol</sub>
) and equilibrium dissociation constants (
<italic toggle="yes">K</italic>
<sub>d</sub>
) of the incorrect dNTPs have been determined. From these kinetic parameters, fidelity estimates for the RNA dependent DNA polymerization have been calculated. The results are compared and contrasted with the fidelity estimates of DNA dependent DNA polymerization (Kati et al., 1992). </p>
</sec>
<sec id="d7e327">
<title></title>
<sec id="d7e329">
<title>Pre-Steady-State Kinetic Studies Using a 45/25 Template−Primer</title>
<p>
<italic toggle="yes">Correct Incorporation of dATP into Heteroduplex RNA/DNA 45/25 </italic>
<italic toggle="yes">Template</italic>
<italic toggle="yes"></italic>
<italic toggle="yes">Primer.</italic>
We began our studies examining RNA dependent replication fidelity by determining the kinetic parameters for correct dNTP incorporation to provide a framework for comparison of incorrect incorporation. A representative pre-steady-state burst experiment for the correct incorporation of dATP is shown in Figure
<xref rid="bi9713851f00001"></xref>
. The experiment was performed by mixing a preincubated solution of RT (175 nM active site concentration) and 5‘-[
<sup>32</sup>
P]-labeled RNA/DNA 45/25-mer (300 nM) with Mg
<sup>2+</sup>
(10 mM) and dATP (200 μM), the nucleotide for correct incorporation. The resulting time course of dATP incorporation (Figure
<xref rid="bi9713851f00001"></xref>
) showed biphasic kinetics with the first turnover occurring at a rate (
<italic toggle="yes">k</italic>
<sub>pol</sub>
) of 68 s
<sup>-1</sup>
and subsequent turnovers at a rate (steady-state rate) of 0.13 s
<sup>-1</sup>
similar to our previous results (Kati et al., 1992). Likewise, biphasic kinetics were also observed for the correct incorporation of dTTP into an RNA/DNA or DNA/DNA 45/22 template−primer (see below).
<fig id="bi9713851f00001" position="float" orientation="portrait">
<label>1</label>
<caption>
<p>Pre-steady-state kinetics of correct incorporation of dATP, U·dA base pair. Pre-steady-state kinetics of correct incorporation of dATP into heteroduplex RNA/DNA 45/25-mer (template−primer) were measured by mixing a preincubated solution of RT (175 nM active site concentration) and 5‘-[
<sup>32</sup>
P]-labeled RNA/DNA (300 nM) with Mg
<sup>2+</sup>
(10 mM) and dATP (200 μM) under rapid quench conditions. The reactions were quenched with 0.3 M EDTA at the indicated times, and the product 26-mer primer was separated and quantitated by sequencing gel analysis (16% acrylamide, 8 M urea). The solid line represents the best fit of the data (·) to a burst equation with rate constants equal to 68 and 0.13 s
<sup>-1</sup>
for the exponential and linear phases, respectively.</p>
</caption>
<graphic xlink:href="bi9713851f00001.eps" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>
<italic toggle="yes">Misincorporation of dNTP into RNA/DNA 45/25-mer. </italic>
The kinetics of misincorporation of the three deoxynucleoside triphosphates, dGTP, dCTP, and dTTP, into the heteroduplex RNA/DNA 45/25-mer were determined. The experiments with dGTP and dCTP required the use of a rapid quench apparatus while those for dTTP were conducted by manual quench. The equilibrium dissociation constants,
<italic toggle="yes">K</italic>
<sub>d</sub>
s, and maximum rates of incorporation,
<italic toggle="yes">k</italic>
<sub>pol</sub>
, of the three incorrect dNTPs were determined under single turnover conditions with enzyme (RT 100 nM) in slight excess of substrate (RNA/DNA, 90 nM) and quantitating all products formed. Substrate inhibition occurred with dNTP concentrations in excess of 2 mM as previously observed (Kati et al., 1992). </p>
<p>
<italic toggle="yes">(a) Misincorporation of dGTP:  Kinetics of a U·dG Mismatch.</italic>
Figure
<xref rid="bi9713851f00002"></xref>
A shows the concentration dependence on the first-order rates of incorporation of dGTP into the primer 25-mer strand opposite a template uridine. Reactions were carried out as indicated in the figure legend. The misincorporation of dGTP led to the elongation of the 25-mer by one base to form a 26-mer product. The formation of the 26-mer product was quantified and plotted versus time. The data for each time course was fit to a single exponential to provide the rate of polymerization. Figure
<xref rid="bi9713851f00002"></xref>
B is a plot of the first-order rates, determined above, versus dGTP concentration (mM) and fit to a hyperbola to determine,
<italic toggle="yes">k</italic>
<sub>pol</sub>
, the maximum rate of incorporation (0.203 ± 0.03 s
<sup>-1</sup>
), and the dissociation constant,
<italic toggle="yes">K</italic>
<sub>d</sub>
, for dGTP (1 ± 0.3 mM) for the U·dG mismatch.
<fig id="bi9713851f00002" position="float" orientation="portrait">
<label>2</label>
<caption>
<p>dGTP concentration dependence on the first-order rates for misincorporation, U·dG mismatch. (A) A preincubated solution of RT (100 nM) and 5‘-[
<sup>32</sup>
P]-labeled 45/25-mer RNA/DNA (90 nM) was mixed with increasing concentrations of dGTP in Mg
<sup>2+</sup>
buffer to start the reactions. The reactions were quenched with 0.3 M EDTA at the indicated times, and the products were analyzed and quantitated as indicated previously. The dGTP concentrations were (▴) 0.125 mM; (▪) 0.25 mM; (⧫) 0.5 mM; (○) 0.9 mM; (·) 2 mM. The solid lines represent the best fit of the data to the first-order processes. (B) The first-order rates (·) measured above were plotted against the dGTP concentrations. The fit to a hyperbola yielded a
<italic toggle="yes">K</italic>
<sub>d</sub>
value of 1 ± 0.3 mM for dGTP dissociation and a maximum rate of misincorporation of 0.203 ± 0.03 s
<sup>-1</sup>
.</p>
</caption>
<graphic xlink:href="bi9713851f00002.tif" position="float" orientation="portrait"></graphic>
</fig>
<fig id="bi9713851f00003" position="float" orientation="portrait">
<label>3</label>
<caption>
<p>Gel analysis of misincorporation of dCTP into RNA/DNA 45/25-mer, a U·dC mismatch. The bands indicate the time course (0−384 s) of polymerization of the 45/25-mer RNA/DNA heteroduplex (90 nM) by RT (100 nM) in presence of dCTP (1.25 mM) and Mg
<sup>2+</sup>
(10 mM). Polymerization product bands are at 26-, 27-, 28-, 29-, and 30-mer (see text for explanation). The product was quantitated by the summation of all product bands (26−30-mer) for the individual time courses. The RNA template 45-mer is also visible along with the RNA cleavage fragments at 39- and 38-mer and smaller, depicting the simultaneous RNAse H activity of HIV-1 RT. These cleavage fragments are similar to those seen previously (Kati et al., 1992) and confirm the distance between the polymerase and RNAse H sites to be approximately 18−19 nucleotides apart.</p>
</caption>
<graphic xlink:href="bi9713851f00003.eps" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>
<italic toggle="yes">(b) Misincorporation of dCTP:  Kinetics of a U·dC Mismatch.</italic>
Similar experiments to those done above for dGTP were conducted to obtain the dissociation constant and an estimate of the maximum rate of incorporation of dCTP opposite a template uridine. The incorporation of dCTP led to a series of five bands of sizes 26−30 bases. This resulted from the fact that after the initial misincorporation of dCMP to form DNA 26-mer, dCTP is the correct nucleotide for the next two additions (27- and 28-mers). At higher concentrations and longer time points, a second misincorporation on the 28-mer generates a 29-mer, and since dCTP is again the correct nucleotide for the next addition, a 30-mer accumulates. The gel analysis of the time course of the reaction of a preincubated solution of RT (100 nM) and 5‘-[32P]-doubly-labeled 45/25-mer RNA/DNA (90 nM) with dCTP (1.25 mM) in Mg
<sup>2+</sup>
buffer is shown in Figure
<xref rid="bi9713851f00003"></xref>
. The major polymerization products (dark bands) of 28-mer and 30-mer, where the reaction has stalled, are clearly visible, while faint bands of the 26-mer, 27-mer, and 29-mer can also been seen. Other bands seen are those from the RNAse H cleavage reaction (see Discussion below). All five bands were summed and quantified to yield total products, thus defining the kinetics of the first misincorporation (Wong et al., 1991; Kati et al., 1992). Thus, from a plot of total products (26−30-mer) formed versus time and fitting the plot to a first-order (single turnover) equation, one can obtain a lower limit for the rate of dCTP incorporation, Figure
<xref rid="bi9713851f00004"></xref>
A. From a plot of the rate constants of dCTP incorporation versus dCTP concentration and fitting the data to a hyperbola, the lower limit for maximum rate of incorporation of the U·dC mismatch was determined to be 0.033 ± 0.002 s
<sup>-1</sup>
and
<italic toggle="yes">K</italic>
<sub>d</sub>
for dCTP was 1.1 ± 0.15 mM, Figure
<xref rid="bi9713851f00004"></xref>
B.
<fig id="bi9713851f00004" position="float" orientation="portrait">
<label>4</label>
<caption>
<p>Misincorporation of dCTP into RNA/DNA 45/25-mer, U·dC mismatch. (A) A preincubated solution of RT (100 nM) and 5‘-[
<sup>32</sup>
P]-labeled 45/25-mer RNA/DNA (90 nM) was mixed with dCTP (1.25 mM) in Mg
<sup>2+</sup>
buffer to start the reaction. The reaction was quenched with 0.3 M EDTA at the indicated times, and the products were analyzed and quantitated as indicated in the text. The solid line represents the best fit of the data (·) under single turnover conditions, using a rate constant of 0.018 s
<sup>-1</sup>
for the first-order exponential process. (B) The first-order rate constants determined analogously to the above experiment, with varying concentrations of dCTP, were plotted against the dCTP concentrations. The data (·) were fit to a hyperbola (solid line) to yield a
<italic toggle="yes">K</italic>
<sub>d</sub>
value of 1.11 ± 0.15 mM for dCTP dissociation and a rate of misincorporation of 0.033 ± 0.002 s
<sup>-1</sup>
.</p>
</caption>
<graphic xlink:href="bi9713851f00004.eps" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>
<italic toggle="yes">(c) Misincorporation of dTTP:  U·dT Mismatch.</italic>
Identical experiments to those conducted for dCTP and dGTP were conducted for determining the incorporation rate for a U·dT mismatch. The maximum rate of incorporation was determined to be 0.0034 ± 0.0004 s
<sup>-1</sup>
and
<italic toggle="yes">K</italic>
<sub>d</sub>
for dTTP dissociation was 0.7 ± 0.18 mM for the U·dT mismatch. Striking differences are noted between the rates of misincorporation for the RNA template as compared with DNA for each of the mismatches examined as shown in Figure
<xref rid="bi9713851f00005"></xref>
. This figure visually illustrates these findings by showing a gel analysis directly comparing misincorporation of dTMP using the RNA 45-mer template (right) with the DNA 45-mer template (left). At the 40 s time point, most of the 25-mer has been converted to 26-mer for the DNA while only a trace of 26-mer is seen with the RNA template. Also shown in Figure
<xref rid="bi9713851f00005"></xref>
are the anticipated RNAase H cleavage products (RNA 38-mer and 39-mer) as discussed below. </p>
<p>
<italic toggle="yes">Fidelity Estimates.</italic>
Table
<xref rid="bi9713851t00002"></xref>
summarizes the kinetic parameters for correct and incorrect incorporation into the heteroduplex RNA/DNA 45/25 template−primer. The RNA dependent DNA replication fidelity was estimated from the ratios of incorporation of the second-order rate constants of correct to incorrect, as calculated by the expression shown in Table
<xref rid="bi9713851t00002"></xref>
. Fidelity estimates for the U·dG, U·dC, and U· dT mismatches were 26 000, 176 000, and 1 000 000, respectively. The corresponding estimates for
<italic toggle="yes">k</italic>
<sub>pol</sub>
(shown in parentheses) and DNA dependent replication fidelity for the DNA/DNA 45/25 template−primer are also shown for comparison.
<table-wrap id="bi9713851t00002" position="float" orientation="portrait">
<label>2</label>
<caption>
<p>Fidelity of HIV-1 RT with 45/25 Template−Primer</p>
</caption>
<oasis:table colsep="2" rowsep="2">
<oasis:tgroup cols="6">
<oasis:colspec colnum="1" colname="1"></oasis:colspec>
<oasis:colspec colnum="2" colname="2"></oasis:colspec>
<oasis:colspec colnum="3" colname="3"></oasis:colspec>
<oasis:colspec colnum="4" colname="4"></oasis:colspec>
<oasis:colspec colnum="5" colname="5"></oasis:colspec>
<oasis:colspec colnum="6" colname="6"></oasis:colspec>
<oasis:tbody>
<oasis:row>
<oasis:entry colname="1">dNTP</oasis:entry>
<oasis:entry colname="2">
<italic toggle="yes">K</italic>
<sub>d</sub>
 (μM)</oasis:entry>
<oasis:entry colname="3">
<italic toggle="yes">k</italic>
<sub>pol</sub>
 (s
<sup>-1</sup>
)</oasis:entry>
<oasis:entry colname="4">
<italic toggle="yes">k</italic>
<sub>pol</sub>
/
<italic toggle="yes">K</italic>
<sub>d</sub>
(μM
<sup>-1</sup>
 s
<sup>-1</sup>
)</oasis:entry>
<oasis:entry colname="5">fidelity
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
(RNA)</oasis:entry>
<oasis:entry colname="6">fidelity
<italic toggle="yes">
<sup>b</sup>
</italic>
<sup></sup>
(RNA) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">dATP </oasis:entry>
<oasis:entry colname="2">14 </oasis:entry>
<oasis:entry colname="3">74 (33) </oasis:entry>
<oasis:entry colname="4">5.28 </oasis:entry>
<oasis:entry colname="5"></oasis:entry>
<oasis:entry colname="6"></oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">dGTP </oasis:entry>
<oasis:entry colname="2">1000 </oasis:entry>
<oasis:entry colname="3">0.2 (4.8) </oasis:entry>
<oasis:entry colname="4">2.0 × 10
<sup>-4</sup>
</oasis:entry>
<oasis:entry colname="5">26 000 </oasis:entry>
<oasis:entry colname="6">1740 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">dCTP </oasis:entry>
<oasis:entry colname="2">1100 </oasis:entry>
<oasis:entry colname="3">0.03 (0.05) </oasis:entry>
<oasis:entry colname="4">3.0 × 10
<sup>-5</sup>
</oasis:entry>
<oasis:entry colname="5">176 000 </oasis:entry>
<oasis:entry colname="6">19 700 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">dTTP </oasis:entry>
<oasis:entry colname="2">700 </oasis:entry>
<oasis:entry colname="3">0.003 (0.4) </oasis:entry>
<oasis:entry colname="4">4.9 × 10
<sup>-6</sup>
</oasis:entry>
<oasis:entry colname="5">1 100 000 </oasis:entry>
<oasis:entry colname="6">16 900</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
<table-wrap-foot>
<p>
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
 Calculated as [(
<italic toggle="yes">k</italic>
<sub>pol</sub>
/
<italic toggle="yes">K</italic>
<sub>d</sub>
)
<sub>correct</sub>
+ (
<italic toggle="yes">k</italic>
<sub>pol</sub>
/
<italic toggle="yes">K</italic>
<sub>d</sub>
)
<sub>incorrect</sub>
]/(
<italic toggle="yes">k</italic>
<sub>pol</sub>
/
<italic toggle="yes">K</italic>
<sub>d</sub>
)
<sub>incorrect</sub>
.
<italic toggle="yes">
<sup>b</sup>
</italic>
<sup></sup>
 Kati et al., 1992; values in parentheses for
<italic toggle="yes">k</italic>
<sub>pol</sub>
are the rates of incorporation for the DNA template.</p>
</table-wrap-foot>
</table-wrap>
</p>
</sec>
</sec>
<sec id="d7e686">
<title></title>
<sec id="d7e688">
<title>Pre-Steady-State Kinetic Studies Using a 45/22 Template−Primer</title>
<p>Although the higher fidelity for an RNA/DNA template−primer compared to a DNA/DNA template−primer in the case of a 45/25 template−primer was interesting, the generality of this observation was uncertain. Therefore, analysis of a 45/22 template−primer was undertaken to examine the correct and incorrect incorporation of dNTP opposite a template adenosine (A) using the DNA and RNA substrates shown in Table
<xref rid="bi9713851t00001"></xref>
. The equilibrium dissociation constants,
<italic toggle="yes">K</italic>
<sub>d</sub>
s, and maximum rates of incorporation,
<italic toggle="yes">k</italic>
<sub>pol</sub>
, for the correct and three incorrect dNTPs were determined under single turnover conditions analogous to that described above for the 45/25 template−primer. The kinetic parameters, K
<sub>d</sub>
and
<italic toggle="yes">k</italic>
<sub>pol</sub>
, and fidelity estimates for the A·dC, A·dA, and A· dG mismatches using a DNA or RNA substrate are shown in Table
<xref rid="bi9713851t00003"></xref>
. The estimates for DNA dependent replication fidelity for a dC, dA, and dC mismatch were 800, 150 000, and 350 000. For the corresponding RNA dependent replication fidelity for dC, dA, and dC mismatches, the estimates were 12 000, 3 500 000, and 4 600 000. These results suggest that HIV-1 RT is, in general, more highly discriminating toward an RNA/DNA template−primer.
<table-wrap id="bi9713851t00003" position="float" orientation="portrait">
<label>3</label>
<caption>
<p>Fidelity of HIV-1 RT for 45/22 Template−Primer</p>
</caption>
<oasis:table colsep="2" rowsep="2">
<oasis:tgroup cols="9">
<oasis:colspec colnum="1" colname="1"></oasis:colspec>
<oasis:colspec colnum="2" colname="2"></oasis:colspec>
<oasis:colspec colnum="3" colname="3"></oasis:colspec>
<oasis:colspec colnum="4" colname="4"></oasis:colspec>
<oasis:colspec colnum="5" colname="5"></oasis:colspec>
<oasis:colspec colnum="6" colname="6"></oasis:colspec>
<oasis:colspec colnum="7" colname="7"></oasis:colspec>
<oasis:colspec colnum="8" colname="8"></oasis:colspec>
<oasis:colspec colnum="9" colname="9"></oasis:colspec>
<oasis:tbody>
<oasis:row>
<oasis:entry colname="1"></oasis:entry>
<oasis:entry namest="2" nameend="3">
<italic toggle="yes">k</italic>
<sub>pol</sub>
 (s
<sup>-1</sup>
)</oasis:entry>
<oasis:entry namest="4" nameend="5">
<italic toggle="yes">K</italic>
<sub>d</sub>
 (μM)</oasis:entry>
<oasis:entry namest="6" nameend="7">
<italic toggle="yes">k</italic>
<sub>pol</sub>
/
<italic toggle="yes">K</italic>
<sub>d</sub>
 (μM
<sup>-1</sup>
 s
<sup>-1</sup>
)</oasis:entry>
<oasis:entry namest="8" nameend="9">fidelity
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">dNTP</oasis:entry>
<oasis:entry colname="2">RNA</oasis:entry>
<oasis:entry colname="3">DNA</oasis:entry>
<oasis:entry colname="4">RNA</oasis:entry>
<oasis:entry colname="5">DNA</oasis:entry>
<oasis:entry colname="6">RNA</oasis:entry>
<oasis:entry colname="7">DNA</oasis:entry>
<oasis:entry colname="8">RNA</oasis:entry>
<oasis:entry colname="9">DNA </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">dTTP </oasis:entry>
<oasis:entry colname="2">72 </oasis:entry>
<oasis:entry colname="3">0.96 </oasis:entry>
<oasis:entry colname="4">17 </oasis:entry>
<oasis:entry colname="5">7 </oasis:entry>
<oasis:entry colname="6">4.2 </oasis:entry>
<oasis:entry colname="7">0.14 </oasis:entry>
<oasis:entry colname="8"></oasis:entry>
<oasis:entry colname="9"></oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">dCTP </oasis:entry>
<oasis:entry colname="2">0.5 </oasis:entry>
<oasis:entry colname="3">0.29 </oasis:entry>
<oasis:entry colname="4">1400 </oasis:entry>
<oasis:entry colname="5">1700 </oasis:entry>
<oasis:entry colname="6">3.5 × 10
<sup>-4</sup>
</oasis:entry>
<oasis:entry colname="7">1.7 × 10
<sup>-4</sup>
</oasis:entry>
<oasis:entry colname="8">12 000 </oasis:entry>
<oasis:entry colname="9">800 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">dATP </oasis:entry>
<oasis:entry colname="2">1.3 × 10
<sup>-3</sup>
</oasis:entry>
<oasis:entry colname="3">9.2 × 10
<sup>-4</sup>
</oasis:entry>
<oasis:entry colname="4">1100 </oasis:entry>
<oasis:entry colname="5">970 </oasis:entry>
<oasis:entry colname="6">1.2 × 10
<sup>-6</sup>
</oasis:entry>
<oasis:entry colname="7">9.5 × 10
<sup>-7</sup>
</oasis:entry>
<oasis:entry colname="8">3 500 000 </oasis:entry>
<oasis:entry colname="9">148 000 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">dGTP </oasis:entry>
<oasis:entry colname="2">3.3 × 10
<sup>-3</sup>
</oasis:entry>
<oasis:entry colname="3">2.7 × 10
<sup>-3</sup>
</oasis:entry>
<oasis:entry colname="4">3700 </oasis:entry>
<oasis:entry colname="5">6800 </oasis:entry>
<oasis:entry colname="6">9.0 × 10
<sup>-7</sup>
</oasis:entry>
<oasis:entry colname="7">3.9 × 10
<sup>-7</sup>
</oasis:entry>
<oasis:entry colname="8">4 700 000 </oasis:entry>
<oasis:entry colname="9">360 000</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
<table-wrap-foot>
<p>
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
 Calculated as [(
<italic toggle="yes">k</italic>
<sub>pol</sub>
/
<italic toggle="yes">K</italic>
<sub>d</sub>
)
<sub>correct</sub>
+ (
<italic toggle="yes">k</italic>
<sub>pol</sub>
/
<italic toggle="yes">K</italic>
<sub>d</sub>
)
<sub>incorrect</sub>
]/(
<italic toggle="yes">k</italic>
<sub>pol</sub>
/
<italic toggle="yes">K</italic>
<sub>d</sub>
)
<sub>incorrect</sub>
.</p>
</table-wrap-foot>
</table-wrap>
</p>
<p>
<italic toggle="yes">RNase H Activity of RT for Correct versus Incorrect Nucleotide Incorporation.</italic>
We have previously investigated the simultaneous catalytic activities of DNA polymerization and RNA cleavage by using the 5‘-doubly-labeled RNA/ DNA 45/25 template−primer shown in Table
<xref rid="bi9713851t00001"></xref>
(Kati et al., 1992). In the present study we have examined the RNase H activity and sites of template cleavage under conditions of incorrect nucleotide incorporation. The rate of RNase H cleavage ranged from 3 to 16 s
<sup>-1</sup>
and appeared to be independent of the rate of polymerization. The site of RNase H cleavage on the template was also independent of the nucleotide (correct or incorrect) being incorporated. This analysis also provided further confirmation of the distance between the polymerase and RNase H active sites (Kati et al., 1992; Gopalakrishnan et al., 1992) by determining the length of RNA cleavage products produced (see Figure
<xref rid="bi9713851f00003"></xref>
and
<xref rid="bi9713851f00005"></xref>
). On the basis of the 38- or 39-mer RNA cleavage products obtained, a distance of 19 RNA/DNA heteroduplex bases is suggested between the two sites and is consistent with the three-dimensional structural studies on RT (Kohlstaedt et al., 1992; Jacobo-Molina et al., 1993). As previously shown with correct incorporation, 41-mer RNA cleavage product was also observed which may result from an alternate binding mode. In general, the RNase H catalytic activity was similar to that previously determined for correct nucleotide incorporation (Kati et al., 1992).
<fig id="bi9713851f00005" position="float" orientation="portrait">
<label>5</label>
<caption>
<p>Comparison of misincorporation of dTTP into DNA/DNA 45/25-mer (T· dT mismatch) or RNA/DNA 45/25-mer (U·dT mismatch). A preincubated solution of RT (100 nM) and doubly-labeled 5‘-[
<sup>32</sup>
P]-labeled 45/25-mer DNA/DNA (left) or RNA/DNA (right) (90 nM) was mixed with dTTP (2 mM) in Mg
<sup>2+</sup>
buffer to initate the reaction. The time course for the formation of the 26-mer misincorporation product is shown over a period of 40 s. In the case of the DNA substrate , >70% of the product is formed after 40 s; however with the RNA substrate less than 15% of the product is observed at the same reaction time. Thus the catalytic activity of HIV RT for incorporating mismatches is substantially different for RNA versus DNA.</p>
</caption>
<graphic xlink:href="bi9713851f00005.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
</sec>
</sec>
<sec id="d7e964">
<title>Discussion</title>
<p>Previous studies have determined the kinetic parameters of HIV-1 RT for both RNA dependent as well as DNA dependent polymerization (Kati et al., 1992). It was shown that for correct nucleotide incorporation (dATP) into a predefined template−primer 45/25-mer, the RNA dependent polymerization rates (
<italic toggle="yes">k</italic>
<sub>pol</sub>
) were at least 2-fold faster than the DNA dependent polymerization rates (74 s
<sup>-1</sup>
compared to 33 s
<sup>-1</sup>
), while the dissociation constants (
<italic toggle="yes">K</italic>
<sub>d</sub>
) for the incoming nucleotide were essentially similar to that of the deoxynucleotide triphosphate, dATP, showing slightly greater affinity for the DNA/DNA 45/25-mer template−primer (4 μM) compared with the RNA/DNA 45/25-mer (14 μM) (Kati et al., 1992). Fidelity estimates from single turnover experiments for the DNA dependent polymerization were in the range of 1/1700 for misincorporation of dGMP opposite a template thymidine to approximately 1/18000 for misincorporation of either a dCMP or dTMP opposite a template thymidine. The results were in general agreement with other fidelity studies on HIV-1 RT (Preston et al., 1988; Roberts et al., 1988; Weber et al., 1989; Bebenek et al., 1989; Ji and Loeb, 1992; Perrino et al., 1989; Mendelman et al., 1989; Mendelman et al., 1990; Yu et al., 1992; Kati et al., 1992, Johnson, 1993). </p>
<p>The current study provides fidelity estimates for the RNA dependent DNA replication reaction of HIV-1 RT under the same conditions as previously described (Kati et al., 1992). The RNA-dependent fidelity for RT relies solely on the polymerase contribution since there is no exonuclease activity associated with RT and is thus a relationship between the selectivity for correct dNTP discrimination over that of incorrect dNTP. Fidelity may be estimated therefore as a ratio of the
<italic toggle="yes">k</italic>
<sub>pol</sub>
/
<italic toggle="yes">K</italic>
<sub>d</sub>
values for correct to incorrect nucleotide incorporation, as given in Tables
<xref rid="bi9713851t00002"></xref>
and
<xref rid="bi9713851t00003"></xref>
. In contrast to previous studies (Kati et al., 1992; Preston et al., 1988; Roberts et al., 1988; Weber et al., 1989; Bebenek et al., 1989; Ji and Loeb, 1992; Perrino et al., 1989; Mendelman et al., 1989; Mendelman et al., 1990; Yu et al., 1992), our results from the present work show HIV-1 RT to be more discriminating to RNA dependent polymerization than previously observed for either DNA or RNA dependent polymerization. A forward mutation assay has suggested a higher fidelity for RNA versus DNA templates for frameshifts (Boyer al., 1992) but not for substitutions. In using an RNA/DNA 45/25 template−primer, the fidelity estimate for misincorporation of a dGMP was 26 000 while those for dCMP and dTMP were 176 000 and approximately 1 × 10
<sup>6</sup>
, respectively, over a template uridine. These estimates indicate an increased fidelity of HIV-1 RT of 9−64-fold (approximately 1 to 2 orders of magnitude) over that of the corresponding DNA-directed polymerization fidelity of RT, on direct comparison with the previous results (Kati et al., 1992). </p>
<p>The apparent dissociation rate constants (
<italic toggle="yes">K</italic>
<sub>d</sub>
) for the incorrect nucleotide incorporation for RNA-dependent polymerization were similar to those determined previously for the DNA dependent polymerization of RT (Kati et al., 1992). The 50−80-fold difference in binding affinities (Table
<xref rid="bi9713851t00002"></xref>
) suggests that incorrect nucleotides do not act as competitive inhibitors of correct nucleotide incorporation. However, the polymerization rates (
<italic toggle="yes">k</italic>
<sub>pol</sub>
) differed significantly. In contrast to what was observed with correct dNTP incorporation, RNA dependent polymerization being 2-fold faster than DNA dependent polymerization (Kati et al., 1992), the rates for incorrect nucleotide incorporation with the RNA template were surprisingly slow. Since the DNA dependent polymerization rates for misincorporation were only 7−90-fold slower (for dGMP to dCMP or dTMP) than the corresponding rate for correct incorporation (dAMP) (Kati et al., 1992), a decrease of similar magnitude (7−90-fold) was expected for the RNA dependent misincorporation rates. In contrast to the expectation, the RNA dependent misincorporation rates ranged from 364-fold slower for dGMP to more than 2000-fold slower for dCMP and greater than 21000-fold slower for a dTMP misincorporation, compared to the rate of correct (dAMP) incorporation (Table
<xref rid="bi9713851t00002"></xref>
), indicating a highly discriminating enzyme for RNA dependent polymerization. While the misincorporation rate for dGTP (0.203 s
<sup>-1</sup>
) was only slightly faster than the product dissociation rate (0.13 s
<sup>-1</sup>
), the rates for misincorporation of dCTP (0.033 s
<sup>-1</sup>
) and dTTP (0.003 s
<sup>-1</sup>
) were 1−2 orders of magnitude slower than the dissociation rate of the enzyme−RNA/DNA complex. Since these experiments were carried under single turnover conditions in which the substrate is stoichiometric with enzyme, the maximum rate of polymerization (
<italic toggle="yes">k</italic>
<sub>pol</sub>
) is limited by either a conformational change or chemical catalysis but not product dissociation for the dCTP and dTTP incorporation and is most likely equal to
<italic toggle="yes">k</italic>
<sub>cat</sub>
under steady-state conditions. To establish if the higher discrimination with RNA may be a more general property of HIV-1 RT, this analysis was extended to a 45/22 template−primer. In this case the correct and incorrect incorporation opposite a template adenine was examined with both a DNA and an RNA substrate. A 14−23-fold higher fidelity was observed for the RNA template in comparision with the DNA indicating this may be a common feature for HIV-1 RT. </p>
<p>This high degree of selectivity by RT
<italic toggle="yes">in vitro</italic>
has not been detected prior to our study although more recent results from an
<italic toggle="yes">in vivo </italic>
study of HIV fidelity (Mansky and Temin, 1995) is consistent with our observations. Previous studies using steady-state analysis (Yu and Goodman, 1992; Ji and Loeb, 1992; Johnson, 1993) have provided RNA dependent fidelity similar to that observed for the DNA replication fidelity estimates. In present investigation to examine RNA dependent fidelity, a pre-steady-state kinetic analysis was undertaken to directly observe the events at the active site of RT. The relative ease with which some mismatches occur with an RNA/DNA template−primer is consistent with earlier studies examining DNA/DNA template−primers (Kati et al., 1992; Ji and Loeb, 1992). For instance, the G/U mismatch was still observed to be the easiest mismatch to form. According the the rates presented in Table
<xref rid="bi9713851t00002"></xref>
, the G/U mismatch formed approximately 6-fold faster than C/U and about 60-fold faster than T/U, suggesting that conformational and other thermodynamic factors (Abbots et al., 1991) contribute to the inability of the enzyme to sufficiently discriminate between a dA/T (dA/U) or dG/T (dG/U) base pair. The difference in
<italic toggle="yes">K</italic>
<sub>m</sub>
s for correct versus incorrect dNTP insertion were found to be in general agreement to the differences in
<italic toggle="yes">K</italic>
<sub>d</sub>
s seen in this investigation, as was the ability of RT to extend a mismatch (Figure
<xref rid="bi9713851f00003"></xref>
), and continue polymerization (Yu and Goodman, 1992) albeit at a slower rate. </p>
<p>The high fidelity exhibited by HIV-1 RT for the RNA dependent DNA polymerization, as shown in this study, may be anticipated as an essential element for survival of an RNA virus. Since the virus inherently lacks a proofreading mechanism in its replication, the virus must strive to make an efficient and correct first (minus) strand DNA copy. This must be done prior to the degradation of its RNA template. While errors in the second DNA strand synthesis may involve error correction mechanisms, by proofreading using host polymerases (Glazer et al., 1987; Stephenson and Karran, 1989), the first DNA strand synthesis has no such correction mechanism. Thus, in the absence of error-free replication for the RNA dependent polymerization, the final proviral DNA may have imperfections which could have further deleterious consequences for the virus such as production of a nonviable virus. The high fidelity seen in this investigation may perhaps be a necessary mechanism for formation of viable viral particles. The differences in the fidelity estimates seen here and by earlier studies may be due to several factors. By examining the replication fidelity using pre-steady-state kinetic analysis under single turnover conditions, our primary focus was on mechanism by looking directly at the events at the active site of RT. Other studies showing lower RNA dependent fidelity estimates than those reported here have been conducted using steady-state assays (Yu and Goodman, 1992; Johnson, 1993; Johnson, 1992), which may not entirely reflect events at the active site of the enzyme by masking mechanistic detail. The genomic hypervariation that has been observed with HIV-1 viral isolates (Coffin, 1986; Goodenow et al., 1989) has been attributed to decreased fidelity of the RNA dependent DNA replication and may in part be due to other factors such as viral survival. In light of the high fidelity exhibited by RT in this investigation and previous fidelity estimates suggesting RT to be no less efficient than other polymerases (Preston et al., 1988; Mendelman et al., 1989; Takeuchi et al., 1988), one may speculate that the high degree of genomic variation of HIV-1 may be due more to a defense mechanism of the virus to escape the surveillance of the host immune system than to the “sloppiness” on the part of RT. </p>
<p>The extremely slow reaction rates seen for the RNA dependent mismatch experiments is consistent with the model of a two-step binding mechanism of HIV-1 RT involving a rate-limiting conformational change as previously proposed (Kati et al., 1992; Hsieh et al., 1993; Spence et al., 1995; Rittinger et al., 1995) and similar to the kinetic model seen with T7 DNA polymerase (Patel et al., 1991; Wong et al., 1991; Spence et al., 1995). This model argues that RT or T7 DNA polymerase provides the high fidelity of dNTP incorporation in a two-step mechanism (Spence et al., 1995). In the first step, ground state binding between enzyme in an “open” binding state with template−primer and dNTP is formed, while the second step involves a conformational change to a “closed” state whereby the protein can encompass the template−primer and dNTP so as to form an extremely tight binding template−primer−dNTP complex from which catalysis can occur. It is in this step that fidelity of the protein is most apparent. Catalysis can only occur if the protein can adopt the critical catalytic configuration which is dependent on correct Watson−Crick base pairing with the incoming nucleotide and template (Johnson, 1993). However, if the protein cannot adopt this critical configuration, then the reaction proceeds extremely slowly and this step, perhaps, may be the rate-limiting step in the overall pathway. This extremely slow rate for RNA misincorporation is precisely what is observed in the present investigation. Thus, the high fidelity estimates for the RNA dependent replication reaction are primarily due to the extremely slow reaction rates for incorporation of incorrect dNTPs and is most likely the result of either a conformational change or chemical catalysis being the rate-limiting step. </p>
<p>An intriguing question concerns the mechanistic basis for the discrimination of RNA versus DNA mismatches by HIV RT? The answer, in part, may lie in differences in thermodynamic stability of RNA/DNA heteroduplexes and DNA/DNA duplexes (Fedoroff et al., 1993; Wang et al., 1992; Zhu et al, 1995; Sugimoto, et al., 1995) although our data indicate that efficiency of nucleotide incorporation plays a significant role. Insight into this question would be provided by structural information on HIV RT comparing ternary complexes with an RNA/DNA substrate or DNA/DNA substrate and dNTP bound in the active site; however, these structures are not available at present. </p>
</sec>
</body>
<back>
<ref-list>
<title>References</title>
<ref id="atyp_ref1">
<mixed-citation>
<name name-style="western">
<surname>Abbotts</surname>
<given-names>J.</given-names>
</name>
,
<name name-style="western">
<surname>Jaju</surname>
<given-names>M.</given-names>
</name>
, &
<name name-style="western">
<surname>Wilson</surname>
<given-names>S.</given-names>
</name>
(1991)
<italic toggle="yes">J.</italic>
<italic toggle="yes">Biol.</italic>
<italic toggle="yes">Chem.</italic>
<italic toggle="yes">266</italic>
, 3937−3943.</mixed-citation>
</ref>
<ref id="atyp_ref2">
<mixed-citation>
<name name-style="western">
<surname>Bebenek</surname>
<given-names>K.</given-names>
</name>
,
<name name-style="western">
<surname>Abbotts</surname>
<given-names>J.</given-names>
</name>
,
<name name-style="western">
<surname>Roberts</surname>
<given-names>J. D.</given-names>
</name>
,
<name name-style="western">
<surname>Wilson</surname>
<given-names>S. H.</given-names>
</name>
, &
<name name-style="western">
<surname>Kunkel</surname>
<given-names>T. A.</given-names>
</name>
(1989)
<italic toggle="yes">J.</italic>
<italic toggle="yes">Biol.</italic>
<italic toggle="yes">Chem.</italic>
<italic toggle="yes">264</italic>
, 16948−16956.</mixed-citation>
</ref>
<ref id="atyp_ref3">
<mixed-citation>
<name name-style="western">
<surname>Bebenek</surname>
<given-names>K.</given-names>
</name>
,
<name name-style="western">
<surname>Abbotts</surname>
<given-names>J.</given-names>
</name>
,
<name name-style="western">
<surname>Wilson</surname>
<given-names>S. H.</given-names>
</name>
, &
<name name-style="western">
<surname>Kunkel</surname>
<given-names>T. A.</given-names>
</name>
(1993)
<italic toggle="yes">J.</italic>
<italic toggle="yes">Biol.</italic>
<italic toggle="yes">Chem.</italic>
<italic toggle="yes">268</italic>
, 10324−10334</mixed-citation>
</ref>
<ref id="atyp_ref4">
<mixed-citation>
<name name-style="western">
<surname>Boyer</surname>
<given-names>J. C.</given-names>
</name>
,
<name name-style="western">
<surname>Bebenek</surname>
<given-names>K.</given-names>
</name>
, &
<name name-style="western">
<surname>Kunkel</surname>
<given-names>T. A.</given-names>
</name>
(1992)
<italic toggle="yes">Proc.</italic>
<italic toggle="yes">Natl.</italic>
<italic toggle="yes">Acad. Sci.</italic>
<italic toggle="yes">U.S.A</italic>
.
<italic toggle="yes"> 89</italic>
, 6919−6923</mixed-citation>
</ref>
<ref id="atyp_ref5">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Coffin</surname>
<given-names>J. M.</given-names>
</name>
<source>Cell</source>
<year>1986</year>
<volume>46</volume>
<fpage>1</fpage>
<lpage>4</lpage>
</element-citation>
</ref>
<ref id="atyp_ref6">
<mixed-citation>
<name name-style="western">
<surname>Fedoroff</surname>
<given-names>O. Y.</given-names>
</name>
,
<name name-style="western">
<surname>Salazar</surname>
<given-names>M.</given-names>
</name>
, &
<name name-style="western">
<surname>Reid</surname>
<given-names>B. R.</given-names>
</name>
(1993)
<italic toggle="yes">J.</italic>
<italic toggle="yes">Mol.</italic>
<italic toggle="yes">Biol.</italic>
<italic toggle="yes">233</italic>
, 509−523.
<pub-id pub-id-type="doi">10.1006/jmbi.1993.1528</pub-id>
</mixed-citation>
</ref>
<ref id="atyp_ref7">
<mixed-citation>
<name name-style="western">
<surname>Glazer</surname>
<given-names>P. M.</given-names>
</name>
,
<name name-style="western">
<surname>Sarkar</surname>
<given-names>A. N.</given-names>
</name>
,
<name name-style="western">
<surname>Chisholm</surname>
<given-names>G. E.</given-names>
</name>
, &
<name name-style="western">
<surname>Summers</surname>
<given-names>W. C.</given-names>
</name>
(1987)
<italic toggle="yes">Mol.</italic>
<italic toggle="yes">Cell.</italic>
<italic toggle="yes">Biol.</italic>
<italic toggle="yes">7</italic>
, 218−224.</mixed-citation>
</ref>
<ref id="atyp_ref8">
<mixed-citation>
<name name-style="western">
<surname>Gopalakrishnan</surname>
<given-names>V.</given-names>
</name>
,
<name name-style="western">
<surname>Peliska</surname>
<given-names>J.</given-names>
</name>
, &
<name name-style="western">
<surname>Benkovic</surname>
<given-names>S.</given-names>
</name>
(1992)
<italic toggle="yes">Proc.</italic>
<italic toggle="yes">Natl.</italic>
<italic toggle="yes">Acad. Sci.</italic>
<italic toggle="yes">U.S.A.,</italic>
<italic toggle="yes">89</italic>
, 10763−10767
<pub-id pub-id-type="doi">10.1073/pnas.89.22.10763</pub-id>
</mixed-citation>
</ref>
<ref id="atyp_ref9">
<mixed-citation>
<name name-style="western">
<surname>Goodenow</surname>
<given-names>M.</given-names>
</name>
,
<name name-style="western">
<surname>Huet</surname>
<given-names>T.</given-names>
</name>
,
<name name-style="western">
<surname>Saurin</surname>
<given-names>W.</given-names>
</name>
,
<name name-style="western">
<surname>Kwok</surname>
<given-names>S.</given-names>
</name>
,
<name name-style="western">
<surname>Sninsky</surname>
<given-names>J.</given-names>
</name>
, &
<name name-style="western">
<surname>Wain-Hobson</surname>
<given-names>S.</given-names>
</name>
(1989)
<italic toggle="yes">J.</italic>
<italic toggle="yes">Acquired</italic>
<italic toggle="yes">Immune</italic>
<italic toggle="yes">Defic.</italic>
<italic toggle="yes">Syndr.</italic>
<italic toggle="yes">2</italic>
, 344−352</mixed-citation>
</ref>
<ref id="atyp_ref10">
<mixed-citation>
<name name-style="western">
<surname>Hsieh</surname>
<given-names>J.-C.</given-names>
</name>
,
<name name-style="western">
<surname>Zinnen</surname>
<given-names>S.</given-names>
</name>
, &
<name name-style="western">
<surname>Modrich</surname>
<given-names>P.</given-names>
</name>
(1993)
<italic toggle="yes">J.</italic>
<italic toggle="yes">Biol.</italic>
<italic toggle="yes">Chem.</italic>
<italic toggle="yes">268</italic>
, 24607−24613.</mixed-citation>
</ref>
<ref id="atyp_ref11">
<mixed-citation>
<name name-style="western">
<surname>Jacobo-Molina</surname>
<given-names>A.</given-names>
</name>
,
<name name-style="western">
<surname>Ding</surname>
<given-names>J.</given-names>
</name>
,
<name name-style="western">
<surname>Nanni</surname>
<given-names>R. G.</given-names>
</name>
,
<name name-style="western">
<surname>Clark</surname>
<given-names>A. D.</given-names>
<suffix>Jr.</suffix>
</name>
,
<name name-style="western">
<surname>Lu</surname>
<given-names>X.</given-names>
</name>
,
<name name-style="western">
<surname>Tantillo</surname>
<given-names>C.</given-names>
</name>
,
<name name-style="western">
<surname>Williams</surname>
<given-names>R. L.</given-names>
</name>
,
<name name-style="western">
<surname>Kamer</surname>
<given-names>G.</given-names>
</name>
,
<name name-style="western">
<surname>Ferris</surname>
<given-names>A. L.</given-names>
</name>
,
<name name-style="western">
<surname>Clark</surname>
<given-names>P.</given-names>
</name>
,
<name name-style="western">
<surname>Hizi</surname>
<given-names>A.</given-names>
</name>
,
<name name-style="western">
<surname>Hughes</surname>
<given-names>S. H.</given-names>
</name>
, &
<name name-style="western">
<surname>Arnold</surname>
<given-names>E.</given-names>
</name>
(1993)
<italic toggle="yes">Proc.</italic>
<italic toggle="yes">Natl.</italic>
<italic toggle="yes">Acad.</italic>
<italic toggle="yes">Sci.</italic>
<italic toggle="yes">U.S.A.</italic>
<italic toggle="yes">90</italic>
, 6320−6324.
<pub-id pub-id-type="doi">10.1073/pnas.90.13.6320</pub-id>
</mixed-citation>
</ref>
<ref id="atyp_ref12">
<mixed-citation>
<name name-style="western">
<surname>Ji</surname>
<given-names>J.</given-names>
</name>
, &
<name name-style="western">
<surname>Loeb</surname>
<given-names>L. A.</given-names>
</name>
(1992)
<italic toggle="yes">Biochemistry</italic>
<italic toggle="yes">31</italic>
, 954−958.</mixed-citation>
</ref>
<ref id="atyp_ref13">
<mixed-citation>
<name name-style="western">
<surname>Ji</surname>
<given-names>J.</given-names>
</name>
, &
<name name-style="western">
<surname>Loeb</surname>
<given-names>L. A.</given-names>
</name>
(1994)
<italic toggle="yes">Virology</italic>
<italic toggle="yes">199</italic>
, 323−330.</mixed-citation>
</ref>
<ref id="atyp_ref14">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Johnson</surname>
<given-names>K. A.</given-names>
</name>
<source>Methods Enzymol.</source>
<year>1986</year>
<volume>134</volume>
<fpage>677</fpage>
<lpage>705</lpage>
</element-citation>
</ref>
<ref id="atyp_ref15">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Johnson</surname>
<given-names>K. A.</given-names>
</name>
<source>The Enzymes</source>
<year>1992</year>
<volume>20</volume>
<fpage>1</fpage>
<lpage>61</lpage>
</element-citation>
</ref>
<ref id="atyp_ref16">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Johnson</surname>
<given-names>K. A.</given-names>
</name>
<source>Annu. Rev. Biochem.</source>
<year>1993</year>
<volume>62</volume>
<fpage>685</fpage>
<lpage>713</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.bi.62.070193.003345</pub-id>
</element-citation>
</ref>
<ref id="atyp_ref17">
<mixed-citation>
<name name-style="western">
<surname>Kati</surname>
<given-names>W. M.</given-names>
</name>
,
<name name-style="western">
<surname>Johnson</surname>
<given-names>K. A.</given-names>
</name>
,
<name name-style="western">
<surname>Jerva</surname>
<given-names>L. F.</given-names>
</name>
, &
<name name-style="western">
<surname>Anderson</surname>
<given-names>K. S.</given-names>
</name>
(1992)
<italic toggle="yes">J.</italic>
<italic toggle="yes">Biol.</italic>
<italic toggle="yes">Chem.</italic>
<italic toggle="yes">267</italic>
, 25988−25997.</mixed-citation>
</ref>
<ref id="atyp_ref18">
<mixed-citation>
<name name-style="western">
<surname>Kohlstaedt</surname>
<given-names>L. A.</given-names>
</name>
,
<name name-style="western">
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
,
<name name-style="western">
<surname>Friedman</surname>
<given-names>J.</given-names>
</name>
,
<name name-style="western">
<surname>Rice</surname>
<given-names>P. A.</given-names>
</name>
, &
<name name-style="western">
<surname>Steitz</surname>
<given-names>T. A.</given-names>
</name>
(1992)
<italic toggle="yes">Science</italic>
<italic toggle="yes">256</italic>
, 1783−1790.</mixed-citation>
</ref>
<ref id="atyp_ref19">
<mixed-citation>
<name name-style="western">
<surname>Kuchta</surname>
<given-names>R. D.</given-names>
</name>
,
<name name-style="western">
<surname>Mizrahi</surname>
<given-names>V.</given-names>
</name>
,
<name name-style="western">
<surname>Benkovic</surname>
<given-names>P. A.</given-names>
</name>
,
<name name-style="western">
<surname>Johnson</surname>
<given-names>K. A.</given-names>
</name>
, &
<name name-style="western">
<surname>Benkovic</surname>
<given-names>S. J.</given-names>
</name>
(1987)
<italic toggle="yes">Biochemistry</italic>
<italic toggle="yes">26</italic>
, 8410−8417.</mixed-citation>
</ref>
<ref id="atyp_ref20">
<mixed-citation>
<name name-style="western">
<surname>Kuchta</surname>
<given-names>R. D.</given-names>
</name>
,
<name name-style="western">
<surname>Benkovic</surname>
<given-names>P.</given-names>
</name>
, &
<name name-style="western">
<surname>Benkovic</surname>
<given-names>S. J.</given-names>
</name>
(1988)
<italic toggle="yes">Biochemistry</italic>
<italic toggle="yes">27</italic>
, 6716−6725.</mixed-citation>
</ref>
<ref id="atyp_ref21">
<mixed-citation>
<name name-style="western">
<surname>Mansky</surname>
<given-names>L. M.</given-names>
</name>
, &
<name name-style="western">
<surname>Temin</surname>
<given-names>H. M.</given-names>
</name>
(1995)
<italic toggle="yes">J. Virol.</italic>
<italic toggle="yes">69</italic>
, 5087−5094.</mixed-citation>
</ref>
<ref id="atyp_ref22">
<mixed-citation>
<name name-style="western">
<surname>Mendelman</surname>
<given-names>L. V.</given-names>
</name>
,
<name name-style="western">
<surname>Boosalis</surname>
<given-names>M. S.</given-names>
</name>
,
<name name-style="western">
<surname>Petruska</surname>
<given-names>J.</given-names>
</name>
, &
<name name-style="western">
<surname>Goodman</surname>
<given-names>M. F.</given-names>
</name>
(1989)
<italic toggle="yes">J.</italic>
<italic toggle="yes">Biol.</italic>
<italic toggle="yes">Chem.</italic>
<italic toggle="yes">264</italic>
, 14415−14423.</mixed-citation>
</ref>
<ref id="atyp_ref23">
<mixed-citation>
<name name-style="western">
<surname>Mendelman</surname>
<given-names>L. V.</given-names>
</name>
,
<name name-style="western">
<surname>Petruska</surname>
<given-names>J.</given-names>
</name>
, &
<name name-style="western">
<surname>Goodman</surname>
<given-names>M. F.</given-names>
</name>
(1990)
<italic toggle="yes">J.</italic>
<italic toggle="yes">Biol.</italic>
<italic toggle="yes">Chem.</italic>
<italic toggle="yes">265</italic>
, 2338−2346.</mixed-citation>
</ref>
<ref id="atyp_ref24">
<mixed-citation>
<name name-style="western">
<surname>Müller</surname>
<given-names>B.</given-names>
</name>
,
<name name-style="western">
<surname>Restle</surname>
<given-names>T.</given-names>
</name>
,
<name name-style="western">
<surname>Weiss</surname>
<given-names>S.</given-names>
</name>
,
<name name-style="western">
<surname>Gautel</surname>
<given-names>M.</given-names>
</name>
,
<name name-style="western">
<surname>Sczakiel</surname>
<given-names>G.</given-names>
</name>
, &
<name name-style="western">
<surname>Goody</surname>
<given-names>R. S.</given-names>
</name>
(1989)
<italic toggle="yes">J.</italic>
<italic toggle="yes">Biol.</italic>
<italic toggle="yes">Chem.</italic>
<italic toggle="yes">264</italic>
, 13975−13978.</mixed-citation>
</ref>
<ref id="atyp_ref25">
<mixed-citation>
<name name-style="western">
<surname>Patel</surname>
<given-names>S. S.</given-names>
</name>
,
<name name-style="western">
<surname>Wong</surname>
<given-names>I.</given-names>
</name>
, &
<name name-style="western">
<surname>Johnson</surname>
<given-names>K. A.</given-names>
</name>
(1991)
<italic toggle="yes">Biochemistry</italic>
<italic toggle="yes">30</italic>
, 511−525.</mixed-citation>
</ref>
<ref id="atyp_ref26">
<mixed-citation>
<name name-style="western">
<surname>Perrino</surname>
<given-names>F.</given-names>
</name>
,
<name name-style="western">
<surname>Preston</surname>
<given-names>B. D.</given-names>
</name>
,
<name name-style="western">
<surname>Sandell</surname>
<given-names>L. L.</given-names>
</name>
, &
<name name-style="western">
<surname>Loeb</surname>
<given-names>L. A.</given-names>
</name>
(1989)
<italic toggle="yes">Proc.</italic>
<italic toggle="yes">Natl.</italic>
<italic toggle="yes">Acad.</italic>
<italic toggle="yes">Sci.</italic>
<italic toggle="yes">U.S.A</italic>
.
<italic toggle="yes"> 86</italic>
, 8343−8347</mixed-citation>
</ref>
<ref id="atyp_ref27">
<mixed-citation>
<name name-style="western">
<surname>Preston</surname>
<given-names>B. D.</given-names>
</name>
,
<name name-style="western">
<surname>Poiesz</surname>
<given-names>B. J.</given-names>
</name>
, &
<name name-style="western">
<surname>Loeb</surname>
<given-names>L. A.</given-names>
</name>
(1988)
<italic toggle="yes">Science</italic>
<italic toggle="yes">242</italic>
, 1168−1171.</mixed-citation>
</ref>
<ref id="atyp_ref28">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Preston</surname>
<given-names>B. D.</given-names>
</name>
<name name-style="western">
<surname>Keulen</surname>
<given-names>W.</given-names>
</name>
<name name-style="western">
<surname>Nijhuis</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Schuurman</surname>
<given-names>R.</given-names>
</name>
<name name-style="western">
<surname>Berkhout</surname>
<given-names>B.</given-names>
</name>
<name name-style="western">
<surname>Boucher</surname>
<given-names>C.</given-names>
</name>
<name name-style="western">
<surname>Balzarini</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Pelemans</surname>
<given-names>H.</given-names>
</name>
<name name-style="western">
<surname>De Clercq</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Karlsson</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Kleim</surname>
<given-names>J.-P.</given-names>
</name>
<name name-style="western">
<surname>Prasad</surname>
<given-names>V. R.</given-names>
</name>
<name name-style="western">
<surname>Drosopoulos</surname>
<given-names>W. C.</given-names>
</name>
<name name-style="western">
<surname>Wainberg</surname>
<given-names>M. A.</given-names>
</name>
<source>Science</source>
<year>1997</year>
<volume>275</volume>
<fpage>228</fpage>
<lpage>231</lpage>
</element-citation>
</ref>
<ref id="atyp_ref29">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Reardon</surname>
<given-names>J. E.</given-names>
</name>
<source>Biochemistry</source>
<year>1992</year>
<volume>31</volume>
<fpage>4473</fpage>
<lpage>4479</lpage>
</element-citation>
</ref>
<ref id="atyp_ref30">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Reardon</surname>
<given-names>J. E.</given-names>
</name>
<source>J. Biol. Chem.</source>
<year>1993</year>
<volume>268</volume>
<fpage>8743</fpage>
<lpage>8751</lpage>
</element-citation>
</ref>
<ref id="atyp_ref31">
<mixed-citation>
<name name-style="western">
<surname>Ricchetti</surname>
<given-names>M.</given-names>
</name>
, &
<name name-style="western">
<surname>Buc</surname>
<given-names>H.</given-names>
</name>
(1990)
<italic toggle="yes">The</italic>
<italic toggle="yes">EMBO</italic>
<italic toggle="yes">J</italic>
.
<italic toggle="yes"> 9</italic>
, 1583−1593.</mixed-citation>
</ref>
<ref id="atyp_ref32">
<mixed-citation>
<name name-style="western">
<surname>Rittinger</surname>
<given-names>K.</given-names>
</name>
,
<name name-style="western">
<surname>Divita</surname>
<given-names>G.</given-names>
</name>
, &
<name name-style="western">
<surname>Goody</surname>
<given-names>R. S.</given-names>
</name>
(1995)
<italic toggle="yes">Proc.</italic>
<italic toggle="yes">Natl.</italic>
<italic toggle="yes">Acad. Sci.</italic>
<italic toggle="yes">U.S.A.</italic>
<italic toggle="yes">92</italic>
, 8046−8049.
<pub-id pub-id-type="doi">10.1073/pnas.92.17.8046</pub-id>
</mixed-citation>
</ref>
<ref id="atyp_ref33">
<mixed-citation>
<name name-style="western">
<surname>Roberts</surname>
<given-names>J. D.</given-names>
</name>
,
<name name-style="western">
<surname>Bebenek</surname>
<given-names>K.</given-names>
</name>
, &
<name name-style="western">
<surname>Kunkel</surname>
<given-names>T. A.</given-names>
</name>
(1988)
<italic toggle="yes">Science</italic>
<italic toggle="yes">242</italic>
, 1171−1173</mixed-citation>
</ref>
<ref id="atyp_ref34">
<mixed-citation>
<name name-style="western">
<surname>Spence</surname>
<given-names>R. A.</given-names>
</name>
,
<name name-style="western">
<surname>Kati</surname>
<given-names>W. M.</given-names>
</name>
,
<name name-style="western">
<surname>Anderson</surname>
<given-names>K. S.</given-names>
</name>
, &
<name name-style="western">
<surname>Johnson</surname>
<given-names>K. A.</given-names>
</name>
(1995)
<italic toggle="yes">Science</italic>
<italic toggle="yes">267</italic>
, 988−993.</mixed-citation>
</ref>
<ref id="atyp_ref35">
<mixed-citation>
<name name-style="western">
<surname>Stahlhut</surname>
<given-names>M.</given-names>
</name>
,
<name name-style="western">
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
,
<name name-style="western">
<surname>Condra</surname>
<given-names>J. H.</given-names>
</name>
,
<name name-style="western">
<surname>Fu</surname>
<given-names>J.</given-names>
</name>
,
<name name-style="western">
<surname>Gotlib</surname>
<given-names>L.</given-names>
</name>
,
<name name-style="western">
<surname>Graham</surname>
<given-names>D. J.</given-names>
</name>
, &
<name name-style="western">
<surname>Olsen</surname>
<given-names>D.</given-names>
</name>
(1994)
<italic toggle="yes">Protein</italic>
<italic toggle="yes">Expression</italic>
<italic toggle="yes">Purif.</italic>
<italic toggle="yes">6</italic>
, 614−621.</mixed-citation>
</ref>
<ref id="atyp_ref36">
<mixed-citation>
<name name-style="western">
<surname>Stephenson</surname>
<given-names>C.</given-names>
</name>
, &
<name name-style="western">
<surname>Karran</surname>
<given-names>P.</given-names>
</name>
(1989)
<italic toggle="yes">J.</italic>
<italic toggle="yes">Biol.</italic>
<italic toggle="yes">Chem.</italic>
<italic toggle="yes">264</italic>
, 21177−21182.</mixed-citation>
</ref>
<ref id="atyp_ref37">
<mixed-citation>
<name name-style="western">
<surname>Sugimoto</surname>
<given-names>N.</given-names>
</name>
,
<name name-style="western">
<surname>Nakano</surname>
<given-names>S.</given-names>
</name>
,
<name name-style="western">
<surname>Katoh</surname>
<given-names>M.</given-names>
</name>
,
<name name-style="western">
<surname>Matsumura</surname>
<given-names>A.</given-names>
</name>
,
<name name-style="western">
<surname>Nakamuta</surname>
<given-names>H.</given-names>
</name>
,
<name name-style="western">
<surname>Ohmichi</surname>
<given-names>T.</given-names>
</name>
,
<name name-style="western">
<surname>Yoneyama</surname>
<given-names>M.</given-names>
</name>
, &
<name name-style="western">
<surname>Saski</surname>
<given-names>M.</given-names>
</name>
(1995)
<italic toggle="yes">Biochemistry</italic>
<italic toggle="yes">34</italic>
, 11211−11216.</mixed-citation>
</ref>
<ref id="atyp_ref38">
<mixed-citation>
<name name-style="western">
<surname>Takeuchi</surname>
<given-names>Y.</given-names>
</name>
,
<name name-style="western">
<surname>Nagumo</surname>
<given-names>T.</given-names>
</name>
, &
<name name-style="western">
<surname>Hoshing</surname>
<given-names>H.</given-names>
</name>
(1988)
<italic toggle="yes">J.</italic>
<italic toggle="yes">Virol.</italic>
<italic toggle="yes">62</italic>
, 3900−3902.</mixed-citation>
</ref>
<ref id="atyp_ref39">
<mixed-citation>
<name name-style="western">
<surname>Wang</surname>
<given-names>A. C.</given-names>
</name>
,
<name name-style="western">
<surname>Kim</surname>
<given-names>S.</given-names>
</name>
,
<name name-style="western">
<surname>Flynn</surname>
<given-names>P.</given-names>
</name>
,
<name name-style="western">
<surname>Chou</surname>
<given-names>S.-H.</given-names>
</name>
,
<name name-style="western">
<surname>Orban</surname>
<given-names>J.</given-names>
</name>
, &
<name name-style="western">
<surname>Reid</surname>
<given-names>B. R.</given-names>
</name>
(1992)
<italic toggle="yes">Biochemistry</italic>
<italic toggle="yes">31</italic>
, 3940−3946.</mixed-citation>
</ref>
<ref id="atyp_ref40">
<mixed-citation>
<name name-style="western">
<surname>Weber</surname>
<given-names>J.</given-names>
</name>
, &
<name name-style="western">
<surname>Grosse</surname>
<given-names>F.</given-names>
</name>
(1989)
<italic toggle="yes">Nucleic.</italic>
<italic toggle="yes">Acids</italic>
<italic toggle="yes">Res.</italic>
<italic toggle="yes">17</italic>
, 1379−1393.
<pub-id pub-id-type="doi">10.1093/nar/17.4.1379</pub-id>
</mixed-citation>
</ref>
<ref id="atyp_ref41">
<mixed-citation>
<name name-style="western">
<surname>Wong</surname>
<given-names>I.</given-names>
</name>
,
<name name-style="western">
<surname>Patel</surname>
<given-names>S. S.</given-names>
</name>
, &
<name name-style="western">
<surname>Johnson</surname>
<given-names>K. A.</given-names>
</name>
(1991)
<italic toggle="yes">Biochemistry</italic>
<italic toggle="yes">30</italic>
, 526−537.</mixed-citation>
</ref>
<ref id="atyp_ref42">
<mixed-citation>
<name name-style="western">
<surname>Yu</surname>
<given-names>H.</given-names>
</name>
, &
<name name-style="western">
<surname>Goodman</surname>
<given-names>M. F.</given-names>
</name>
(1992)
<italic toggle="yes">J.</italic>
<italic toggle="yes">Biol.</italic>
<italic toggle="yes">Chem.</italic>
<italic toggle="yes">267</italic>
, 10888−10896.</mixed-citation>
</ref>
<ref id="atyp_ref43">
<mixed-citation>
<name name-style="western">
<surname>Zhu</surname>
<given-names>L.</given-names>
</name>
,
<name name-style="western">
<surname>Salazar</surname>
<given-names>M.</given-names>
</name>
, &
<name name-style="western">
<surname>Reid</surname>
<given-names>R. R.</given-names>
</name>
(1995)
<italic toggle="yes">Biochemistry</italic>
<italic toggle="yes">34</italic>
, 2372−2380.</mixed-citation>
</ref>
<ref id="atyp_ref44">
<mixed-citation>
<name name-style="western">
<surname>Zinnen</surname>
<given-names>S.</given-names>
</name>
,
<name name-style="western">
<surname>Hsieh</surname>
<given-names>J. C.</given-names>
</name>
, &
<name name-style="western">
<surname>Modrich</surname>
<given-names>P.</given-names>
</name>
(1994)
<italic toggle="yes">J.</italic>
<italic toggle="yes">Biol.</italic>
<italic toggle="yes">Chem.</italic>
<italic toggle="yes">269</italic>
, 24195−24202.</mixed-citation>
</ref>
<ref id="bi9713851b00001">
<mixed-citation>
<comment>Abbreviations used:  dNTP, deoxynucleoside 5‘-triphosphate; dATP, deoxyadenosine 5‘-triphosphate; dCTP, deoxycytidine 5‘-triphosphate; dGTP, deoxyguanosine 5‘-triphosphate; dTTP, deoxythymidine 5‘-triphosphate; EDTA, ethylenediaminetetraacetic acid; HIV-1, human immunodeficiency virus type 1; RT, reverse transcriptase.</comment>
</mixed-citation>
</ref>
</ref-list>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>RNA Dependent DNA Replication Fidelity of HIV-1 Reverse Transcriptase:  Evidence of Discrimination between DNA and RNA Substrates†</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>RNA Dependent DNA Replication Fidelity of HIV-1 Reverse Transcriptase:  Evidence of Discrimination between DNA and RNA Substrates†</title>
</titleInfo>
<name type="personal">
<namePart type="family">KERR</namePart>
<namePart type="given">Stephen G.</namePart>
<affiliation>Department of Pharmacology, 333 Cedar Street, Yale University School of Medicine, New Haven, Connecticut 06520-8066</affiliation>
<affiliation> Present address:  Massachusetts College ofPharmacy & AlliedHealth Sciences, 179 Longwood Ave., Boston, MA 02115.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal" displayLabel="corresp">
<namePart type="family">ANDERSON</namePart>
<namePart type="given">Karen S.</namePart>
<affiliation>Department of Pharmacology, 333 Cedar Street, Yale University School of Medicine, New Haven, Connecticut 06520-8066</affiliation>
<affiliation> Author to whom correspondence should be addressed.Telephone:(203)-785-4526. Fax: (203)-785-7670. email:karen.anderson@yale.edu.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>American Chemical Society</publisher>
<dateCreated encoding="w3cdtf">1997-11-18</dateCreated>
<dateIssued encoding="w3cdtf">1997-11-18</dateIssued>
<copyrightDate encoding="w3cdtf">1997</copyrightDate>
</originInfo>
<note type="footnote" ID="bi9713851AF2"> This work was supported by NIH Grant GM 49551 to K.S.A.</note>
<note type="footnote" ID="bi9713851AF7"> Abstract published in Advance ACS Abstracts, November 1, 1997.</note>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract>The RNA dependent DNA replication fidelity of HIV-1 reverse transcriptase has been investigated using pre-steady-state kinetics under single turnover conditions. In contrast to previous estimates of low replication fidelity of HIV-1 reverse transcriptase, the present study finds the enzyme to be more highly discriminating when an RNA/DNA template−primer is employed as compared with the corresponding DNA/DNA template−primer. The basis of this selectivity is due to extremely slow polymerization kinetics for incorporation of an incorrect deoxynucleotide. The maximum rates for misincorporation (kpol) of dGTP, dCTP, and dTTP opposite a template uridine were 0.2, 0.03, and 0.003 s-1, respectively. The equilibrium dissociation constants (Kd) for the incorrect nucleotide opposite a template uridine were 1.0, 1.1, and 0.7 mM for dGTP, dCTP, and dTTP, respectively. These kinetic values provide fidelity estimates of 26 000 for discrimination against dGTP, 176 000 for dCTP, and 1 × 106 for dTTP misincorporation at this position. Similar observations were obtained when incorrect nucleotide misincorporation was examined opposite a template adenine. Thus in a direct comparison of RNA/DNA and DNA/DNA template−primer substrates, HIV-1 RT exhibits approximately a 10−60-fold increase in fidelity. This study augments our current understanding of the similarities and differences of catalytic activity of HIV-1 reverse transcriptase using RNA and DNA substrates. Moreover, these studies lend further support for a model for nucleotide incorporation by HIV-1 reverse transcriptase involving a two-step binding mechanism governed by a rate-limiting conformational change for correct incorporation.</abstract>
<note type="footnote" ID="bi9713851AF2"> This work was supported by NIH Grant GM 49551 to K.S.A.</note>
<note type="footnote" ID="bi9713851AF7"> Abstract published in Advance ACS Abstracts, November 1, 1997.</note>
<relatedItem type="host">
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Biochemistry</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0006-2960</identifier>
<identifier type="eISSN">1520-4995</identifier>
<identifier type="acspubs">bi</identifier>
<identifier type="coden">BICHAW</identifier>
<identifier type="uri">pubs.acs.org/biochemistry</identifier>
<part>
<date>1997</date>
<detail type="volume">
<caption>vol.</caption>
<number>36</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>46</number>
</detail>
<extent unit="pages">
<start>14056</start>
<end>14063</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="atyp_ref1" displayLabel="bib1">
<name type="personal">
<namePart type="family">ABBOTTS</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">JAJU</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">WILSON</namePart>
<namePart type="given">S.</namePart>
</name>
<titleInfo>
<title>J.</title>
</titleInfo>
<note type="content-in-line">AbbottsJ., JajuM., & WilsonS. (1991) J. Biol. Chem. 266, 3937−3943.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref2" displayLabel="bib2">
<name type="personal">
<namePart type="family">BEBENEK</namePart>
<namePart type="given">K.</namePart>
</name>
<name type="personal">
<namePart type="family">ABBOTTS</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">ROBERTS</namePart>
<namePart type="given">J. D.</namePart>
</name>
<name type="personal">
<namePart type="family">WILSON</namePart>
<namePart type="given">S. H.</namePart>
</name>
<name type="personal">
<namePart type="family">KUNKEL</namePart>
<namePart type="given">T. A.</namePart>
</name>
<titleInfo>
<title>J.</title>
</titleInfo>
<note type="content-in-line">BebenekK., AbbottsJ., RobertsJ. D., WilsonS. H., & KunkelT. A. (1989) J. Biol. Chem. 264, 16948−16956.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref3" displayLabel="bib3">
<name type="personal">
<namePart type="family">BEBENEK</namePart>
<namePart type="given">K.</namePart>
</name>
<name type="personal">
<namePart type="family">ABBOTTS</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">WILSON</namePart>
<namePart type="given">S. H.</namePart>
</name>
<name type="personal">
<namePart type="family">KUNKEL</namePart>
<namePart type="given">T. A.</namePart>
</name>
<titleInfo>
<title>J.</title>
</titleInfo>
<note type="content-in-line">BebenekK., AbbottsJ., WilsonS. H., & KunkelT. A. (1993) J. Biol. Chem. 268, 10324−10334</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref4" displayLabel="bib4">
<name type="personal">
<namePart type="family">BOYER</namePart>
<namePart type="given">J. C.</namePart>
</name>
<name type="personal">
<namePart type="family">BEBENEK</namePart>
<namePart type="given">K.</namePart>
</name>
<name type="personal">
<namePart type="family">KUNKEL</namePart>
<namePart type="given">T. A.</namePart>
</name>
<titleInfo>
<title>Proc.</title>
</titleInfo>
<note type="content-in-line">BoyerJ. C., BebenekK., & KunkelT. A. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 6919−6923</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref5" displayLabel="bib5">
<name type="personal">
<namePart type="family">COFFIN</namePart>
<namePart type="given">J. M.</namePart>
</name>
<titleInfo>
<title>Cell</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Coffin J. M. Cell 1986 46 1 4</note>
<part>
<date>1986</date>
<detail type="volume">
<caption>vol.</caption>
<number>46</number>
</detail>
<extent unit="pages">
<start>1</start>
<end>4</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="atyp_ref6" displayLabel="bib6">
<name type="personal">
<namePart type="family">FEDOROFF</namePart>
<namePart type="given">O. Y.</namePart>
</name>
<name type="personal">
<namePart type="family">SALAZAR</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">REID</namePart>
<namePart type="given">B. R.</namePart>
</name>
<titleInfo>
<title>J.</title>
</titleInfo>
<note type="content-in-line">FedoroffO. Y., SalazarM., & ReidB. R. (1993) J. Mol. Biol. 233, 509−523.10.1006/jmbi.1993.1528</note>
<identifier type="doi">10.1006/jmbi.1993.1528</identifier>
</relatedItem>
<relatedItem type="references" ID="atyp_ref7" displayLabel="bib7">
<name type="personal">
<namePart type="family">GLAZER</namePart>
<namePart type="given">P. M.</namePart>
</name>
<name type="personal">
<namePart type="family">SARKAR</namePart>
<namePart type="given">A. N.</namePart>
</name>
<name type="personal">
<namePart type="family">CHISHOLM</namePart>
<namePart type="given">G. E.</namePart>
</name>
<name type="personal">
<namePart type="family">SUMMERS</namePart>
<namePart type="given">W. C.</namePart>
</name>
<titleInfo>
<title>Mol.</title>
</titleInfo>
<note type="content-in-line">GlazerP. M., SarkarA. N., ChisholmG. E., & SummersW. C. (1987) Mol. Cell. Biol. 7, 218−224.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref8" displayLabel="bib8">
<name type="personal">
<namePart type="family">GOPALAKRISHNAN</namePart>
<namePart type="given">V.</namePart>
</name>
<name type="personal">
<namePart type="family">PELISKA</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">BENKOVIC</namePart>
<namePart type="given">S.</namePart>
</name>
<titleInfo>
<title>Proc.</title>
</titleInfo>
<note type="content-in-line">GopalakrishnanV., PeliskaJ., & BenkovicS. (1992) Proc. Natl. Acad. Sci. U.S.A., 89, 10763−1076710.1073/pnas.89.22.10763</note>
<identifier type="doi">10.1073/pnas.89.22.10763</identifier>
</relatedItem>
<relatedItem type="references" ID="atyp_ref9" displayLabel="bib9">
<name type="personal">
<namePart type="family">GOODENOW</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">HUET</namePart>
<namePart type="given">T.</namePart>
</name>
<name type="personal">
<namePart type="family">SAURIN</namePart>
<namePart type="given">W.</namePart>
</name>
<name type="personal">
<namePart type="family">KWOK</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">SNINSKY</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">WAIN-HOBSON</namePart>
<namePart type="given">S.</namePart>
</name>
<titleInfo>
<title>J.</title>
</titleInfo>
<note type="content-in-line">GoodenowM., HuetT., SaurinW., KwokS., SninskyJ., & Wain-HobsonS. (1989) J. Acquired Immune Defic. Syndr. 2, 344−352</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref10" displayLabel="bib10">
<name type="personal">
<namePart type="family">HSIEH</namePart>
<namePart type="given">J.-C.</namePart>
</name>
<name type="personal">
<namePart type="family">ZINNEN</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">MODRICH</namePart>
<namePart type="given">P.</namePart>
</name>
<titleInfo>
<title>J.</title>
</titleInfo>
<note type="content-in-line">HsiehJ.-C., ZinnenS., & ModrichP. (1993) J. Biol. Chem. 268, 24607−24613.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref11" displayLabel="bib11">
<name type="personal">
<namePart type="family">JACOBO-MOLINA</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">DING</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">NANNI</namePart>
<namePart type="given">R. G.</namePart>
</name>
<name type="personal">
<namePart type="family">CLARK</namePart>
<namePart type="given">A. D.</namePart>
</name>
<name type="personal">
<namePart type="family">LU</namePart>
<namePart type="given">X.</namePart>
</name>
<name type="personal">
<namePart type="family">TANTILLO</namePart>
<namePart type="given">C.</namePart>
</name>
<name type="personal">
<namePart type="family">WILLIAMS</namePart>
<namePart type="given">R. L.</namePart>
</name>
<name type="personal">
<namePart type="family">KAMER</namePart>
<namePart type="given">G.</namePart>
</name>
<name type="personal">
<namePart type="family">FERRIS</namePart>
<namePart type="given">A. L.</namePart>
</name>
<name type="personal">
<namePart type="family">CLARK</namePart>
<namePart type="given">P.</namePart>
</name>
<name type="personal">
<namePart type="family">HIZI</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">HUGHES</namePart>
<namePart type="given">S. H.</namePart>
</name>
<name type="personal">
<namePart type="family">ARNOLD</namePart>
<namePart type="given">E.</namePart>
</name>
<titleInfo>
<title>Proc.</title>
</titleInfo>
<note type="content-in-line">Jacobo-MolinaA., DingJ., NanniR. G., ClarkA. D.Jr., LuX., TantilloC., WilliamsR. L., KamerG., FerrisA. L., ClarkP., HiziA., HughesS. H., & ArnoldE. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 6320−6324.10.1073/pnas.90.13.6320</note>
<identifier type="doi">10.1073/pnas.90.13.6320</identifier>
</relatedItem>
<relatedItem type="references" ID="atyp_ref12" displayLabel="bib12">
<name type="personal">
<namePart type="family">JI</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">LOEB</namePart>
<namePart type="given">L. A.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<note type="content-in-line">JiJ., & LoebL. A. (1992) Biochemistry 31, 954−958.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref13" displayLabel="bib13">
<name type="personal">
<namePart type="family">JI</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">LOEB</namePart>
<namePart type="given">L. A.</namePart>
</name>
<titleInfo>
<title>Virology</title>
</titleInfo>
<note type="content-in-line">JiJ., & LoebL. A. (1994) Virology 199, 323−330.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref14" displayLabel="bib14">
<name type="personal">
<namePart type="family">JOHNSON</namePart>
<namePart type="given">K. A.</namePart>
</name>
<titleInfo>
<title>Methods Enzymol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Johnson K. A. Methods Enzymol. 1986 134 677 705</note>
<part>
<date>1986</date>
<detail type="volume">
<caption>vol.</caption>
<number>134</number>
</detail>
<extent unit="pages">
<start>677</start>
<end>705</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="atyp_ref15" displayLabel="bib15">
<name type="personal">
<namePart type="family">JOHNSON</namePart>
<namePart type="given">K. A.</namePart>
</name>
<titleInfo>
<title>The Enzymes</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Johnson K. A. The Enzymes 1992 20 1 61</note>
<part>
<date>1992</date>
<detail type="volume">
<caption>vol.</caption>
<number>20</number>
</detail>
<extent unit="pages">
<start>1</start>
<end>61</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="atyp_ref16" displayLabel="bib16">
<name type="personal">
<namePart type="family">JOHNSON</namePart>
<namePart type="given">K. A.</namePart>
</name>
<titleInfo>
<title>Annu. Rev. Biochem.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Johnson K. A. Annu. Rev. Biochem. 1993 62 685 713 10.1146/annurev.bi.62.070193.003345</note>
<identifier type="doi">10.1146/annurev.bi.62.070193.003345</identifier>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>62</number>
</detail>
<extent unit="pages">
<start>685</start>
<end>713</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="atyp_ref17" displayLabel="bib17">
<name type="personal">
<namePart type="family">KATI</namePart>
<namePart type="given">W. M.</namePart>
</name>
<name type="personal">
<namePart type="family">JOHNSON</namePart>
<namePart type="given">K. A.</namePart>
</name>
<name type="personal">
<namePart type="family">JERVA</namePart>
<namePart type="given">L. F.</namePart>
</name>
<name type="personal">
<namePart type="family">ANDERSON</namePart>
<namePart type="given">K. S.</namePart>
</name>
<titleInfo>
<title>J.</title>
</titleInfo>
<note type="content-in-line">KatiW. M., JohnsonK. A., JervaL. F., & AndersonK. S. (1992) J. Biol. Chem. 267, 25988−25997.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref18" displayLabel="bib18">
<name type="personal">
<namePart type="family">KOHLSTAEDT</namePart>
<namePart type="given">L. A.</namePart>
</name>
<name type="personal">
<namePart type="family">WANG</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">FRIEDMAN</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">RICE</namePart>
<namePart type="given">P. A.</namePart>
</name>
<name type="personal">
<namePart type="family">STEITZ</namePart>
<namePart type="given">T. A.</namePart>
</name>
<titleInfo>
<title>Science</title>
</titleInfo>
<note type="content-in-line">KohlstaedtL. A., WangJ., FriedmanJ., RiceP. A., & SteitzT. A. (1992) Science 256, 1783−1790.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref19" displayLabel="bib19">
<name type="personal">
<namePart type="family">KUCHTA</namePart>
<namePart type="given">R. D.</namePart>
</name>
<name type="personal">
<namePart type="family">MIZRAHI</namePart>
<namePart type="given">V.</namePart>
</name>
<name type="personal">
<namePart type="family">BENKOVIC</namePart>
<namePart type="given">P. A.</namePart>
</name>
<name type="personal">
<namePart type="family">JOHNSON</namePart>
<namePart type="given">K. A.</namePart>
</name>
<name type="personal">
<namePart type="family">BENKOVIC</namePart>
<namePart type="given">S. J.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<note type="content-in-line">KuchtaR. D., MizrahiV., BenkovicP. A., JohnsonK. A., & BenkovicS. J. (1987) Biochemistry 26, 8410−8417.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref20" displayLabel="bib20">
<name type="personal">
<namePart type="family">KUCHTA</namePart>
<namePart type="given">R. D.</namePart>
</name>
<name type="personal">
<namePart type="family">BENKOVIC</namePart>
<namePart type="given">P.</namePart>
</name>
<name type="personal">
<namePart type="family">BENKOVIC</namePart>
<namePart type="given">S. J.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<note type="content-in-line">KuchtaR. D., BenkovicP., & BenkovicS. J. (1988) Biochemistry 27, 6716−6725.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref21" displayLabel="bib21">
<name type="personal">
<namePart type="family">MANSKY</namePart>
<namePart type="given">L. M.</namePart>
</name>
<name type="personal">
<namePart type="family">TEMIN</namePart>
<namePart type="given">H. M.</namePart>
</name>
<titleInfo>
<title>J. Virol.</title>
</titleInfo>
<note type="content-in-line">ManskyL. M., & TeminH. M. (1995) J. Virol. 69, 5087−5094.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref22" displayLabel="bib22">
<name type="personal">
<namePart type="family">MENDELMAN</namePart>
<namePart type="given">L. V.</namePart>
</name>
<name type="personal">
<namePart type="family">BOOSALIS</namePart>
<namePart type="given">M. S.</namePart>
</name>
<name type="personal">
<namePart type="family">PETRUSKA</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">GOODMAN</namePart>
<namePart type="given">M. F.</namePart>
</name>
<titleInfo>
<title>J.</title>
</titleInfo>
<note type="content-in-line">MendelmanL. V., BoosalisM. S., PetruskaJ., & GoodmanM. F. (1989) J. Biol. Chem. 264, 14415−14423.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref23" displayLabel="bib23">
<name type="personal">
<namePart type="family">MENDELMAN</namePart>
<namePart type="given">L. V.</namePart>
</name>
<name type="personal">
<namePart type="family">PETRUSKA</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">GOODMAN</namePart>
<namePart type="given">M. F.</namePart>
</name>
<titleInfo>
<title>J.</title>
</titleInfo>
<note type="content-in-line">MendelmanL. V., PetruskaJ., & GoodmanM. F. (1990) J. Biol. Chem. 265, 2338−2346.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref24" displayLabel="bib24">
<name type="personal">
<namePart type="family">MüLLER</namePart>
<namePart type="given">B.</namePart>
</name>
<name type="personal">
<namePart type="family">RESTLE</namePart>
<namePart type="given">T.</namePart>
</name>
<name type="personal">
<namePart type="family">WEISS</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">GAUTEL</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">SCZAKIEL</namePart>
<namePart type="given">G.</namePart>
</name>
<name type="personal">
<namePart type="family">GOODY</namePart>
<namePart type="given">R. S.</namePart>
</name>
<titleInfo>
<title>J.</title>
</titleInfo>
<note type="content-in-line">MüllerB., RestleT., WeissS., GautelM., SczakielG., & GoodyR. S. (1989) J. Biol. Chem. 264, 13975−13978.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref25" displayLabel="bib25">
<name type="personal">
<namePart type="family">PATEL</namePart>
<namePart type="given">S. S.</namePart>
</name>
<name type="personal">
<namePart type="family">WONG</namePart>
<namePart type="given">I.</namePart>
</name>
<name type="personal">
<namePart type="family">JOHNSON</namePart>
<namePart type="given">K. A.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<note type="content-in-line">PatelS. S., WongI., & JohnsonK. A. (1991) Biochemistry 30, 511−525.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref26" displayLabel="bib26">
<name type="personal">
<namePart type="family">PERRINO</namePart>
<namePart type="given">F.</namePart>
</name>
<name type="personal">
<namePart type="family">PRESTON</namePart>
<namePart type="given">B. D.</namePart>
</name>
<name type="personal">
<namePart type="family">SANDELL</namePart>
<namePart type="given">L. L.</namePart>
</name>
<name type="personal">
<namePart type="family">LOEB</namePart>
<namePart type="given">L. A.</namePart>
</name>
<titleInfo>
<title>Proc.</title>
</titleInfo>
<note type="content-in-line">PerrinoF., PrestonB. D., SandellL. L., & LoebL. A. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 8343−8347</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref27" displayLabel="bib27">
<name type="personal">
<namePart type="family">PRESTON</namePart>
<namePart type="given">B. D.</namePart>
</name>
<name type="personal">
<namePart type="family">POIESZ</namePart>
<namePart type="given">B. J.</namePart>
</name>
<name type="personal">
<namePart type="family">LOEB</namePart>
<namePart type="given">L. A.</namePart>
</name>
<titleInfo>
<title>Science</title>
</titleInfo>
<note type="content-in-line">PrestonB. D., PoieszB. J., & LoebL. A. (1988) Science 242, 1168−1171.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref28" displayLabel="bib28">
<name type="personal">
<namePart type="family">PRESTON</namePart>
<namePart type="given">B. D.</namePart>
</name>
<name type="personal">
<namePart type="family">KEULEN</namePart>
<namePart type="given">W.</namePart>
</name>
<name type="personal">
<namePart type="family">NIJHUIS</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">SCHUURMAN</namePart>
<namePart type="given">R.</namePart>
</name>
<name type="personal">
<namePart type="family">BERKHOUT</namePart>
<namePart type="given">B.</namePart>
</name>
<name type="personal">
<namePart type="family">BOUCHER</namePart>
<namePart type="given">C.</namePart>
</name>
<name type="personal">
<namePart type="family">BALZARINI</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">PELEMANS</namePart>
<namePart type="given">H.</namePart>
</name>
<name type="personal">
<namePart type="family">DE CLERCQ</namePart>
<namePart type="given">E.</namePart>
</name>
<name type="personal">
<namePart type="family">KARLSSON</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">KLEIM</namePart>
<namePart type="given">J.-P.</namePart>
</name>
<name type="personal">
<namePart type="family">PRASAD</namePart>
<namePart type="given">V. R.</namePart>
</name>
<name type="personal">
<namePart type="family">DROSOPOULOS</namePart>
<namePart type="given">W. C.</namePart>
</name>
<name type="personal">
<namePart type="family">WAINBERG</namePart>
<namePart type="given">M. A.</namePart>
</name>
<titleInfo>
<title>Science</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Preston B. D. Keulen W. Nijhuis M. Schuurman R. Berkhout B. Boucher C. Balzarini J. Pelemans H. De Clercq E. Karlsson A. Kleim J.-P. Prasad V. R. Drosopoulos W. C. Wainberg M. A. Science 1997 275 228 231</note>
<part>
<date>1997</date>
<detail type="volume">
<caption>vol.</caption>
<number>275</number>
</detail>
<extent unit="pages">
<start>228</start>
<end>231</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="atyp_ref29" displayLabel="bib29">
<name type="personal">
<namePart type="family">REARDON</namePart>
<namePart type="given">J. E.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Reardon J. E. Biochemistry 1992 31 4473 4479</note>
<part>
<date>1992</date>
<detail type="volume">
<caption>vol.</caption>
<number>31</number>
</detail>
<extent unit="pages">
<start>4473</start>
<end>4479</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="atyp_ref30" displayLabel="bib30">
<name type="personal">
<namePart type="family">REARDON</namePart>
<namePart type="given">J. E.</namePart>
</name>
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Reardon J. E. J. Biol. Chem. 1993 268 8743 8751</note>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>268</number>
</detail>
<extent unit="pages">
<start>8743</start>
<end>8751</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="atyp_ref31" displayLabel="bib31">
<name type="personal">
<namePart type="family">RICCHETTI</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">BUC</namePart>
<namePart type="given">H.</namePart>
</name>
<titleInfo>
<title>The</title>
</titleInfo>
<note type="content-in-line">RicchettiM., & BucH. (1990) The EMBO J. 9, 1583−1593.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref32" displayLabel="bib32">
<name type="personal">
<namePart type="family">RITTINGER</namePart>
<namePart type="given">K.</namePart>
</name>
<name type="personal">
<namePart type="family">DIVITA</namePart>
<namePart type="given">G.</namePart>
</name>
<name type="personal">
<namePart type="family">GOODY</namePart>
<namePart type="given">R. S.</namePart>
</name>
<titleInfo>
<title>Proc.</title>
</titleInfo>
<note type="content-in-line">RittingerK., DivitaG., & GoodyR. S. (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 8046−8049.10.1073/pnas.92.17.8046</note>
<identifier type="doi">10.1073/pnas.92.17.8046</identifier>
</relatedItem>
<relatedItem type="references" ID="atyp_ref33" displayLabel="bib33">
<name type="personal">
<namePart type="family">ROBERTS</namePart>
<namePart type="given">J. D.</namePart>
</name>
<name type="personal">
<namePart type="family">BEBENEK</namePart>
<namePart type="given">K.</namePart>
</name>
<name type="personal">
<namePart type="family">KUNKEL</namePart>
<namePart type="given">T. A.</namePart>
</name>
<titleInfo>
<title>Science</title>
</titleInfo>
<note type="content-in-line">RobertsJ. D., BebenekK., & KunkelT. A. (1988) Science 242, 1171−1173</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref34" displayLabel="bib34">
<name type="personal">
<namePart type="family">SPENCE</namePart>
<namePart type="given">R. A.</namePart>
</name>
<name type="personal">
<namePart type="family">KATI</namePart>
<namePart type="given">W. M.</namePart>
</name>
<name type="personal">
<namePart type="family">ANDERSON</namePart>
<namePart type="given">K. S.</namePart>
</name>
<name type="personal">
<namePart type="family">JOHNSON</namePart>
<namePart type="given">K. A.</namePart>
</name>
<titleInfo>
<title>Science</title>
</titleInfo>
<note type="content-in-line">SpenceR. A., KatiW. M., AndersonK. S., & JohnsonK. A. (1995) Science 267, 988−993.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref35" displayLabel="bib35">
<name type="personal">
<namePart type="family">STAHLHUT</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">LI</namePart>
<namePart type="given">Y.</namePart>
</name>
<name type="personal">
<namePart type="family">CONDRA</namePart>
<namePart type="given">J. H.</namePart>
</name>
<name type="personal">
<namePart type="family">FU</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">GOTLIB</namePart>
<namePart type="given">L.</namePart>
</name>
<name type="personal">
<namePart type="family">GRAHAM</namePart>
<namePart type="given">D. J.</namePart>
</name>
<name type="personal">
<namePart type="family">OLSEN</namePart>
<namePart type="given">D.</namePart>
</name>
<titleInfo>
<title>Protein</title>
</titleInfo>
<note type="content-in-line">StahlhutM., LiY., CondraJ. H., FuJ., GotlibL., GrahamD. J., & OlsenD. (1994) Protein Expression Purif. 6, 614−621.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref36" displayLabel="bib36">
<name type="personal">
<namePart type="family">STEPHENSON</namePart>
<namePart type="given">C.</namePart>
</name>
<name type="personal">
<namePart type="family">KARRAN</namePart>
<namePart type="given">P.</namePart>
</name>
<titleInfo>
<title>J.</title>
</titleInfo>
<note type="content-in-line">StephensonC., & KarranP. (1989) J. Biol. Chem. 264, 21177−21182.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref37" displayLabel="bib37">
<name type="personal">
<namePart type="family">SUGIMOTO</namePart>
<namePart type="given">N.</namePart>
</name>
<name type="personal">
<namePart type="family">NAKANO</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">KATOH</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">MATSUMURA</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">NAKAMUTA</namePart>
<namePart type="given">H.</namePart>
</name>
<name type="personal">
<namePart type="family">OHMICHI</namePart>
<namePart type="given">T.</namePart>
</name>
<name type="personal">
<namePart type="family">YONEYAMA</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">SASKI</namePart>
<namePart type="given">M.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<note type="content-in-line">SugimotoN., NakanoS., KatohM., MatsumuraA., NakamutaH., OhmichiT., YoneyamaM., & SaskiM. (1995) Biochemistry 34, 11211−11216.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref38" displayLabel="bib38">
<name type="personal">
<namePart type="family">TAKEUCHI</namePart>
<namePart type="given">Y.</namePart>
</name>
<name type="personal">
<namePart type="family">NAGUMO</namePart>
<namePart type="given">T.</namePart>
</name>
<name type="personal">
<namePart type="family">HOSHING</namePart>
<namePart type="given">H.</namePart>
</name>
<titleInfo>
<title>J.</title>
</titleInfo>
<note type="content-in-line">TakeuchiY., NagumoT., & HoshingH. (1988) J. Virol. 62, 3900−3902.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref39" displayLabel="bib39">
<name type="personal">
<namePart type="family">WANG</namePart>
<namePart type="given">A. C.</namePart>
</name>
<name type="personal">
<namePart type="family">KIM</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">FLYNN</namePart>
<namePart type="given">P.</namePart>
</name>
<name type="personal">
<namePart type="family">CHOU</namePart>
<namePart type="given">S.-H.</namePart>
</name>
<name type="personal">
<namePart type="family">ORBAN</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">REID</namePart>
<namePart type="given">B. R.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<note type="content-in-line">WangA. C., KimS., FlynnP., ChouS.-H., OrbanJ., & ReidB. R. (1992) Biochemistry 31, 3940−3946.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref40" displayLabel="bib40">
<name type="personal">
<namePart type="family">WEBER</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">GROSSE</namePart>
<namePart type="given">F.</namePart>
</name>
<titleInfo>
<title>Nucleic.</title>
</titleInfo>
<note type="content-in-line">WeberJ., & GrosseF. (1989) Nucleic. Acids Res. 17, 1379−1393.10.1093/nar/17.4.1379</note>
<identifier type="doi">10.1093/nar/17.4.1379</identifier>
</relatedItem>
<relatedItem type="references" ID="atyp_ref41" displayLabel="bib41">
<name type="personal">
<namePart type="family">WONG</namePart>
<namePart type="given">I.</namePart>
</name>
<name type="personal">
<namePart type="family">PATEL</namePart>
<namePart type="given">S. S.</namePart>
</name>
<name type="personal">
<namePart type="family">JOHNSON</namePart>
<namePart type="given">K. A.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<note type="content-in-line">WongI., PatelS. S., & JohnsonK. A. (1991) Biochemistry 30, 526−537.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref42" displayLabel="bib42">
<name type="personal">
<namePart type="family">YU</namePart>
<namePart type="given">H.</namePart>
</name>
<name type="personal">
<namePart type="family">GOODMAN</namePart>
<namePart type="given">M. F.</namePart>
</name>
<titleInfo>
<title>J.</title>
</titleInfo>
<note type="content-in-line">YuH., & GoodmanM. F. (1992) J. Biol. Chem. 267, 10888−10896.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref43" displayLabel="bib43">
<name type="personal">
<namePart type="family">ZHU</namePart>
<namePart type="given">L.</namePart>
</name>
<name type="personal">
<namePart type="family">SALAZAR</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">REID</namePart>
<namePart type="given">R. R.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<note type="content-in-line">ZhuL., SalazarM., & ReidR. R. (1995) Biochemistry 34, 2372−2380.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref44" displayLabel="bib44">
<name type="personal">
<namePart type="family">ZINNEN</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">HSIEH</namePart>
<namePart type="given">J. C.</namePart>
</name>
<name type="personal">
<namePart type="family">MODRICH</namePart>
<namePart type="given">P.</namePart>
</name>
<titleInfo>
<title>J.</title>
</titleInfo>
<note type="content-in-line">ZinnenS., HsiehJ. C., & ModrichP. (1994) J. Biol. Chem. 269, 24195−24202.</note>
</relatedItem>
<relatedItem type="references" ID="bi9713851b00001" displayLabel="bibbi9713851b00001">
<titleInfo>
<title>Abbreviations used:  dNTP, deoxynucleoside 5‘-triphosphate; dATP, deoxyadenosine 5‘-triphosphate; dCTP, deoxycytidine 5‘-triphosphate; dGTP, deoxyguanosine 5‘-triphosphate; dTTP, deoxythymidine 5‘-triphosphate; EDTA, ethylenediaminetetraacetic acid; HIV-1, human immunodeficiency virus type 1; RT, reverse transcriptase.</title>
</titleInfo>
<note type="content-in-line">Abbreviations used:  dNTP, deoxynucleoside 5‘-triphosphate; dATP, deoxyadenosine 5‘-triphosphate; dCTP, deoxycytidine 5‘-triphosphate; dGTP, deoxyguanosine 5‘-triphosphate; dTTP, deoxythymidine 5‘-triphosphate; EDTA, ethylenediaminetetraacetic acid; HIV-1, human immunodeficiency virus type 1; RT, reverse transcriptase.</note>
</relatedItem>
<identifier type="istex">CABC69F131E4A9F0B6211788915355DF3130DEC7</identifier>
<identifier type="ark">ark:/67375/TPS-67D2GZM8-Q</identifier>
<identifier type="DOI">10.1021/bi971385+</identifier>
<accessCondition type="use and reproduction" contentType="restricted">Copyright © 1997 American Chemical Society</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-X5HBJWF8-J">acs</recordContentSource>
<recordOrigin>Converted from (version 1.2.10) to MODS version 3.6.</recordOrigin>
<recordCreationDate encoding="w3cdtf">2020-04-10</recordCreationDate>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-67D2GZM8-Q/record.json</uri>
</json:item>
</metadata>
<annexes>
<json:item>
<extension>eps</extension>
<original>true</original>
<mimetype>image/x-eps</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-67D2GZM8-Q/annexes.eps</uri>
</json:item>
<json:item>
<extension>tiff</extension>
<original>true</original>
<mimetype>image/tiff</mimetype>
<uri>https://api.istex.fr/document/CABC69F131E4A9F0B6211788915355DF3130DEC7/annexes/tiff</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B19 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000B19 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:CABC69F131E4A9F0B6211788915355DF3130DEC7
   |texte=   RNA Dependent DNA Replication Fidelity of HIV-1 Reverse Transcriptase:  Evidence of Discrimination between DNA and RNA Substrates†
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021