Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Misincorporation of dNTPs Opposite 1,N2-Ethenoguanine and 5,6,7,9-Tetrahydro-7-hydroxy-9-oxoimidazo[1,2-a]purine in Oligonucleotides by Escherichia coli Polymerases I exo- and II exo-, T7 Polymerase exo-, Human Immunodeficiency Virus-1 Reverse Transcriptase, and Rat Polymerase β†

Identifieur interne : 000615 ( Istex/Corpus ); précédent : 000614; suivant : 000616

Misincorporation of dNTPs Opposite 1,N2-Ethenoguanine and 5,6,7,9-Tetrahydro-7-hydroxy-9-oxoimidazo[1,2-a]purine in Oligonucleotides by Escherichia coli Polymerases I exo- and II exo-, T7 Polymerase exo-, Human Immunodeficiency Virus-1 Reverse Transcriptase, and Rat Polymerase β†

Auteurs : Sophie Langouët ; Michael Müller ; F. Peter Guengerich

Source :

RBID : ISTEX:2010D51B69180BED3FDB60A600FBAF86BADAEA41

Abstract

1,N2-Ethenoguanine (1,N2-ε-Gua) and 5,6,7,9-tetrahydro-7-hydroxy-9-oxoimidazo[1,2-a]purine (HO-ethanoGua) are two modified bases formed in the reaction of DNA with 2-chlorooxirane, the epoxide derivative of vinyl chloride. The oligonucleotides (19-mers), 5‘-CAGTGGGTG*TCCGAATTGA-3‘, were prepared, with each of these modified bases substituted for G at G*. HO-ethanodeoxyguanosine exists predominantly as a mixture of diastereomers of the closed cyclic hemiaminal form, 5,6,7,9-tetrahydro-7-hydroxy-9-oxoimidazo[1,2-a]purine, shown by H218O experiments to be in equilibrium with the open form, N2-(2-oxoethyl)Gua. Both adducts retarded the 3‘-extension of a complementary 10-mer primer by all of the polymerases examined, but in every case, some full-length product was obtained. Nucleotide sequence analysis indicated misincorporation of dGTP and dATP across from both 1,N2-ε-Gua and HO-ethanoGua, with the extent varying considerably among the polymerases. Similar results were obtained when the abilities of the polymerases to incorporate a single dNTP were evaluated. In addition, −1 and −2 base frame shifts were detected with both 1,N2-ε-Gua and HO-ethanoGua with some of the polymerases. Steady-state kinetic experiments with Escherichia coli polymerase I exo- and T7 polymerase exo-/thioredoxin showed large decreases in kcat for all dNTP incorporations compared to the normal G·dCTP pair and high misincorporation frequencies for dATP and dGTP with both adducts (compared to dCTP). Collectively, the results indicate that both of these adducts have considerable miscoding potential with some of these polymerases, that there are a number of differences between the 1,N2-ε-Gua and HO-ethanoGua adducts (which formally differ only in the presence of the elements of water), and that misincorporation of dNTPs at a single modified base can vary considerably among different polymerases even in the absence of exonuclease activity.

Url:
DOI: 10.1021/bi962526v

Links to Exploration step

ISTEX:2010D51B69180BED3FDB60A600FBAF86BADAEA41

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Misincorporation of dNTPs Opposite 1,N2-Ethenoguanine and 5,6,7,9-Tetrahydro-7-hydroxy-9-oxoimidazo[1,2-a]purine in Oligonucleotides by Escherichia coli Polymerases I exo- and II exo-, T7 Polymerase exo-, Human Immunodeficiency Virus-1 Reverse Transcriptase, and Rat Polymerase β†</title>
<author>
<name sortKey="Langouet, Sophie" sort="Langouet, Sophie" uniqKey="Langouet S" first="Sophie" last="Langouët">Sophie Langouët</name>
<affiliation>
<mods:affiliation>Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine,Nashville, Tennessee 37232-0146</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Muller, Michael" sort="Muller, Michael" uniqKey="Muller M" first="Michael" last="Müller">Michael Müller</name>
<affiliation>
<mods:affiliation>Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine,Nashville, Tennessee 37232-0146</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Current address:  Abt. Arbeits-und Sozialmedizinder Georg-August-Universität Göttingen, Waldweg 37, D-37073Göttingen,Germany.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guengerich, F Peter" sort="Guengerich, F Peter" uniqKey="Guengerich F" first="F. Peter" last="Guengerich">F. Peter Guengerich</name>
<affiliation>
<mods:affiliation>Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine,Nashville, Tennessee 37232-0146</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Address correspondence to this author. Telephone:  (615)322-2261. Fax:  (615) 322-3141. E-mail: guengerich@toxicology.mc.vanderbilt.edu.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:2010D51B69180BED3FDB60A600FBAF86BADAEA41</idno>
<date when="1997" year="1997">1997</date>
<idno type="doi">10.1021/bi962526v</idno>
<idno type="url">https://api.istex.fr/ark:/67375/TPS-69F58Q91-C/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000615</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000615</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Misincorporation of dNTPs Opposite 1,
<hi rend="italic">N</hi>
<hi rend="superscript">2</hi>
-Ethenoguanine and 5,6,7,9-Tetrahydro-7-hydroxy-9-oxoimidazo[1,2-
<hi rend="italic">a</hi>
]purine in Oligonucleotides by
<hi rend="italic">Escherichia coli</hi>
Polymerases I exo
<hi rend="superscript">-</hi>
and II exo
<hi rend="superscript">-</hi>
, T7 Polymerase exo
<hi rend="superscript">-</hi>
, Human Immunodeficiency Virus-1 Reverse Transcriptase, and Rat Polymerase β
<ref type="bib" target="#bi962526vAF2">
<hi rend="superscript"></hi>
</ref>
</title>
<author>
<name sortKey="Langouet, Sophie" sort="Langouet, Sophie" uniqKey="Langouet S" first="Sophie" last="Langouët">Sophie Langouët</name>
<affiliation>
<mods:affiliation>Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine,Nashville, Tennessee 37232-0146</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Muller, Michael" sort="Muller, Michael" uniqKey="Muller M" first="Michael" last="Müller">Michael Müller</name>
<affiliation>
<mods:affiliation>Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine,Nashville, Tennessee 37232-0146</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Current address:  Abt. Arbeits-und Sozialmedizinder Georg-August-Universität Göttingen, Waldweg 37, D-37073Göttingen,Germany.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guengerich, F Peter" sort="Guengerich, F Peter" uniqKey="Guengerich F" first="F. Peter" last="Guengerich">F. Peter Guengerich</name>
<affiliation>
<mods:affiliation>Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine,Nashville, Tennessee 37232-0146</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Address correspondence to this author. Telephone:  (615)322-2261. Fax:  (615) 322-3141. E-mail: guengerich@toxicology.mc.vanderbilt.edu.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Biochemistry</title>
<title level="j" type="abbrev">Biochemistry</title>
<idno type="ISSN">0006-2960</idno>
<idno type="eISSN">1520-4995</idno>
<imprint>
<publisher>American Chemical Society</publisher>
<date type="e-published">1997</date>
<date type="published">1997</date>
<biblScope unit="vol">36</biblScope>
<biblScope unit="issue">20</biblScope>
<biblScope unit="page" from="6069">6069</biblScope>
<biblScope unit="page" to="6079">6079</biblScope>
</imprint>
<idno type="ISSN">0006-2960</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0006-2960</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">1,N2-Ethenoguanine (1,N2-ε-Gua) and 5,6,7,9-tetrahydro-7-hydroxy-9-oxoimidazo[1,2-a]purine (HO-ethanoGua) are two modified bases formed in the reaction of DNA with 2-chlorooxirane, the epoxide derivative of vinyl chloride. The oligonucleotides (19-mers), 5‘-CAGTGGGTG*TCCGAATTGA-3‘, were prepared, with each of these modified bases substituted for G at G*. HO-ethanodeoxyguanosine exists predominantly as a mixture of diastereomers of the closed cyclic hemiaminal form, 5,6,7,9-tetrahydro-7-hydroxy-9-oxoimidazo[1,2-a]purine, shown by H218O experiments to be in equilibrium with the open form, N2-(2-oxoethyl)Gua. Both adducts retarded the 3‘-extension of a complementary 10-mer primer by all of the polymerases examined, but in every case, some full-length product was obtained. Nucleotide sequence analysis indicated misincorporation of dGTP and dATP across from both 1,N2-ε-Gua and HO-ethanoGua, with the extent varying considerably among the polymerases. Similar results were obtained when the abilities of the polymerases to incorporate a single dNTP were evaluated. In addition, −1 and −2 base frame shifts were detected with both 1,N2-ε-Gua and HO-ethanoGua with some of the polymerases. Steady-state kinetic experiments with Escherichia coli polymerase I exo- and T7 polymerase exo-/thioredoxin showed large decreases in kcat for all dNTP incorporations compared to the normal G·dCTP pair and high misincorporation frequencies for dATP and dGTP with both adducts (compared to dCTP). Collectively, the results indicate that both of these adducts have considerable miscoding potential with some of these polymerases, that there are a number of differences between the 1,N2-ε-Gua and HO-ethanoGua adducts (which formally differ only in the presence of the elements of water), and that misincorporation of dNTPs at a single modified base can vary considerably among different polymerases even in the absence of exonuclease activity.</div>
</front>
</TEI>
<istex>
<corpusName>acs</corpusName>
<keywords>
<teeft>
<json:string>polymerase</json:string>
<json:string>adduct</json:string>
<json:string>guengerich</json:string>
<json:string>primer</json:string>
<json:string>misincorporation</json:string>
<json:string>biochemistry</json:string>
<json:string>hplc</json:string>
<json:string>chem</json:string>
<json:string>dntps</json:string>
<json:string>nucleoside</json:string>
<json:string>oligonucleotides</json:string>
<json:string>diastereomers</json:string>
<json:string>oligonucleotide</json:string>
<json:string>oligomers</json:string>
<json:string>mmol</json:string>
<json:string>oligomer</json:string>
<json:string>frameshift</json:string>
<json:string>dctp</json:string>
<json:string>marnett</json:string>
<json:string>dthd</json:string>
<json:string>toxicol</json:string>
<json:string>dguo</json:string>
<json:string>dntp</json:string>
<json:string>dado</json:string>
<json:string>biol</json:string>
<json:string>propanog</json:string>
<json:string>base frameshift</json:string>
<json:string>dcyd</json:string>
<json:string>hashim</json:string>
<json:string>miscoding</json:string>
<json:string>datp</json:string>
<json:string>etheno</json:string>
<json:string>deoxyribose</json:string>
<json:string>assay</json:string>
<json:string>lowe guengerich</json:string>
<json:string>derivative</json:string>
<json:string>hplc analysis</json:string>
<json:string>misincorporation frequency</json:string>
<json:string>nucleotide sequence analysis</json:string>
<json:string>room temperature</json:string>
<json:string>incorporation</json:string>
<json:string>unmodified</json:string>
<json:string>insertion</json:string>
<json:string>dctp opposite</json:string>
<json:string>flow rate</json:string>
<json:string>incorporation opposite</json:string>
<json:string>adduct site</json:string>
<json:string>etheno adduct biochemistry</json:string>
<json:string>solvent system</json:string>
<json:string>vanderbilt university school</json:string>
<json:string>mass spectrum</json:string>
<json:string>primer extension</json:string>
<json:string>several polymerase</json:string>
<json:string>exocyclic ring</json:string>
<json:string>polymerase extension assay</json:string>
<json:string>nucleic acid</json:string>
<json:string>bacterial study</json:string>
<json:string>oligonucleotide synthesis</json:string>
<json:string>template</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>LANGOUëT Sophie</name>
<affiliations>
<json:string>Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine,Nashville, Tennessee 37232-0146</json:string>
</affiliations>
</json:item>
<json:item>
<name>MüLLER Michael</name>
<affiliations>
<json:string>Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine,Nashville, Tennessee 37232-0146</json:string>
<json:string>Current address:  Abt. Arbeits-und Sozialmedizinder Georg-August-Universität Göttingen, Waldweg 37, D-37073Göttingen,Germany.</json:string>
</affiliations>
</json:item>
<json:item>
<name>GUENGERICH F. Peter</name>
<affiliations>
<json:string>Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine,Nashville, Tennessee 37232-0146</json:string>
<json:string>Address correspondence to this author. Telephone:  (615)322-2261. Fax:  (615) 322-3141. E-mail: guengerich@toxicology.mc.vanderbilt.edu.</json:string>
</affiliations>
</json:item>
</author>
<arkIstex>ark:/67375/TPS-69F58Q91-C</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>1,N2-Ethenoguanine (1,N2-ε-Gua) and 5,6,7,9-tetrahydro-7-hydroxy-9-oxoimidazo[1,2-a]purine (HO-ethanoGua) are two modified bases formed in the reaction of DNA with 2-chlorooxirane, the epoxide derivative of vinyl chloride. The oligonucleotides (19-mers), 5‘-CAGTGGGTG*TCCGAATTGA-3‘, were prepared, with each of these modified bases substituted for G at G*. HO-ethanodeoxyguanosine exists predominantly as a mixture of diastereomers of the closed cyclic hemiaminal form, 5,6,7,9-tetrahydro-7-hydroxy-9-oxoimidazo[1,2-a]purine, shown by H218O experiments to be in equilibrium with the open form, N2-(2-oxoethyl)Gua. Both adducts retarded the 3‘-extension of a complementary 10-mer primer by all of the polymerases examined, but in every case, some full-length product was obtained. Nucleotide sequence analysis indicated misincorporation of dGTP and dATP across from both 1,N2-ε-Gua and HO-ethanoGua, with the extent varying considerably among the polymerases. Similar results were obtained when the abilities of the polymerases to incorporate a single dNTP were evaluated. In addition, −1 and −2 base frame shifts were detected with both 1,N2-ε-Gua and HO-ethanoGua with some of the polymerases. Steady-state kinetic experiments with Escherichia coli polymerase I exo- and T7 polymerase exo-/thioredoxin showed large decreases in kcat for all dNTP incorporations compared to the normal G·dCTP pair and high misincorporation frequencies for dATP and dGTP with both adducts (compared to dCTP). Collectively, the results indicate that both of these adducts have considerable miscoding potential with some of these polymerases, that there are a number of differences between the 1,N2-ε-Gua and HO-ethanoGua adducts (which formally differ only in the presence of the elements of water), and that misincorporation of dNTPs at a single modified base can vary considerably among different polymerases even in the absence of exonuclease activity.</abstract>
<qualityIndicators>
<score>10</score>
<pdfWordCount>7635</pdfWordCount>
<pdfCharCount>47138</pdfCharCount>
<pdfVersion>1.1</pdfVersion>
<pdfPageCount>11</pdfPageCount>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<pdfWordsPerPage>694</pdfWordsPerPage>
<pdfText>true</pdfText>
<refBibsNative>true</refBibsNative>
<abstractWordCount>261</abstractWordCount>
<abstractCharCount>1936</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Misincorporation of dNTPs Opposite 1,N2-Ethenoguanine and 5,6,7,9-Tetrahydro-7-hydroxy-9-oxoimidazo[1,2-a]purine in Oligonucleotides by Escherichia coli Polymerases I exo- and II exo-, T7 Polymerase exo-, Human Immunodeficiency Virus-1 Reverse Transcriptase, and Rat Polymerase β†</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Biochemistry</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>0006-2960</json:string>
</issn>
<eissn>
<json:string>1520-4995</json:string>
</eissn>
<volume>36</volume>
<issue>20</issue>
<pages>
<first>6069</first>
<last>6079</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<ark>
<json:string>ark:/67375/TPS-69F58Q91-C</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - biochemistry & molecular biology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - biomedical research</json:string>
<json:string>3 - biochemistry & molecular biology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Biochemistry</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
<json:string>4 - agronomie. sciences du sol et productions vegetales</json:string>
</inist>
</categories>
<publicationDate>1997</publicationDate>
<copyrightDate>1997</copyrightDate>
<doi>
<json:string>10.1021/bi962526v</json:string>
</doi>
<id>2010D51B69180BED3FDB60A600FBAF86BADAEA41</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-69F58Q91-C/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-69F58Q91-C/bundle.zip</uri>
</json:item>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-69F58Q91-C/fulltext.txt</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/TPS-69F58Q91-C/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Misincorporation of dNTPs Opposite 1,
<hi rend="italic">N</hi>
<hi rend="superscript">2</hi>
-Ethenoguanine and 5,6,7,9-Tetrahydro-7-hydroxy-9-oxoimidazo[1,2-
<hi rend="italic">a</hi>
]purine in Oligonucleotides by
<hi rend="italic">Escherichia coli</hi>
Polymerases I exo
<hi rend="superscript">-</hi>
and II exo
<hi rend="superscript">-</hi>
, T7 Polymerase exo
<hi rend="superscript">-</hi>
, Human Immunodeficiency Virus-1 Reverse Transcriptase, and Rat Polymerase β
<ref type="bib" target="#bi962526vAF2">
<hi rend="superscript"></hi>
</ref>
</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>American Chemical Society</publisher>
<availability>
<licence>Copyright © 1997 American Chemical Society</licence>
<p>American Chemical Society</p>
</availability>
<date type="published">1997</date>
<date type="Copyright" when="1997">1997</date>
</publicationStmt>
<notesStmt>
<note type="content-type" source="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="publication-type" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Misincorporation of dNTPs Opposite 1,
<hi rend="italic">N</hi>
<hi rend="superscript">2</hi>
-Ethenoguanine and 5,6,7,9-Tetrahydro-7-hydroxy-9-oxoimidazo[1,2-
<hi rend="italic">a</hi>
]purine in Oligonucleotides by
<hi rend="italic">Escherichia coli</hi>
Polymerases I exo
<hi rend="superscript">-</hi>
and II exo
<hi rend="superscript">-</hi>
, T7 Polymerase exo
<hi rend="superscript">-</hi>
, Human Immunodeficiency Virus-1 Reverse Transcriptase, and Rat Polymerase β
<ref type="bib" target="#bi962526vAF2">
<hi rend="superscript"></hi>
</ref>
</title>
<author xml:id="author-0000">
<persName>
<surname>Langouët</surname>
<forename type="first">Sophie</forename>
</persName>
<affiliation>
<orgName type="institution">Department of Biochemistry and Center in Molecular Toxicology</orgName>
<orgName type="institution">Vanderbilt University School of Medicine</orgName>
<address>
<addrLine>Nashville</addrLine>
<addrLine>Tennessee 37232-0146</addrLine>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<surname>Müller</surname>
<forename type="first">Michael</forename>
</persName>
<affiliation>
<orgName type="institution">Department of Biochemistry and Center in Molecular Toxicology</orgName>
<orgName type="institution">Vanderbilt University School of Medicine</orgName>
<address>
<addrLine>Nashville</addrLine>
<addrLine>Tennessee 37232-0146</addrLine>
</address>
</affiliation>
<note place="foot" n="bi962526vAF3">
<ref></ref>
<p>  Current address:  Abt. Arbeits-und Sozialmedizin der Georg-August-Universität Göttingen, Waldweg 37, D-37073 Göttingen, Germany.</p>
</note>
</author>
<author xml:id="author-0002" role="corresp">
<persName>
<surname>Guengerich</surname>
<forename type="first">F. Peter</forename>
</persName>
<affiliation>
<orgName type="institution">Department of Biochemistry and Center in Molecular Toxicology</orgName>
<orgName type="institution">Vanderbilt University School of Medicine</orgName>
<address>
<addrLine>Nashville</addrLine>
<addrLine>Tennessee 37232-0146</addrLine>
</address>
</affiliation>
<affiliation role="corresp"> Address correspondence to this author. Telephone:  (615) 322-2261. Fax:  (615) 322-3141. E-mail:  guengerich@toxicology.mc. vanderbilt.edu.</affiliation>
</author>
<idno type="istex">2010D51B69180BED3FDB60A600FBAF86BADAEA41</idno>
<idno type="ark">ark:/67375/TPS-69F58Q91-C</idno>
<idno type="DOI">10.1021/bi962526v</idno>
</analytic>
<monogr>
<title level="j" type="main">Biochemistry</title>
<title level="j" type="abbrev">Biochemistry</title>
<idno type="acspubs">bi</idno>
<idno type="coden">bichaw</idno>
<idno type="pISSN">0006-2960</idno>
<idno type="eISSN">1520-4995</idno>
<imprint>
<publisher>American Chemical Society</publisher>
<date type="e-published">1997</date>
<date type="published">1997</date>
<biblScope unit="vol">36</biblScope>
<biblScope unit="issue">20</biblScope>
<biblScope unit="page" from="6069">6069</biblScope>
<biblScope unit="page" to="6079">6079</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<encodingDesc>
<schemaRef type="ODD" url="https://xml-schema.delivery.istex.fr/tei-istex.odd"></schemaRef>
<appInfo>
<application ident="pub2tei" version="1.0.41" when="2020-04-06">
<label>pub2TEI-ISTEX</label>
<desc>A set of style sheets for converting XML documents encoded in various scientific publisher formats into a common TEI format.
<ref target="http://www.tei-c.org/">We use TEI</ref>
</desc>
</application>
</appInfo>
</encodingDesc>
<profileDesc>
<abstract>
<p>1,
<hi rend="italic">N</hi>
<hi rend="superscript">2</hi>
-Ethenoguanine (1,
<hi rend="italic">N</hi>
<hi rend="superscript">2</hi>
-ε-Gua) and 5,6,7,9-tetrahydro-7-hydroxy-9-oxoimidazo[1,2-
<hi rend="italic">a</hi>
]purine (HO-ethanoGua) are two modified bases formed in the reaction of DNA with 2-chlorooxirane, the epoxide derivative of vinyl chloride. The oligonucleotides (19-mers), 5‘-CAGTGGGTG*TCCGAATTGA-3‘, were prepared, with each of these modified bases substituted for G at G*. HO-ethanodeoxyguanosine exists predominantly as a mixture of diastereomers of the closed cyclic hemiaminal form, 5,6,7,9-tetrahydro-7-hydroxy-9-oxoimidazo[1,2-
<hi rend="italic">a</hi>
]purine, shown by H
<hi rend="subscript">2</hi>
<hi rend="superscript">18</hi>
O experiments to be in equilibrium with the open form,
<hi rend="italic">N</hi>
<hi rend="superscript">2</hi>
-(2-oxoethyl)Gua. Both adducts retarded the 3‘-extension of a complementary 10-mer primer by all of the polymerases examined, but in every case, some full-length product was obtained. Nucleotide sequence analysis indicated misincorporation of dGTP and dATP across from both 1,
<hi rend="italic">N</hi>
<hi rend="superscript">2</hi>
-ε-Gua and HO-ethanoGua, with the extent varying considerably among the polymerases. Similar results were obtained when the abilities of the polymerases to incorporate a single dNTP were evaluated. In addition, −1 and −2 base frame shifts were detected with both 1,
<hi rend="italic">N</hi>
<hi rend="superscript">2</hi>
-ε-Gua and HO-ethanoGua with some of the polymerases. Steady-state kinetic experiments with
<hi rend="italic">Escherichia coli</hi>
polymerase I exo
<hi rend="superscript">-</hi>
and T7 polymerase exo
<hi rend="superscript">-</hi>
/thioredoxin showed large decreases in
<hi rend="italic">k</hi>
<hi rend="subscript">cat</hi>
for all dNTP incorporations compared to the normal G·dCTP pair and high misincorporation frequencies for dATP and dGTP with both adducts (compared to dCTP). Collectively, the results indicate that both of these adducts have considerable miscoding potential with some of these polymerases, that there are a number of differences between the 1,
<hi rend="italic">N</hi>
<hi rend="superscript">2</hi>
-ε-Gua and HO-ethanoGua adducts (which formally differ only in the presence of the elements of water), and that misincorporation of dNTPs at a single modified base can vary considerably among different polymerases even in the absence of exonuclease activity. </p>
</abstract>
<textClass ana="subject">
<keywords scheme="document-type-name">
<term>Article</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
<revisionDesc>
<change when="2020-04-06" who="#istex" xml:id="pub2tei">formatting</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus acs not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:document>
<article article-type="research-article" specific-use="acs2jats-1.1.23" dtd-version="1.1d1">
<front>
<journal-meta>
<journal-id journal-id-type="acspubs">bi</journal-id>
<journal-id journal-id-type="coden">bichaw</journal-id>
<journal-title-group>
<journal-title>Biochemistry</journal-title>
<abbrev-journal-title>Biochemistry</abbrev-journal-title>
</journal-title-group>
<issn pub-type="ppub">0006-2960</issn>
<issn pub-type="epub">1520-4995</issn>
<publisher>
<publisher-name>American Chemical Society</publisher-name>
</publisher>
<self-uri>pubs.acs.org/biochemistry</self-uri>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1021/bi962526v</article-id>
<article-categories>
<subj-group subj-group-type="document-type-name">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Misincorporation of dNTPs Opposite 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-Ethenoguanine and 5,6,7,9-Tetrahydro-7-hydroxy-9-oxoimidazo[1,2-
<italic toggle="yes">a</italic>
]purine in Oligonucleotides by
<italic toggle="yes">Escherichia coli</italic>
Polymerases I exo
<sup>-</sup>
and II exo
<sup>-</sup>
, T7 Polymerase exo
<sup>-</sup>
, Human Immunodeficiency Virus-1 Reverse Transcriptase, and Rat Polymerase β
<xref rid="bi962526vAF2">
<sup></sup>
</xref>
</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name name-style="western">
<surname>Langouët</surname>
<given-names>Sophie</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name name-style="western">
<surname>Müller</surname>
<given-names>Michael</given-names>
</name>
<xref rid="bi962526vAF3">
<sup></sup>
</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name name-style="western">
<surname>Guengerich</surname>
<given-names>F. Peter</given-names>
</name>
<xref rid="bi962526vAF1">*</xref>
</contrib>
<aff>Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146</aff>
</contrib-group>
<author-notes>
<fn id="bi962526vAF3">
<label></label>
<p>  Current address:  Abt. Arbeits-und Sozialmedizin der Georg-August-Universität Göttingen, Waldweg 37, D-37073 Göttingen, Germany.</p>
</fn>
<corresp id="bi962526vAF1">  Address correspondence to this author. Telephone:  (615) 322-2261. Fax:  (615) 322-3141. E-mail:  guengerich@toxicology.mc. vanderbilt.edu.</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>20</day>
<month>05</month>
<year>1997</year>
</pub-date>
<pub-date pub-type="ppub">
<day>20</day>
<month>05</month>
<year>1997</year>
</pub-date>
<volume>36</volume>
<issue>20</issue>
<fpage>6069</fpage>
<lpage>6079</lpage>
<supplementary-material xlink:href="bi6069.pdf" orientation="portrait" position="float"></supplementary-material>
<history>
<date date-type="received">
<day>08</day>
<month>10</month>
<year>1996</year>
</date>
<date date-type="rev-recd">
<day>17</day>
<month>03</month>
<year>1997</year>
</date>
<date date-type="issue-pub">
<day>20</day>
<month>05</month>
<year>1997</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 1997 American Chemical Society</copyright-statement>
<copyright-year>1997</copyright-year>
<copyright-holder>American Chemical Society</copyright-holder>
</permissions>
<abstract>
<p>1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-Ethenoguanine (1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua) and 5,6,7,9-tetrahydro-7-hydroxy-9-oxoimidazo[1,2-
<italic toggle="yes">a</italic>
]purine (HO-ethanoGua) are two modified bases formed in the reaction of DNA with 2-chlorooxirane, the epoxide derivative of vinyl chloride. The oligonucleotides (19-mers), 5‘-CAGTGGGTG*TCCGAATTGA-3‘, were prepared, with each of these modified bases substituted for G at G*. HO-ethanodeoxyguanosine exists predominantly as a mixture of diastereomers of the closed cyclic hemiaminal form, 5,6,7,9-tetrahydro-7-hydroxy-9-oxoimidazo[1,2-
<italic toggle="yes">a</italic>
]purine, shown by H
<sub>2</sub>
<sup>18</sup>
O experiments to be in equilibrium with the open form,
<italic toggle="yes">N</italic>
<sup>2</sup>
-(2-oxoethyl)Gua. Both adducts retarded the 3‘-extension of a complementary 10-mer primer by all of the polymerases examined, but in every case, some full-length product was obtained. Nucleotide sequence analysis indicated misincorporation of dGTP and dATP across from both 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua and HO-ethanoGua, with the extent varying considerably among the polymerases. Similar results were obtained when the abilities of the polymerases to incorporate a single dNTP were evaluated. In addition, −1 and −2 base frame shifts were detected with both 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua and HO-ethanoGua with some of the polymerases. Steady-state kinetic experiments with
<italic toggle="yes">Escherichia coli</italic>
polymerase I exo
<sup>-</sup>
and T7 polymerase exo
<sup>-</sup>
/thioredoxin showed large decreases in
<italic toggle="yes">k</italic>
<sub>cat</sub>
for all dNTP incorporations compared to the normal G·dCTP pair and high misincorporation frequencies for dATP and dGTP with both adducts (compared to dCTP). Collectively, the results indicate that both of these adducts have considerable miscoding potential with some of these polymerases, that there are a number of differences between the 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua and HO-ethanoGua adducts (which formally differ only in the presence of the elements of water), and that misincorporation of dNTPs at a single modified base can vary considerably among different polymerases even in the absence of exonuclease activity. </p>
</abstract>
<custom-meta-group>
<custom-meta>
<meta-name>document-id-old-9</meta-name>
<meta-value>bi962526v</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
<notes id="bi962526vAF2">
<label></label>
<p>  This research was supported in part by United States Public Health Service Grants R35 CA44353 and P30 ES00267. M.M. was supported in part by a fellowship from the Deutsche Forschungsgemeinschaft.</p>
</notes>
<notes id="bi962526vAF7">
<label></label>
<p>  Abstract published in
<italic toggle="yes">Advance ACS Abstracts,</italic>
May 1, 1997.</p>
</notes>
</front>
<body>
<sec id="d7e209">
<title></title>
<p>The etheno (ε)
<xref rid="atyp_ref1" ref-type="bibr"></xref>
derivatives of purines and pyrimidines have an extra five-membered, unsaturated ring containing two added carbons (Scheme
<xref rid="bi962526vh00001"></xref>
) (Singer & Bartsch, 1986). These ε compounds were originally discovered as modified tRNA bases in tRNAs (Nakanishi et al., 1970) and as products of RNA treated with 2-haloacetaldehydes (Kochetkov et al., 1971; Barrio et al., 1972). For instance, 6-methylimidazo[1,2-
<italic toggle="yes">a</italic>
]purine (6-methylwyosine or 6-methyl-1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua) is a naturally occurring tRNA base (Agris, 1996). The strong fluorescence of ε-Ade has been utilized in studies of the interaction of NADP
<sup>+</sup>
, ATP, and other derivatives with proteins (Leonard, 1984). The hepatocarcinogen vinyl chloride is oxidized to 2-chlorooxirane, which reacts with DNA to form 1,
<italic toggle="yes">N</italic>
<sup>6</sup>
-ε-Ade, 3,
<italic toggle="yes">N</italic>
<sup>4</sup>
-ε-Cyt,
<italic toggle="yes">N</italic>
<sup>2</sup>
,3-ε-Gua, 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua, and HO-ethanoGua (Guengerich et al., 1993, 1994; Müller et al., 1997). Other carcinogens [e.g., acrylonitrile and urethan (Guengerich et al., 1981a; Guengerich & Kim, 1991)] can be oxidized to similar epoxides that react with DNA to form these same ε products. Of particular interest is the recent discovery that low but finite levels of 1,
<italic toggle="yes">N</italic>
<sup>6</sup>
-ε-Ade and 3,
<italic toggle="yes">N</italic>
<sup>4</sup>
-ε-Cyt have been found in DNA prepared from experimental animals and humans that were not exposed to any of the known precursors (Fedtke et al., 1990). The origin of these may be products of lipid peroxidation (El Ghissassi et al., 1995) or possibly halogenated drinking water contaminants (Kronberg et al., 1992).
<fig id="bi962526vh00001" position="float" fig-type="scheme" orientation="portrait">
<label>1</label>
<caption>
<p>Structures of Five-Membered Ring Exocyclic Gua DNA Adducts</p>
</caption>
<graphic xlink:href="bi962526vh00001.gif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>Concern arises about the biological significance of the ε bases because of their presence in DNA and the carcinogenicity of chemicals that give rise to these. Because the reaction of DNA with appropriately functionalized two-carbon compounds yields all of these ε adducts, studies with individual bases incorporated in oligonucleotides and vectors are necessary to evaluate the ability of each base to cause misincorporation. 1,
<italic toggle="yes">N</italic>
<sup>6</sup>
-ε-Ade has been found to be weakly mutagenic in bacteria (Basu et al., 1993). 3,
<italic toggle="yes">N</italic>
<sup>4</sup>
-ε-Cyt was reported to be highly mutagenic in one bacterial study (Palejwala et al., 1993) but weakly mutagenic in others (Basu et al., 1993; Moriya et al., 1994). However, in the latter study, it was found to be considerably more mutagenic in a mammalian cell system (Moriya et al., 1994).
<italic toggle="yes">N</italic>
<sup>2</sup>
,3-ε-Gua appears to be rather mutagenic as judged by the results of two bacterial studies in which
<italic toggle="yes">N</italic>
<sup>2</sup>
,3-ε-dGTP was incorporated into plasmids (Cheng et al., 1991; Singer et al., 1987); however, the instability of the glycosidic bond (Khazanchi et al., 1993; Kusmierek et al., 1989) has precluded more systematic studies of the characterization of the miscoding properties of this base. </p>
<p>In the course of our studies on the reaction of 2-halooxiranes with DNA (Guengerich et al., 1979, 1981b; Guengerich & Raney, 1992), we characterized HO-ethanoGua as a major product of the reaction of 2-chlorooxirane with Gua derivatives (Guengerich et al., 1993). Recently, we have found that treatment of DNA with 2-chlorooxirane yields products in the concentration order
<italic toggle="yes">N</italic>
<sup>7</sup>
-(2-oxoethyl)Gua ≫ 1,
<italic toggle="yes">N</italic>
<sup>6</sup>
-ε-Ade > HO-ethanoGua >
<italic toggle="yes">N</italic>
<sup>2</sup>
,3-ε-Gua > 3,
<italic toggle="yes">N</italic>
<sup>4</sup>
-ε-Cyt > 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua (Müller et al., 1997). We were interested in the miscoding potential of HO-ethanoGua and comparison to 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua, which differs only in the absence of the elements of H
<sub>2</sub>
O and, to our knowledge, has not been examined for miscoding properties. We report the synthesis of oligomers containing 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua and HO-ethanoGua at a defined position and misincorporation studies with five model polymerases. Some comparisons are made to studies done with the homologs containing six-membered rings, which are also found in DNA both before and after treatment of animals with carcinogens (Chaudhary et al., 1994; Nath & Chung, 1994). </p>
</sec>
<sec id="d7e334">
<title>Experimental Procedures</title>
<sec id="d7e337">
<title>Chemicals </title>
<p>Most chemicals were purchased from Aldrich Chemical Co. (Milwaukee, WI). 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-dGuo was a gift of L. J. Marnett (Department of Biochemistry, Vanderbilt University School of Medicine). H
<sub>2</sub>
<sup>18</sup>
O was supplied by Cambridge Isotope Laboratories (Cambridge, MA). Reagents for oligonucleotide synthesis were purchased from PerSeptive Biosystems (Framingham, MA). </p>
</sec>
</sec>
<sec id="d7e352">
<title></title>
<sec id="d7e354">
<title>Instrumental and Chromatographic Analysis </title>
<p>
<italic toggle="yes">TLC.</italic>
TLC was done with silica gel F 254 (Merck, Gibbstown, NJ) as the adsorbent on glass plates. The separated compounds were visualized under UV light (254 nm) or by staining with an anisaldehyde/H
<sub>2</sub>
SO
<sub>4</sub>
mixture and subsequent heating. Column chromatography was performed with silica gel 60 (70−230 mesh, Merck). </p>
<p>
<italic toggle="yes">HPLC.</italic>
HPLC was done with reversed-phase octadecylsilane columns:  10 × 250 mm Beckman Ultrasphere, 5 μm (Beckman, San Ramon, CA) for analysis and preparative isolation of base and nucleoside adducts; 4.6 × 250 mm and 10 × 250 mm YMC-Pack ODS-AQ, 5 μm (YMC, Wilmington, NC) for DNA oligomer purification and enzymatic digest analysis. The columns were connected to a Spectra-Physics 8700 pumping system (Thermo-Separation Products, Piscataway, NJ), with the effluent passing through a Hewlett-Packard 1040A diode array detector (Hewlett-Packard, Palo Alto, CA). The separation of the base and nucleoside adducts involved increasing gradients of CH
<sub>3</sub>
OH (solvent B) in 50 mM NH
<sub>4</sub>
HCO
<sub>2</sub>
at pH 5.0 (solvent A), usually increasing from 0 to 50% CH
<sub>3</sub>
OH over 25 min, with a flow rate of 2.5 mL min
<sup>-1</sup>
. Initial purification of the oligonucleotides with this solvent system was achieved with the following gradient:  0 min (99% A, 1% B), 50 min (70% A, 30% B), 55 min (10% A, 90% B), and 60 min (99% A, 1% B) at a flow rate of 2.5 mL min
<sup>-1</sup>
. To increase purity to >99%, a second HPLC step was performed with the following gradient:  0 min (75% A, 25% B) and 50 min (70% A, 30% B), as well as a 20% (w/v) polyacrylamide gel electrophoresis purification. Enzymatic digests of the oligonucleotides (
<italic toggle="yes">vide infra</italic>
) were analyzed on the analytical YMC-Pack column with the above solvent system at a flow rate of 1.0 mL min
<sup>-1</sup>
and the following gradients:  unmodified and 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua-containing 19-mers, 0 min (99% A, 1% B), 30 min (80% A, 20% B), 45 min (50% A, 50% B), and 50 min (99% A, 1% B); 10-mer primer and HO-ethanoGua-containing 19-mer, 0 min (99% A, 1% B), 40 min (80% A, 20% B), 55 min (50% A, 50% B), and 60 min (99% A, 1% B). </p>
<p>
<italic toggle="yes">CGE.</italic>
Oligonucleotide purity was evaluated using a Beckman P/ACE 2000 instrument (Beckman, Fullerton, CA) using the “ssDNA 100” gel capillary and “TRIS-borate-urea buffer” from the manufacturer. Samples were applied at −5 kV and run at −10 kV (30 °C). </p>
<p>
<italic toggle="yes">UV and CD Spectroscopy.</italic>
UV spectra were recorded using a a modified Cary 14/OLIS instrument (On-Line Instrument Systems, Bogart, GA). CD spectra were recorded using a JASCO J-720 spectropolarimeter (Japan Applied Spectroscopic Co., Tokyo, Japan). </p>
<p>
<italic toggle="yes">NMR.</italic>
<sup>1</sup>
H-NMR spectra were recorded in H
<sub>2</sub>
O/
<sup>2</sup>
H
<sub>2</sub>
O mixtures or (C
<sup>2</sup>
H
<sub>3</sub>
)
<sub>2</sub>
SO using a Bruker AM 400 spectrometer (Bruker, Billerica, MA) in the Vanderbilt facility.
<sup>31</sup>
P-NMR spectra were acquired in C
<sup>2</sup>
H
<sub>3</sub>
CN on a Bruker AC 300 instrument with 85% H
<sub>3</sub>
PO
<sub>4</sub>
as the external standard. </p>
<p>
<italic toggle="yes">MS.</italic>
Mass spectra of the base and nucleoside DNA adducts were collected on a Kratos Concept II HH instrument (Kratos, Manchester, U.K.) with FAB ionization and a mixture of glycerol, (CH
<sub>3</sub>
)
<sub>2</sub>
SO, and 3-nitrobenzyl alcohol as the matrix. Oligonucleotide ES mass spectra were obtained on a Finnigan TSQ 7000 ES instrument (Finnigan, San Jose, CA) equipped with a Unix computer system and deconvolution software. </p>
<p>HPLC/ES MS studies were conducted using the Finnigan TSQ 7000 triple-quadrupole mass spectrometer operating in the positive ion mode with an electrospray needle voltage of 4.5 kV. N
<sub>2</sub>
was used as the sheath gas (60 psi) to assist with nebulization and as the auxiliary gas (15 psi) to assist with desolvation. The stainless steel capillary was heated to 220 and 200 °C, respectively, to provide optimal desolvation, and the ESI interface and mass spectrometer parameters were optimized to obtain maximum sensitivity (Müller et al., 1997). The tube lens and the heated capillary were operated at 74.5 and 20.0 V, respectively, and the electron multiplier was set at 1700 V. Selected reaction monitoring experiments were conducted by monitoring
<italic toggle="yes">m/z</italic>
for each protonated molecular ion. For the analysis of nucleosides, the oligomer was digested according to the method of Chaudhary et al. (1994). The digest was filtered through a 0.22 μm filter, and 250 μL aliquots were analyzed by HPLC/MS. HPLC involved the use of a Hewlett-Packard 1090 HPLC pumping system, connected to a Phenomenex Partisil ODS-3 reversed-phase column (3.2 × 250 mm, 5 μm, Phenomenex, Torrance, CA). The solvent system consisted of 10 mM NH
<sub>4</sub>
CH
<sub>3</sub>
CO
<sub>2</sub>
buffer at pH 5.5 (A) and 0.05% CH
<sub>3</sub>
CO
<sub>2</sub>
H in CH
<sub>3</sub>
OH (v/v) (B). Separation of nucleosides involved the following gradient:  0 min (100% A, 0% B), 7 min (100% A, 0% B), 37 min (50%A, 50% B), 45 min (30% A, 70% B), 55 min (100% A, 0% B), and 70 min (100% A, 0% B). The flow rate was 0.25 mL min
<sup>-1</sup>
. Precursor ions (the MH
<sup>+</sup>
ions of the DNA adducts) were generated in the ESI source and focused (quadrupole 1). These ions were dissociated in a collision cell (quadrupole 2), yielding defined product ions which were analyzed (quadrupole 3). The optimal collisional offset voltage to maximize the yields of HO-ethanodGuo product ions was −18 mV.</p>
</sec>
</sec>
<sec id="d7e494">
<title></title>
<sec id="d7e496">
<title>
<italic toggle="yes">Synthesis of 1,N
<sup>2</sup>
</italic>
<sup></sup>
-ε-Gua-Modified 19-mer </title>
<p>
<italic toggle="yes">5‘-O-(4,4‘-Dimethoxytrityl)-1,N
<sup>2</sup>
-ε-dGuo.</italic>
The dimethoxytritylation step was carried out as described in detail by DeCorte et al. (1996) starting with 50 mg (0.17 mmol) of 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-dGuo. Flash column chromatography (CH
<sub>2</sub>
Cl
<sub>2</sub>
/CH
<sub>3</sub>
OH/pyridine, 98:1:1, v/v/v, isocratic) yielded 76 mg (0.13 mmol, 74%) of 5‘-
<italic toggle="yes">O</italic>
-(4,4‘-dimethoxytrityl)-1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-dGuo:  TLC
<italic toggle="yes">R
<sub>f</sub>
</italic>
= 0.70 (CH
<sub>2</sub>
Cl
<sub>2</sub>
/CH
<sub>3</sub>
OH, 9:1, v/v); MS
<italic toggle="yes">m/z</italic>
(assignment and relative abundance in parentheses) 594 (MH
<sup>+</sup>
, 6), 303 (4,4‘-dimethoxytrityl
<sup>+</sup>
, 100), 176 [MH
<sup>+</sup>
− dimethoxytrityldeoxyribose (ε-Gua
<sup>+</sup>
), 42];
<sup>1</sup>
H-NMR [(C
<sup>2</sup>
H
<sub>3</sub>
)
<sub>2</sub>
SO] δ 1.90 (m, 1 H, H-2‘), 2.21 (m, 1 H, H-2‘ ‘), 3.09 (m, 2 H, H-5‘, H-5‘ ‘), 3.40 (s, 1 H, H-4‘), 3.67 (s, 3 H, C
<italic toggle="yes">H</italic>
<sub>3</sub>
O), 3.69 (s, 3 H, C
<italic toggle="yes">H</italic>
<sub>3</sub>
O), 3.90 (m, 1 H, H-3‘), 5.75 (t, 1 H, H-1‘), 6.79−6.89 (m, 4 H, aromatic), 7.09−7.26 (m, 7 H, aromatic), 7.33−7.37 (m, 2 H, aromatic), 7.75 (d, 1 H, H-6), 7.89 (d, 1 H, H-7), 8.57 (s, 1 H, H-2). </p>
<p>
<italic toggle="yes">3‘-O-[(N,N-Diisopropylamino)(2-cyanoethyl)phosphinyl]-5‘-O-(4,4‘-dimethoxytrityl)-1,N
<sup>2</sup>
-ε-dGuo.</italic>
The synthesis of the phosphoramidate derivative was achieved following established procedures (Decorte et al., 1996), which were modified by omitting the NaHCO
<sub>3</sub>
extraction step. The concentrated crude compound was instead directly subjected to flash column chromatography (CH
<sub>2</sub>
Cl
<sub>2</sub>
/ethyl acetate/pyridine, 69:30:1, v/v/v, isocratic), yielding 78 mg (0.098 mmol, 77%) of 3‘-
<italic toggle="yes">O</italic>
-[(
<italic toggle="yes">N</italic>
,
<italic toggle="yes">N</italic>
-diisopropylamino)(2-cyanoethyl)phosphinyl-5‘-
<italic toggle="yes">O</italic>
-(4,4‘-dimethoxytrityl)-1,
<italic toggle="yes">N</italic>
<italic toggle="yes">
<sup>2</sup>
</italic>
<sup></sup>
-ε-dGuo:  TLC
<italic toggle="yes">R
<sub>f</sub>
</italic>
= 0.72 (CH
<sub>2</sub>
Cl
<sub>2</sub>
/CH
<sub>3</sub>
OH, 9:1, v/v);
<sup>31</sup>
P-NMR (C
<sup>2</sup>
H
<sub>3</sub>
CN) δ 149.42, 149.64. A signal at δ 15.52 (inorganic phosphorus) indicated ∼50% hydrolysis of the phosphoramidate. Due to this degradation, no further characterization of the product was performed and immediate oligonucleotide synthesis was carried out. </p>
</sec>
</sec>
<sec id="d7e648">
<title></title>
<sec id="d7e650">
<title>HO-ethanoGua-Modified 19-mer (Scheme
<xref rid="bi962526vh00002"></xref>
) </title>
<p>
<italic toggle="yes">HO-ethanodGuo.</italic>
HO-ethanoGua was synthesized as described elsewhere (Guengerich et al., 1993), and an aliquot was enzymatically converted to the nucleoside with
<italic toggle="yes">trans</italic>
-
<italic toggle="yes">N</italic>
-deoxyribosylase (Müller et al., 1996) to serve as a chromatographic standard for the oligonucleotide digest assay.
<fig id="bi962526vh00002" position="float" fig-type="scheme" orientation="portrait">
<label>2</label>
<caption>
<p>Synthesis of Oligonucleotides Containing HO-ethanoGua
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
</p>
<p>
<fn id="d7e677">
<p>
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
 Ac
<sub>2</sub>
O = (CH
<sub>3</sub>
)
<sub>2</sub>
CO; DMT Cl = 4,4‘-dimethoxytrityl chloride; Block 3‘-OH indicates 2-cyanoethyl
<italic toggle="yes">N,N,N‘,N‘</italic>
-tetraisopropylchlorophosphoramidite.</p>
</fn>
</p>
</caption>
<graphic xlink:href="bi962526vh00002.gif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>
<italic toggle="yes">AcO-ethanoGua.</italic>
HO-ethanoGua (25 mg, 0.13 mmol) was dried by repeated treatment with and evaporation of anhydrous pyridine
<italic toggle="yes">in vacuo</italic>
(3 × 2.5 mL). The compound was then redissolved in anhydrous pyridine (2 mL), and freshly distilled (CH
<sub>3</sub>
CO)
<sub>2</sub>
O (0.061 mL, 0.65 mmol) was added and the mixture stirred for 3 h at room temperature under an Ar atmosphere. Most of the pyridine was removed
<italic toggle="yes">in vacuo</italic>
without heating by repeated addition of hexane (3 × 2 mL). The reddish-brown residue was dissolved in CH
<sub>3</sub>
OH and purified by HPLC. The peak eluting with a
<italic toggle="yes">t</italic>
<sub>R</sub>
of 19.0 min was collected, and the buffer salts were removed by repeated lyophilization to yield 29 mg (0.13 mmol, 95%) of AcO-ethanoGua:  MS
<italic toggle="yes">m/z</italic>
236 (MH
<sup>+</sup>
, 58), 176 [MH
<sup>+</sup>
− CH
<sub>3</sub>
CO − H
<sub>2</sub>
O (ε-Gua), 20];
<sup>1</sup>
H-NMR [(C
<sup>2</sup>
H
<sub>3</sub>
)
<sub>2</sub>
SO] δ 2.03 (s, 3 H, C
<italic toggle="yes">H</italic>
<sub>3</sub>
CO), 3.51 (d, 1 H, H-6), 3.91 (dd, 1 H, H-6), 6.91 (d, 1 H, H-7), 7.68 (s, 1 H, NH), 8.14 (s, 1 H, H-2), 12.53 (s, 1 H, NH). Formation of the desired product (as compared to potential amide formation) was further confirmed by an alkaline hydrolysis experiment. Treatment of the product with NaOH (pH 9−10) at room temperature resulted in immediate cleavage of the compound to the starting material as demonstrated by HPLC analysis. </p>
<p>
<italic toggle="yes">Deoxyribosylation of AcO-ethanoGua.</italic>
The attachment of the deoxyribose to the protected DNA base adduct was achieved by an enzymatic synthesis with
<italic toggle="yes">Lactobacillus helveticus</italic>
<italic toggle="yes">trans</italic>
-
<italic toggle="yes">N</italic>
-deoxyribosylase following a recently described procedure (Müller et al., 1996). AcO-ethanoGua (29 mg, 0.13 mmol) was converted to tetrahydro-7-acetoxy-9-oxo-3-β-
<sc>d</sc>
-deoxyribofuranosylimidazo[1,2-
<italic toggle="yes">a</italic>
]purine (diastereomers
<bold>1</bold>
and
<bold>2</bold>
) (39 mg, 0.11 mmol, 90% combined yield). As expected, a set of two diastereomers due to the presence of two chiral centers in the molecule (H-7 and H-1‘) was detected upon HPLC analysis, occurring in a 1:1 ratio. The two peaks eluting with a
<italic toggle="yes">t</italic>
<sub>R</sub>
of 20.2 min (diastereomer
<bold>1</bold>
) and 20.8 min (diastereomer
<bold>2</bold>
) were collected and characterized separately. Diastereomer
<bold>1</bold>
:  MS
<italic toggle="yes">m/z</italic>
352 (MH
<sup>+</sup>
, 6), 337 (MH
<sup>+</sup>
− CH
<sub>3</sub>
, 32), 236 (MH
<sup>+</sup>
− deoxyribose, 8), 176 [MH
<sup>+</sup>
− deoxyribose − CH
<sub>3</sub>
CO − H
<sub>2</sub>
O (ε-Gua
<sup>+</sup>
), 6];
<sup>1</sup>
H-NMR (
<sup>2</sup>
H
<sub>2</sub>
O) δ 2.14 (s, 3 H, C
<italic toggle="yes">H</italic>
<sub>3</sub>
CO), 2.51 (m, 1 H, H-2‘), 2.77 (m, 1 H, H-2‘ ‘), 3.78 (m, 3 H, H-5‘, H-5‘ ‘, H-6), 4.09 (m, 2 H, H-4‘, H-6), 4.61 (m, 1 H, H-3‘), 6.29 (t, 1 H, H-1‘), 7.10 (d, 1 H, H-7), 7.98 (s, 1 H, H-2). Diastereomer
<bold>2</bold>
:  MS
<italic toggle="yes">m/z</italic>
352 (MH
<sup>+</sup>
, 44), 236 (MH
<sup>+</sup>
− deoxyribose, 62);
<sup>1</sup>
H-NMR (
<sup>2</sup>
H
<sub>2</sub>
O) δ 2.12 (s, 3 H, C
<italic toggle="yes">H</italic>
<sub>3</sub>
CO), 2.49 (m, 1 H, H-2‘), 2.73 (m, 1 H, H-2‘ ‘), 3.75 (m, 3 H, H-5‘, H-5‘ ‘, H-6), 4.06 (m, 2 H, H-4‘, H-6), 4.58 (m, 1 H, H-3‘), 6.26 (t, 1 H, H-1‘), 7.07 (d, 1 H, H-7), 7.96 (s, 1 H, H-2). While the above analytical data allowed no distinction between the two diastereomers, the antiphasic orientation of the CD spectra clearly demonstrated the postulated stereochemistry (
<italic toggle="yes">vide infra</italic>
). </p>
<p>
<italic toggle="yes">5‘-O-(4,4‘-Dimethoxytrityl)-5,6,7,9-tetrahydro-7-acetoxy-9-oxo-3-β-
<sc>d</sc>
-deoxyribofuranosylimidazo[1,2-a]purine (Diastereomers</italic>
<bold>
<italic toggle="yes">1</italic>
</bold>
<italic toggle="yes">and</italic>
<bold>
<italic toggle="yes">2</italic>
</bold>
<italic toggle="yes">).</italic>
The dimethoxytritylation was done with the combined materials from the previous step (39 mg, 0.11 mmol) following the established protocol (Decorte et al., 1996) with a modification in the extraction step. The 10% K
<sub>2</sub>
CO
<sub>3</sub>
solution was replaced by H
<sub>2</sub>
O to avoid hydrolysis of the acetyl ester. Flash column chromatography (ethyl acetate/CH
<sub>2</sub>
Cl
<sub>2</sub>
/CH
<sub>3</sub>
OH/pyridine, 55:45:0.1:0.2, v/v/v/v, isocratic) yielded 54 mg (0.083 mmol, 75%) of 5‘-
<italic toggle="yes">O</italic>
-(4,4‘-dimethoxytrityl)-5,6,7,9-tetrahydro-7-acetoxy-9-oxo-3-β-
<sc>d</sc>
-deoxyribofuranosylimidazo[1,2-
<italic toggle="yes">a</italic>
]purine (diastereomers
<bold>1</bold>
and
<bold>2</bold>
):  TLC
<italic toggle="yes">R
<sub>f</sub>
</italic>
= 0.61 and 0.71 (ethyl acetate/CH
<sub>2</sub>
Cl
<sub>2</sub>
/CH
<sub>3</sub>
OH, 50:50:0.2, v/v/v); MS
<italic toggle="yes">m/z</italic>
654 (MH
<sup>+</sup>
, 6), 303 (4,4‘-dimethoxytrityl
<sup>+</sup>
, 100);
<sup>1</sup>
H-NMR [(C
<sup>2</sup>
H
<sub>3</sub>
)
<sub>2</sub>
SO] δ 1.71 (m, 1 H, H-2‘), 1.87 (m, 1 H, H-2‘ ‘), 2.13 (s, 3 H, C
<italic toggle="yes">H</italic>
<sub>3</sub>
CO), 2.79 (m, 3 H, H-5‘, H-5‘ ‘, H-6), 3.05 (m, 2 H, H-4‘, H-6), 3.70 (s, 3 H, C
<italic toggle="yes">H</italic>
<sub>3</sub>
O), 3.72 (s, 3 H, C
<italic toggle="yes">H</italic>
<sub>3</sub>
O), 4.06 (m, 1 H, H-3‘), 5.62 (t, 1 H, H-1‘), 6.67−6.82 (m, 4 H, aromatic), 6.90 (d, 1 H, H-7), 7.12−7.30 (m, 7 H, aromatic), 7.31−7.44 (m, 2 H, aromatic), 7.50 (s, 1 H, H-2). </p>
<p>
<italic toggle="yes">3‘-O-[(N,N-Diisopropylamino)(2-cyanoethyl)phosphinyl]-5‘-O-(4,4‘-dimethoxytrityl)-5,6,7,9-tetrahydro-7-acetoxy-9-oxo-3-β-
<sc>d</sc>
-deoxyribofuranosylimidazo[1,2-a]purine (Diastereomers</italic>
<bold>
<italic toggle="yes">1</italic>
</bold>
<italic toggle="yes">and</italic>
<bold>
<italic toggle="yes">2</italic>
</bold>
<italic toggle="yes">).</italic>
The phosphoramidation step followed the procedure used for the 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-dGuo derivative. Direct application of the crude product to flash column chromatography (CH
<sub>2</sub>
Cl
<sub>2</sub>
/ethyl acetate/pyridine, 69:30:1, v/v/v, isocratic) yielded 56 mg (0.066 mmol, 80%) of 3‘-
<italic toggle="yes">O</italic>
-[(
<italic toggle="yes">N</italic>
,
<italic toggle="yes">N</italic>
-diisopropylamino)(2-cyanoethyl)phosphinyl]-5‘-
<italic toggle="yes">O</italic>
-(4,4‘-dimethoxytrityl)-5,6,7,9-tetrahydro-7-acetoxy-9-oxo-3-β-
<sc>d</sc>
-deoxyribofuranosylimidazo[1,2-
<italic toggle="yes">a</italic>
]purine (diastereomers
<bold>1</bold>
and
<bold>2</bold>
):  TLC
<italic toggle="yes">R
<sub>f</sub>
</italic>
= 0.60 (ethyl acetate/CH
<sub>2</sub>
Cl
<sub>2</sub>
/CH
<sub>3</sub>
OH, 50:49.8:0.2, v/v/v);
<sup>31</sup>
P-NMR (C
<sup>2</sup>
H
<sub>3</sub>
CN) δ 149.62, 149.72. Again, a signal at δ 15.53 (inorganic phosphorus) indicated ∼50% hydrolysis of the product. Thus further characterization was not done in favor of immediate oligonucleotide synthesis. </p>
</sec>
</sec>
<sec id="d7e1062">
<title></title>
<sec id="d7e1064">
<title>Oligonucleotides (Scheme
<xref rid="bi962526vh00003"></xref>
) </title>
<p>Oligonucleotides were synthesized with an Expedite Nucleic Acid Synthesis System (Millipore Corp., Bedford, MA) on a 1 μmol scale using 4-
<italic toggle="yes">tert</italic>
-butylphenoxyacetyl protecting groups (PerSeptive Biosystems) according to the manufacturer‘s standard protocol. To compensate for the hydrolysis of the phosphoramidate, the DNA adduct nucleosides were dissolved, making them twice as concentrated (100 mg mL
<sup>-1</sup>
) as the unmodified nucleosides (50 mg mL
<sup>-1</sup>
). Nevertheless, a drop of 50% in overall coupling efficiency was noted after the insertion of the respective DNA adducts into the sequences in each synthesis. Following synthesis, the beads from two 1 μmol cassettes of each DNA oligomer were suspended in 50 mM NaOH (3 mL) and stirred slowly for 24 h at room temperature. After cautious neutralization with 50 mM CH
<sub>3</sub>
CO
<sub>2</sub>
H (1 mL), the solutions were filtered through a 0.22 μm filter and aliquots were subjected to HPLC analysis and preparative workup. The unmodified 19-mer and the 10-mer primer (Scheme
<xref rid="bi962526vh00003"></xref>
) each showed one major peak with a
<italic toggle="yes">t</italic>
<sub>R</sub>
of 49.0 and 54.2 min, respectively, which were collected and repeatedly lyophilized to remove buffer salts. Yields after the initial purification were 39 and 70
<italic toggle="yes">A</italic>
<sub>260</sub>
units [0.21 and 0.70 μmol, respectively, estimated by the method of Borer (1975)]. HPLC analysis of the 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua-modified 19-mer demonstrated two peaks with
<italic toggle="yes">t</italic>
<sub>R</sub>
s of 49.7 and 50.2 min in a 1:1 ratio, which were purified separately. Upon enzymatic digestion, the second peak was identified to contain the DNA adduct, and a yield of 38
<italic toggle="yes">A</italic>
<sub>260</sub>
units (∼0.2 μmol) was determined. The OH-ethanoGua-modified 19-mer was also a mixture of two product peaks, eluting with
<italic toggle="yes">t</italic>
<sub>R</sub>
s of 50.5 and 51.5 min in a ratio of 3:7. HPLC analysis of the enzymatic digest of the oligomer revealed that the first product peak contained the modified nucleoside; its yield was 19
<italic toggle="yes">A</italic>
<sub>260</sub>
units (∼0.1 μmol). All DNA oligomers were subjected to a second HPLC purification and further polyacrylamide gel electrophoresis to obtain purities of >99% as evaluated by CGE (
<italic toggle="yes">vide infra</italic>
).
<fig id="bi962526vh00003" position="float" fig-type="scheme" orientation="portrait">
<label>3</label>
<caption>
<p>Oligonucleotides
<sup>
<italic toggle="yes">a</italic>
</sup>
</p>
<p>
<fn id="d7e1138">
<p>
<sup>
<italic toggle="yes">a</italic>
</sup>
 G* = Gua, 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua, or HO-ethanoGua. The site of the first incorporation is indicated with an arrow.</p>
</fn>
</p>
</caption>
<graphic xlink:href="bi962526vh00003.gif" position="float" orientation="portrait"></graphic>
</fig>
</p>
</sec>
</sec>
<sec id="d7e1152">
<title></title>
<sec id="d7e1154">
<title>Characterization of Oligonucleotides </title>
<p>Direct injection electrospray mass spectrometry was used to verify the identities of three of the four oligomers used:  10-mer, calcd
<italic toggle="yes">M</italic>
<sub>r</sub>
of 3027.0, anal. 3026.9; unmodified 19-mer, calcd
<italic toggle="yes">M</italic>
<sub>r</sub>
of 5883.9, anal. 5884.9; and 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua 19-mer, calcd
<italic toggle="yes">M</italic>
<sub>r</sub>
of 5907.9, anal. 5908.3 (see Supporting Information). Attempts to analyze the intact HO-ethanoGua-containing 19-mer directly were unsuccessful. </p>
<p>Each oligonucleotide (1
<italic toggle="yes">A</italic>
<sub>260</sub>
unit = ∼5.4 nmol) was digested in a two-step protocol. The first step involved dissolving the DNA oligomer in 20 μL of 10 mM Tris-HCl buffer (pH 7.0) containing 10 mM MgCl
<sub>2</sub>
and the addition of 8 μg of nuclease P
<sub>1</sub>
(Sigma Chemical Co., St. Louis, MO), followed by a 3 h incubation at 37 °C. In the second step, 20 μL of 100 mM Tris-HCl buffer (pH 9.0), 9 μg of snake venom phosphodiesterase (Sigma), and 6 μg of alkaline phosphatase (Sigma) were added and the digest was kept for another 3 h at 37 °C. Each sample was diluted with 100 μL of H
<sub>2</sub>
O and filtered through a 0.22 μm filter; a 50 μL aliquot was analyzed by HPLC, and the concentrations of the individual deoxyribonucleosides were estimated by comparisons made with external standards:  10-mer primer (Scheme
<xref rid="bi962526vh00003"></xref>
), theoretical (relative ratios in parentheses) dCyd (2), dGuo (2), dThd (3), dAdo (3) and found dCyd (2.0), dGuo (2.4), dThd (3.3), dAdo (3.4); unmodified 19-mer template, theoretical dCyd (3), dGuo (7) dThd (5), dAdo (4) and found dCyd (3.0), dGuo (7.2), dThd (5.3), dAdo (4.2); 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua-containing 19-mer template, theoretical dCyd (3), dGuo (6), dThd (5), dAdo (4), 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-dGuo (1) and found dCyd (3.0), dGuo (6.1), dThd (5.3), dAdo (4.2), 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-dGuo (1.0). In the case of the HO-ethanoGua-containing 19-mer template, the OH-ethanodGuo and dThd were not resolved by HPLC, and the sample (
<sup>1</sup>
/
<sub>10</sub>
the normal amount was digested) was analyzed by combined HPLC/ES MS/MS (Müller et al., 1997). HO-ethanodGuo was identified and confirmed by repeating the analysis in the presence of a known amount of 4,5,8-
<sup>13</sup>
C-labeled compound (Müller et al., 1997) (
<italic toggle="yes">vide infra</italic>
). </p>
</sec>
</sec>
<sec id="d7e1225">
<title></title>
<sec id="d7e1227">
<title>Enzymes </title>
<p>
<italic toggle="yes">trans</italic>
-
<italic toggle="yes">N</italic>
-Deoxyribosylase was partially purified from
<italic toggle="yes">L. helveticus</italic>
(Müller et al., 1996) by L. K. Hutchinson in the Department of Biochemistry at the Vanderbilt University School of Medicine. Recombinant rat pol β was a gift of S. Wilson (University Texas, Galveston, TX). Other polymerases were purified by L. L. Furge from
<italic toggle="yes">Escherichia coli</italic>
(Lowe & Guengerich, 1996) using stock plasmids provided:  Kf (C. Joyce, Yale University, New Haven, CT) (Derbyshire et al., 1988), pol II (M. F. Goodman, University of Southern California, Los Angeles, CA) (Cai et al., 1995), pol T7 and thioredoxin (K. A. Johnson, Pennsylvania State University, University Park, PA) (Kati et al., 1991; Lunn et al., 1984), and RT (S. Hughes, Frederick Cancer Facility, Frederick, MD) (Le Grice & Grüninger-Leitch, 1990). </p>
</sec>
</sec>
<sec id="d7e1243">
<title></title>
<sec id="d7e1245">
<title>Polymerase Assays </title>
<p>
<italic toggle="yes">General.</italic>
The 10-mer primer (2 μM) was 5‘-end-labeled using T4 polynucleotide kinase and purified on a Biospin column (Bio-Rad, Hercules, CA). Template and labeled primer (2:1 molar ratio) were annealed in a buffer containing 50 mM sodium MOPS (pH 7.0), 50 μg of bovine serum albumin per milliliter, and 5 mM MgCl
<sub>2</sub>
by incubating at 90 °C for 10 min and slowly cooling to room temperature. The different assays were then performed as follows. </p>
<p>
<italic toggle="yes">Primer Extension.</italic>
All four dNTPs, at 100 μM each, were incubated in the presence of 50 or 100 nM primer/template mixture in 10 μL of 50 mM sodium MOPS buffer (pH 7.0) containing 8 mM MgCl
<sub>2</sub>
, 4 mM dithiothreitol, 2 μg of bovine serum albumin per milliliter, and the particular polymerase, added at several different concentrations. These reactions were performed for 30 min at 25 °C with all polymerases, except for pol II which was incubated at 37 °C. Reactions were quenched by the addition of 10 mM EDTA in 90% formamide (v/v), and the reaction products were analyzed by electrophoresis on 20% (w/v) denaturating polyacrylamide gels using Sequagel (National Diagnostics, Atlanta, GA). </p>
<p>
<italic toggle="yes">One-Base Incorporation.</italic>
<sup>32</sup>
P-labeled 10-mer primers were extended using unmodified or adducted 19-mer templates in the presence of single dNTPs (100 μM) with 50 nM Kf or pol II, 200 nM T7, or 4.6 μM pol β. The incubation times were 15 min for pol I and pol II, but in the case of T7 and pol β, the reaction time was extended to 30 min. </p>
<p>
<italic toggle="yes">Steady-State Kinetics.</italic>
The general approach of Boosalis et al. (1987) was used, as modified in this laboratory (Lowe & Guengerich, 1996). A Molecular Dynamics Model 400E Phosphorimager (Molecular Dynamics Inc., Sunnyvale, CA) was used to measure incorporation of radioactivity, and the results were analyzed using a k·cat computer program (Biometallics, Princeton, NJ) as described elsewhere (Lowe & Guengerich, 1996). </p>
<p>
<italic toggle="yes">Nucleotide Sequence Analysis.</italic>
The bands corresponding to 100 pmol of the primer extension products obtained with the several enzymes were extracted from the gel by shaking overnight at 4 °C in distilled H
<sub>2</sub>
O. The products were recovered by C
<sub>2</sub>
H
<sub>5</sub>
OH precipitation and sequenced as described by Maxam and Gilbert (1980) except for the T-specific reaction, where the method described by Friedmann and Brown (1978) was used. </p>
</sec>
</sec>
<sec id="d7e1286">
<title>Results</title>
<p>
<italic toggle="yes">Synthesis of Protected HO-ethanodGuo.</italic>
The preparation of an oligonucleotide substituted with HO-ethanoGua required development of an appropriate strategy for incorporation of a suitably substituted phosphoramidite (Scheme
<xref rid="bi962526vh00002"></xref>
). The free hydroxyl group on the exocyclic ring should be blocked in order to prevent coupling in the phosphoramidite reaction of the DNA synthesizer, using a group that can be readily deprotected. The hydroxyl group was readily acetylated in pyridine. The deoxyribose moiety could be enzymatically added to HO-ethanoGua with purine nucleoside phosphorylase, but the acetylated derivative gave no nucleoside product with this enzyme. However,
<italic toggle="yes">L. helveticus</italic>
<italic toggle="yes">trans-N</italic>
-deoxyribosylase catalyzed the reaction and was used in the synthesis (Müller et al., 1996).
<xref rid="atyp_ref2" ref-type="bibr"></xref>
</p>
<p>HPLC of the acetylated nucleoside revealed two closely eluting peaks with similar areas. These two compounds had identical UV, mass, and
<sup>1</sup>
H-NMR spectra. However, the CD spectra were mirror images of each other (see Supporting Information), supporting the conclusion that these are diastereomers and differ in their configuration at C7. The absolute configurations of these diastereomers were not determined. Treatment with 0.10 N NaOH led to the loss of the CD spectra at wavelengths of >250 nm, and a single HPLC peak was eluted.
<fig id="bi962526vf00001" position="float" orientation="portrait">
<label>1</label>
<caption>
<p>CGE traces of oligonucleotides:  (A) primer (10-mer), (B) 19-mer template (unmodified), (C) 19-mer containing 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua, and (D) 19-mer containing HO-ethanoGua.</p>
</caption>
<graphic xlink:href="bi962526vf00001.gif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>The evidence for the diastereomers raised the issue of whether individual hydroxyl diastereomers exist and could be used separately. Alternatively, the closed and open forms, HO-ethanoGua and
<italic toggle="yes">N</italic>
<sup>2</sup>
-(2-oxoethyl)Gua, respectively, might be in equilibrium and the hydroxyl group would epimerize (Scheme
<xref rid="bi962526vh00001"></xref>
). In order to test this possibility, the exchange of oxygen from H
<sub>2</sub>
<sup>18</sup>
O was examined with HO-ethanodGuo, using FAB MS and measuring the intensity of the ions at
<italic toggle="yes">m/z</italic>
310 and 312. At neutral pH, 72% of the HO-ethanodGuo had incorporated one
<sup>18</sup>
O atom following overnight incubation at room temperature. When the experiment was repeated in 0.10 N NaOH, conditions to be used in deblocking after oligonucleotide synthesis, the nucleoside had completely incorporated one
<sup>18</sup>
O atom (>95% incorporation). Thus, HO-ethanoGua appears to be in relatively rapid equilibrium between the open and the two (stereochemically different) closed forms. </p>
<p>
<italic toggle="yes">Synthesis and Characterization of Oligonucleotides.</italic>
1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-dGuo and the acetoxy-protected form of HO-ethanodGuo prepared above were treated to add 5‘-dimethoxytrityl and 3‘-phosphoramidite groups in the usual manner and used to prepare 19-mer oligonucleotides (Scheme
<xref rid="bi962526vh00002"></xref>
). The coupling yields at the site of the derivative were 50% of those at the other steps, even with excess derivatized phosphoramidites. Deblocking of the HO-ethanoGua derivative was done in 0.05 N NaOH instead of NH
<sub>4</sub>
OH to remove the acetoxy group. The 19-mer templates and the 10-mer primer were purified by a combination of reversed-phase HPLC and preparative polyacrylamide gel electrophoresis, taking care to slice only the middle portion of the gel band in the more demanding separations. </p>
<p>CGE electrophoretograms of the purified oligomers are shown (Figure
<xref rid="bi962526vf00001"></xref>
). Purity in all cases was judged to be >99%. </p>
<p>The oligomers containing 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua and HO-ethanoGua were digested with nucleases and phosphatase, and the products were analyzed by HPLC (Figure
<xref rid="bi962526vf00002"></xref>
). The distinct UV spectra and
<italic toggle="yes">t</italic>
<sub>R</sub>
permitted positive identification of the former oligomer, using diode array spectroscopy, to characterize 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-dGuo (Figure
<xref rid="bi962526vf00002"></xref>
A). With HO-ethanodGuo, the similarity of the
<italic toggle="yes">t</italic>
<sub>R</sub>
to that of dThd and the lack of such a distinct spectrum precluded such analysis. The nucleoside/phosphatase digest of this oligomer was analyzed by HPLC/ES MS/MS as reported elsewhere (Müller et al., 1997). The presence of HO-ethanoGua was clearly verified by monitoring the appropriate transition (Figure
<xref rid="bi962526vf00002"></xref>
B).
<fig id="bi962526vf00002" position="float" orientation="portrait">
<label>2</label>
<caption>
<p>Analysis of digests of modified oligomers. See Experimental Procedures for description. (A) HPLC/UV of the digest of 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua-containing 19-mer, with the spectrum of 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-dGuo in the inset. (B) HPLC/ES MS/MS of the digest of HO-ethanoGua-containing 19-mer, with
<italic toggle="yes">m/z</italic>
traces shown for the appropriate MS/MS transitions of dAdo, dCyd, dGuo, dThd, HO-ethanodGuo, and [4,5,8-
<sup>13</sup>
C]HO-ethanodGuo (heavy atom derivative added to verify
<italic toggle="yes">t</italic>
<sub>R</sub>
) (Müller et al., 1997). HPLC/selected reaction monitoring/MS/MS was done monitoring the 310 to 194 or the 313 to 197 transition (loss of deoxyribose) in the latter two cases. No
<italic toggle="yes">m/z</italic>
313 transition was seen in the absence of added
<sup>13</sup>
C material, but the same
<italic toggle="yes">m/z</italic>
310 transition peak was seen.</p>
</caption>
<graphic xlink:href="bi962526vf00002.gif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>
<italic toggle="yes">Polymerase Extension Assays.</italic>
Five polymerases were studied because of their availability and existing literature regarding their properties. The initial experiments involved analysis of the extension of the 10-mer primer/19-mer template complexes in the presence of a mixture of all four dNTPs. With all five polymerases, both of the modified templates retarded extension but some full-length product was obtained (Figures
<xref rid="bi962526vf00003"></xref>
−7). The results are qualitatively summarized in Table
<xref rid="bi962526vt00001"></xref>
.
<fig id="bi962526vf00003" position="float" orientation="portrait">
<label>3</label>
<caption>
<p>Extension of 10-mer primer by Kf in the presence of all four dNTPs.</p>
</caption>
<graphic xlink:href="bi962526vf00003.gif" position="float" orientation="portrait"></graphic>
</fig>
<fig id="bi962526vf00004" position="float" orientation="portrait">
<label>4</label>
<caption>
<p>Extension of 10-mer primer by pol II in the presence of all four dNTPs.</p>
</caption>
<graphic xlink:href="bi962526vf00004.gif" position="float" orientation="portrait"></graphic>
</fig>
<fig id="bi962526vf00005" position="float" orientation="portrait">
<label>5</label>
<caption>
<p>Extension of 10-mer primer by T7 pol in the presence of all four dNTPs.</p>
</caption>
<graphic xlink:href="bi962526vf00005.gif" position="float" orientation="portrait"></graphic>
</fig>
<fig id="bi962526vf00006" position="float" orientation="portrait">
<label>6</label>
<caption>
<p>Extension of 10-mer primer by RT in the presence of all four dNTPs.</p>
</caption>
<graphic xlink:href="bi962526vf00006.gif" position="float" orientation="portrait"></graphic>
</fig>
<fig id="bi962526vf00007" position="float" orientation="portrait">
<label>7</label>
<caption>
<p>Extension of 10-mer primer by pol β in the presence of all four dNTPs.</p>
</caption>
<graphic xlink:href="bi962526vf00007.gif" position="float" orientation="portrait"></graphic>
</fig>
<table-wrap id="bi962526vt00001" position="float" orientation="portrait">
<label>1</label>
<caption>
<p>Products of Polymerase Extension Assays of 10-mer Primer in the Presence of All Four dNTPs and a 19-mer Template
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
</p>
</caption>
<oasis:table colsep="2" rowsep="2">
<oasis:tgroup cols="4">
<oasis:colspec colnum="1" colname="1"></oasis:colspec>
<oasis:colspec colnum="2" colname="2"></oasis:colspec>
<oasis:colspec colnum="3" colname="3"></oasis:colspec>
<oasis:colspec colnum="4" colname="4"></oasis:colspec>
<oasis:tbody>
<oasis:row>
<oasis:entry colname="1"></oasis:entry>
<oasis:entry namest="2" nameend="4">products from each template (length)</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">polymerase</oasis:entry>
<oasis:entry colname="2">Gua</oasis:entry>
<oasis:entry colname="3">1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua</oasis:entry>
<oasis:entry colname="4">HO-ethanoGua </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">Kf </oasis:entry>
<oasis:entry colname="2">19, 20 </oasis:entry>
<oasis:entry colname="3">11, 17−20 </oasis:entry>
<oasis:entry colname="4">11, 19, 20 (plus 12−18) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">pol II </oasis:entry>
<oasis:entry colname="2">18, 19 </oasis:entry>
<oasis:entry colname="3">18, 19 </oasis:entry>
<oasis:entry colname="4">18, 19 (plus 11−17) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">T7 </oasis:entry>
<oasis:entry colname="2">19, 20 </oasis:entry>
<oasis:entry colname="3">18−20 </oasis:entry>
<oasis:entry colname="4">19, 20 (plus 11−18) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">RT </oasis:entry>
<oasis:entry colname="2">18, 19 </oasis:entry>
<oasis:entry colname="3">20, 9−7 </oasis:entry>
<oasis:entry colname="4">20, 9−7 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">pol β </oasis:entry>
<oasis:entry colname="2">19 </oasis:entry>
<oasis:entry colname="3">19 </oasis:entry>
<oasis:entry colname="4">19</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
<table-wrap-foot>
<p>
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
 See Scheme
<xref rid="bi962526vh00003"></xref>
and Figures
<xref rid="bi962526vf00003"></xref>
−7.</p>
</table-wrap-foot>
</table-wrap>
</p>
<p>With all of the polymerases except pol β, extension of the HO-ethanoGua-containing 19-mer yielded a ladder of all the possible products differing in length by one base. Kf also yielded a large amount of 11-mer with both modified oligomers, corresponding to addition of only one base at the site of the modified Gua. Under these conditions, Kf often extends a primer one base beyond the length of the template (Clark et al., 1987; Clark, 1988), and this phenomenon was observed with all three templates with Kf, T7, and RT (Figures
<xref rid="bi962526vf00003"></xref>
,
<xref rid="bi962526vf00005"></xref>
, and 6). Although RT is usually considered to be devoid of exonuclease activity (Kornberg & Baker, 1992), digestion of this sequence was observed, and the extent was increased when the modified bases were present (Figure
<xref rid="bi962526vf00006"></xref>
). This appears not to be a sequence-dependent activity, because we also observed such digestion with another oligomer used previously in other work (Lowe & Guengerich, 1996) and inspection of other work indicates similar RT processing (Kati et al., 1992). </p>
<p>
<italic toggle="yes">Nucleotide Sequence Analysis of Extended Primers.</italic>
The products obtained by primer extension in the presence of all four dNTPs were analyzed using modifications of the Maxam−Gilbert method (Maxam & Gilbert, 1980), and the results are summarized in Table
<xref rid="bi962526vt00002"></xref>
. The extent of misincorporation cannot be analyzed quantitatively in such assays, and the results must be considered qualitatively. Typical gels obtained in the analysis of the Kf products with the modified bases are shown in Figure
<xref rid="bi962526vf00008"></xref>
. Products from the reactions with RT and pol β were not analyzed.
<fig id="bi962526vf00008" position="float" orientation="portrait">
<label>8</label>
<caption>
<p>Nucleotide sequence analysis. (A) Residues 9−13 of standard 19-mers synthesized to contain A, C, G, and T at position 11. Also shown are the (B) 11-mer, (C) 19-mer, and (D) 17-mer formed by extension when paired to the 19-mer template containing 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua.</p>
</caption>
<graphic xlink:href="bi962526vf00008.gif" position="float" orientation="portrait"></graphic>
</fig>
<table-wrap id="bi962526vt00002" position="float" orientation="portrait">
<label>2</label>
<caption>
<p>Nucleotide Sequence Analysis of a 10-mer Primer Extended in the Presence of All Four dNTPs and 19-mer Primer</p>
</caption>
<oasis:table colsep="2" rowsep="2">
<oasis:tgroup cols="5">
<oasis:colspec colnum="1" colname="1"></oasis:colspec>
<oasis:colspec colnum="2" colname="2"></oasis:colspec>
<oasis:colspec colnum="3" colname="3"></oasis:colspec>
<oasis:colspec colnum="4" colname="4"></oasis:colspec>
<oasis:colspec colnum="5" colname="5"></oasis:colspec>
<oasis:tbody>
<oasis:row>
<oasis:entry colname="1"></oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry namest="3" nameend="5">bases incorporated opposite Gua or Gua adduct</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">polymerase</oasis:entry>
<oasis:entry colname="2">length of product</oasis:entry>
<oasis:entry colname="3">Gua</oasis:entry>
<oasis:entry colname="4">1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua</oasis:entry>
<oasis:entry colname="5">HO-ethanoGua </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">Kf </oasis:entry>
<oasis:entry colname="2">19,
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
 20 </oasis:entry>
<oasis:entry colname="3">C </oasis:entry>
<oasis:entry colname="4">G, C (A) 
<italic toggle="yes">
<sup>b</sup>
</italic>
<sup></sup>
</oasis:entry>
<oasis:entry colname="5">G, T (A)
<italic toggle="yes">
<sup>b</sup>
</italic>
<sup></sup>
</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1"></oasis:entry>
<oasis:entry colname="2">18</oasis:entry>
<oasis:entry colname="3"></oasis:entry>
<oasis:entry colname="4">−1 base frameshift</oasis:entry>
<oasis:entry colname="5">−1 base frameshift</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1"></oasis:entry>
<oasis:entry colname="2">17
<sup>
<italic toggle="yes">a</italic>
</sup>
</oasis:entry>
<oasis:entry colname="3"></oasis:entry>
<oasis:entry colname="4">−2 base frameshift</oasis:entry>
<oasis:entry colname="5">−2 base frameshift</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1"></oasis:entry>
<oasis:entry colname="2">11</oasis:entry>
<oasis:entry colname="3"></oasis:entry>
<oasis:entry colname="4">A, G</oasis:entry>
<oasis:entry colname="5">A, G </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">pol II </oasis:entry>
<oasis:entry colname="2">19 </oasis:entry>
<oasis:entry colname="3">C </oasis:entry>
<oasis:entry colname="4">A, T (C)
<italic toggle="yes">
<sup>b</sup>
</italic>
<sup></sup>
</oasis:entry>
<oasis:entry colname="5">A, T (C)
<italic toggle="yes">
<sup>b</sup>
</italic>
<sup></sup>
</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1"></oasis:entry>
<oasis:entry colname="2">18</oasis:entry>
<oasis:entry colname="3"></oasis:entry>
<oasis:entry colname="4">−1 base frameshift</oasis:entry>
<oasis:entry colname="5">−1 base frameshift </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">T7 </oasis:entry>
<oasis:entry colname="2">19, 20 </oasis:entry>
<oasis:entry colname="3">C </oasis:entry>
<oasis:entry colname="4">C </oasis:entry>
<oasis:entry colname="5">C</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1"></oasis:entry>
<oasis:entry colname="2">18</oasis:entry>
<oasis:entry colname="3"></oasis:entry>
<oasis:entry colname="4">−1 base frameshift</oasis:entry>
<oasis:entry colname="5">−1 base frameshift</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
<table-wrap-foot>
<p>
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
 See Figure
<xref rid="bi962526vf00008"></xref>
.
<sup>
<italic toggle="yes">b</italic>
</sup>
 Tentative assignment. See Figure
<xref rid="bi962526vf00008"></xref>
for data in the case of 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua and Kf. See Figure
<xref rid="bi962526vf00009"></xref>
and Tables
<xref rid="bi962526vt00003"></xref>
and
<xref rid="bi962526vt00004"></xref>
for single-base incorporation results.</p>
</table-wrap-foot>
</table-wrap>
</p>
<p>Kf and pol II yielded more misincorporation than T7. Differences between the products derived with the 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε- Gua- and HO-ethanoGua-containing oligomers were seen. Also, there were differences in the bases misincorporated in the 11-mer (one-base incorporation) and the fully extended primer with Kf. In the case of the 11-mer product formed with Kf, both A and G were clearly present (Figure
<xref rid="bi962526vf00008"></xref>
B). In the 19-mer Kf product, G was clearly inserted (Figure
<xref rid="bi962526vf00008"></xref>
C) but the relative intensities of bands in the G and G + A lanes, compared with those of the standard oligomers (Figure
<xref rid="bi962526vf00008"></xref>
A), did not allow an unambiguous call for A. Similarly, a definite call for C in the case of the 19-mer product of pol II was not possible because of the insertion of T and the relative band intensities in the T and T + C lanes. </p>
<p>
<italic toggle="yes">Primer Extension Assays with Individual dNTPs.</italic>
The incorporation assays were repeated to incorporate only a single base; i.e., only use one dNTP in the assay. In all cases, it was possible to force some misincorporation (Figure
<xref rid="bi962526vf00009"></xref>
), even with the unmodified oligomer. Following incorporation of a single base, the next position in the template contains a T, so incorporation of an A is then favored. In most cases in which dATP was used, some 12-mer was found.
<fig id="bi962526vf00009" position="float" orientation="portrait">
<label>9</label>
<caption>
<p>Extension of primer in the presence of a single dNTP when paired with modified 19-mers:  (A) Kf, (B) pol II, (C) T7, and (D) pol β.</p>
</caption>
<graphic xlink:href="bi962526vf00009.gif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>The results are summarized in Table
<xref rid="bi962526vt00003"></xref>
and are considered qualitative. Of interest is the observation of the 13-mer product in the reaction of the 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua template with Kf (Figure
<xref rid="bi962526vf00009"></xref>
A). Incorporation of three Cs at sites 11−13 is highly unlikely, since pairing of dCTP opposite a T would have to occur after the incorporation of dCTP opposite 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua (Scheme
<xref rid="bi962526vh00003"></xref>
). Moreover, further incorporation of more dCTP would have been expected. An alternative is that the 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua and the following T slip and the three Cs are incorporated opposite the G
<sub>3</sub>
triplet at positions 13−15 (Scheme
<xref rid="bi962526vh00003"></xref>
). Sequence analysis indicated that this latter slippage event occurred (Figure
<xref rid="bi962526vf00008"></xref>
D).
<table-wrap id="bi962526vt00003" position="float" orientation="portrait">
<label>3</label>
<caption>
<p>Products of Polymerase Extension Assays of 10-mer Primers in the Presence of Modified 19-mers and a Single dNTP</p>
</caption>
<oasis:table colsep="2" rowsep="2">
<oasis:tgroup cols="4">
<oasis:colspec colnum="1" colname="1"></oasis:colspec>
<oasis:colspec colnum="2" colname="2"></oasis:colspec>
<oasis:colspec colnum="3" colname="3"></oasis:colspec>
<oasis:colspec colnum="4" colname="4"></oasis:colspec>
<oasis:tbody>
<oasis:row>
<oasis:entry colname="1"></oasis:entry>
<oasis:entry namest="2" nameend="4">products from each template
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">polymerase</oasis:entry>
<oasis:entry colname="2">Gua</oasis:entry>
<oasis:entry colname="3">1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua</oasis:entry>
<oasis:entry colname="4">HO-ethanoGua </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">Kf </oasis:entry>
<oasis:entry colname="2">C ≫ A, G, T </oasis:entry>
<oasis:entry colname="3">A > C > G </oasis:entry>
<oasis:entry colname="4">A > C > G </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">pol II </oasis:entry>
<oasis:entry colname="2">C ≫ A, G, T </oasis:entry>
<oasis:entry colname="3">A > C </oasis:entry>
<oasis:entry colname="4">A > C </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">T7 </oasis:entry>
<oasis:entry colname="2">C </oasis:entry>
<oasis:entry colname="3">C </oasis:entry>
<oasis:entry colname="4">A > C </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">pol β </oasis:entry>
<oasis:entry colname="2">C </oasis:entry>
<oasis:entry colname="3">C </oasis:entry>
<oasis:entry colname="4">A > C</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
<table-wrap-foot>
<p>
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
 See Figure
<xref rid="bi962526vf00009"></xref>
.</p>
</table-wrap-foot>
</table-wrap>
</p>
<p>
<italic toggle="yes">Steady-State Kinetic Assays of Single-Base Incorporation.</italic>
Single dNTP incorporation assays were done under typical steady-state conditions (Boosalis et al., 1987) in order to provide more quantitative estimates of the tendency of polymerases to misincorporate bases. The results are summarized in Table
<xref rid="bi962526vt00004"></xref>
.
<table-wrap id="bi962526vt00004" position="float" orientation="portrait">
<label>4</label>
<caption>
<p>Steady-State Kinetic Parameters for dNTP Incorporation</p>
</caption>
<oasis:table colsep="2" rowsep="2">
<oasis:tgroup cols="7">
<oasis:colspec colnum="1" colname="1"></oasis:colspec>
<oasis:colspec colnum="2" colname="2"></oasis:colspec>
<oasis:colspec colnum="3" colname="3"></oasis:colspec>
<oasis:colspec colnum="4" colname="4"></oasis:colspec>
<oasis:colspec colnum="5" colname="5"></oasis:colspec>
<oasis:colspec colnum="6" colname="6"></oasis:colspec>
<oasis:colspec colnum="7" colname="7"></oasis:colspec>
<oasis:tbody>
<oasis:row>
<oasis:entry colname="1"></oasis:entry>
<oasis:entry namest="2" nameend="4">Kf</oasis:entry>
<oasis:entry namest="5" nameend="7">T7</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">pairing</oasis:entry>
<oasis:entry colname="2">
<italic toggle="yes">k</italic>
<sub>cat</sub>
 (min
<sup>-1</sup>
)</oasis:entry>
<oasis:entry colname="3">
<italic toggle="yes">K</italic>
<sub>m</sub>
 (μM)</oasis:entry>
<oasis:entry colname="4">misincorporation frequency
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
</oasis:entry>
<oasis:entry colname="5">
<italic toggle="yes">k</italic>
<sub>cat</sub>
 (min
<sup>-1</sup>
)</oasis:entry>
<oasis:entry colname="6">
<italic toggle="yes">K</italic>
<sub>m</sub>
 (μM)</oasis:entry>
<oasis:entry colname="7">misincorporation frequency </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">Gua·dCTP </oasis:entry>
<oasis:entry colname="2">81 ± 5 </oasis:entry>
<oasis:entry colname="3">0.027 ± 0.008 </oasis:entry>
<oasis:entry colname="4"></oasis:entry>
<oasis:entry colname="5">0.15 ± 0.01 </oasis:entry>
<oasis:entry colname="6">1.8 ± 0.7</oasis:entry>
<oasis:entry colname="7"></oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua·dCTP </oasis:entry>
<oasis:entry colname="2">0.54 ± 0.02 </oasis:entry>
<oasis:entry colname="3">67 ± 8</oasis:entry>
<oasis:entry colname="4"></oasis:entry>
<oasis:entry colname="5">0.0046 ± 0.0002 </oasis:entry>
<oasis:entry colname="6">1.1 ± 0.3</oasis:entry>
<oasis:entry colname="7"></oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua·dGTP </oasis:entry>
<oasis:entry colname="2">0.27 ± 0.02 </oasis:entry>
<oasis:entry colname="3">31 ± 8 </oasis:entry>
<oasis:entry colname="4">1.1
<italic toggle="yes">
<sup>b</sup>
</italic>
<sup></sup>
</oasis:entry>
<oasis:entry colname="5"></oasis:entry>
<oasis:entry colname="6"></oasis:entry>
<oasis:entry colname="7"></oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua·dATP </oasis:entry>
<oasis:entry colname="2">0.12 ± 0.01 </oasis:entry>
<oasis:entry colname="3">75 ± 24 </oasis:entry>
<oasis:entry colname="4">0.2
<italic toggle="yes">
<sup>b</sup>
</italic>
<sup></sup>
</oasis:entry>
<oasis:entry colname="5"></oasis:entry>
<oasis:entry colname="6"></oasis:entry>
<oasis:entry colname="7"></oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">HO-ethanoGua·dCTP </oasis:entry>
<oasis:entry colname="2">0.28 ± 0.02 </oasis:entry>
<oasis:entry colname="3">5 ± 2</oasis:entry>
<oasis:entry colname="4"></oasis:entry>
<oasis:entry colname="5">0.0032 ± 0.002 </oasis:entry>
<oasis:entry colname="6">0.48 ± 0.17</oasis:entry>
<oasis:entry colname="7"></oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">HO-ethanoGua·dGTP </oasis:entry>
<oasis:entry colname="2">0.35 ± 0.01 </oasis:entry>
<oasis:entry colname="3">41 ± 7 </oasis:entry>
<oasis:entry colname="4">0.15</oasis:entry>
<oasis:entry colname="5"></oasis:entry>
<oasis:entry colname="6"></oasis:entry>
<oasis:entry colname="7"></oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">HO-ethanoGua·dATP </oasis:entry>
<oasis:entry colname="2">0.17 ± 0.01 </oasis:entry>
<oasis:entry colname="3">7 ± 3 </oasis:entry>
<oasis:entry colname="4">0.45 </oasis:entry>
<oasis:entry colname="5">0.0052 ± 0.0003 </oasis:entry>
<oasis:entry colname="6">0.94 ± 0.33 </oasis:entry>
<oasis:entry colname="7">1.2</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
<table-wrap-foot>
<p>
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
 Misincorporation frequency = (
<italic toggle="yes">k</italic>
<sub>cat</sub>
/
<italic toggle="yes">K</italic>
<sub>m</sub>
)
<sub>dNTP</sub>
/(
<italic toggle="yes">k</italic>
<sub>cat</sub>
/
<italic toggle="yes">K</italic>
<sub>m</sub>
)
<sub>dCTP</sub>
(where dNTP ≠ dCTP).
<sup>
<italic toggle="yes">b</italic>
</sup>
 These are considered to be much higher because the values for dCTP incorporation reflect incorporation of three dCTPs. See the text for discussion of a possible frameshift.</p>
</table-wrap-foot>
</table-wrap>
</p>
<p>Kf misincorporated both A and G opposite 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua and HO-ethanoGua. Compared to the normal incorporation of dCTP opposite Gua,
<italic toggle="yes">k</italic>
<sub>cat</sub>
was considerably lower in all cases and
<italic toggle="yes">K</italic>
<sub>m</sub>
was much higher. With the HO-ethanoGua-containing template, a higher misincorporation frequency was seen for dATP than for dGTP. With the 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua-containing template, the opposite pattern was observed. However, the misincorporation frequencies cannot be considered absolute because the C incorporation is considered to involve a slipped frameshift intermediate (
<italic toggle="yes">vide </italic>
<italic toggle="yes">supra</italic>
). </p>
<p>With T7,
<italic toggle="yes">k</italic>
<sub>cat</sub>
values for all incorporations opposite modified Gs were considerably lower than those for dCTP opposite G, but the
<italic toggle="yes">K</italic>
<sub>m</sub>
values were not altered. Little misincorporation was seen with the 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua template. The misincorporation frequency measured with the HO-ethanoGua template indicated that the enzyme inserted dATP as readily as dCTP. </p>
</sec>
<sec id="d7e2112">
<title>Discussion</title>
<p>Procedures were developed for the incorporation of the DNA adducts 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua and HO-ethanoGua into defined oligonucleotides, which were purified, characterized, and used in
<italic toggle="yes">in vitro</italic>
misincorporation studies. The results are of interest in terms of understanding the potential genotoxic properties of these two adducts and their possible contributions in tumors caused by agents that yield these adducts. </p>
<p>Both 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua and HO-ethanoGua strongly blocked replication with all polymerases examined (Figures
<xref rid="bi962526vf00004"></xref>
−8). This appears to be the result of a decreased rate of incorporation at the position opposite the modified base in most cases (Figures
<xref rid="bi962526vf00003"></xref>
−7), although more detailed studies are in order to determine which step(s) in the incorporation is perturbed. With Kf, a strong block seems to occur after one base is incorporated. The purines A and G were readily incorporated opposite both 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua and HO-ethanoGua by several polymerases (Tables
<xref rid="bi962526vt00002"></xref>
and
<xref rid="bi962526vt00004"></xref>
). We also found that pol I, pol II, and T7 are able to extend the primer after −1 or −2 base slippages at the adduct site (Figure
<xref rid="bi962526vf00008"></xref>
D and Table
<xref rid="bi962526vt00002"></xref>
), and we detected some 17- and 18-mer bands in addition to the full-length extension product. </p>
<p>Some differences between the effects of 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua and HO-ethanoGua were noted. dATP was inserted more readily opposite HO-ethanoGua with several of the polymerases. This result is of interest in that the level of HO-ethanoGua formed by treatment of DNA with 2-chlorooxirane is more than 1 order of magnitude higher than that of 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua (Müller et al., 1997). However, these results will need to be considered in the context of further work on rates of DNA repair and mutagenesis in cellular systems. The steady-state kinetic studies indicate a greater tendency for misincorporation opposite HO-ethanoGua than 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua with T7 (Table
<xref rid="bi962526vt00004"></xref>
).
<xref rid="atyp_ref3" ref-type="bibr"></xref>
It is not possible to make a quantitative interpretation of the Kf misincorporation frequencies (Table
<xref rid="bi962526vt00004"></xref>
) because of the apparent tendency of the template to slip rather than incorporate at the site of the adduct (Scheme
<xref rid="bi962526vh00004"></xref>
and Figure
<xref rid="bi962526vf00008"></xref>
B).
<fig id="bi962526vh00004" position="float" fig-type="scheme" orientation="portrait">
<label>4</label>
<caption>
<p>Postulated Template Slippage in Kf Misincorporation Events</p>
</caption>
<graphic xlink:href="bi962526vh00004.gif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>We noted some similarities in comparing our results with those described recently by Hashim and Marnett (1996) on the effect of propanoG on the fidelity of Kf in the same sequence context. PropanoG and the derivatives shown in Scheme
<xref rid="bi962526vh00005"></xref>
differ from 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua and HO-ethanoGua in the size of the exocyclic ring. Hashim and Marnett (1996) reported primarily misincorporation of dATP opposite propanoG in the full-length extended product with Kf. Interestingly, we found that such miscoding is also detectable using pol II, T7, and pol β opposite HO-ethanoGua; with 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua, the same misincorporation is seen with pol II but not with T7 or pol β. As in the case of propanoG and Kf (Hashim & Marnett, 1996), the most common frame shift mutation corresponded to a one-base deletion at the adduct site with all of the enzymes studied (except with pol β, where only full-length extended product was detectable). With Kf in particular, we were able to detect substantial two-base deletion opposite 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua and HO-ethanoGua, to a greater extent than that detected opposite propanoG under the same conditions (Hashim & Marnett, 1996). The one-base deletion opposite propanoG was also explained in previous work (Shibutani & Grollman, 1993) by the slippage between A at the 3‘-primer terminus and the T residue 5‘ to the adduct site and can be extrapolated to our two adducts. In contrast, the two-base slippage (resulting in a two-base deletion at the adduct site) cannot be explained in our case by C incorporation opposite the adducts, since there was a negligible amount of C incorporation opposite 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua and no C incorporation opposite HO-ethanoGua. However, this two-base deletion was more pronounced in the template containing 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua than HO-ethanoGua, when extensions were performed with Kf under the same conditions. The similar structures of M
<sub>1</sub>
G, the unsaturated form of propanoG [conjugation product of malondialdehyde (Seto et al., 1983; Basu et al., 1988), Scheme
<xref rid="bi962526vh00005"></xref>
], and 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua should provide an interesting comparison of misincorporation, slippage, and extension by several polymerases and are the focus of further investigations.
<fig id="bi962526vh00005" position="float" fig-type="scheme" orientation="portrait">
<label>5</label>
<caption>
<p>Structures of Related Six-Membered Exocyclic Ring Gua DNA Adducts</p>
</caption>
<graphic xlink:href="bi962526vh00005.gif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>Incorporation of T opposite the Gua adducts was observed only in the full-length product from the primer extension with Kf and the HO-ethanoGua-containing template (Table
<xref rid="bi962526vt00002"></xref>
). The corresponding mutation was seen in an
<italic toggle="yes">in vivo</italic>
mutagenesis study with this adduct, along with mutations corresponding to incorporation of G and A.
<xref rid="atyp_ref4" ref-type="bibr"></xref>
However, a high level of mutations corresponding to insertion of T opposite 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua was seen in the study, regardless of whether
<italic toggle="yes">uvrA</italic>
<sup>+</sup>
or
<italic toggle="yes">uvrA</italic>
<sup>-</sup>
<italic toggle="yes">E. coli</italic>
cells were used. This misincorporation, dominant in the bacterial study, was not seen with any of the polymerases examined here, except at a minor level with pol II (Table
<xref rid="bi962526vt00002"></xref>
). Thus, it appears that both of the adducts studied here are able to direct the incorporation of
<italic toggle="yes">all four</italic>
dNTPs opposite the site (we assume that pol III is the polymerase producing the mutations
<italic toggle="yes">in vivo</italic>
). This pairing with all of the four dNTPs is not simply the result of a lack of information, since the different polymerases all have their own preferences. In the case of 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua, the adduct is relatively stable, unless an enamine tautomer exists (Guengerich et al., 1993). With HO-ethanoGua, the possibility that different forms of the adduct may be favored with individual polymerases (and also different sequence contexts) and favor different misincorporations exists, i.e., the ring-opened form
<italic toggle="yes">N</italic>
<sup>2</sup>
-(2-oxoethyl)Gua, its hydrate [CH(OH)
<sub>2</sub>
], and the two isomers of the cyclic hemiaminal HO-ethanoGua (Scheme
<xref rid="bi962526vh00001"></xref>
). Nevertheless, the case can be made that only very limited insight into mechanisms of mispairing can be obtained from studies with oligomers in the absence of polymerases. </p>
<p>In conclusion, 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua and HO-ethanoGua are both capable of blocking polymerization and miscoding when examined in defined oligomers. With several polymerases, there is a tendency to incorporate A and G opposite both of these adducts. Although the closed form of HO-ethanoGua differs from 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua only in the elements of H
<sub>2</sub>
O, the former tends to be more likely to direct the misincorporation of A and to produce a ladder of products extended by one base at a time (Figures
<xref rid="bi962526vf00003"></xref>
−6). This phenomenon may be the result of an increased
<italic toggle="yes">k</italic>
<sub>off</sub>
rate for the oligomer−polymerase complex, i.e., more distributive mechanism. Efforts to define alterations in rates of individual steps due to the presence of adducts are in progress. Another major conclusion from this work is that a single adduct can produce quite different mutations, not only quantitatively but also qualitatively, depending upon the polymerase. Previous studies on 8-oxo-7,8-dihydroGua have revealed differences among various polymerases in the extent to which A is inserted instead of C (Shibutani et al., 1991; Lowe & Guengerich, 1996; Furge & Guengerich, 1997), although insertion of G and T has not been reported. Very recently, Shibutani et al. (1996) reported the misincorporation of different bases at another ε-modified lesion, 3,
<italic toggle="yes">N</italic>
<sup>4</sup>
-ε-cytosine, by individual polymerases. </p>
<p>In summary, both 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-ε-Gua and HO-ethanoGua have been found to have miscoding potential and should be included in considerations of the genotoxicity of the set of DNA adducts derived from vinyl halides and other carcinogens that are activated to similar epoxides or equivalent alkylating species. </p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>We thank B. Nobes and Drs. A. Chaudhary and F. J. Belas for mass spectral analysis, P. Horton for oligonucleotide synthesis, Dr. L. Sowers for providing
<italic toggle="yes">L. helveticus</italic>
<italic toggle="yes">trans</italic>
-
<italic toggle="yes">N</italic>
-deoxyribosylase preparations used in the early studies, Drs. D. Tsarouhtsis and M. Hashim for technical suggestions, L. L. Furge for preparing four of the polymerases used in the study and for comments on the manuscript, and E. Rochelle for assistance in preparation of the manuscript. </p>
</ack>
<notes notes-type="si">
<sec id="d7e2310">
<title>
<ext-link xlink:href="/doi/suppl/10.1021%2Fbi962526v">Supporting Information Available</ext-link>
</title>
<p>CD spectra of HO-ethanoGua derivatives, a polyacrylamide gel electrophoretogram of the HO-ethanoGua-containing 19-mer, and ES mass spectra of oligonucleotides (5 pages). Ordering information is given on any current masthead page. </p>
</sec>
</notes>
<ref-list>
<title>References</title>
<ref id="atyp_ref1">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Agris</surname>
<given-names>P. F.</given-names>
</name>
<source>Prog. Nucleic Acid Res. Mol. Biol.</source>
<year>1996</year>
<volume>53</volume>
<fpage>79</fpage>
<lpage>129</lpage>
</element-citation>
</ref>
<ref id="atyp_ref2">
<mixed-citation>
<name name-style="western">
<surname>Barrio</surname>
<given-names>J. R.</given-names>
</name>
,
<name name-style="western">
<surname>Secrist</surname>
<given-names>J. A.</given-names>
</name>
, III, &
<name name-style="western">
<surname>Leonard</surname>
<given-names>N. J.</given-names>
</name>
(1972)
<italic toggle="yes">Biochem. Biophys. Res. </italic>
<italic toggle="yes">Commun.</italic>
<italic toggle="yes">46</italic>
, 597−604.</mixed-citation>
</ref>
<ref id="atyp_ref3">
<mixed-citation>
<name name-style="western">
<surname>Basu</surname>
<given-names>A. K.</given-names>
</name>
,
<name name-style="western">
<surname>O'Hara</surname>
<given-names>S. H.</given-names>
</name>
,
<name name-style="western">
<surname>Valledier</surname>
<given-names>P.</given-names>
</name>
,
<name name-style="western">
<surname>Stone</surname>
<given-names>K.</given-names>
</name>
,
<name name-style="western">
<surname>Molds</surname>
<given-names>O.</given-names>
</name>
, &
<name name-style="western">
<surname>Marnett</surname>
<given-names>L. J.</given-names>
</name>
(1988)
<italic toggle="yes">Chem. Res. Toxicol.</italic>
<italic toggle="yes">1</italic>
, 53−59.</mixed-citation>
</ref>
<ref id="atyp_ref4">
<mixed-citation>
<name name-style="western">
<surname>Basu</surname>
<given-names>A. K.</given-names>
</name>
,
<name name-style="western">
<surname>Wood</surname>
<given-names>M. L.</given-names>
</name>
,
<name name-style="western">
<surname>Niedernhofer</surname>
<given-names>L. J.</given-names>
</name>
,
<name name-style="western">
<surname>Ramos</surname>
<given-names>L. A.</given-names>
</name>
, &
<name name-style="western">
<surname>Essigmann</surname>
<given-names>J. M.</given-names>
</name>
(1993)
<italic toggle="yes">Biochemistry</italic>
<italic toggle="yes">32</italic>
, 12793−12801.</mixed-citation>
</ref>
<ref id="atyp_ref5">
<mixed-citation>
<name name-style="western">
<surname>Boosalis</surname>
<given-names>M. S.</given-names>
</name>
,
<name name-style="western">
<surname>Petruska</surname>
<given-names>J.</given-names>
</name>
, &
<name name-style="western">
<surname>Goodman</surname>
<given-names>M. F.</given-names>
</name>
(1987)
<italic toggle="yes">J. Biol. Chem.</italic>
<italic toggle="yes">262</italic>
, 14689−14696.</mixed-citation>
</ref>
<ref id="atyp_ref6">
<mixed-citation>
<name name-style="western">
<surname>Borer</surname>
<given-names>P. N.</given-names>
</name>
(1975) in
<italic toggle="yes">Handbook of Biochemistry and Molecular Biology</italic>
(
<name name-style="western">
<surname>Fasman</surname>
<given-names>G. D.</given-names>
</name>
, Ed.) 3rd ed., pp 589−580, CRC Press, Cleveland, OH.</mixed-citation>
</ref>
<ref id="atyp_ref7">
<mixed-citation>
<name name-style="western">
<surname>Cai</surname>
<given-names>H.</given-names>
</name>
,
<name name-style="western">
<surname>Yu</surname>
<given-names>H.</given-names>
</name>
,
<name name-style="western">
<surname>McEntee</surname>
<given-names>K.</given-names>
</name>
,
<name name-style="western">
<surname>Kunkel</surname>
<given-names>T. A.</given-names>
</name>
, &
<name name-style="western">
<surname>Goodman</surname>
<given-names>M. F.</given-names>
</name>
(1995)
<italic toggle="yes">J. Biol. </italic>
<italic toggle="yes">Chem.</italic>
<italic toggle="yes">270</italic>
, 15327−15335.</mixed-citation>
</ref>
<ref id="atyp_ref8">
<mixed-citation>
<name name-style="western">
<surname>Chaudhary</surname>
<given-names>A. K.</given-names>
</name>
,
<name name-style="western">
<surname>Nokubo</surname>
<given-names>M.</given-names>
</name>
,
<name name-style="western">
<surname>Reddy</surname>
<given-names>G. R.</given-names>
</name>
,
<name name-style="western">
<surname>Yeola</surname>
<given-names>S. N.</given-names>
</name>
,
<name name-style="western">
<surname>Morrow</surname>
<given-names>J. D.</given-names>
</name>
,
<name name-style="western">
<surname>Blair</surname>
<given-names>I. A.</given-names>
</name>
, &
<name name-style="western">
<surname>Marnett</surname>
<given-names>L. J.</given-names>
</name>
(1994)
<italic toggle="yes">Science</italic>
<italic toggle="yes">265</italic>
, 1580−1582.</mixed-citation>
</ref>
<ref id="atyp_ref9">
<mixed-citation>
<name name-style="western">
<surname>Cheng</surname>
<given-names>K. C.</given-names>
</name>
,
<name name-style="western">
<surname>Preston</surname>
<given-names>B. D.</given-names>
</name>
,
<name name-style="western">
<surname>Cahill</surname>
<given-names>D. S.</given-names>
</name>
,
<name name-style="western">
<surname>Dosanjh</surname>
<given-names>M. K.</given-names>
</name>
,
<name name-style="western">
<surname>Singer</surname>
<given-names>B.</given-names>
</name>
, &
<name name-style="western">
<surname>Loeb</surname>
<given-names>L. A.</given-names>
</name>
(1991)
<italic toggle="yes">Proc. Natl. Acad. Sci. U.S.A.</italic>
<italic toggle="yes">88</italic>
, 9974−9978.</mixed-citation>
</ref>
<ref id="atyp_ref10">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Clark</surname>
<given-names>J. M.</given-names>
</name>
<source>Nucleic Acids Res.</source>
<year>1988</year>
<volume>16</volume>
<fpage>9677</fpage>
<lpage>9686</lpage>
</element-citation>
</ref>
<ref id="atyp_ref11">
<mixed-citation>
<name name-style="western">
<surname>Clark</surname>
<given-names>J. M.</given-names>
</name>
,
<name name-style="western">
<surname>Joyce</surname>
<given-names>C. M.</given-names>
</name>
, &
<name name-style="western">
<surname>Beardsley</surname>
<given-names>G. P.</given-names>
</name>
(1987)
<italic toggle="yes">J. Mol. Biol.</italic>
<italic toggle="yes">198</italic>
, 123−127.</mixed-citation>
</ref>
<ref id="atyp_ref12">
<mixed-citation>
<name name-style="western">
<surname>Decorte</surname>
<given-names>B. L.</given-names>
</name>
,
<name name-style="western">
<surname>Tsarouhtsis</surname>
<given-names>D.</given-names>
</name>
,
<name name-style="western">
<surname>Kuchimanchi</surname>
<given-names>S.</given-names>
</name>
,
<name name-style="western">
<surname>Cooper</surname>
<given-names>M. D.</given-names>
</name>
,
<name name-style="western">
<surname>Horton</surname>
<given-names>P.</given-names>
</name>
,
<name name-style="western">
<surname>Harris</surname>
<given-names>C. M.</given-names>
</name>
, &
<name name-style="western">
<surname>Harris</surname>
<given-names>T. M.</given-names>
</name>
(1996)
<italic toggle="yes">Chem. Res. Toxicol.</italic>
<italic toggle="yes">9</italic>
, 630−637.</mixed-citation>
</ref>
<ref id="atyp_ref13">
<mixed-citation>
<name name-style="western">
<surname>Derbyshire</surname>
<given-names>V.</given-names>
</name>
,
<name name-style="western">
<surname>Freemont</surname>
<given-names>P. S.</given-names>
</name>
,
<name name-style="western">
<surname>Sanderson</surname>
<given-names>M. R.</given-names>
</name>
,
<name name-style="western">
<surname>Beese</surname>
<given-names>L.</given-names>
</name>
,
<name name-style="western">
<surname>Freidman</surname>
<given-names>J. M.</given-names>
</name>
,
<name name-style="western">
<surname>Joyce</surname>
<given-names>C. M.</given-names>
</name>
, &
<name name-style="western">
<surname>Steitz</surname>
<given-names>T. A.</given-names>
</name>
(1988)
<italic toggle="yes">Science</italic>
<italic toggle="yes">240</italic>
, 199−201.</mixed-citation>
</ref>
<ref id="atyp_ref14">
<mixed-citation>
<name name-style="western">
<surname>El Ghissassi</surname>
<given-names>F.</given-names>
</name>
,
<name name-style="western">
<surname>Barbin</surname>
<given-names>A.</given-names>
</name>
,
<name name-style="western">
<surname>Nair</surname>
<given-names>J.</given-names>
</name>
, &
<name name-style="western">
<surname>Bartsch</surname>
<given-names>H.</given-names>
</name>
(1995)
<italic toggle="yes">Chem. Res. Toxicol.</italic>
<italic toggle="yes">8</italic>
, 278−283.</mixed-citation>
</ref>
<ref id="atyp_ref15">
<mixed-citation>
<name name-style="western">
<surname>Fedtke</surname>
<given-names>N.</given-names>
</name>
,
<name name-style="western">
<surname>Boucheron</surname>
<given-names>J. A.</given-names>
</name>
,
<name name-style="western">
<surname>Walker</surname>
<given-names>V. E.</given-names>
</name>
, &
<name name-style="western">
<surname>Swenberg</surname>
<given-names>J. A.</given-names>
</name>
(1990)
<italic toggle="yes">Carcinogenesis</italic>
<italic toggle="yes">11</italic>
, 1287−1292.</mixed-citation>
</ref>
<ref id="atyp_ref16">
<mixed-citation>
<name name-style="western">
<surname>Friedman</surname>
<given-names>T.</given-names>
</name>
, &
<name name-style="western">
<surname>Brown</surname>
<given-names>D. H.</given-names>
</name>
(1978)
<italic toggle="yes">Nucleic Acids Res.</italic>
<italic toggle="yes">5</italic>
, 615−622.</mixed-citation>
</ref>
<ref id="atyp_ref17">
<mixed-citation>
<name name-style="western">
<surname>Furge</surname>
<given-names>L. L.</given-names>
</name>
, &
<name name-style="western">
<surname>Guengerich</surname>
<given-names>F. P.</given-names>
</name>
(1997)
<italic toggle="yes">Biochemistry</italic>
(in press).</mixed-citation>
</ref>
<ref id="atyp_ref18">
<mixed-citation>
<name name-style="western">
<surname>Guengerich</surname>
<given-names>F. P.</given-names>
</name>
, &
<name name-style="western">
<surname>Kim</surname>
<given-names>D.-H.</given-names>
</name>
(1991)
<italic toggle="yes">Chem. Res. Toxicol.</italic>
<italic toggle="yes">4</italic>
, 413−421.</mixed-citation>
</ref>
<ref id="atyp_ref19">
<mixed-citation>
<name name-style="western">
<surname>Guengerich</surname>
<given-names>F. P.</given-names>
</name>
, &
<name name-style="western">
<surname>Raney</surname>
<given-names>V. M.</given-names>
</name>
(1992)
<italic toggle="yes">J. Am. Chem. Soc.</italic>
<italic toggle="yes">114</italic>
, 1074−1080.</mixed-citation>
</ref>
<ref id="atyp_ref20">
<mixed-citation>
<name name-style="western">
<surname>Guengerich</surname>
<given-names>F. P.</given-names>
</name>
,
<name name-style="western">
<surname>Crawford</surname>
<given-names>W. M.</given-names>
<suffix>Jr.</suffix>
</name>
, &
<name name-style="western">
<surname>Watanabe</surname>
<given-names>P. G.</given-names>
</name>
(1979)
<italic toggle="yes">Biochemistry</italic>
<italic toggle="yes">18</italic>
, 5177−5182.</mixed-citation>
</ref>
<ref id="atyp_ref21">
<mixed-citation>
<name name-style="western">
<surname>Guengerich</surname>
<given-names>F. P.</given-names>
</name>
,
<name name-style="western">
<surname>Geiger</surname>
<given-names>L. E.</given-names>
</name>
,
<name name-style="western">
<surname>Hogy</surname>
<given-names>L. L.</given-names>
</name>
, &
<name name-style="western">
<surname>Wright</surname>
<given-names>P. L.</given-names>
</name>
(1981a)
<italic toggle="yes">Cancer </italic>
<italic toggle="yes">Res.</italic>
<italic toggle="yes">41</italic>
, 4925−4933.</mixed-citation>
</ref>
<ref id="atyp_ref22">
<mixed-citation>
<name name-style="western">
<surname>Guengerich</surname>
<given-names>F. P.</given-names>
</name>
,
<name name-style="western">
<surname>Mason</surname>
<given-names>P. S.</given-names>
</name>
,
<name name-style="western">
<surname>Stott</surname>
<given-names>W. T.</given-names>
</name>
,
<name name-style="western">
<surname>Fox</surname>
<given-names>T. R.</given-names>
</name>
, &
<name name-style="western">
<surname>Watanabe</surname>
<given-names>P. G.</given-names>
</name>
(1981b)
<italic toggle="yes">Cancer Res.</italic>
<italic toggle="yes">41</italic>
, 4391−4398.</mixed-citation>
</ref>
<ref id="atyp_ref23">
<mixed-citation>
<name name-style="western">
<surname>Guengerich</surname>
<given-names>F. P.</given-names>
</name>
,
<name name-style="western">
<surname>Persmark</surname>
<given-names>M.</given-names>
</name>
, &
<name name-style="western">
<surname>Humphreys</surname>
<given-names>W. G.</given-names>
</name>
(1993)
<italic toggle="yes">Chem. Res. </italic>
<italic toggle="yes">Toxicol.</italic>
<italic toggle="yes">6</italic>
, 635−648.</mixed-citation>
</ref>
<ref id="atyp_ref24">
<mixed-citation>
<name name-style="western">
<surname>Guengerich</surname>
<given-names>F. P.</given-names>
</name>
,
<name name-style="western">
<surname>Min</surname>
<given-names>K. S.</given-names>
</name>
,
<name name-style="western">
<surname>Persmark</surname>
<given-names>M.</given-names>
</name>
,
<name name-style="western">
<surname>Kim</surname>
<given-names>M. S.</given-names>
</name>
,
<name name-style="western">
<surname>Humphreys</surname>
<given-names>W. G.</given-names>
</name>
, &
<name name-style="western">
<surname>Cmarik</surname>
<given-names>J. L.</given-names>
</name>
(1994) in
<italic toggle="yes">DNA Adducts:  Identification and Significance</italic>
(
<name name-style="western">
<surname>Hemminki</surname>
<given-names>K.</given-names>
</name>
,
<name name-style="western">
<surname>Dipple</surname>
<given-names>A.</given-names>
</name>
,
<name name-style="western">
<surname>Shuker</surname>
<given-names>D. E. G.</given-names>
</name>
,
<name name-style="western">
<surname>Kadlubar</surname>
<given-names>F. F.</given-names>
</name>
,
<name name-style="western">
<surname>Segerbäck</surname>
<given-names>D.</given-names>
</name>
, &
<name name-style="western">
<surname>Bartsch</surname>
<given-names>H.</given-names>
</name>
, Eds.) IARC Scientific Publications No. 125, pp 57−72, IARC Publications, Lyon.</mixed-citation>
</ref>
<ref id="atyp_ref25">
<mixed-citation>
<name name-style="western">
<surname>Hashim</surname>
<given-names>M.</given-names>
</name>
, &
<name name-style="western">
<surname>Marnett</surname>
<given-names>L. J.</given-names>
</name>
(1996)
<italic toggle="yes">J. Biol. Chem.</italic>
<italic toggle="yes">271</italic>
, 9160−9165.</mixed-citation>
</ref>
<ref id="atyp_ref26">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Johnson</surname>
<given-names>K. A.</given-names>
</name>
<source>Annu. Rev. Biochem.</source>
<year>1993</year>
<volume>62</volume>
<fpage>685</fpage>
<lpage>713</lpage>
</element-citation>
</ref>
<ref id="atyp_ref27">
<mixed-citation>
<name name-style="western">
<surname>Kati</surname>
<given-names>W. M.</given-names>
</name>
,
<name name-style="western">
<surname>Johnson</surname>
<given-names>K. A.</given-names>
</name>
,
<name name-style="western">
<surname>Jerva</surname>
<given-names>L. F.</given-names>
</name>
, &
<name name-style="western">
<surname>Anderson</surname>
<given-names>K. S.</given-names>
</name>
(1991)
<italic toggle="yes">Biochemistry</italic>
<italic toggle="yes">30</italic>
, 511−525.</mixed-citation>
</ref>
<ref id="atyp_ref28">
<mixed-citation>
<name name-style="western">
<surname>Kati</surname>
<given-names>W. M.</given-names>
</name>
,
<name name-style="western">
<surname>Johnson</surname>
<given-names>K. A.</given-names>
</name>
,
<name name-style="western">
<surname>Jerva</surname>
<given-names>L. F.</given-names>
</name>
, &
<name name-style="western">
<surname>Anderson</surname>
<given-names>K. S.</given-names>
</name>
(1992)
<italic toggle="yes">J. Biol. </italic>
<italic toggle="yes">Chem.</italic>
<italic toggle="yes">267</italic>
, 25988−25997.</mixed-citation>
</ref>
<ref id="atyp_ref29">
<mixed-citation>
<name name-style="western">
<surname>Khazanchi</surname>
<given-names>R.</given-names>
</name>
,
<name name-style="western">
<surname>Yu</surname>
<given-names>P. L.</given-names>
</name>
, &
<name name-style="western">
<surname>Johnson</surname>
<given-names>F.</given-names>
</name>
(1993)
<italic toggle="yes">J. Org. Chem.</italic>
<italic toggle="yes">58</italic>
, 2552−2556.</mixed-citation>
</ref>
<ref id="atyp_ref30">
<mixed-citation>
<name name-style="western">
<surname>Kochetkov</surname>
<given-names>N. K.</given-names>
</name>
,
<name name-style="western">
<surname>Shibaev</surname>
<given-names>V. N.</given-names>
</name>
, &
<name name-style="western">
<surname>Kost</surname>
<given-names>A. A.</given-names>
</name>
(1971)
<italic toggle="yes">Tetrahedron Lett.</italic>
<italic toggle="yes">22</italic>
, 1993−1996.</mixed-citation>
</ref>
<ref id="atyp_ref31">
<mixed-citation>
<name name-style="western">
<surname>Kornberg</surname>
<given-names>A.</given-names>
</name>
, &
<name name-style="western">
<surname>Baker</surname>
<given-names>T. A.</given-names>
</name>
(1992)
<italic toggle="yes">DNA Replication</italic>
, W. H. Freeman, New York.</mixed-citation>
</ref>
<ref id="atyp_ref32">
<mixed-citation>
<name name-style="western">
<surname>Kronberg</surname>
<given-names>L.</given-names>
</name>
,
<name name-style="western">
<surname>Sjöholm</surname>
<given-names>R.</given-names>
</name>
, &
<name name-style="western">
<surname>Karlsson</surname>
<given-names>S.</given-names>
</name>
(1992)
<italic toggle="yes">Chem. Res. Toxicol.</italic>
<italic toggle="yes">5</italic>
, 852−855.</mixed-citation>
</ref>
<ref id="atyp_ref33">
<mixed-citation>
<name name-style="western">
<surname>Kusmierek</surname>
<given-names>J. T.</given-names>
</name>
,
<name name-style="western">
<surname>Folkman</surname>
<given-names>W.</given-names>
</name>
, &
<name name-style="western">
<surname>Singer</surname>
<given-names>B.</given-names>
</name>
(1989)
<italic toggle="yes">Chem. Res. Toxicol.</italic>
<italic toggle="yes">2</italic>
, 230−233.</mixed-citation>
</ref>
<ref id="atyp_ref34">
<mixed-citation>
<name name-style="western">
<surname>Le Grice</surname>
<given-names>S. F. J.</given-names>
</name>
, &
<name name-style="western">
<surname>Grüninger-Leitch</surname>
<given-names>F.</given-names>
</name>
(1990)
<italic toggle="yes">Eur. J. Biochem.</italic>
<italic toggle="yes">187</italic>
, 307−314.</mixed-citation>
</ref>
<ref id="atyp_ref35">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Leonard</surname>
<given-names>N. J.</given-names>
</name>
<source>Crit. Rev. Biochem.</source>
<year>1984</year>
<volume>15</volume>
<fpage>125</fpage>
<lpage>199</lpage>
</element-citation>
</ref>
<ref id="atyp_ref36">
<mixed-citation>
<name name-style="western">
<surname>Lowe</surname>
<given-names>L. G.</given-names>
</name>
, &
<name name-style="western">
<surname>Guengerich</surname>
<given-names>F. P.</given-names>
</name>
(1996)
<italic toggle="yes">Biochemistry</italic>
<italic toggle="yes">35</italic>
, 9840−9849.</mixed-citation>
</ref>
<ref id="atyp_ref37">
<mixed-citation>
<name name-style="western">
<surname>Lunn</surname>
<given-names>C. A.</given-names>
</name>
,
<name name-style="western">
<surname>Kathju</surname>
<given-names>S.</given-names>
</name>
,
<name name-style="western">
<surname>Wallace</surname>
<given-names>B. J.</given-names>
</name>
,
<name name-style="western">
<surname>Kushner</surname>
<given-names>S. R.</given-names>
</name>
, &
<name name-style="western">
<surname>Pigiet</surname>
<given-names>V.</given-names>
</name>
(1984)
<italic toggle="yes">J. </italic>
<italic toggle="yes">Biol. Chem.</italic>
<italic toggle="yes">259</italic>
, 10469−10474.</mixed-citation>
</ref>
<ref id="atyp_ref38">
<mixed-citation>
<name name-style="western">
<surname>Maxam</surname>
<given-names>A. M.</given-names>
</name>
, &
<name name-style="western">
<surname>Gilbert</surname>
<given-names>W.</given-names>
</name>
(1980)
<italic toggle="yes">Methods Enzymol.</italic>
<italic toggle="yes">65</italic>
, 499−560.</mixed-citation>
</ref>
<ref id="atyp_ref39">
<mixed-citation>
<name name-style="western">
<surname>Moriya</surname>
<given-names>M.</given-names>
</name>
,
<name name-style="western">
<surname>Zhang</surname>
<given-names>W.</given-names>
</name>
,
<name name-style="western">
<surname>Johnson</surname>
<given-names>F.</given-names>
</name>
, &
<name name-style="western">
<surname>Grollman</surname>
<given-names>A. P.</given-names>
</name>
(1994)
<italic toggle="yes">Proc. Natl. Acad. </italic>
<italic toggle="yes">Sci. U.S.A.</italic>
<italic toggle="yes">91</italic>
, 11899−11903.</mixed-citation>
</ref>
<ref id="atyp_ref40">
<mixed-citation>
<name name-style="western">
<surname>Müller</surname>
<given-names>M.</given-names>
</name>
,
<name name-style="western">
<surname>Hutchinson</surname>
<given-names>L. K.</given-names>
</name>
, &
<name name-style="western">
<surname>Guengerich</surname>
<given-names>F. P.</given-names>
</name>
(1996)
<italic toggle="yes">Chem. Res. Toxicol.</italic>
<italic toggle="yes">9</italic>
, 1140−1144.</mixed-citation>
</ref>
<ref id="atyp_ref41">
<mixed-citation>
<name name-style="western">
<surname>Müller</surname>
<given-names>M.</given-names>
</name>
,
<name name-style="western">
<surname>Belas</surname>
<given-names>F. J.</given-names>
</name>
,
<name name-style="western">
<surname>Blair</surname>
<given-names>I. A.</given-names>
</name>
, &
<name name-style="western">
<surname>Guengerich</surname>
<given-names>F. P.</given-names>
</name>
(1997)
<italic toggle="yes">Chem. Res. </italic>
<italic toggle="yes">Toxicol.</italic>
<italic toggle="yes">10</italic>
, 242−247.</mixed-citation>
</ref>
<ref id="atyp_ref42">
<mixed-citation>
<name name-style="western">
<surname>Nakanishi</surname>
<given-names>K.</given-names>
</name>
,
<name name-style="western">
<surname>Furutachi</surname>
<given-names>N.</given-names>
</name>
,
<name name-style="western">
<surname>Funamizu</surname>
<given-names>M.</given-names>
</name>
,
<name name-style="western">
<surname>Grunberger</surname>
<given-names>D.</given-names>
</name>
, &
<name name-style="western">
<surname>Weinstein</surname>
<given-names>I. B.</given-names>
</name>
(1970)
<italic toggle="yes">J. Am. Chem. Soc.</italic>
<italic toggle="yes">92</italic>
, 7617−7619.</mixed-citation>
</ref>
<ref id="atyp_ref43">
<mixed-citation>
<name name-style="western">
<surname>Nath</surname>
<given-names>R. G.</given-names>
</name>
, &
<name name-style="western">
<surname>Chung</surname>
<given-names>F. L.</given-names>
</name>
(1994)
<italic toggle="yes">Proc. Natl. Acad. Sci. U.S.A.</italic>
<italic toggle="yes">91</italic>
, 7491−7495.</mixed-citation>
</ref>
<ref id="atyp_ref44">
<mixed-citation>
<name name-style="western">
<surname>Palejwala</surname>
<given-names>V. A.</given-names>
</name>
,
<name name-style="western">
<surname>Rzepka</surname>
<given-names>R. W.</given-names>
</name>
,
<name name-style="western">
<surname>Simha</surname>
<given-names>D.</given-names>
</name>
, &
<name name-style="western">
<surname>Humayun</surname>
<given-names>M. Z.</given-names>
</name>
(1993)
<italic toggle="yes">Biochemistry</italic>
<italic toggle="yes">32</italic>
, 4105−4111.</mixed-citation>
</ref>
<ref id="atyp_ref45">
<mixed-citation>
<name name-style="western">
<surname>Seto</surname>
<given-names>H.</given-names>
</name>
,
<name name-style="western">
<surname>Okuda</surname>
<given-names>T.</given-names>
</name>
,
<name name-style="western">
<surname>Takesue</surname>
<given-names>T.</given-names>
</name>
, &
<name name-style="western">
<surname>Ikemura</surname>
<given-names>T.</given-names>
</name>
(1983)
<italic toggle="yes">Bull. Chem. Soc. Jpn.</italic>
<italic toggle="yes">56</italic>
, 1799−1802.</mixed-citation>
</ref>
<ref id="atyp_ref46">
<mixed-citation>
<name name-style="western">
<surname>Shibutani</surname>
<given-names>S.</given-names>
</name>
, &
<name name-style="western">
<surname>Grollman</surname>
<given-names>A. P.</given-names>
</name>
(1993)
<italic toggle="yes">J. Biol. Chem.</italic>
<italic toggle="yes">268</italic>
, 11703−11710.</mixed-citation>
</ref>
<ref id="atyp_ref47">
<mixed-citation>
<name name-style="western">
<surname>Shibutani</surname>
<given-names>S.</given-names>
</name>
,
<name name-style="western">
<surname>Takeshita</surname>
<given-names>M.</given-names>
</name>
, &
<name name-style="western">
<surname>Grollman</surname>
<given-names>A. P.</given-names>
</name>
(1991)
<italic toggle="yes">Nature 349</italic>
, 431−434.</mixed-citation>
</ref>
<ref id="atyp_ref48">
<mixed-citation>
<name name-style="western">
<surname>Shibutani</surname>
<given-names>S.</given-names>
</name>
,
<name name-style="western">
<surname>Suzuki</surname>
<given-names>N.</given-names>
</name>
,
<name name-style="western">
<surname>Matsumoto</surname>
<given-names>Y.</given-names>
</name>
, &
<name name-style="western">
<surname>Grollman</surname>
<given-names>A. P.</given-names>
</name>
(1996)
<italic toggle="yes">Biochemistry 35</italic>
, 14992−14998.</mixed-citation>
</ref>
<ref id="atyp_ref49">
<mixed-citation>
<name name-style="western">
<surname>Singer</surname>
<given-names>B.</given-names>
</name>
, &
<name name-style="western">
<surname>Bartsch</surname>
<given-names>H.</given-names>
</name>
(1986) in
<italic toggle="yes">The Role of Cyclic Nucleic Acid Adducts in Carcinogenesis and Mutagenesis</italic>
, IARC Scientific Publications, Lyon.</mixed-citation>
</ref>
<ref id="atyp_ref50">
<mixed-citation>
<name name-style="western">
<surname>Singer</surname>
<given-names>B.</given-names>
</name>
,
<name name-style="western">
<surname>Spengler</surname>
<given-names>S. J.</given-names>
</name>
,
<name name-style="western">
<surname>Chavez</surname>
<given-names>F.</given-names>
</name>
, &
<name name-style="western">
<surname>Kusmierek</surname>
<given-names>J. T.</given-names>
</name>
(1987)
<italic toggle="yes">Carcinogenesis</italic>
<italic toggle="yes">8</italic>
, 745−747.</mixed-citation>
</ref>
<ref id="bi962526vb00001">
<mixed-citation>
<comment>Abbreviations:  ε, etheno; HO-ethanoGua, 5,6,7,9-tetrahydro-7-hydroxy-9-oxoimidazo[1,2-
<italic toggle="yes">a</italic>
]purine; HO-ethanodGuo, HO-ethanoGua deoxyribose; AcO-ethanoGua, 5,6,7,9-tetrahydro-7-acetoxy-9-oxoimidazo[1,2-
<italic toggle="yes">a</italic>
]purine; Tris, tris(hydroxymethyl)aminomethane; MOPS, 3-(
<italic toggle="yes">N</italic>
-morpholino)propanesulfonic acid; EDTA, (ethylenedinitrilo)tetraacetic acid; Gua, guanine; Cyt, cytosine; Ade, adenine; dGuo, deoxyguanosine; dThd, thymidine; dCyd, deoxycytidine; dAdo, deoxyadenosine; propanoG, 1,
<italic toggle="yes">N</italic>
<sup>2</sup>
-propanoguanine; M
<sub>1</sub>
G, pyrimido[1,2-
<italic toggle="yes">a</italic>
]purin-10(
<italic toggle="yes">3H</italic>
)-one; HPLC, high-performance liquid chromatography; TLC, thin layer chromatography; CGE, capillary gel electrophoresis; MS, mass spectrometry; ES, electrospray; FAB, fast atom bombardment; Kf, Klenow fragment (of pol I) exo
<sup>-</sup>
; RT, human immunodeficiency virus-1 reverse transcriptase; pol II, polymerase II exo
<sup>-</sup>
; T7, polymerase T7 exo
<sup>-</sup>
/thioredoxin mixture; pol β, rat polymerase β.</comment>
</mixed-citation>
</ref>
<ref id="bi962526vb00002">
<mixed-citation>The strategy of inserting a 2-fluoroinosine group into the oligomer, adding 2-aminoacetaldehyde dimethyl acetal, and then closing the ring (Decorte et al., 1996; Guengerich et al., 1993) was considered but not attempted because studies with the nucleoside indicated that the glycosidic bond was hydrolyzed under all conditions used to cleave the acetal.</mixed-citation>
</ref>
<ref id="bi962526vb00003">
<mixed-citation>Some comment is in order about the
<italic toggle="yes">K</italic>
<sub>m</sub>
values in Table 4. The
<italic toggle="yes">K</italic>
<sub>m</sub>
value found (for dCTP) for the unmodified oligonucleotide and Kf is the same as that reported by Hashim and Marnett (1996); a large increase was seen with all incorporated dNTPs, as also observed here. The physical meaning of
<italic toggle="yes">K</italic>
<sub>m</sub>
in polymerase assays is not clear (Johnson, 1993);
<italic toggle="yes"> K</italic>
<sub>m</sub>
is certainly not a simple dissocation constant.
<italic toggle="yes">K</italic>
<sub>d</sub>
values must be obtained through more complex pre-steady-state experiments (Johnson, 1993; Lowe & Guengerich, 1996; Furge & Guengerich, 1997).</mixed-citation>
</ref>
<ref id="bi962526vb00004">
<mixed-citation>
<comment>S. Langouët, S. P. Fink, M. Müller, L. J. Marnett, and F. P. Guengerich, unpublished results.</comment>
</mixed-citation>
</ref>
</ref-list>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Misincorporation of dNTPs Opposite 1,N2-Ethenoguanine and 5,6,7,9-Tetrahydro-7-hydroxy-9-oxoimidazo[1,2-a]purine in Oligonucleotides by Escherichia coli Polymerases I exo- and II exo-, T7 Polymerase exo-, Human Immunodeficiency Virus-1 Reverse Transcriptase, and Rat Polymerase β†</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Misincorporation of dNTPs Opposite 1,N2-Ethenoguanine and 5,6,7,9-Tetrahydro-7-hydroxy-9-oxoimidazo[1,2-a]purine in Oligonucleotides by Escherichia coli Polymerases I exo- and II exo-, T7 Polymerase exo-, Human Immunodeficiency Virus-1 Reverse Transcriptase, and Rat Polymerase β†</title>
</titleInfo>
<name type="personal">
<namePart type="family">LANGOUëT</namePart>
<namePart type="given">Sophie</namePart>
<affiliation>Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine,Nashville, Tennessee 37232-0146</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">MüLLER</namePart>
<namePart type="given">Michael</namePart>
<affiliation>Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine,Nashville, Tennessee 37232-0146</affiliation>
<affiliation> Current address:  Abt. Arbeits-und Sozialmedizinder Georg-August-Universität Göttingen, Waldweg 37, D-37073Göttingen,Germany.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal" displayLabel="corresp">
<namePart type="family">GUENGERICH</namePart>
<namePart type="given">F. Peter</namePart>
<affiliation>Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine,Nashville, Tennessee 37232-0146</affiliation>
<affiliation> Address correspondence to this author. Telephone:  (615)322-2261. Fax:  (615) 322-3141. E-mail: guengerich@toxicology.mc.vanderbilt.edu.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>American Chemical Society</publisher>
<dateCreated encoding="w3cdtf">1997-05-20</dateCreated>
<dateIssued encoding="w3cdtf">1997-05-20</dateIssued>
<copyrightDate encoding="w3cdtf">1997</copyrightDate>
</originInfo>
<note type="footnote" ID="bi962526vAF2"> This research was supported in part by United States Public Health Service Grants R35 CA44353 and P30 ES00267. M.M. was supported in part by a fellowship from the Deutsche Forschungsgemeinschaft.</note>
<note type="footnote" ID="bi962526vAF7"> Abstract published in Advance ACS Abstracts, May 1, 1997.</note>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract>1,N2-Ethenoguanine (1,N2-ε-Gua) and 5,6,7,9-tetrahydro-7-hydroxy-9-oxoimidazo[1,2-a]purine (HO-ethanoGua) are two modified bases formed in the reaction of DNA with 2-chlorooxirane, the epoxide derivative of vinyl chloride. The oligonucleotides (19-mers), 5‘-CAGTGGGTG*TCCGAATTGA-3‘, were prepared, with each of these modified bases substituted for G at G*. HO-ethanodeoxyguanosine exists predominantly as a mixture of diastereomers of the closed cyclic hemiaminal form, 5,6,7,9-tetrahydro-7-hydroxy-9-oxoimidazo[1,2-a]purine, shown by H218O experiments to be in equilibrium with the open form, N2-(2-oxoethyl)Gua. Both adducts retarded the 3‘-extension of a complementary 10-mer primer by all of the polymerases examined, but in every case, some full-length product was obtained. Nucleotide sequence analysis indicated misincorporation of dGTP and dATP across from both 1,N2-ε-Gua and HO-ethanoGua, with the extent varying considerably among the polymerases. Similar results were obtained when the abilities of the polymerases to incorporate a single dNTP were evaluated. In addition, −1 and −2 base frame shifts were detected with both 1,N2-ε-Gua and HO-ethanoGua with some of the polymerases. Steady-state kinetic experiments with Escherichia coli polymerase I exo- and T7 polymerase exo-/thioredoxin showed large decreases in kcat for all dNTP incorporations compared to the normal G·dCTP pair and high misincorporation frequencies for dATP and dGTP with both adducts (compared to dCTP). Collectively, the results indicate that both of these adducts have considerable miscoding potential with some of these polymerases, that there are a number of differences between the 1,N2-ε-Gua and HO-ethanoGua adducts (which formally differ only in the presence of the elements of water), and that misincorporation of dNTPs at a single modified base can vary considerably among different polymerases even in the absence of exonuclease activity.</abstract>
<note type="footnote" ID="bi962526vAF2"> This research was supported in part by United States Public Health Service Grants R35 CA44353 and P30 ES00267. M.M. was supported in part by a fellowship from the Deutsche Forschungsgemeinschaft.</note>
<note type="footnote" ID="bi962526vAF7"> Abstract published in Advance ACS Abstracts, May 1, 1997.</note>
<relatedItem type="host">
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Biochemistry</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0006-2960</identifier>
<identifier type="eISSN">1520-4995</identifier>
<identifier type="acspubs">bi</identifier>
<identifier type="coden">BICHAW</identifier>
<identifier type="uri">pubs.acs.org/biochemistry</identifier>
<part>
<date>1997</date>
<detail type="volume">
<caption>vol.</caption>
<number>36</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>20</number>
</detail>
<extent unit="pages">
<start>6069</start>
<end>6079</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="atyp_ref1" displayLabel="bib1">
<name type="personal">
<namePart type="family">AGRIS</namePart>
<namePart type="given">P. F.</namePart>
</name>
<titleInfo>
<title>Prog. Nucleic Acid Res. Mol. Biol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Agris P. F. Prog. Nucleic Acid Res. Mol. Biol. 1996 53 79 129</note>
<part>
<date>1996</date>
<detail type="volume">
<caption>vol.</caption>
<number>53</number>
</detail>
<extent unit="pages">
<start>79</start>
<end>129</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="atyp_ref2" displayLabel="bib2">
<name type="personal">
<namePart type="family">BARRIO</namePart>
<namePart type="given">J. R.</namePart>
</name>
<name type="personal">
<namePart type="family">SECRIST</namePart>
<namePart type="given">J. A.</namePart>
</name>
<name type="personal">
<namePart type="family">LEONARD</namePart>
<namePart type="given">N. J.</namePart>
</name>
<titleInfo>
<title>Biochem. Biophys. Res. </title>
</titleInfo>
<note type="content-in-line">BarrioJ. R., SecristJ. A., III, & LeonardN. J. (1972) Biochem. Biophys. Res. Commun. 46, 597−604.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref3" displayLabel="bib3">
<name type="personal">
<namePart type="family">BASU</namePart>
<namePart type="given">A. K.</namePart>
</name>
<name type="personal">
<namePart type="family">O'HARA</namePart>
<namePart type="given">S. H.</namePart>
</name>
<name type="personal">
<namePart type="family">VALLEDIER</namePart>
<namePart type="given">P.</namePart>
</name>
<name type="personal">
<namePart type="family">STONE</namePart>
<namePart type="given">K.</namePart>
</name>
<name type="personal">
<namePart type="family">MOLDS</namePart>
<namePart type="given">O.</namePart>
</name>
<name type="personal">
<namePart type="family">MARNETT</namePart>
<namePart type="given">L. J.</namePart>
</name>
<titleInfo>
<title>Chem. Res. Toxicol.</title>
</titleInfo>
<note type="content-in-line">BasuA. K., O'HaraS. H., ValledierP., StoneK., MoldsO., & MarnettL. J. (1988) Chem. Res. Toxicol. 1, 53−59.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref4" displayLabel="bib4">
<name type="personal">
<namePart type="family">BASU</namePart>
<namePart type="given">A. K.</namePart>
</name>
<name type="personal">
<namePart type="family">WOOD</namePart>
<namePart type="given">M. L.</namePart>
</name>
<name type="personal">
<namePart type="family">NIEDERNHOFER</namePart>
<namePart type="given">L. J.</namePart>
</name>
<name type="personal">
<namePart type="family">RAMOS</namePart>
<namePart type="given">L. A.</namePart>
</name>
<name type="personal">
<namePart type="family">ESSIGMANN</namePart>
<namePart type="given">J. M.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<note type="content-in-line">BasuA. K., WoodM. L., NiedernhoferL. J., RamosL. A., & EssigmannJ. M. (1993) Biochemistry 32, 12793−12801.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref5" displayLabel="bib5">
<name type="personal">
<namePart type="family">BOOSALIS</namePart>
<namePart type="given">M. S.</namePart>
</name>
<name type="personal">
<namePart type="family">PETRUSKA</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">GOODMAN</namePart>
<namePart type="given">M. F.</namePart>
</name>
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<note type="content-in-line">BoosalisM. S., PetruskaJ., & GoodmanM. F. (1987) J. Biol. Chem. 262, 14689−14696.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref6" displayLabel="bib6">
<name type="personal">
<namePart type="family">BORER</namePart>
<namePart type="given">P. N.</namePart>
</name>
<name type="personal">
<namePart type="family">FASMAN</namePart>
<namePart type="given">G. D.</namePart>
</name>
<titleInfo>
<title>Handbook of Biochemistry and Molecular Biology</title>
</titleInfo>
<note type="content-in-line">BorerP. N. (1975) in Handbook of Biochemistry and Molecular Biology (FasmanG. D., Ed.) 3rd ed., pp 589−580, CRC Press, Cleveland, OH.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref7" displayLabel="bib7">
<name type="personal">
<namePart type="family">CAI</namePart>
<namePart type="given">H.</namePart>
</name>
<name type="personal">
<namePart type="family">YU</namePart>
<namePart type="given">H.</namePart>
</name>
<name type="personal">
<namePart type="family">MCENTEE</namePart>
<namePart type="given">K.</namePart>
</name>
<name type="personal">
<namePart type="family">KUNKEL</namePart>
<namePart type="given">T. A.</namePart>
</name>
<name type="personal">
<namePart type="family">GOODMAN</namePart>
<namePart type="given">M. F.</namePart>
</name>
<titleInfo>
<title>J. Biol. </title>
</titleInfo>
<note type="content-in-line">CaiH., YuH., McEnteeK., KunkelT. A., & GoodmanM. F. (1995) J. Biol. Chem. 270, 15327−15335.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref8" displayLabel="bib8">
<name type="personal">
<namePart type="family">CHAUDHARY</namePart>
<namePart type="given">A. K.</namePart>
</name>
<name type="personal">
<namePart type="family">NOKUBO</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">REDDY</namePart>
<namePart type="given">G. R.</namePart>
</name>
<name type="personal">
<namePart type="family">YEOLA</namePart>
<namePart type="given">S. N.</namePart>
</name>
<name type="personal">
<namePart type="family">MORROW</namePart>
<namePart type="given">J. D.</namePart>
</name>
<name type="personal">
<namePart type="family">BLAIR</namePart>
<namePart type="given">I. A.</namePart>
</name>
<name type="personal">
<namePart type="family">MARNETT</namePart>
<namePart type="given">L. J.</namePart>
</name>
<titleInfo>
<title>Science</title>
</titleInfo>
<note type="content-in-line">ChaudharyA. K., NokuboM., ReddyG. R., YeolaS. N., MorrowJ. D., BlairI. A., & MarnettL. J. (1994) Science 265, 1580−1582.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref9" displayLabel="bib9">
<name type="personal">
<namePart type="family">CHENG</namePart>
<namePart type="given">K. C.</namePart>
</name>
<name type="personal">
<namePart type="family">PRESTON</namePart>
<namePart type="given">B. D.</namePart>
</name>
<name type="personal">
<namePart type="family">CAHILL</namePart>
<namePart type="given">D. S.</namePart>
</name>
<name type="personal">
<namePart type="family">DOSANJH</namePart>
<namePart type="given">M. K.</namePart>
</name>
<name type="personal">
<namePart type="family">SINGER</namePart>
<namePart type="given">B.</namePart>
</name>
<name type="personal">
<namePart type="family">LOEB</namePart>
<namePart type="given">L. A.</namePart>
</name>
<titleInfo>
<title>Proc. Natl. Acad. Sci. U.S.A.</title>
</titleInfo>
<note type="content-in-line">ChengK. C., PrestonB. D., CahillD. S., DosanjhM. K., SingerB., & LoebL. A. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 9974−9978.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref10" displayLabel="bib10">
<name type="personal">
<namePart type="family">CLARK</namePart>
<namePart type="given">J. M.</namePart>
</name>
<titleInfo>
<title>Nucleic Acids Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Clark J. M. Nucleic Acids Res. 1988 16 9677 9686</note>
<part>
<date>1988</date>
<detail type="volume">
<caption>vol.</caption>
<number>16</number>
</detail>
<extent unit="pages">
<start>9677</start>
<end>9686</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="atyp_ref11" displayLabel="bib11">
<name type="personal">
<namePart type="family">CLARK</namePart>
<namePart type="given">J. M.</namePart>
</name>
<name type="personal">
<namePart type="family">JOYCE</namePart>
<namePart type="given">C. M.</namePart>
</name>
<name type="personal">
<namePart type="family">BEARDSLEY</namePart>
<namePart type="given">G. P.</namePart>
</name>
<titleInfo>
<title>J. Mol. Biol.</title>
</titleInfo>
<note type="content-in-line">ClarkJ. M., JoyceC. M., & BeardsleyG. P. (1987) J. Mol. Biol. 198, 123−127.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref12" displayLabel="bib12">
<name type="personal">
<namePart type="family">DECORTE</namePart>
<namePart type="given">B. L.</namePart>
</name>
<name type="personal">
<namePart type="family">TSAROUHTSIS</namePart>
<namePart type="given">D.</namePart>
</name>
<name type="personal">
<namePart type="family">KUCHIMANCHI</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">COOPER</namePart>
<namePart type="given">M. D.</namePart>
</name>
<name type="personal">
<namePart type="family">HORTON</namePart>
<namePart type="given">P.</namePart>
</name>
<name type="personal">
<namePart type="family">HARRIS</namePart>
<namePart type="given">C. M.</namePart>
</name>
<name type="personal">
<namePart type="family">HARRIS</namePart>
<namePart type="given">T. M.</namePart>
</name>
<titleInfo>
<title>Chem. Res. Toxicol.</title>
</titleInfo>
<note type="content-in-line">DecorteB. L., TsarouhtsisD., KuchimanchiS., CooperM. D., HortonP., HarrisC. M., & HarrisT. M. (1996) Chem. Res. Toxicol. 9, 630−637.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref13" displayLabel="bib13">
<name type="personal">
<namePart type="family">DERBYSHIRE</namePart>
<namePart type="given">V.</namePart>
</name>
<name type="personal">
<namePart type="family">FREEMONT</namePart>
<namePart type="given">P. S.</namePart>
</name>
<name type="personal">
<namePart type="family">SANDERSON</namePart>
<namePart type="given">M. R.</namePart>
</name>
<name type="personal">
<namePart type="family">BEESE</namePart>
<namePart type="given">L.</namePart>
</name>
<name type="personal">
<namePart type="family">FREIDMAN</namePart>
<namePart type="given">J. M.</namePart>
</name>
<name type="personal">
<namePart type="family">JOYCE</namePart>
<namePart type="given">C. M.</namePart>
</name>
<name type="personal">
<namePart type="family">STEITZ</namePart>
<namePart type="given">T. A.</namePart>
</name>
<titleInfo>
<title>Science</title>
</titleInfo>
<note type="content-in-line">DerbyshireV., FreemontP. S., SandersonM. R., BeeseL., FreidmanJ. M., JoyceC. M., & SteitzT. A. (1988) Science 240, 199−201.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref14" displayLabel="bib14">
<name type="personal">
<namePart type="family">EL GHISSASSI</namePart>
<namePart type="given">F.</namePart>
</name>
<name type="personal">
<namePart type="family">BARBIN</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">NAIR</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">BARTSCH</namePart>
<namePart type="given">H.</namePart>
</name>
<titleInfo>
<title>Chem. Res. Toxicol.</title>
</titleInfo>
<note type="content-in-line">El GhissassiF., BarbinA., NairJ., & BartschH. (1995) Chem. Res. Toxicol. 8, 278−283.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref15" displayLabel="bib15">
<name type="personal">
<namePart type="family">FEDTKE</namePart>
<namePart type="given">N.</namePart>
</name>
<name type="personal">
<namePart type="family">BOUCHERON</namePart>
<namePart type="given">J. A.</namePart>
</name>
<name type="personal">
<namePart type="family">WALKER</namePart>
<namePart type="given">V. E.</namePart>
</name>
<name type="personal">
<namePart type="family">SWENBERG</namePart>
<namePart type="given">J. A.</namePart>
</name>
<titleInfo>
<title>Carcinogenesis</title>
</titleInfo>
<note type="content-in-line">FedtkeN., BoucheronJ. A., WalkerV. E., & SwenbergJ. A. (1990) Carcinogenesis 11, 1287−1292.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref16" displayLabel="bib16">
<name type="personal">
<namePart type="family">FRIEDMAN</namePart>
<namePart type="given">T.</namePart>
</name>
<name type="personal">
<namePart type="family">BROWN</namePart>
<namePart type="given">D. H.</namePart>
</name>
<titleInfo>
<title>Nucleic Acids Res.</title>
</titleInfo>
<note type="content-in-line">FriedmanT., & BrownD. H. (1978) Nucleic Acids Res. 5, 615−622.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref17" displayLabel="bib17">
<name type="personal">
<namePart type="family">FURGE</namePart>
<namePart type="given">L. L.</namePart>
</name>
<name type="personal">
<namePart type="family">GUENGERICH</namePart>
<namePart type="given">F. P.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<note type="content-in-line">FurgeL. L., & GuengerichF. P. (1997) Biochemistry (in press).</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref18" displayLabel="bib18">
<name type="personal">
<namePart type="family">GUENGERICH</namePart>
<namePart type="given">F. P.</namePart>
</name>
<name type="personal">
<namePart type="family">KIM</namePart>
<namePart type="given">D.-H.</namePart>
</name>
<titleInfo>
<title>Chem. Res. Toxicol.</title>
</titleInfo>
<note type="content-in-line">GuengerichF. P., & KimD.-H. (1991) Chem. Res. Toxicol. 4, 413−421.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref19" displayLabel="bib19">
<name type="personal">
<namePart type="family">GUENGERICH</namePart>
<namePart type="given">F. P.</namePart>
</name>
<name type="personal">
<namePart type="family">RANEY</namePart>
<namePart type="given">V. M.</namePart>
</name>
<titleInfo>
<title>J. Am. Chem. Soc.</title>
</titleInfo>
<note type="content-in-line">GuengerichF. P., & RaneyV. M. (1992) J. Am. Chem. Soc. 114, 1074−1080.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref20" displayLabel="bib20">
<name type="personal">
<namePart type="family">GUENGERICH</namePart>
<namePart type="given">F. P.</namePart>
</name>
<name type="personal">
<namePart type="family">CRAWFORD</namePart>
<namePart type="given">W. M.</namePart>
</name>
<name type="personal">
<namePart type="family">WATANABE</namePart>
<namePart type="given">P. G.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<note type="content-in-line">GuengerichF. P., CrawfordW. M.Jr., & WatanabeP. G. (1979) Biochemistry 18, 5177−5182.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref21" displayLabel="bib21">
<name type="personal">
<namePart type="family">GUENGERICH</namePart>
<namePart type="given">F. P.</namePart>
</name>
<name type="personal">
<namePart type="family">GEIGER</namePart>
<namePart type="given">L. E.</namePart>
</name>
<name type="personal">
<namePart type="family">HOGY</namePart>
<namePart type="given">L. L.</namePart>
</name>
<name type="personal">
<namePart type="family">WRIGHT</namePart>
<namePart type="given">P. L.</namePart>
</name>
<titleInfo>
<title>Cancer </title>
</titleInfo>
<note type="content-in-line">GuengerichF. P., GeigerL. E., HogyL. L., & WrightP. L. (1981a) Cancer Res. 41, 4925−4933.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref22" displayLabel="bib22">
<name type="personal">
<namePart type="family">GUENGERICH</namePart>
<namePart type="given">F. P.</namePart>
</name>
<name type="personal">
<namePart type="family">MASON</namePart>
<namePart type="given">P. S.</namePart>
</name>
<name type="personal">
<namePart type="family">STOTT</namePart>
<namePart type="given">W. T.</namePart>
</name>
<name type="personal">
<namePart type="family">FOX</namePart>
<namePart type="given">T. R.</namePart>
</name>
<name type="personal">
<namePart type="family">WATANABE</namePart>
<namePart type="given">P. G.</namePart>
</name>
<titleInfo>
<title>Cancer Res.</title>
</titleInfo>
<note type="content-in-line">GuengerichF. P., MasonP. S., StottW. T., FoxT. R., & WatanabeP. G. (1981b) Cancer Res. 41, 4391−4398.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref23" displayLabel="bib23">
<name type="personal">
<namePart type="family">GUENGERICH</namePart>
<namePart type="given">F. P.</namePart>
</name>
<name type="personal">
<namePart type="family">PERSMARK</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">HUMPHREYS</namePart>
<namePart type="given">W. G.</namePart>
</name>
<titleInfo>
<title>Chem. Res. </title>
</titleInfo>
<note type="content-in-line">GuengerichF. P., PersmarkM., & HumphreysW. G. (1993) Chem. Res. Toxicol. 6, 635−648.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref24" displayLabel="bib24">
<name type="personal">
<namePart type="family">GUENGERICH</namePart>
<namePart type="given">F. P.</namePart>
</name>
<name type="personal">
<namePart type="family">MIN</namePart>
<namePart type="given">K. S.</namePart>
</name>
<name type="personal">
<namePart type="family">PERSMARK</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">KIM</namePart>
<namePart type="given">M. S.</namePart>
</name>
<name type="personal">
<namePart type="family">HUMPHREYS</namePart>
<namePart type="given">W. G.</namePart>
</name>
<name type="personal">
<namePart type="family">CMARIK</namePart>
<namePart type="given">J. L.</namePart>
</name>
<name type="personal">
<namePart type="family">HEMMINKI</namePart>
<namePart type="given">K.</namePart>
</name>
<name type="personal">
<namePart type="family">DIPPLE</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">SHUKER</namePart>
<namePart type="given">D. E. G.</namePart>
</name>
<name type="personal">
<namePart type="family">KADLUBAR</namePart>
<namePart type="given">F. F.</namePart>
</name>
<name type="personal">
<namePart type="family">SEGERBäCK</namePart>
<namePart type="given">D.</namePart>
</name>
<name type="personal">
<namePart type="family">BARTSCH</namePart>
<namePart type="given">H.</namePart>
</name>
<titleInfo>
<title>DNA Adducts:  Identification and Significance</title>
</titleInfo>
<note type="content-in-line">GuengerichF. P., MinK. S., PersmarkM., KimM. S., HumphreysW. G., & CmarikJ. L. (1994) in DNA Adducts:  Identification and Significance (HemminkiK., DippleA., ShukerD. E. G., KadlubarF. F., SegerbäckD., & BartschH., Eds.) IARC Scientific Publications No. 125, pp 57−72, IARC Publications, Lyon.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref25" displayLabel="bib25">
<name type="personal">
<namePart type="family">HASHIM</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">MARNETT</namePart>
<namePart type="given">L. J.</namePart>
</name>
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<note type="content-in-line">HashimM., & MarnettL. J. (1996) J. Biol. Chem. 271, 9160−9165.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref26" displayLabel="bib26">
<name type="personal">
<namePart type="family">JOHNSON</namePart>
<namePart type="given">K. A.</namePart>
</name>
<titleInfo>
<title>Annu. Rev. Biochem.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Johnson K. A. Annu. Rev. Biochem. 1993 62 685 713</note>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>62</number>
</detail>
<extent unit="pages">
<start>685</start>
<end>713</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="atyp_ref27" displayLabel="bib27">
<name type="personal">
<namePart type="family">KATI</namePart>
<namePart type="given">W. M.</namePart>
</name>
<name type="personal">
<namePart type="family">JOHNSON</namePart>
<namePart type="given">K. A.</namePart>
</name>
<name type="personal">
<namePart type="family">JERVA</namePart>
<namePart type="given">L. F.</namePart>
</name>
<name type="personal">
<namePart type="family">ANDERSON</namePart>
<namePart type="given">K. S.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<note type="content-in-line">KatiW. M., JohnsonK. A., JervaL. F., & AndersonK. S. (1991) Biochemistry 30, 511−525.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref28" displayLabel="bib28">
<name type="personal">
<namePart type="family">KATI</namePart>
<namePart type="given">W. M.</namePart>
</name>
<name type="personal">
<namePart type="family">JOHNSON</namePart>
<namePart type="given">K. A.</namePart>
</name>
<name type="personal">
<namePart type="family">JERVA</namePart>
<namePart type="given">L. F.</namePart>
</name>
<name type="personal">
<namePart type="family">ANDERSON</namePart>
<namePart type="given">K. S.</namePart>
</name>
<titleInfo>
<title>J. Biol. </title>
</titleInfo>
<note type="content-in-line">KatiW. M., JohnsonK. A., JervaL. F., & AndersonK. S. (1992) J. Biol. Chem. 267, 25988−25997.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref29" displayLabel="bib29">
<name type="personal">
<namePart type="family">KHAZANCHI</namePart>
<namePart type="given">R.</namePart>
</name>
<name type="personal">
<namePart type="family">YU</namePart>
<namePart type="given">P. L.</namePart>
</name>
<name type="personal">
<namePart type="family">JOHNSON</namePart>
<namePart type="given">F.</namePart>
</name>
<titleInfo>
<title>J. Org. Chem.</title>
</titleInfo>
<note type="content-in-line">KhazanchiR., YuP. L., & JohnsonF. (1993) J. Org. Chem. 58, 2552−2556.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref30" displayLabel="bib30">
<name type="personal">
<namePart type="family">KOCHETKOV</namePart>
<namePart type="given">N. K.</namePart>
</name>
<name type="personal">
<namePart type="family">SHIBAEV</namePart>
<namePart type="given">V. N.</namePart>
</name>
<name type="personal">
<namePart type="family">KOST</namePart>
<namePart type="given">A. A.</namePart>
</name>
<titleInfo>
<title>Tetrahedron Lett.</title>
</titleInfo>
<note type="content-in-line">KochetkovN. K., ShibaevV. N., & KostA. A. (1971) Tetrahedron Lett. 22, 1993−1996.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref31" displayLabel="bib31">
<name type="personal">
<namePart type="family">KORNBERG</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">BAKER</namePart>
<namePart type="given">T. A.</namePart>
</name>
<titleInfo>
<title>DNA Replication</title>
</titleInfo>
<note type="content-in-line">KornbergA., & BakerT. A. (1992) DNA Replication, W. H. Freeman, New York.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref32" displayLabel="bib32">
<name type="personal">
<namePart type="family">KRONBERG</namePart>
<namePart type="given">L.</namePart>
</name>
<name type="personal">
<namePart type="family">SJöHOLM</namePart>
<namePart type="given">R.</namePart>
</name>
<name type="personal">
<namePart type="family">KARLSSON</namePart>
<namePart type="given">S.</namePart>
</name>
<titleInfo>
<title>Chem. Res. Toxicol.</title>
</titleInfo>
<note type="content-in-line">KronbergL., SjöholmR., & KarlssonS. (1992) Chem. Res. Toxicol. 5, 852−855.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref33" displayLabel="bib33">
<name type="personal">
<namePart type="family">KUSMIEREK</namePart>
<namePart type="given">J. T.</namePart>
</name>
<name type="personal">
<namePart type="family">FOLKMAN</namePart>
<namePart type="given">W.</namePart>
</name>
<name type="personal">
<namePart type="family">SINGER</namePart>
<namePart type="given">B.</namePart>
</name>
<titleInfo>
<title>Chem. Res. Toxicol.</title>
</titleInfo>
<note type="content-in-line">KusmierekJ. T., FolkmanW., & SingerB. (1989) Chem. Res. Toxicol. 2, 230−233.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref34" displayLabel="bib34">
<name type="personal">
<namePart type="family">LE GRICE</namePart>
<namePart type="given">S. F. J.</namePart>
</name>
<name type="personal">
<namePart type="family">GRüNINGER-LEITCH</namePart>
<namePart type="given">F.</namePart>
</name>
<titleInfo>
<title>Eur. J. Biochem.</title>
</titleInfo>
<note type="content-in-line">Le GriceS. F. J., & Grüninger-LeitchF. (1990) Eur. J. Biochem. 187, 307−314.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref35" displayLabel="bib35">
<name type="personal">
<namePart type="family">LEONARD</namePart>
<namePart type="given">N. J.</namePart>
</name>
<titleInfo>
<title>Crit. Rev. Biochem.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content-in-line">Leonard N. J. Crit. Rev. Biochem. 1984 15 125 199</note>
<part>
<date>1984</date>
<detail type="volume">
<caption>vol.</caption>
<number>15</number>
</detail>
<extent unit="pages">
<start>125</start>
<end>199</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="atyp_ref36" displayLabel="bib36">
<name type="personal">
<namePart type="family">LOWE</namePart>
<namePart type="given">L. G.</namePart>
</name>
<name type="personal">
<namePart type="family">GUENGERICH</namePart>
<namePart type="given">F. P.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<note type="content-in-line">LoweL. G., & GuengerichF. P. (1996) Biochemistry 35, 9840−9849.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref37" displayLabel="bib37">
<name type="personal">
<namePart type="family">LUNN</namePart>
<namePart type="given">C. A.</namePart>
</name>
<name type="personal">
<namePart type="family">KATHJU</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">WALLACE</namePart>
<namePart type="given">B. J.</namePart>
</name>
<name type="personal">
<namePart type="family">KUSHNER</namePart>
<namePart type="given">S. R.</namePart>
</name>
<name type="personal">
<namePart type="family">PIGIET</namePart>
<namePart type="given">V.</namePart>
</name>
<titleInfo>
<title>J. </title>
</titleInfo>
<note type="content-in-line">LunnC. A., KathjuS., WallaceB. J., KushnerS. R., & PigietV. (1984) J. Biol. Chem. 259, 10469−10474.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref38" displayLabel="bib38">
<name type="personal">
<namePart type="family">MAXAM</namePart>
<namePart type="given">A. M.</namePart>
</name>
<name type="personal">
<namePart type="family">GILBERT</namePart>
<namePart type="given">W.</namePart>
</name>
<titleInfo>
<title>Methods Enzymol.</title>
</titleInfo>
<note type="content-in-line">MaxamA. M., & GilbertW. (1980) Methods Enzymol. 65, 499−560.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref39" displayLabel="bib39">
<name type="personal">
<namePart type="family">MORIYA</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">ZHANG</namePart>
<namePart type="given">W.</namePart>
</name>
<name type="personal">
<namePart type="family">JOHNSON</namePart>
<namePart type="given">F.</namePart>
</name>
<name type="personal">
<namePart type="family">GROLLMAN</namePart>
<namePart type="given">A. P.</namePart>
</name>
<titleInfo>
<title>Proc. Natl. Acad. </title>
</titleInfo>
<note type="content-in-line">MoriyaM., ZhangW., JohnsonF., & GrollmanA. P. (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 11899−11903.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref40" displayLabel="bib40">
<name type="personal">
<namePart type="family">MüLLER</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">HUTCHINSON</namePart>
<namePart type="given">L. K.</namePart>
</name>
<name type="personal">
<namePart type="family">GUENGERICH</namePart>
<namePart type="given">F. P.</namePart>
</name>
<titleInfo>
<title>Chem. Res. Toxicol.</title>
</titleInfo>
<note type="content-in-line">MüllerM., HutchinsonL. K., & GuengerichF. P. (1996) Chem. Res. Toxicol. 9, 1140−1144.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref41" displayLabel="bib41">
<name type="personal">
<namePart type="family">MüLLER</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">BELAS</namePart>
<namePart type="given">F. J.</namePart>
</name>
<name type="personal">
<namePart type="family">BLAIR</namePart>
<namePart type="given">I. A.</namePart>
</name>
<name type="personal">
<namePart type="family">GUENGERICH</namePart>
<namePart type="given">F. P.</namePart>
</name>
<titleInfo>
<title>Chem. Res. </title>
</titleInfo>
<note type="content-in-line">MüllerM., BelasF. J., BlairI. A., & GuengerichF. P. (1997) Chem. Res. Toxicol. 10, 242−247.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref42" displayLabel="bib42">
<name type="personal">
<namePart type="family">NAKANISHI</namePart>
<namePart type="given">K.</namePart>
</name>
<name type="personal">
<namePart type="family">FURUTACHI</namePart>
<namePart type="given">N.</namePart>
</name>
<name type="personal">
<namePart type="family">FUNAMIZU</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">GRUNBERGER</namePart>
<namePart type="given">D.</namePart>
</name>
<name type="personal">
<namePart type="family">WEINSTEIN</namePart>
<namePart type="given">I. B.</namePart>
</name>
<titleInfo>
<title>J. Am. Chem. Soc.</title>
</titleInfo>
<note type="content-in-line">NakanishiK., FurutachiN., FunamizuM., GrunbergerD., & WeinsteinI. B. (1970) J. Am. Chem. Soc. 92, 7617−7619.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref43" displayLabel="bib43">
<name type="personal">
<namePart type="family">NATH</namePart>
<namePart type="given">R. G.</namePart>
</name>
<name type="personal">
<namePart type="family">CHUNG</namePart>
<namePart type="given">F. L.</namePart>
</name>
<titleInfo>
<title>Proc. Natl. Acad. Sci. U.S.A.</title>
</titleInfo>
<note type="content-in-line">NathR. G., & ChungF. L. (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 7491−7495.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref44" displayLabel="bib44">
<name type="personal">
<namePart type="family">PALEJWALA</namePart>
<namePart type="given">V. A.</namePart>
</name>
<name type="personal">
<namePart type="family">RZEPKA</namePart>
<namePart type="given">R. W.</namePart>
</name>
<name type="personal">
<namePart type="family">SIMHA</namePart>
<namePart type="given">D.</namePart>
</name>
<name type="personal">
<namePart type="family">HUMAYUN</namePart>
<namePart type="given">M. Z.</namePart>
</name>
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<note type="content-in-line">PalejwalaV. A., RzepkaR. W., SimhaD., & HumayunM. Z. (1993) Biochemistry 32, 4105−4111.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref45" displayLabel="bib45">
<name type="personal">
<namePart type="family">SETO</namePart>
<namePart type="given">H.</namePart>
</name>
<name type="personal">
<namePart type="family">OKUDA</namePart>
<namePart type="given">T.</namePart>
</name>
<name type="personal">
<namePart type="family">TAKESUE</namePart>
<namePart type="given">T.</namePart>
</name>
<name type="personal">
<namePart type="family">IKEMURA</namePart>
<namePart type="given">T.</namePart>
</name>
<titleInfo>
<title>Bull. Chem. Soc. Jpn.</title>
</titleInfo>
<note type="content-in-line">SetoH., OkudaT., TakesueT., & IkemuraT. (1983) Bull. Chem. Soc. Jpn. 56, 1799−1802.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref46" displayLabel="bib46">
<name type="personal">
<namePart type="family">SHIBUTANI</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">GROLLMAN</namePart>
<namePart type="given">A. P.</namePart>
</name>
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<note type="content-in-line">ShibutaniS., & GrollmanA. P. (1993) J. Biol. Chem. 268, 11703−11710.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref47" displayLabel="bib47">
<name type="personal">
<namePart type="family">SHIBUTANI</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">TAKESHITA</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">GROLLMAN</namePart>
<namePart type="given">A. P.</namePart>
</name>
<titleInfo>
<title>Nature 349</title>
</titleInfo>
<note type="content-in-line">ShibutaniS., TakeshitaM., & GrollmanA. P. (1991) Nature 349, 431−434.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref48" displayLabel="bib48">
<name type="personal">
<namePart type="family">SHIBUTANI</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">SUZUKI</namePart>
<namePart type="given">N.</namePart>
</name>
<name type="personal">
<namePart type="family">MATSUMOTO</namePart>
<namePart type="given">Y.</namePart>
</name>
<name type="personal">
<namePart type="family">GROLLMAN</namePart>
<namePart type="given">A. P.</namePart>
</name>
<titleInfo>
<title>Biochemistry 35</title>
</titleInfo>
<note type="content-in-line">ShibutaniS., SuzukiN., MatsumotoY., & GrollmanA. P. (1996) Biochemistry 35, 14992−14998.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref49" displayLabel="bib49">
<name type="personal">
<namePart type="family">SINGER</namePart>
<namePart type="given">B.</namePart>
</name>
<name type="personal">
<namePart type="family">BARTSCH</namePart>
<namePart type="given">H.</namePart>
</name>
<titleInfo>
<title>The Role of Cyclic Nucleic Acid Adducts in Carcinogenesis and Mutagenesis</title>
</titleInfo>
<note type="content-in-line">SingerB., & BartschH. (1986) in The Role of Cyclic Nucleic Acid Adducts in Carcinogenesis and Mutagenesis, IARC Scientific Publications, Lyon.</note>
</relatedItem>
<relatedItem type="references" ID="atyp_ref50" displayLabel="bib50">
<name type="personal">
<namePart type="family">SINGER</namePart>
<namePart type="given">B.</namePart>
</name>
<name type="personal">
<namePart type="family">SPENGLER</namePart>
<namePart type="given">S. J.</namePart>
</name>
<name type="personal">
<namePart type="family">CHAVEZ</namePart>
<namePart type="given">F.</namePart>
</name>
<name type="personal">
<namePart type="family">KUSMIEREK</namePart>
<namePart type="given">J. T.</namePart>
</name>
<titleInfo>
<title>Carcinogenesis</title>
</titleInfo>
<note type="content-in-line">SingerB., SpenglerS. J., ChavezF., & KusmierekJ. T. (1987) Carcinogenesis 8, 745−747.</note>
</relatedItem>
<relatedItem type="references" ID="bi962526vb00001" displayLabel="bibbi962526vb00001">
<titleInfo>
<title>Abbreviations:  ε, etheno; HO-ethanoGua, 5,6,7,9-tetrahydro-7-hydroxy-9-oxoimidazo[1,2-a]purine; HO-ethanodGuo, HO-ethanoGua deoxyribose; AcO-ethanoGua, 5,6,7,9-tetrahydro-7-acetoxy-9-oxoimidazo[1,2-a]purine; Tris, tris(hydroxymethyl)aminomethane; MOPS, 3-(N-morpholino)propanesulfonic acid; EDTA, (ethylenedinitrilo)tetraacetic acid; Gua, guanine; Cyt, cytosine; Ade, adenine; dGuo, deoxyguanosine; dThd, thymidine; dCyd, deoxycytidine; dAdo, deoxyadenosine; propanoG, 1,N2-propanoguanine; M1G, pyrimido[1,2-a]purin-10(3H)-one; HPLC, high-performance liquid chromatography; TLC, thin layer chromatography; CGE, capillary gel electrophoresis; MS, mass spectrometry; ES, electrospray; FAB, fast atom bombardment; Kf, Klenow fragment (of pol I) exo-; RT, human immunodeficiency virus-1 reverse transcriptase; pol II, polymerase II exo-; T7, polymerase T7 exo-/thioredoxin mixture; pol β, rat polymerase β.</title>
</titleInfo>
<note type="content-in-line">Abbreviations:  ε, etheno; HO-ethanoGua, 5,6,7,9-tetrahydro-7-hydroxy-9-oxoimidazo[1,2-a]purine; HO-ethanodGuo, HO-ethanoGua deoxyribose; AcO-ethanoGua, 5,6,7,9-tetrahydro-7-acetoxy-9-oxoimidazo[1,2-a]purine; Tris, tris(hydroxymethyl)aminomethane; MOPS, 3-(N-morpholino)propanesulfonic acid; EDTA, (ethylenedinitrilo)tetraacetic acid; Gua, guanine; Cyt, cytosine; Ade, adenine; dGuo, deoxyguanosine; dThd, thymidine; dCyd, deoxycytidine; dAdo, deoxyadenosine; propanoG, 1,N2-propanoguanine; M1G, pyrimido[1,2-a]purin-10(3H)-one; HPLC, high-performance liquid chromatography; TLC, thin layer chromatography; CGE, capillary gel electrophoresis; MS, mass spectrometry; ES, electrospray; FAB, fast atom bombardment; Kf, Klenow fragment (of pol I) exo-; RT, human immunodeficiency virus-1 reverse transcriptase; pol II, polymerase II exo-; T7, polymerase T7 exo-/thioredoxin mixture; pol β, rat polymerase β.</note>
</relatedItem>
<relatedItem type="references" ID="bi962526vb00002" displayLabel="bibbi962526vb00002">
<titleInfo>
<title>The strategy of inserting a 2-fluoroinosine group into the oligomer, adding 2-aminoacetaldehyde dimethyl acetal, and then closing the ring (Decorte et al., 1996; Guengerich et al., 1993) was considered but not attempted because studies with the nucleoside indicated that the glycosidic bond was hydrolyzed under all conditions used to cleave the acetal.</title>
</titleInfo>
<note type="content-in-line">The strategy of inserting a 2-fluoroinosine group into the oligomer, adding 2-aminoacetaldehyde dimethyl acetal, and then closing the ring (Decorte et al., 1996; Guengerich et al., 1993) was considered but not attempted because studies with the nucleoside indicated that the glycosidic bond was hydrolyzed under all conditions used to cleave the acetal.</note>
</relatedItem>
<relatedItem type="references" ID="bi962526vb00003" displayLabel="bibbi962526vb00003">
<titleInfo>
<title>K</title>
</titleInfo>
<note type="content-in-line">Some comment is in order about the Km values in Table 4. The Km value found (for dCTP) for the unmodified oligonucleotide and Kf is the same as that reported by Hashim and Marnett (1996); a large increase was seen with all incorporated dNTPs, as also observed here. The physical meaning of Km in polymerase assays is not clear (Johnson, 1993); Km is certainly not a simple dissocation constant. Kd values must be obtained through more complex pre-steady-state experiments (Johnson, 1993; Lowe & Guengerich, 1996; Furge & Guengerich, 1997).</note>
</relatedItem>
<relatedItem type="references" ID="bi962526vb00004" displayLabel="bibbi962526vb00004">
<titleInfo>
<title>S. Langouët, S. P. Fink, M. Müller, L. J. Marnett, and F. P. Guengerich, unpublished results.</title>
</titleInfo>
<note type="content-in-line">S. Langouët, S. P. Fink, M. Müller, L. J. Marnett, and F. P. Guengerich, unpublished results.</note>
</relatedItem>
<identifier type="istex">2010D51B69180BED3FDB60A600FBAF86BADAEA41</identifier>
<identifier type="ark">ark:/67375/TPS-69F58Q91-C</identifier>
<identifier type="DOI">10.1021/bi962526v</identifier>
<accessCondition type="use and reproduction" contentType="restricted">Copyright © 1997 American Chemical Society</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-X5HBJWF8-J">acs</recordContentSource>
<recordOrigin>Converted from (version 1.2.10) to MODS version 3.6.</recordOrigin>
<recordCreationDate encoding="w3cdtf">2020-04-10</recordCreationDate>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-69F58Q91-C/record.json</uri>
</json:item>
</metadata>
<annexes>
<json:item>
<extension>gif</extension>
<original>true</original>
<mimetype>image/gif</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-69F58Q91-C/annexes.gif</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000615 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000615 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:2010D51B69180BED3FDB60A600FBAF86BADAEA41
   |texte=   Misincorporation of dNTPs Opposite 1,N2-Ethenoguanine and 5,6,7,9-Tetrahydro-7-hydroxy-9-oxoimidazo[1,2-a]purine in Oligonucleotides by Escherichia coli Polymerases I exo- and II exo-, T7 Polymerase exo-, Human Immunodeficiency Virus-1 Reverse Transcriptase, and Rat Polymerase β†
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021