Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Hydrogen-bonding Contacts in the Major Groove are required for Human Immunodeficiency Virus Type-1 tat Protein Recognition of TAR RNA

Identifieur interne : 000230 ( Istex/Corpus ); précédent : 000229; suivant : 000231

Hydrogen-bonding Contacts in the Major Groove are required for Human Immunodeficiency Virus Type-1 tat Protein Recognition of TAR RNA

Auteurs : François Hamy ; Ulysse Asseline ; Jane Grasby ; Shigenori Iwai ; Clare Pritchard ; George Slim ; P. Jonathan G. Butler ; Jonathan Karn ; Michael J. Gait

Source :

RBID : ISTEX:F142C2065AF7433D4F6EBED5DEF94E3138502DDB

English descriptors

Abstract

Abstract: The binding site for tat on TAR RNA was analysed by preparing a series of model RNA substrates carrying site-specific functional group modifications. The test RNAs were prepared by annealing two short synthetic oligoribonucleotides to form a duplex structure with a U-rich bulge and flanking sequences identical to TAR RNA. Tat binds these duplex RNAs with approximately half the affinity for wild-type TAR RNA. Substitution at positions U23 or U25 by the base analogue. O4-methyl-dT, which is deficient in its ability to hydrogen-bond at the N3 position reduces tat affinity more than 20-fold. Modifications to purines in the stem of TAR RNA that affect hydrogen-bonding ability in either the major or the minor groove of duplex RNA were also tested. Removal of the nitrogen atom at either the N7 position of G26 or the N7 position of A27 reduces tat affinity 10- to 20-fold. By contrast removal of the exocyclic amino group in the minor groove at position G26, by substitution with inosine, does not affect tat binding significantly. A single methylphosphonate substitution at the phosphate bond between A22 and U23 also leads to a significant loss of tat binding ability, whereas all other methylphosphonate substitutions in the U-rich bulge are not harmful to tat binding. We conclude that tat forms multiple specific hydrogen bonds to a series of dispersed sites displayed in the major groove of the TAR RNA molecule. These include the N3-H of U23, the N7 of G26, the N7 of A26 and the phosphate between A22 and U23.

Url:
DOI: 10.1006/jmbi.1993.1129

Links to Exploration step

ISTEX:F142C2065AF7433D4F6EBED5DEF94E3138502DDB

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Hydrogen-bonding Contacts in the Major Groove are required for Human Immunodeficiency Virus Type-1 tat Protein Recognition of TAR RNA</title>
<author>
<name sortKey="Hamy, Francois" sort="Hamy, Francois" uniqKey="Hamy F" first="François" last="Hamy">François Hamy</name>
<affiliation>
<mods:affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Asseline, Ulysse" sort="Asseline, Ulysse" uniqKey="Asseline U" first="Ulysse" last="Asseline">Ulysse Asseline</name>
<affiliation>
<mods:affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Grasby, Jane" sort="Grasby, Jane" uniqKey="Grasby J" first="Jane" last="Grasby">Jane Grasby</name>
<affiliation>
<mods:affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Iwai, Shigenori" sort="Iwai, Shigenori" uniqKey="Iwai S" first="Shigenori" last="Iwai">Shigenori Iwai</name>
<affiliation>
<mods:affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pritchard, Clare" sort="Pritchard, Clare" uniqKey="Pritchard C" first="Clare" last="Pritchard">Clare Pritchard</name>
<affiliation>
<mods:affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Slim, George" sort="Slim, George" uniqKey="Slim G" first="George" last="Slim">George Slim</name>
<affiliation>
<mods:affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Butler, P Jonathan G" sort="Butler, P Jonathan G" uniqKey="Butler P" first="P. Jonathan G." last="Butler">P. Jonathan G. Butler</name>
<affiliation>
<mods:affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Karn, Jonathan" sort="Karn, Jonathan" uniqKey="Karn J" first="Jonathan" last="Karn">Jonathan Karn</name>
<affiliation>
<mods:affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gait, Michael J" sort="Gait, Michael J" uniqKey="Gait M" first="Michael J." last="Gait">Michael J. Gait</name>
<affiliation>
<mods:affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:F142C2065AF7433D4F6EBED5DEF94E3138502DDB</idno>
<date when="1993" year="1993">1993</date>
<idno type="doi">10.1006/jmbi.1993.1129</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-PWKJJF8C-T/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000230</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000230</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Hydrogen-bonding Contacts in the Major Groove are required for Human Immunodeficiency Virus Type-1 tat Protein Recognition of TAR RNA</title>
<author>
<name sortKey="Hamy, Francois" sort="Hamy, Francois" uniqKey="Hamy F" first="François" last="Hamy">François Hamy</name>
<affiliation>
<mods:affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Asseline, Ulysse" sort="Asseline, Ulysse" uniqKey="Asseline U" first="Ulysse" last="Asseline">Ulysse Asseline</name>
<affiliation>
<mods:affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Grasby, Jane" sort="Grasby, Jane" uniqKey="Grasby J" first="Jane" last="Grasby">Jane Grasby</name>
<affiliation>
<mods:affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Iwai, Shigenori" sort="Iwai, Shigenori" uniqKey="Iwai S" first="Shigenori" last="Iwai">Shigenori Iwai</name>
<affiliation>
<mods:affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pritchard, Clare" sort="Pritchard, Clare" uniqKey="Pritchard C" first="Clare" last="Pritchard">Clare Pritchard</name>
<affiliation>
<mods:affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Slim, George" sort="Slim, George" uniqKey="Slim G" first="George" last="Slim">George Slim</name>
<affiliation>
<mods:affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Butler, P Jonathan G" sort="Butler, P Jonathan G" uniqKey="Butler P" first="P. Jonathan G." last="Butler">P. Jonathan G. Butler</name>
<affiliation>
<mods:affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Karn, Jonathan" sort="Karn, Jonathan" uniqKey="Karn J" first="Jonathan" last="Karn">Jonathan Karn</name>
<affiliation>
<mods:affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gait, Michael J" sort="Gait, Michael J" uniqKey="Gait M" first="Michael J." last="Gait">Michael J. Gait</name>
<affiliation>
<mods:affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Molecular Biology</title>
<title level="j" type="abbrev">YJMBI</title>
<idno type="ISSN">0022-2836</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1993">1993</date>
<biblScope unit="volume">230</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="111">111</biblScope>
<biblScope unit="page" to="123">123</biblScope>
</imprint>
<idno type="ISSN">0022-2836</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-2836</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>RNA-protein interactions</term>
<term>TAR RNA structure</term>
<term>human immunodeficiency virus type 1 (HIV-1)</term>
<term>tat protein</term>
<term>trans-activation</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: The binding site for tat on TAR RNA was analysed by preparing a series of model RNA substrates carrying site-specific functional group modifications. The test RNAs were prepared by annealing two short synthetic oligoribonucleotides to form a duplex structure with a U-rich bulge and flanking sequences identical to TAR RNA. Tat binds these duplex RNAs with approximately half the affinity for wild-type TAR RNA. Substitution at positions U23 or U25 by the base analogue. O4-methyl-dT, which is deficient in its ability to hydrogen-bond at the N3 position reduces tat affinity more than 20-fold. Modifications to purines in the stem of TAR RNA that affect hydrogen-bonding ability in either the major or the minor groove of duplex RNA were also tested. Removal of the nitrogen atom at either the N7 position of G26 or the N7 position of A27 reduces tat affinity 10- to 20-fold. By contrast removal of the exocyclic amino group in the minor groove at position G26, by substitution with inosine, does not affect tat binding significantly. A single methylphosphonate substitution at the phosphate bond between A22 and U23 also leads to a significant loss of tat binding ability, whereas all other methylphosphonate substitutions in the U-rich bulge are not harmful to tat binding. We conclude that tat forms multiple specific hydrogen bonds to a series of dispersed sites displayed in the major groove of the TAR RNA molecule. These include the N3-H of U23, the N7 of G26, the N7 of A26 and the phosphate between A22 and U23.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>François Hamy</name>
<affiliations>
<json:string>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</json:string>
</affiliations>
</json:item>
<json:item>
<name>Ulysse Asseline</name>
<affiliations>
<json:string>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jane Grasby</name>
<affiliations>
<json:string>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</json:string>
</affiliations>
</json:item>
<json:item>
<name>Shigenori Iwai</name>
<affiliations>
<json:string>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</json:string>
</affiliations>
</json:item>
<json:item>
<name>Clare Pritchard</name>
<affiliations>
<json:string>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</json:string>
</affiliations>
</json:item>
<json:item>
<name>George Slim</name>
<affiliations>
<json:string>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</json:string>
</affiliations>
</json:item>
<json:item>
<name>P.Jonathan G. Butler</name>
<affiliations>
<json:string>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jonathan Karn</name>
<affiliations>
<json:string>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</json:string>
</affiliations>
</json:item>
<json:item>
<name>Michael J. Gait</name>
<affiliations>
<json:string>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>human immunodeficiency virus type 1 (HIV-1)</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>trans-activation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>RNA-protein interactions</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>tat protein</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>TAR RNA structure</value>
</json:item>
</subject>
<arkIstex>ark:/67375/6H6-PWKJJF8C-T</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Abstract: The binding site for tat on TAR RNA was analysed by preparing a series of model RNA substrates carrying site-specific functional group modifications. The test RNAs were prepared by annealing two short synthetic oligoribonucleotides to form a duplex structure with a U-rich bulge and flanking sequences identical to TAR RNA. Tat binds these duplex RNAs with approximately half the affinity for wild-type TAR RNA. Substitution at positions U23 or U25 by the base analogue. O4-methyl-dT, which is deficient in its ability to hydrogen-bond at the N3 position reduces tat affinity more than 20-fold. Modifications to purines in the stem of TAR RNA that affect hydrogen-bonding ability in either the major or the minor groove of duplex RNA were also tested. Removal of the nitrogen atom at either the N7 position of G26 or the N7 position of A27 reduces tat affinity 10- to 20-fold. By contrast removal of the exocyclic amino group in the minor groove at position G26, by substitution with inosine, does not affect tat binding significantly. A single methylphosphonate substitution at the phosphate bond between A22 and U23 also leads to a significant loss of tat binding ability, whereas all other methylphosphonate substitutions in the U-rich bulge are not harmful to tat binding. We conclude that tat forms multiple specific hydrogen bonds to a series of dispersed sites displayed in the major groove of the TAR RNA molecule. These include the N3-H of U23, the N7 of G26, the N7 of A26 and the phosphate between A22 and U23.</abstract>
<qualityIndicators>
<score>5.05</score>
<pdfWordCount>0</pdfWordCount>
<pdfCharCount>0</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>13</pdfPageCount>
<pdfPageSize>582 x 850 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<abstractWordCount>253</abstractWordCount>
<abstractCharCount>1531</abstractCharCount>
<keywordCount>5</keywordCount>
</qualityIndicators>
<title>Hydrogen-bonding Contacts in the Major Groove are required for Human Immunodeficiency Virus Type-1 tat Protein Recognition of TAR RNA</title>
<pmid>
<json:string>8450529</json:string>
</pmid>
<pii>
<json:string>S0022-2836(83)71129-0</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Journal of Molecular Biology</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1993</publicationDate>
<issn>
<json:string>0022-2836</json:string>
</issn>
<pii>
<json:string>S0022-2836(00)X0148-9</json:string>
</pii>
<volume>230</volume>
<issue>1</issue>
<pages>
<first>111</first>
<last>123</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date></date>
<geogName></geogName>
<orgName></orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName></persName>
<placeName></placeName>
<ref_url></ref_url>
<ref_bibl></ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/6H6-PWKJJF8C-T</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - biochemistry & molecular biology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - biomedical research</json:string>
<json:string>3 - biochemistry & molecular biology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Molecular Biology</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>1993</publicationDate>
<copyrightDate>1993</copyrightDate>
<doi>
<json:string>10.1006/jmbi.1993.1129</json:string>
</doi>
<id>F142C2065AF7433D4F6EBED5DEF94E3138502DDB</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-PWKJJF8C-T/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>ocr</extension>
<original>false</original>
<mimetype>text/ocr</mimetype>
<quality>
<totalToken>10897</totalToken>
<correct>9329</correct>
<rate>80.05640372056953</rate>
<misspelled>1577</misspelled>
</quality>
<langDetect>
<reliable>true</reliable>
<languages>
<json:item>
<score>884</score>
<code>en</code>
<name>ENGLISH</name>
<percent>99</percent>
</json:item>
</languages>
</langDetect>
<uri>https://api.istex.fr/ark:/67375/6H6-PWKJJF8C-T/fulltext.ocr</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-PWKJJF8C-T/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/6H6-PWKJJF8C-T/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Hydrogen-bonding Contacts in the Major Groove are required for Human Immunodeficiency Virus Type-1 tat Protein Recognition of TAR RNA</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://scientific-publisher.data.istex.fr">ELSEVIER</publisher>
<availability>
<licence>
<p>©1993 Academic Press</p>
</licence>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</p>
</availability>
<date>1993</date>
</publicationStmt>
<notesStmt>
<note type="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
<note type="content">Section title: Regular Article</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Hydrogen-bonding Contacts in the Major Groove are required for Human Immunodeficiency Virus Type-1 tat Protein Recognition of TAR RNA</title>
<author xml:id="author-0000">
<persName>
<forename type="first">François</forename>
<surname>Hamy</surname>
</persName>
<affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Ulysse</forename>
<surname>Asseline</surname>
</persName>
<affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Jane</forename>
<surname>Grasby</surname>
</persName>
<affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Shigenori</forename>
<surname>Iwai</surname>
</persName>
<affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">Clare</forename>
<surname>Pritchard</surname>
</persName>
<affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</affiliation>
</author>
<author xml:id="author-0005">
<persName>
<forename type="first">George</forename>
<surname>Slim</surname>
</persName>
<affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</affiliation>
</author>
<author xml:id="author-0006">
<persName>
<forename type="first">P.Jonathan G.</forename>
<surname>Butler</surname>
</persName>
<affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</affiliation>
</author>
<author xml:id="author-0007">
<persName>
<forename type="first">Jonathan</forename>
<surname>Karn</surname>
</persName>
<affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</affiliation>
</author>
<author xml:id="author-0008">
<persName>
<forename type="first">Michael J.</forename>
<surname>Gait</surname>
</persName>
<affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</affiliation>
</author>
<idno type="istex">F142C2065AF7433D4F6EBED5DEF94E3138502DDB</idno>
<idno type="ark">ark:/67375/6H6-PWKJJF8C-T</idno>
<idno type="DOI">10.1006/jmbi.1993.1129</idno>
<idno type="PII">S0022-2836(83)71129-0</idno>
</analytic>
<monogr>
<title level="j">Journal of Molecular Biology</title>
<title level="j" type="abbrev">YJMBI</title>
<idno type="pISSN">0022-2836</idno>
<idno type="PII">S0022-2836(00)X0148-9</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1993"></date>
<biblScope unit="volume">230</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="111">111</biblScope>
<biblScope unit="page" to="123">123</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1993</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Abstract: The binding site for tat on TAR RNA was analysed by preparing a series of model RNA substrates carrying site-specific functional group modifications. The test RNAs were prepared by annealing two short synthetic oligoribonucleotides to form a duplex structure with a U-rich bulge and flanking sequences identical to TAR RNA. Tat binds these duplex RNAs with approximately half the affinity for wild-type TAR RNA. Substitution at positions U23 or U25 by the base analogue. O4-methyl-dT, which is deficient in its ability to hydrogen-bond at the N3 position reduces tat affinity more than 20-fold. Modifications to purines in the stem of TAR RNA that affect hydrogen-bonding ability in either the major or the minor groove of duplex RNA were also tested. Removal of the nitrogen atom at either the N7 position of G26 or the N7 position of A27 reduces tat affinity 10- to 20-fold. By contrast removal of the exocyclic amino group in the minor groove at position G26, by substitution with inosine, does not affect tat binding significantly. A single methylphosphonate substitution at the phosphate bond between A22 and U23 also leads to a significant loss of tat binding ability, whereas all other methylphosphonate substitutions in the U-rich bulge are not harmful to tat binding. We conclude that tat forms multiple specific hydrogen bonds to a series of dispersed sites displayed in the major groove of the TAR RNA molecule. These include the N3-H of U23, the N7 of G26, the N7 of A26 and the phosphate between A22 and U23.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>human immunodeficiency virus type 1 (HIV-1)</term>
</item>
<item>
<term>trans-activation</term>
</item>
<item>
<term>RNA-protein interactions</term>
</item>
<item>
<term>tat protein</term>
</item>
<item>
<term>TAR RNA structure</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1993">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-PWKJJF8C-T/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier converted-article found">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType"></istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla" xml:lang="en">
<item-info>
<jid>YJMBI</jid>
<aid>71129</aid>
<ce:pii>S0022-2836(83)71129-0</ce:pii>
<ce:doi>10.1006/jmbi.1993.1129</ce:doi>
<ce:copyright type="full-transfer" year="1993">Academic Press</ce:copyright>
</item-info>
<head>
<ce:dochead>
<ce:textfn>Regular Article</ce:textfn>
</ce:dochead>
<ce:title>Hydrogen-bonding Contacts in the Major Groove are required for Human Immunodeficiency Virus Type-1
<ce:italic>tat</ce:italic>
Protein Recognition of TAR RNA</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>François</ce:given-name>
<ce:surname>Hamy</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>Ulysse</ce:given-name>
<ce:surname>Asseline</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>Jane</ce:given-name>
<ce:surname>Grasby</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>Shigenori</ce:given-name>
<ce:surname>Iwai</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>Clare</ce:given-name>
<ce:surname>Pritchard</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>George</ce:given-name>
<ce:surname>Slim</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>P.Jonathan G.</ce:given-name>
<ce:surname>Butler</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>Jonathan</ce:given-name>
<ce:surname>Karn</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>Michael J.</ce:given-name>
<ce:surname>Gait</ce:surname>
</ce:author>
<ce:affiliation>
<ce:textfn>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</ce:textfn>
</ce:affiliation>
</ce:author-group>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>The binding site for
<ce:italic>tat</ce:italic>
on TAR RNA was analysed by preparing a series of model RNA substrates carrying site-specific functional group modifications. The test RNAs were prepared by annealing two short synthetic oligoribonucleotides to form a duplex structure with a U-rich bulge and flanking sequences identical to TAR RNA.
<ce:italic>Tat</ce:italic>
binds these duplex RNAs with approximately half the affinity for wild-type TAR RNA. Substitution at positions U
<ce:inf>23</ce:inf>
or U
<ce:inf>25</ce:inf>
by the base analogue. O
<ce:sup>4</ce:sup>
-methyl-dT, which is deficient in its ability to hydrogen-bond at the N
<ce:sup>3</ce:sup>
position reduces
<ce:italic>tat</ce:italic>
affinity more than 20-fold. Modifications to purines in the stem of TAR RNA that affect hydrogen-bonding ability in either the major or the minor groove of duplex RNA were also tested. Removal of the nitrogen atom at either the N
<ce:sup>7</ce:sup>
position of G
<ce:inf>26</ce:inf>
or the N
<ce:sup>7</ce:sup>
position of A
<ce:inf>27</ce:inf>
reduces
<ce:italic>tat</ce:italic>
affinity 10- to 20-fold. By contrast removal of the exocyclic amino group in the minor groove at position G
<ce:inf>26</ce:inf>
, by substitution with inosine, does not affect
<ce:italic>tat</ce:italic>
binding significantly. A single methylphosphonate substitution at the phosphate bond between A
<ce:inf>22</ce:inf>
and U
<ce:inf>23</ce:inf>
also leads to a significant loss of
<ce:italic>tat</ce:italic>
binding ability, whereas all other methylphosphonate substitutions in the U-rich bulge are not harmful to
<ce:italic>tat</ce:italic>
binding. We conclude that
<ce:italic>tat</ce:italic>
forms multiple specific hydrogen bonds to a series of dispersed sites displayed in the major groove of the TAR RNA molecule. These include the N
<ce:sup>3</ce:sup>
-H of U
<ce:inf>23</ce:inf>
, the N
<ce:sup>7</ce:sup>
of G
<ce:inf>26</ce:inf>
, the N
<ce:sup>7</ce:sup>
of A
<ce:inf>26</ce:inf>
and the phosphate between A
<ce:inf>22</ce:inf>
and U
<ce:inf>23</ce:inf>
.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords>
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>human immunodeficiency virus type 1 (HIV-1)</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>
<ce:italic>trans</ce:italic>
-activation</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>RNA-protein interactions</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>
<ce:italic>tat</ce:italic>
protein</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>TAR RNA structure</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Hydrogen-bonding Contacts in the Major Groove are required for Human Immunodeficiency Virus Type-1 tat Protein Recognition of TAR RNA</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>Hydrogen-bonding Contacts in the Major Groove are required for Human Immunodeficiency Virus Type-1</title>
</titleInfo>
<name type="personal">
<namePart type="given">François</namePart>
<namePart type="family">Hamy</namePart>
<affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ulysse</namePart>
<namePart type="family">Asseline</namePart>
<affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jane</namePart>
<namePart type="family">Grasby</namePart>
<affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shigenori</namePart>
<namePart type="family">Iwai</namePart>
<affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Clare</namePart>
<namePart type="family">Pritchard</namePart>
<affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">George</namePart>
<namePart type="family">Slim</namePart>
<affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P.Jonathan G.</namePart>
<namePart type="family">Butler</namePart>
<affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Karn</namePart>
<affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael J.</namePart>
<namePart type="family">Gait</namePart>
<affiliation>Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge, CB2 2HQ, U.K.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1993</dateIssued>
<copyrightDate encoding="w3cdtf">1993</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: The binding site for tat on TAR RNA was analysed by preparing a series of model RNA substrates carrying site-specific functional group modifications. The test RNAs were prepared by annealing two short synthetic oligoribonucleotides to form a duplex structure with a U-rich bulge and flanking sequences identical to TAR RNA. Tat binds these duplex RNAs with approximately half the affinity for wild-type TAR RNA. Substitution at positions U23 or U25 by the base analogue. O4-methyl-dT, which is deficient in its ability to hydrogen-bond at the N3 position reduces tat affinity more than 20-fold. Modifications to purines in the stem of TAR RNA that affect hydrogen-bonding ability in either the major or the minor groove of duplex RNA were also tested. Removal of the nitrogen atom at either the N7 position of G26 or the N7 position of A27 reduces tat affinity 10- to 20-fold. By contrast removal of the exocyclic amino group in the minor groove at position G26, by substitution with inosine, does not affect tat binding significantly. A single methylphosphonate substitution at the phosphate bond between A22 and U23 also leads to a significant loss of tat binding ability, whereas all other methylphosphonate substitutions in the U-rich bulge are not harmful to tat binding. We conclude that tat forms multiple specific hydrogen bonds to a series of dispersed sites displayed in the major groove of the TAR RNA molecule. These include the N3-H of U23, the N7 of G26, the N7 of A26 and the phosphate between A22 and U23.</abstract>
<note type="content">Section title: Regular Article</note>
<subject lang="en">
<genre>Keywords</genre>
<topic>human immunodeficiency virus type 1 (HIV-1)</topic>
<topic>trans-activation</topic>
<topic>RNA-protein interactions</topic>
<topic>tat protein</topic>
<topic>TAR RNA structure</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Molecular Biology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>YJMBI</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1993</dateIssued>
</originInfo>
<identifier type="ISSN">0022-2836</identifier>
<identifier type="PII">S0022-2836(00)X0148-9</identifier>
<part>
<date>1993</date>
<detail type="volume">
<number>230</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>1</start>
<end>357</end>
</extent>
<extent unit="pages">
<start>111</start>
<end>123</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">F142C2065AF7433D4F6EBED5DEF94E3138502DDB</identifier>
<identifier type="ark">ark:/67375/6H6-PWKJJF8C-T</identifier>
<identifier type="DOI">10.1006/jmbi.1993.1129</identifier>
<identifier type="PII">S0022-2836(83)71129-0</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©1993 Academic Press</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
<recordOrigin>Academic Press, ©1993</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-PWKJJF8C-T/record.json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000230 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000230 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:F142C2065AF7433D4F6EBED5DEF94E3138502DDB
   |texte=   Hydrogen-bonding Contacts in the Major Groove are required for Human Immunodeficiency Virus Type-1 tat Protein Recognition of TAR RNA
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021