Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of the murine AAVrh32.33 capsid‐specific CD8+ T cell epitopes

Identifieur interne : 000216 ( Istex/Corpus ); précédent : 000215; suivant : 000217

Identification of the murine AAVrh32.33 capsid‐specific CD8+ T cell epitopes

Auteurs : Lauren E. Mays ; James M. Wilson

Source :

RBID : ISTEX:9DDC47DCC02F4E0AD7610B746E2730CE21768BB9

English descriptors

Abstract

Background: Adeno‐associated virus (AAV) is an ideal gene therapy vector and is non‐immunogenic in many small animal models. The stable gene expression commonly seen in murine models does not necessarily translate to nonhuman primates and higher‐order species, highlighting the need for a better understanding of immune activation to these vectors. One capsid variant, AAVrh32.33, demonstrates a unique phenotype in murine muscle, reminiscent of what is often seen in higher‐order species. AAVrh32.33 generates a strong CD8+ T‐cell response to both capsid and encoded transgene antigens in a manner independent of transgene product or major histocompatability complex haplotype, making it an ideal candidate for studying immune activation to AAV in the mouse. Methods: To map the H‐2b and H‐2d dominant epitopes of the AAVrh32.33 capsid, C57BL/6 or Balb/C mice received an intramuscular injection of 1 × 1011 genome copies of AAV2/rh32.33.CB.nLacZ. Three weeks later, splenocytes were harvested and stimulated in vitro with pooled or individual peptides from the AAVrh32.33 capsid peptide library and analysed by an interferon (IFN)‐γ enzyme‐linked immunosorbent spot assay or intracellular cytokine staining. Results: The immunodominant epitopes within the AAVrh32.33 capsid responsible for driving CD8+ T‐cell responses to the capsid protein in C57BL/6 (SSYELPYVM) and Balb/C (KIPASGGNAL) mice were defined. Conclusions: Identification of dominant capsid epitopes will make it possible to monitor cellular responses to the AAV capsid in vivo, facilitating mechanistic studies critical to defining how cellular immunity to the AAV capsid arises and, ultimately, how the generation of capsid‐specific T cells can be avoided to ensure safety in a gene therapy setting. Copyright © 2009 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/jgm.1402

Links to Exploration step

ISTEX:9DDC47DCC02F4E0AD7610B746E2730CE21768BB9

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification of the murine AAVrh32.33 capsid‐specific CD8+ T cell epitopes</title>
<author>
<name sortKey="Mays, Lauren E" sort="Mays, Lauren E" uniqKey="Mays L" first="Lauren E." last="Mays">Lauren E. Mays</name>
<affiliation>
<mods:affiliation>Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wilson, James M" sort="Wilson, James M" uniqKey="Wilson J" first="James M." last="Wilson">James M. Wilson</name>
<affiliation>
<mods:affiliation>Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: wilsonjm@mail.med.upenn.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: 125 S. 31st Street, TRL, Suite 2000, Philadelphia, PA 19104‐3403, USA.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:9DDC47DCC02F4E0AD7610B746E2730CE21768BB9</idno>
<date when="2009" year="2009">2009</date>
<idno type="doi">10.1002/jgm.1402</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-TRK4MWXW-R/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000216</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000216</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Identification of the murine AAVrh32.33 capsid‐specific CD8+ T cell epitopes</title>
<author>
<name sortKey="Mays, Lauren E" sort="Mays, Lauren E" uniqKey="Mays L" first="Lauren E." last="Mays">Lauren E. Mays</name>
<affiliation>
<mods:affiliation>Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wilson, James M" sort="Wilson, James M" uniqKey="Wilson J" first="James M." last="Wilson">James M. Wilson</name>
<affiliation>
<mods:affiliation>Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: wilsonjm@mail.med.upenn.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: 125 S. 31st Street, TRL, Suite 2000, Philadelphia, PA 19104‐3403, USA.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">The Journal of Gene Medicine</title>
<title level="j" type="alt">JOURNAL OF GENE MEDICINE, THE</title>
<idno type="ISSN">1099-498X</idno>
<idno type="eISSN">1521-2254</idno>
<imprint>
<biblScope unit="vol">11</biblScope>
<biblScope unit="issue">12</biblScope>
<biblScope unit="page" from="1095">1095</biblScope>
<biblScope unit="page" to="1102">1102</biblScope>
<biblScope unit="page-count">8</biblScope>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2009-12">2009-12</date>
</imprint>
<idno type="ISSN">1099-498X</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1099-498X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Aav2</term>
<term>Amino</term>
<term>Amino acids</term>
<term>Bimas</term>
<term>Capsid</term>
<term>Capsid protein</term>
<term>Cell epitope</term>
<term>Cell epitopes</term>
<term>Cell population</term>
<term>Copyright</term>
<term>Cytometric analysis</term>
<term>Dominant capsid epitopes</term>
<term>Dominant epitope</term>
<term>Elispot</term>
<term>Epitope</term>
<term>Fine mapping</term>
<term>Gene therapy</term>
<term>Gene transfer</term>
<term>Immune activation</term>
<term>Immunodominant</term>
<term>Immunodominant epitope</term>
<term>Individual peptides</term>
<term>Intracellular cytokine staining</term>
<term>Ipasggnal</term>
<term>John wiley sons</term>
<term>Kipasggnal</term>
<term>Mechanistic studies</term>
<term>Mhci</term>
<term>Mhci molecule</term>
<term>Monoclonal antibodies</term>
<term>Mouse</term>
<term>Murine</term>
<term>Murine models</term>
<term>Negative control</term>
<term>Peptide</term>
<term>Peptide pools</term>
<term>Small animal model</term>
<term>Splenocytes</term>
<term>Ssyelpyvm</term>
<term>Syfpeithi</term>
<term>Transgene</term>
<term>Virus vectors</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Background: Adeno‐associated virus (AAV) is an ideal gene therapy vector and is non‐immunogenic in many small animal models. The stable gene expression commonly seen in murine models does not necessarily translate to nonhuman primates and higher‐order species, highlighting the need for a better understanding of immune activation to these vectors. One capsid variant, AAVrh32.33, demonstrates a unique phenotype in murine muscle, reminiscent of what is often seen in higher‐order species. AAVrh32.33 generates a strong CD8+ T‐cell response to both capsid and encoded transgene antigens in a manner independent of transgene product or major histocompatability complex haplotype, making it an ideal candidate for studying immune activation to AAV in the mouse. Methods: To map the H‐2b and H‐2d dominant epitopes of the AAVrh32.33 capsid, C57BL/6 or Balb/C mice received an intramuscular injection of 1 × 1011 genome copies of AAV2/rh32.33.CB.nLacZ. Three weeks later, splenocytes were harvested and stimulated in vitro with pooled or individual peptides from the AAVrh32.33 capsid peptide library and analysed by an interferon (IFN)‐γ enzyme‐linked immunosorbent spot assay or intracellular cytokine staining. Results: The immunodominant epitopes within the AAVrh32.33 capsid responsible for driving CD8+ T‐cell responses to the capsid protein in C57BL/6 (SSYELPYVM) and Balb/C (KIPASGGNAL) mice were defined. Conclusions: Identification of dominant capsid epitopes will make it possible to monitor cellular responses to the AAV capsid in vivo, facilitating mechanistic studies critical to defining how cellular immunity to the AAV capsid arises and, ultimately, how the generation of capsid‐specific T cells can be avoided to ensure safety in a gene therapy setting. Copyright © 2009 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>capsid</json:string>
<json:string>epitope</json:string>
<json:string>peptide</json:string>
<json:string>splenocytes</json:string>
<json:string>ssyelpyvm</json:string>
<json:string>elispot</json:string>
<json:string>transgene</json:string>
<json:string>immunodominant</json:string>
<json:string>syfpeithi</json:string>
<json:string>mhci</json:string>
<json:string>capsid protein</json:string>
<json:string>john wiley sons</json:string>
<json:string>kipasggnal</json:string>
<json:string>copyright</json:string>
<json:string>aav2</json:string>
<json:string>bimas</json:string>
<json:string>murine</json:string>
<json:string>ipasggnal</json:string>
<json:string>cell epitopes</json:string>
<json:string>gene transfer</json:string>
<json:string>gene therapy</json:string>
<json:string>individual peptides</json:string>
<json:string>murine models</json:string>
<json:string>mhci molecule</json:string>
<json:string>immune activation</json:string>
<json:string>peptide pools</json:string>
<json:string>dominant capsid epitopes</json:string>
<json:string>negative control</json:string>
<json:string>intracellular cytokine staining</json:string>
<json:string>cell epitope</json:string>
<json:string>amino</json:string>
<json:string>dominant epitope</json:string>
<json:string>cell population</json:string>
<json:string>cytometric analysis</json:string>
<json:string>small animal model</json:string>
<json:string>amino acids</json:string>
<json:string>mechanistic studies</json:string>
<json:string>immunodominant epitope</json:string>
<json:string>fine mapping</json:string>
<json:string>monoclonal antibodies</json:string>
<json:string>virus vectors</json:string>
<json:string>mouse</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Lauren E. Mays</name>
<affiliations>
<json:string>Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>James M. Wilson</name>
<affiliations>
<json:string>Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA</json:string>
<json:string>E-mail: wilsonjm@mail.med.upenn.edu</json:string>
<json:string>Correspondence address: 125 S. 31st Street, TRL, Suite 2000, Philadelphia, PA 19104‐3403, USA.</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>AAV</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>capsid epitope</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>gene therapy</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>T cells</value>
</json:item>
</subject>
<articleId>
<json:string>JGM1402</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-TRK4MWXW-R</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Background: Adeno‐associated virus (AAV) is an ideal gene therapy vector and is non‐immunogenic in many small animal models. The stable gene expression commonly seen in murine models does not necessarily translate to nonhuman primates and higher‐order species, highlighting the need for a better understanding of immune activation to these vectors. One capsid variant, AAVrh32.33, demonstrates a unique phenotype in murine muscle, reminiscent of what is often seen in higher‐order species. AAVrh32.33 generates a strong CD8+ T‐cell response to both capsid and encoded transgene antigens in a manner independent of transgene product or major histocompatability complex haplotype, making it an ideal candidate for studying immune activation to AAV in the mouse. Methods: To map the H‐2b and H‐2d dominant epitopes of the AAVrh32.33 capsid, C57BL/6 or Balb/C mice received an intramuscular injection of 1 × 1011 genome copies of AAV2/rh32.33.CB.nLacZ. Three weeks later, splenocytes were harvested and stimulated in vitro with pooled or individual peptides from the AAVrh32.33 capsid peptide library and analysed by an interferon (IFN)‐γ enzyme‐linked immunosorbent spot assay or intracellular cytokine staining. Results: The immunodominant epitopes within the AAVrh32.33 capsid responsible for driving CD8+ T‐cell responses to the capsid protein in C57BL/6 (SSYELPYVM) and Balb/C (KIPASGGNAL) mice were defined. Conclusions: Identification of dominant capsid epitopes will make it possible to monitor cellular responses to the AAV capsid in vivo, facilitating mechanistic studies critical to defining how cellular immunity to the AAV capsid arises and, ultimately, how the generation of capsid‐specific T cells can be avoided to ensure safety in a gene therapy setting. Copyright © 2009 John Wiley & Sons, Ltd.</abstract>
<qualityIndicators>
<score>9.27</score>
<pdfWordCount>4270</pdfWordCount>
<pdfCharCount>26989</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>8</pdfPageCount>
<pdfPageSize>595 x 859 pts</pdfPageSize>
<pdfWordsPerPage>534</pdfWordsPerPage>
<pdfText>true</pdfText>
<refBibsNative>true</refBibsNative>
<abstractWordCount>263</abstractWordCount>
<abstractCharCount>1808</abstractCharCount>
<keywordCount>4</keywordCount>
</qualityIndicators>
<title>Identification of the murine AAVrh32.33 capsid‐specific CD8+ T cell epitopes</title>
<pmid>
<json:string>19777488</json:string>
</pmid>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>The Journal of Gene Medicine</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1521-2254</json:string>
</doi>
<issn>
<json:string>1099-498X</json:string>
</issn>
<eissn>
<json:string>1521-2254</json:string>
</eissn>
<publisherId>
<json:string>JGM</json:string>
</publisherId>
<volume>11</volume>
<issue>12</issue>
<pages>
<first>1095</first>
<last>1102</last>
<total>8</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Research Article</value>
</json:item>
<json:item>
<value>Research Articles</value>
</json:item>
</subject>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2009</json:string>
<json:string>1600</json:string>
<json:string>2000</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Sons, Ltd.</json:string>
<json:string>Use Committee of the University of Pennsylvania</json:string>
<json:string>Mediatech</json:string>
<json:string>University of Pennsylvania School of Medicine</json:string>
<json:string>Sons, Ltd</json:string>
<json:string>Department of Pathology and Laboratory</json:string>
<json:string>Translational Research Laboratories</json:string>
<json:string>University of Pennsylvania</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>E. Mays</json:string>
<json:string>Deirdre McMenamin</json:string>
<json:string>John Wiley</json:string>
<json:string>Jackson Laboratory</json:string>
<json:string>Regina Munden</json:string>
<json:string>Wilson Figure</json:string>
<json:string>Julie Johnston</json:string>
<json:string>Facility</json:string>
<json:string>L. E. Mays</json:string>
<json:string>To</json:string>
<json:string>Arbans Sandhu</json:string>
<json:string>James M. Wilson</json:string>
<json:string>J. M. Wilson</json:string>
<json:string>Fisher Scienti</json:string>
</persName>
<placeName>
<json:string>Philadelphia</json:string>
<json:string>San Diego</json:string>
<json:string>Miami</json:string>
<json:string>Columbia</json:string>
<json:string>Australia</json:string>
<json:string>Herndon</json:string>
<json:string>San Carlos</json:string>
<json:string>Pittsburgh</json:string>
<json:string>VA</json:string>
<json:string>Victoria</json:string>
<json:string>USA</json:string>
<json:string>MD</json:string>
<json:string>CA</json:string>
<json:string>FL</json:string>
<json:string>PA</json:string>
</placeName>
<ref_url>
<json:string>http://www.ncbi.nlm.nih.gov/</json:string>
</ref_url>
<ref_bibl>
<json:string>[12]</json:string>
<json:string>[11]</json:string>
<json:string>[10]</json:string>
<json:string>[3]</json:string>
<json:string>[15]</json:string>
<json:string>[7]</json:string>
<json:string>[14]</json:string>
<json:string>[9]</json:string>
<json:string>[1,2]</json:string>
<json:string>[13]</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-TRK4MWXW-R</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - medicine, research & experimental</json:string>
<json:string>2 - genetics & heredity</json:string>
<json:string>2 - biotechnology & applied microbiology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - applied sciences</json:string>
<json:string>2 - enabling & strategic technologies</json:string>
<json:string>3 - biotechnology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Health Sciences</json:string>
<json:string>2 - Medicine</json:string>
<json:string>3 - Genetics(clinical)</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Pharmacology, Toxicology and Pharmaceutics</json:string>
<json:string>3 - Drug Discovery</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Genetics</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Molecular Biology</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Molecular Medicine</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>2009</publicationDate>
<copyrightDate>2009</copyrightDate>
<doi>
<json:string>10.1002/jgm.1402</json:string>
</doi>
<id>9DDC47DCC02F4E0AD7610B746E2730CE21768BB9</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-TRK4MWXW-R/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-TRK4MWXW-R/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/WNG-TRK4MWXW-R/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Identification of the murine AAVrh32.33 capsid‐specific CD8+ T cell epitopes</title>
<title level="a" type="short" xml:lang="en">Mapping the AAVrh32.33 capsid epitope</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<availability>
<licence>Copyright © 2009 John Wiley & Sons, Ltd.</licence>
</availability>
<date type="published" when="2009-12"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Identification of the murine AAVrh32.33 capsid‐specific CD8+ T cell epitopes</title>
<title level="a" type="short" xml:lang="en">Mapping the AAVrh32.33 capsid epitope</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Lauren E.</forename>
<surname>Mays</surname>
</persName>
<affiliation>
<orgName type="group">Gene Therapy Program</orgName>
<orgName type="laboratory">Department of Pathology and Laboratory Medicine</orgName>
<orgName type="institution">University of Pennsylvania School of Medicine</orgName>
<address>
<addrLine>Philadelphia</addrLine>
<addrLine>PA, USA</addrLine>
<country key="US" xml:lang="en">UNITED STATES</country>
</address>
</affiliation>
</author>
<author xml:id="author-0001" role="corresp">
<persName>
<forename type="first">James M.</forename>
<surname>Wilson</surname>
</persName>
<email>wilsonjm@mail.med.upenn.edu</email>
<affiliation>
<orgName type="group">Gene Therapy Program</orgName>
<orgName type="laboratory">Department of Pathology and Laboratory Medicine</orgName>
<orgName type="institution">University of Pennsylvania School of Medicine</orgName>
<address>
<addrLine>Philadelphia</addrLine>
<addrLine>PA, USA</addrLine>
<country key="US" xml:lang="en">UNITED STATES</country>
</address>
</affiliation>
</author>
<idno type="istex">9DDC47DCC02F4E0AD7610B746E2730CE21768BB9</idno>
<idno type="ark">ark:/67375/WNG-TRK4MWXW-R</idno>
<idno type="DOI">10.1002/jgm.1402</idno>
<idno type="unit">JGM1402</idno>
<idno type="toTypesetVersion">file:JGM.JGM1402.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">The Journal of Gene Medicine</title>
<title level="j" type="alt">JOURNAL OF GENE MEDICINE, THE</title>
<idno type="pISSN">1099-498X</idno>
<idno type="eISSN">1521-2254</idno>
<idno type="book-DOI">10.1002/(ISSN)1521-2254</idno>
<idno type="book-part-DOI">10.1002/jgm.v11:12</idno>
<idno type="product">JGM</idno>
<imprint>
<biblScope unit="vol">11</biblScope>
<biblScope unit="issue">12</biblScope>
<biblScope unit="page" from="1095">1095</biblScope>
<biblScope unit="page" to="1102">1102</biblScope>
<biblScope unit="page-count">8</biblScope>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2009-12"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<encodingDesc>
<schemaRef type="ODD" url="https://xml-schema.delivery.istex.fr/tei-istex.odd"></schemaRef>
<appInfo>
<application ident="pub2tei" version="1.0.10" when="2019-12-20">
<label>pub2TEI-ISTEX</label>
<desc>A set of style sheets for converting XML documents encoded in various scientific publisher formats into a common TEI format.
<ref target="http://www.tei-c.org/">We use TEI</ref>
</desc>
</application>
</appInfo>
</encodingDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<head>Background</head>
<p>Adeno‐associated virus (AAV) is an ideal gene therapy vector and is non‐immunogenic in many small animal models. The stable gene expression commonly seen in murine models does not necessarily translate to nonhuman primates and higher‐order species, highlighting the need for a better understanding of immune activation to these vectors. One capsid variant, AAVrh32.33, demonstrates a unique phenotype in murine muscle, reminiscent of what is often seen in higher‐order species. AAVrh32.33 generates a strong CD8+ T‐cell response to both capsid and encoded transgene antigens in a manner independent of transgene product or major histocompatability complex haplotype, making it an ideal candidate for studying immune activation to AAV in the mouse.</p>
<head>Methods</head>
<p>To map the H‐2b and H‐2d dominant epitopes of the AAVrh32.33 capsid, C57BL/6 or Balb/C mice received an intramuscular injection of 1 × 10
<hi rend="superscript">11</hi>
genome copies of AAV2/rh32.33.CB.nLacZ. Three weeks later, splenocytes were harvested and stimulated
<hi rend="italic">in vitro</hi>
with pooled or individual peptides from the AAVrh32.33 capsid peptide library and analysed by an interferon (IFN)‐γ enzyme‐linked immunosorbent spot assay or intracellular cytokine staining.</p>
<head>Results</head>
<p>The immunodominant epitopes within the AAVrh32.33 capsid responsible for driving CD8+ T‐cell responses to the capsid protein in C57BL/6 (SSYELPYVM) and Balb/C (KIPASGGNAL) mice were defined.</p>
<head>Conclusions</head>
<p>Identification of dominant capsid epitopes will make it possible to monitor cellular responses to the AAV capsid
<hi rend="italic">in vivo</hi>
, facilitating mechanistic studies critical to defining how cellular immunity to the AAV capsid arises and, ultimately, how the generation of capsid‐specific T cells can be avoided to ensure safety in a gene therapy setting. Copyright © 2009 John Wiley & Sons, Ltd.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="kwd1">AAV</term>
<term xml:id="kwd2">capsid epitope</term>
<term xml:id="kwd3">gene therapy</term>
<term xml:id="kwd4">T cells</term>
</keywords>
<keywords rend="articleCategory">
<term>Research Article</term>
</keywords>
<keywords rend="tocHeading1">
<term>Research Articles</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
<revisionDesc>
<change when="2019-12-20" who="#istex" xml:id="pub2tei">formatting</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-TRK4MWXW-R/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>John Wiley & Sons, Ltd.</publisherName>
<publisherLoc>Chichester, UK</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1521-2254</doi>
<issn type="print">1099-498X</issn>
<issn type="electronic">1521-2254</issn>
<idGroup>
<id type="product" value="JGM"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF GENE MEDICINE, THE">The Journal of Gene Medicine</title>
<title type="subtitle">A cross‐disciplinary journal for research on the science of gene transfer and its clinical applications</title>
<title type="short">J. Gene Med.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="120">
<doi origin="wiley" registered="yes">10.1002/jgm.v11:12</doi>
<numberingGroup>
<numbering type="journalVolume" number="11">11</numbering>
<numbering type="journalIssue">12</numbering>
</numberingGroup>
<coverDate startDate="2009-12">December 2009</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="40" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/jgm.1402</doi>
<idGroup>
<id type="unit" value="JGM1402"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="8"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Research Article</title>
<title type="tocHeading1">Research Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2009 John Wiley & Sons, Ltd.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2009-07-08"></event>
<event type="manuscriptRevised" date="2009-08-20"></event>
<event type="manuscriptAccepted" date="2009-08-24"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2009-09-23"></event>
<event type="firstOnline" date="2009-09-23"></event>
<event type="publishedOnlineFinalForm" date="2009-11-25"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:FullText result:FullText" date="2010-03-04"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-30"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-11-04"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">1095</numbering>
<numbering type="pageLast">1102</numbering>
</numberingGroup>
<correspondenceTo>125 S. 31st Street, TRL, Suite 2000, Philadelphia, PA 19104‐3403, USA.</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:JGM.JGM1402.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="4"></count>
<count type="tableTotal" number="2"></count>
<count type="referenceTotal" number="17"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Identification of the murine AAVrh32.33 capsid‐specific CD8+ T cell epitopes</title>
<title type="short" xml:lang="en">Mapping the AAVrh32.33 capsid epitope</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Lauren E.</givenNames>
<familyName>Mays</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>James M.</givenNames>
<familyName>Wilson</familyName>
</personName>
<contactDetails>
<email>wilsonjm@mail.med.upenn.edu</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="US" type="organization">
<unparsedAffiliation>Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">AAV</keyword>
<keyword xml:id="kwd2">capsid epitope</keyword>
<keyword xml:id="kwd3">gene therapy</keyword>
<keyword xml:id="kwd4">T cells</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>NIH</fundingAgency>
<fundingNumber>P01‐HL059407</fundingNumber>
<fundingNumber>P30‐DK47757</fundingNumber>
<fundingNumber>T32‐AR053461‐03</fundingNumber>
</fundingInfo>
<fundingInfo>
<fundingAgency>GSK</fundingAgency>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<section xml:id="abs1-1">
<title type="main">Background</title>
<p>Adeno‐associated virus (AAV) is an ideal gene therapy vector and is non‐immunogenic in many small animal models. The stable gene expression commonly seen in murine models does not necessarily translate to nonhuman primates and higher‐order species, highlighting the need for a better understanding of immune activation to these vectors. One capsid variant, AAVrh32.33, demonstrates a unique phenotype in murine muscle, reminiscent of what is often seen in higher‐order species. AAVrh32.33 generates a strong CD8+ T‐cell response to both capsid and encoded transgene antigens in a manner independent of transgene product or major histocompatability complex haplotype, making it an ideal candidate for studying immune activation to AAV in the mouse.</p>
</section>
<section xml:id="abs1-2">
<title type="main">Methods</title>
<p>To map the H‐2b and H‐2d dominant epitopes of the AAVrh32.33 capsid, C57BL/6 or Balb/C mice received an intramuscular injection of 1 × 10
<sup>11</sup>
genome copies of AAV2/rh32.33.CB.nLacZ. Three weeks later, splenocytes were harvested and stimulated
<i>in vitro</i>
with pooled or individual peptides from the AAVrh32.33 capsid peptide library and analysed by an interferon (IFN)‐γ enzyme‐linked immunosorbent spot assay or intracellular cytokine staining.</p>
</section>
<section xml:id="abs1-3">
<title type="main">Results</title>
<p>The immunodominant epitopes within the AAVrh32.33 capsid responsible for driving CD8+ T‐cell responses to the capsid protein in C57BL/6 (SSYELPYVM) and Balb/C (KIPASGGNAL) mice were defined.</p>
</section>
<section xml:id="abs1-4">
<title type="main">Conclusions</title>
<p>Identification of dominant capsid epitopes will make it possible to monitor cellular responses to the AAV capsid
<i>in vivo</i>
, facilitating mechanistic studies critical to defining how cellular immunity to the AAV capsid arises and, ultimately, how the generation of capsid‐specific T cells can be avoided to ensure safety in a gene therapy setting. Copyright © 2009 John Wiley & Sons, Ltd.</p>
</section>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Identification of the murine AAVrh32.33 capsid‐specific CD8+ T cell epitopes</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Mapping the AAVrh32.33 capsid epitope</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Identification of the murine AAVrh32.33 capsid‐specific CD8+ T cell epitopes</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lauren E.</namePart>
<namePart type="family">Mays</namePart>
<affiliation>Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James M.</namePart>
<namePart type="family">Wilson</namePart>
<affiliation>Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA</affiliation>
<affiliation>E-mail: wilsonjm@mail.med.upenn.edu</affiliation>
<affiliation>Correspondence address: 125 S. 31st Street, TRL, Suite 2000, Philadelphia, PA 19104‐3403, USA.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>John Wiley & Sons, Ltd.</publisher>
<place>
<placeTerm type="text">Chichester, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2009-12</dateIssued>
<dateCaptured encoding="w3cdtf">2009-07-08</dateCaptured>
<dateValid encoding="w3cdtf">2009-08-24</dateValid>
<copyrightDate encoding="w3cdtf">2009</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">4</extent>
<extent unit="tables">2</extent>
<extent unit="references">17</extent>
</physicalDescription>
<abstract lang="en">Background: Adeno‐associated virus (AAV) is an ideal gene therapy vector and is non‐immunogenic in many small animal models. The stable gene expression commonly seen in murine models does not necessarily translate to nonhuman primates and higher‐order species, highlighting the need for a better understanding of immune activation to these vectors. One capsid variant, AAVrh32.33, demonstrates a unique phenotype in murine muscle, reminiscent of what is often seen in higher‐order species. AAVrh32.33 generates a strong CD8+ T‐cell response to both capsid and encoded transgene antigens in a manner independent of transgene product or major histocompatability complex haplotype, making it an ideal candidate for studying immune activation to AAV in the mouse. Methods: To map the H‐2b and H‐2d dominant epitopes of the AAVrh32.33 capsid, C57BL/6 or Balb/C mice received an intramuscular injection of 1 × 1011 genome copies of AAV2/rh32.33.CB.nLacZ. Three weeks later, splenocytes were harvested and stimulated in vitro with pooled or individual peptides from the AAVrh32.33 capsid peptide library and analysed by an interferon (IFN)‐γ enzyme‐linked immunosorbent spot assay or intracellular cytokine staining. Results: The immunodominant epitopes within the AAVrh32.33 capsid responsible for driving CD8+ T‐cell responses to the capsid protein in C57BL/6 (SSYELPYVM) and Balb/C (KIPASGGNAL) mice were defined. Conclusions: Identification of dominant capsid epitopes will make it possible to monitor cellular responses to the AAV capsid in vivo, facilitating mechanistic studies critical to defining how cellular immunity to the AAV capsid arises and, ultimately, how the generation of capsid‐specific T cells can be avoided to ensure safety in a gene therapy setting. Copyright © 2009 John Wiley & Sons, Ltd.</abstract>
<note type="funding">NIH - No. P01‐HL059407; No. P30‐DK47757; No. T32‐AR053461‐03; </note>
<note type="funding">GSK</note>
<subject lang="en">
<genre>keywords</genre>
<topic>AAV</topic>
<topic>capsid epitope</topic>
<topic>gene therapy</topic>
<topic>T cells</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>The Journal of Gene Medicine</title>
<subTitle>A cross‐disciplinary journal for research on the science of gene transfer and its clinical applications</subTitle>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Gene Med.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Research Article</topic>
<topic>Research Articles</topic>
</subject>
<identifier type="ISSN">1099-498X</identifier>
<identifier type="eISSN">1521-2254</identifier>
<identifier type="DOI">10.1002/(ISSN)1521-2254</identifier>
<identifier type="PublisherID">JGM</identifier>
<part>
<date>2009</date>
<detail type="volume">
<caption>vol.</caption>
<number>11</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>12</number>
</detail>
<extent unit="pages">
<start>1095</start>
<end>1102</end>
<total>8</total>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="cit1">
<titleInfo>
<title>Long‐term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno‐associated viral vector</title>
</titleInfo>
<name type="personal">
<namePart type="given">RW</namePart>
<namePart type="family">Herzog</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">EY</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">LB</namePart>
<namePart type="family">Couto</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Herzog RW, Yang EY, Couto LB, et al. Long‐term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno‐associated viral vector. Nat Med 1999; 5: 56–63.</note>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>56</start>
<end>63</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Nat Med</title>
</titleInfo>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>56</start>
<end>63</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit2">
<titleInfo>
<title>Correction of hemophilia B in canine and murine models using recombinant adeno‐associated viral vectors</title>
</titleInfo>
<name type="personal">
<namePart type="given">RO</namePart>
<namePart type="family">Snyder</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="family">Miao</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">L</namePart>
<namePart type="family">Meuse</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Snyder RO, Miao C, Meuse L, et al. Correction of hemophilia B in canine and murine models using recombinant adeno‐associated viral vectors. Nat Med 1999; 5: 64–70.</note>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>64</start>
<end>70</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Nat Med</title>
</titleInfo>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>64</start>
<end>70</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit3">
<titleInfo>
<title>Sustained correction of disease in naive and AAV2‐pretreated hemophilia B dogs: AAV2/8‐mediated, liver‐directed gene therapy</title>
</titleInfo>
<name type="personal">
<namePart type="given">L</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Calcedo</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">TC</namePart>
<namePart type="family">Nichols</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Wang L, Calcedo R, Nichols TC, et al. Sustained correction of disease in naive and AAV2‐pretreated hemophilia B dogs: AAV2/8‐mediated, liver‐directed gene therapy. Blood 2005; 105: 3079–3086.</note>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>105</number>
</detail>
<extent unit="pages">
<start>3079</start>
<end>3086</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Blood</title>
</titleInfo>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>105</number>
</detail>
<extent unit="pages">
<start>3079</start>
<end>3086</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit4">
<titleInfo>
<title>CD40 ligand‐dependent activation of cytotoxic T lymphocytes by adeno‐associated virus vectors in vivo: role of immature dendritic cells</title>
</titleInfo>
<name type="personal">
<namePart type="given">Y</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">N</namePart>
<namePart type="family">Chirmule</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G</namePart>
<namePart type="family">Gao</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Zhang Y, Chirmule N, Gao G, et al. CD40 ligand‐dependent activation of cytotoxic T lymphocytes by adeno‐associated virus vectors in vivo: role of immature dendritic cells. J Virol 2000; 74: 8003–8010.</note>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>74</number>
</detail>
<extent unit="pages">
<start>8003</start>
<end>8010</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>J Virol</title>
</titleInfo>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>74</number>
</detail>
<extent unit="pages">
<start>8003</start>
<end>8010</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit5">
<titleInfo>
<title>Role of vector in activation of T cell subsets in immune responses against the secreted transgene product factor IX</title>
</titleInfo>
<name type="personal">
<namePart type="given">PA</namePart>
<namePart type="family">Fields</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">DW</namePart>
<namePart type="family">Kowalczyk</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">VR</namePart>
<namePart type="family">Arruda</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Fields PA, Kowalczyk DW, Arruda VR, et al. Role of vector in activation of T cell subsets in immune responses against the secreted transgene product factor IX. Mol Ther 2000; 1: 225–235.</note>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>225</start>
<end>235</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Mol Ther</title>
</titleInfo>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>225</start>
<end>235</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit6">
<titleInfo>
<title>Systemic protein delivery by muscle‐gene transfer is limited by a local immune response</title>
</titleInfo>
<name type="personal">
<namePart type="given">L</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">E</namePart>
<namePart type="family">Dobrzynski</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Schlachterman</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Wang L, Dobrzynski E, Schlachterman A, et al. Systemic protein delivery by muscle‐gene transfer is limited by a local immune response. Blood 2005; 105: 4226–4234.</note>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>105</number>
</detail>
<extent unit="pages">
<start>4226</start>
<end>4234</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Blood</title>
</titleInfo>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>105</number>
</detail>
<extent unit="pages">
<start>4226</start>
<end>4234</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit7">
<titleInfo>
<title>Successful transduction of liver in hemophilia by AAV‐Factor IX and limitations imposed by the host immune response</title>
</titleInfo>
<name type="personal">
<namePart type="given">CS</namePart>
<namePart type="family">Manno</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">GF</namePart>
<namePart type="family">Pierce</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">VR</namePart>
<namePart type="family">Arruda</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Manno CS, Pierce GF, Arruda VR, et al. Successful transduction of liver in hemophilia by AAV‐Factor IX and limitations imposed by the host immune response. Nat Med 2006; 12: 342–347.</note>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>12</number>
</detail>
<extent unit="pages">
<start>342</start>
<end>347</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Nat Med</title>
</titleInfo>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>12</number>
</detail>
<extent unit="pages">
<start>342</start>
<end>347</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit8">
<titleInfo>
<title>Immune responses to adeno‐associated virus vectors</title>
</titleInfo>
<name type="personal">
<namePart type="given">AK</namePart>
<namePart type="family">Zaiss</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">DA</namePart>
<namePart type="family">Muruve</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Zaiss AK, Muruve DA. Immune responses to adeno‐associated virus vectors. Curr Gene Ther 2005; 5: 323–331.</note>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>323</start>
<end>331</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Curr Gene Ther</title>
</titleInfo>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>323</start>
<end>331</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit9">
<titleInfo>
<title>AAV‐mediated gene transfer to nonhuman primate liver can elicit destructive transgene‐specific T cell responses</title>
</titleInfo>
<name type="personal">
<namePart type="given">G</namePart>
<namePart type="family">Gao</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Q</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Calcedo</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Gao G, Wang Q, Calcedo R, et al. AAV‐mediated gene transfer to nonhuman primate liver can elicit destructive transgene‐specific T cell responses. Hum Gene Ther 2009; Aug 20 [Epub ahead of print].</note>
<part>
<date>2009</date>
</part>
<relatedItem type="host">
<titleInfo>
<title>Hum Gene Ther</title>
</titleInfo>
<part>
<date>2009</date>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit10">
<titleInfo>
<title>Adeno‐associated virus capsid structure drives CD4‐dependent CD8 + T cell response to vector encoded proteins</title>
</titleInfo>
<name type="personal">
<namePart type="given">LE</namePart>
<namePart type="family">Mays</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">LH</namePart>
<namePart type="family">Vandenberghe</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Xiao</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Mays LE, Vandenberghe LH, Xiao R, et al. Adeno‐associated virus capsid structure drives CD4‐dependent CD8 + T cell response to vector encoded proteins. J Immunol 2009; 182: 6051–6060.</note>
<part>
<date>2009</date>
<detail type="volume">
<caption>vol.</caption>
<number>182</number>
</detail>
<extent unit="pages">
<start>6051</start>
<end>6060</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>J Immunol</title>
</titleInfo>
<part>
<date>2009</date>
<detail type="volume">
<caption>vol.</caption>
<number>182</number>
</detail>
<extent unit="pages">
<start>6051</start>
<end>6060</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit11">
<titleInfo>
<title>Worldwide epidemiology of neutralizing antibodies to adeno‐associated viruses</title>
</titleInfo>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Calcedo</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">LH</namePart>
<namePart type="family">Vandenberghe</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G</namePart>
<namePart type="family">Gao</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Calcedo R, Vandenberghe LH, Gao G, et al. Worldwide epidemiology of neutralizing antibodies to adeno‐associated viruses. J Infect Dis 2009; 199: 381–390.</note>
<part>
<date>2009</date>
<detail type="volume">
<caption>vol.</caption>
<number>199</number>
</detail>
<extent unit="pages">
<start>381</start>
<end>390</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>J Infect Dis</title>
</titleInfo>
<part>
<date>2009</date>
<detail type="volume">
<caption>vol.</caption>
<number>199</number>
</detail>
<extent unit="pages">
<start>381</start>
<end>390</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit12">
<titleInfo>
<title>Gene therapy: 20‐first century medicine</title>
</titleInfo>
<name type="personal">
<namePart type="given">IM</namePart>
<namePart type="family">Verma</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">MD</namePart>
<namePart type="family">Weitzman</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Verma IM, Weitzman MD. Gene therapy: 20‐first century medicine. Annu Rev Biochem 2005; 74: 711–738.</note>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>74</number>
</detail>
<extent unit="pages">
<start>711</start>
<end>738</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Annu Rev Biochem</title>
</titleInfo>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>74</number>
</detail>
<extent unit="pages">
<start>711</start>
<end>738</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit13">
<titleInfo>
<title>Immunity to adeno‐associated virus vectors in animals and humans: a continued challenge</title>
</titleInfo>
<name type="personal">
<namePart type="given">AK</namePart>
<namePart type="family">Zaiss</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">DA</namePart>
<namePart type="family">Muruve</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Zaiss AK, Muruve DA. Immunity to adeno‐associated virus vectors in animals and humans: a continued challenge. Gene Ther 2008; 15: 808–816.</note>
<part>
<date>2008</date>
<detail type="volume">
<caption>vol.</caption>
<number>15</number>
</detail>
<extent unit="pages">
<start>808</start>
<end>816</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Gene Ther</title>
</titleInfo>
<part>
<date>2008</date>
<detail type="volume">
<caption>vol.</caption>
<number>15</number>
</detail>
<extent unit="pages">
<start>808</start>
<end>816</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit14">
<titleInfo>
<title>Scheme for ranking potential HLA‐A2 binding peptides based on independent binding of individual peptide side‐chains</title>
</titleInfo>
<name type="personal">
<namePart type="given">KC</namePart>
<namePart type="family">Parker</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">MA</namePart>
<namePart type="family">Bednarek</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">JE</namePart>
<namePart type="family">Coligan</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Parker KC, Bednarek MA, Coligan JE. Scheme for ranking potential HLA‐A2 binding peptides based on independent binding of individual peptide side‐chains. J Immunol 1994; 152: 163–175.</note>
<part>
<date>1994</date>
<detail type="volume">
<caption>vol.</caption>
<number>152</number>
</detail>
<extent unit="pages">
<start>163</start>
<end>175</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>J Immunol</title>
</titleInfo>
<part>
<date>1994</date>
<detail type="volume">
<caption>vol.</caption>
<number>152</number>
</detail>
<extent unit="pages">
<start>163</start>
<end>175</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit15">
<titleInfo>
<title>SYFPEITHI: database for MHC ligands and peptide motifs</title>
</titleInfo>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Rammensee</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Bachmann</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">NP</namePart>
<namePart type="family">Emmerich</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Rammensee H, Bachmann J, Emmerich NP, et al. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 1999; 50: 213–219.</note>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>50</number>
</detail>
<extent unit="pages">
<start>213</start>
<end>219</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Immunogenetics</title>
</titleInfo>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>50</number>
</detail>
<extent unit="pages">
<start>213</start>
<end>219</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit16">
<titleInfo>
<title>Computational methods for prediction of T‐cell epitopes—a framework for modelling, testing, and applications</title>
</titleInfo>
<name type="personal">
<namePart type="given">V</namePart>
<namePart type="family">Brusic</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">VB</namePart>
<namePart type="family">Bajic</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">N</namePart>
<namePart type="family">Petrovsky</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Brusic V, Bajic VB, Petrovsky N. Computational methods for prediction of T‐cell epitopes—a framework for modelling, testing, and applications. Methods 2004; 34: 436–443.</note>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>34</number>
</detail>
<extent unit="pages">
<start>436</start>
<end>443</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Methods</title>
</titleInfo>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>34</number>
</detail>
<extent unit="pages">
<start>436</start>
<end>443</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit17">
<titleInfo>
<title>Random screening of proteins for HLA‐A*0201‐binding nine‐amino acid peptides is not sufficient for identifying CD8 T cell epitopes recognized in the context of HLA‐A*0201</title>
</titleInfo>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="family">Pelte</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G</namePart>
<namePart type="family">Cherepnev</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Y</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Pelte C, Cherepnev G, Wang Y, et al. Random screening of proteins for HLA‐A*0201‐binding nine‐amino acid peptides is not sufficient for identifying CD8 T cell epitopes recognized in the context of HLA‐A*0201. J Immunol 2004; 172: 6783–6789.</note>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>172</number>
</detail>
<extent unit="pages">
<start>6783</start>
<end>6789</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>J Immunol</title>
</titleInfo>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>172</number>
</detail>
<extent unit="pages">
<start>6783</start>
<end>6789</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<identifier type="istex">9DDC47DCC02F4E0AD7610B746E2730CE21768BB9</identifier>
<identifier type="ark">ark:/67375/WNG-TRK4MWXW-R</identifier>
<identifier type="DOI">10.1002/jgm.1402</identifier>
<identifier type="ArticleID">JGM1402</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2009 John Wiley & Sons, Ltd.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Converted from (version ) to MODS version 3.6.</recordOrigin>
<recordCreationDate encoding="w3cdtf">2019-11-15</recordCreationDate>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-TRK4MWXW-R/record.json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000216 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000216 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:9DDC47DCC02F4E0AD7610B746E2730CE21768BB9
   |texte=   Identification of the murine AAVrh32.33 capsid‐specific CD8+ T cell epitopes
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021