Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Recovery of known T-cell epitopes by computational scanning of a viral genome

Identifieur interne : 000164 ( Istex/Corpus ); précédent : 000163; suivant : 000165

Recovery of known T-cell epitopes by computational scanning of a viral genome

Auteurs : Antoine Logean ; Didier Rognan

Source :

RBID : ISTEX:B1B29583F4FFC0308F42FE0E0BD1D6B7C029B1B1

English descriptors

Abstract

Abstract: A new computational method (EpiDock) is proposed for predicting peptide binding to class I MHC proteins, from the amino acid sequence of any protein of immunological interest. Starting from the primary structure of the target protein, individual three-dimensional structures of all possible MHC-peptide (8-, 9- and 10-mers) complexes are obtained by homology modelling. A free energy scoring function (Fresno) is then used to predict the absolute binding free energy of all possible peptides to the class I MHC restriction protein. Assuming that immunodominant epitopes are usually found among the top MHC binders, the method can thus be applied to predict the location of immunogenic peptides on the sequence of the protein target. When applied to the prediction of HLA-A*0201-restricted T-cell epitopes from the Hepatitis B virus, EpiDock was able to recover 92% of known high affinity binders and 80% of known epitopes within a filtered subset of all possible nonapeptides corresponding to about one tenth of the full theoretical list. The proposed method is fully automated and fast enough to scan a viral genome in less than an hour on a parallel computing architecture. As it requires very few starting experimental data, EpiDock can be used: (i) to predict potential T-cell epitopes from viral genomes (ii) to roughly predict still unknown peptide binding motifs for novel class I MHC alleles.

Url:
DOI: 10.1023/A:1020244329512

Links to Exploration step

ISTEX:B1B29583F4FFC0308F42FE0E0BD1D6B7C029B1B1

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Recovery of known T-cell epitopes by computational scanning of a viral genome</title>
<author>
<name sortKey="Logean, Antoine" sort="Logean, Antoine" uniqKey="Logean A" first="Antoine" last="Logean">Antoine Logean</name>
<affiliation>
<mods:affiliation>Bioinformatic Group, Laboratoire de Pharmacochimie de la Communication Cellulaire, UMR CNRS 7081, 74 route du Rhin, B.P.24, F-67401, Illkirch, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Applied Biosciences, Swiss Federal Institute of Technology, Winterthurerstrasse 190, CH 8057, Zürich, Switzerland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rognan, Didier" sort="Rognan, Didier" uniqKey="Rognan D" first="Didier" last="Rognan">Didier Rognan</name>
<affiliation>
<mods:affiliation>Bioinformatic Group, Laboratoire de Pharmacochimie de la Communication Cellulaire, UMR CNRS 7081, 74 route du Rhin, B.P.24, F-67401, Illkirch, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: didier.rognan@pharma.u-strasbg.fr</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:B1B29583F4FFC0308F42FE0E0BD1D6B7C029B1B1</idno>
<date when="2002" year="2002">2002</date>
<idno type="doi">10.1023/A:1020244329512</idno>
<idno type="url">https://api.istex.fr/ark:/67375/VQC-K4D7GJ9P-V/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000164</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000164</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Recovery of known T-cell epitopes by computational scanning of a viral genome</title>
<author>
<name sortKey="Logean, Antoine" sort="Logean, Antoine" uniqKey="Logean A" first="Antoine" last="Logean">Antoine Logean</name>
<affiliation>
<mods:affiliation>Bioinformatic Group, Laboratoire de Pharmacochimie de la Communication Cellulaire, UMR CNRS 7081, 74 route du Rhin, B.P.24, F-67401, Illkirch, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Applied Biosciences, Swiss Federal Institute of Technology, Winterthurerstrasse 190, CH 8057, Zürich, Switzerland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rognan, Didier" sort="Rognan, Didier" uniqKey="Rognan D" first="Didier" last="Rognan">Didier Rognan</name>
<affiliation>
<mods:affiliation>Bioinformatic Group, Laboratoire de Pharmacochimie de la Communication Cellulaire, UMR CNRS 7081, 74 route du Rhin, B.P.24, F-67401, Illkirch, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: didier.rognan@pharma.u-strasbg.fr</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Computer-Aided Molecular Design</title>
<title level="j" type="abbrev">J Comput Aided Mol Des</title>
<idno type="ISSN">0920-654X</idno>
<idno type="eISSN">1573-4951</idno>
<imprint>
<publisher>Kluwer Academic Publishers</publisher>
<pubPlace>Dordrecht</pubPlace>
<date type="published" when="2002-04-01">2002-04-01</date>
<biblScope unit="volume">16</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="229">229</biblScope>
<biblScope unit="page" to="243">243</biblScope>
</imprint>
<idno type="ISSN">0920-654X</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0920-654X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>antigen</term>
<term>epitope prediction</term>
<term>free energy scoring</term>
<term>homology modelling</term>
<term>major histocompatibility complex</term>
<term>threading</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: A new computational method (EpiDock) is proposed for predicting peptide binding to class I MHC proteins, from the amino acid sequence of any protein of immunological interest. Starting from the primary structure of the target protein, individual three-dimensional structures of all possible MHC-peptide (8-, 9- and 10-mers) complexes are obtained by homology modelling. A free energy scoring function (Fresno) is then used to predict the absolute binding free energy of all possible peptides to the class I MHC restriction protein. Assuming that immunodominant epitopes are usually found among the top MHC binders, the method can thus be applied to predict the location of immunogenic peptides on the sequence of the protein target. When applied to the prediction of HLA-A*0201-restricted T-cell epitopes from the Hepatitis B virus, EpiDock was able to recover 92% of known high affinity binders and 80% of known epitopes within a filtered subset of all possible nonapeptides corresponding to about one tenth of the full theoretical list. The proposed method is fully automated and fast enough to scan a viral genome in less than an hour on a parallel computing architecture. As it requires very few starting experimental data, EpiDock can be used: (i) to predict potential T-cell epitopes from viral genomes (ii) to roughly predict still unknown peptide binding motifs for novel class I MHC alleles.</div>
</front>
</TEI>
<istex>
<corpusName>springer-journals</corpusName>
<author>
<json:item>
<name>Antoine Logean</name>
<affiliations>
<json:string>Bioinformatic Group, Laboratoire de Pharmacochimie de la Communication Cellulaire, UMR CNRS 7081, 74 route du Rhin, B.P.24, F-67401, Illkirch, France</json:string>
<json:string>Department of Applied Biosciences, Swiss Federal Institute of Technology, Winterthurerstrasse 190, CH 8057, Zürich, Switzerland</json:string>
</affiliations>
</json:item>
<json:item>
<name>Didier Rognan</name>
<affiliations>
<json:string>Bioinformatic Group, Laboratoire de Pharmacochimie de la Communication Cellulaire, UMR CNRS 7081, 74 route du Rhin, B.P.24, F-67401, Illkirch, France</json:string>
<json:string>E-mail: didier.rognan@pharma.u-strasbg.fr</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>antigen</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>epitope prediction</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>free energy scoring</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>homology modelling</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>major histocompatibility complex</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>threading</value>
</json:item>
</subject>
<articleId>
<json:string>5094325</json:string>
<json:string>Art1</json:string>
</articleId>
<arkIstex>ark:/67375/VQC-K4D7GJ9P-V</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>OriginalPaper</json:string>
</originalGenre>
<abstract>Abstract: A new computational method (EpiDock) is proposed for predicting peptide binding to class I MHC proteins, from the amino acid sequence of any protein of immunological interest. Starting from the primary structure of the target protein, individual three-dimensional structures of all possible MHC-peptide (8-, 9- and 10-mers) complexes are obtained by homology modelling. A free energy scoring function (Fresno) is then used to predict the absolute binding free energy of all possible peptides to the class I MHC restriction protein. Assuming that immunodominant epitopes are usually found among the top MHC binders, the method can thus be applied to predict the location of immunogenic peptides on the sequence of the protein target. When applied to the prediction of HLA-A*0201-restricted T-cell epitopes from the Hepatitis B virus, EpiDock was able to recover 92% of known high affinity binders and 80% of known epitopes within a filtered subset of all possible nonapeptides corresponding to about one tenth of the full theoretical list. The proposed method is fully automated and fast enough to scan a viral genome in less than an hour on a parallel computing architecture. As it requires very few starting experimental data, EpiDock can be used: (i) to predict potential T-cell epitopes from viral genomes (ii) to roughly predict still unknown peptide binding motifs for novel class I MHC alleles.</abstract>
<qualityIndicators>
<refBibsNative>false</refBibsNative>
<abstractWordCount>221</abstractWordCount>
<abstractCharCount>1410</abstractCharCount>
<keywordCount>6</keywordCount>
<score>9.652</score>
<pdfWordCount>6024</pdfWordCount>
<pdfCharCount>40103</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>15</pdfPageCount>
<pdfPageSize>595 x 842 pts (A4)</pdfPageSize>
</qualityIndicators>
<title>Recovery of known T-cell epitopes by computational scanning of a viral genome</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Journal of Computer-Aided Molecular Design</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>2002</publicationDate>
<copyrightDate>2002</copyrightDate>
<issn>
<json:string>0920-654X</json:string>
</issn>
<eissn>
<json:string>1573-4951</json:string>
</eissn>
<journalId>
<json:string>10822</json:string>
</journalId>
<volume>16</volume>
<issue>4</issue>
<pages>
<first>229</first>
<last>243</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Computer Applications in Chemistry</value>
</json:item>
<json:item>
<value>Physical Chemistry</value>
</json:item>
<json:item>
<value>Animal Anatomy / Morphology / Histology</value>
</json:item>
</subject>
</host>
<ark>
<json:string>ark:/67375/VQC-K4D7GJ9P-V</json:string>
</ark>
<publicationDate>2002</publicationDate>
<copyrightDate>2002</copyrightDate>
<doi>
<json:string>10.1023/A:1020244329512</json:string>
</doi>
<id>B1B29583F4FFC0308F42FE0E0BD1D6B7C029B1B1</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/VQC-K4D7GJ9P-V/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/VQC-K4D7GJ9P-V/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/VQC-K4D7GJ9P-V/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Recovery of known T-cell epitopes by computational scanning of a viral genome</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://scientific-publisher.data.istex.fr">Kluwer Academic Publishers</publisher>
<pubPlace>Dordrecht</pubPlace>
<availability>
<licence>
<p>Kluwer Academic Publishers, 2002</p>
</licence>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-3XSW68JL-F">springer</p>
</availability>
<date>2002</date>
</publicationStmt>
<notesStmt>
<note type="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Recovery of known T-cell epitopes by computational scanning of a viral genome</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Antoine</forename>
<surname>Logean</surname>
</persName>
<affiliation>Bioinformatic Group, Laboratoire de Pharmacochimie de la Communication Cellulaire, UMR CNRS 7081, 74 route du Rhin, B.P.24, F-67401, Illkirch, France</affiliation>
<affiliation>Department of Applied Biosciences, Swiss Federal Institute of Technology, Winterthurerstrasse 190, CH 8057, Zürich, Switzerland</affiliation>
</author>
<author xml:id="author-0001" corresp="yes">
<persName>
<forename type="first">Didier</forename>
<surname>Rognan</surname>
</persName>
<email>didier.rognan@pharma.u-strasbg.fr</email>
<affiliation>Bioinformatic Group, Laboratoire de Pharmacochimie de la Communication Cellulaire, UMR CNRS 7081, 74 route du Rhin, B.P.24, F-67401, Illkirch, France</affiliation>
</author>
<idno type="istex">B1B29583F4FFC0308F42FE0E0BD1D6B7C029B1B1</idno>
<idno type="ark">ark:/67375/VQC-K4D7GJ9P-V</idno>
<idno type="DOI">10.1023/A:1020244329512</idno>
<idno type="article-id">5094325</idno>
<idno type="article-id">Art1</idno>
</analytic>
<monogr>
<title level="j">Journal of Computer-Aided Molecular Design</title>
<title level="j" type="abbrev">J Comput Aided Mol Des</title>
<idno type="pISSN">0920-654X</idno>
<idno type="eISSN">1573-4951</idno>
<idno type="journal-ID">true</idno>
<idno type="issue-article-count">5</idno>
<idno type="volume-issue-count">12</idno>
<imprint>
<publisher>Kluwer Academic Publishers</publisher>
<pubPlace>Dordrecht</pubPlace>
<date type="published" when="2002-04-01"></date>
<biblScope unit="volume">16</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="229">229</biblScope>
<biblScope unit="page" to="243">243</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2002</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Abstract: A new computational method (EpiDock) is proposed for predicting peptide binding to class I MHC proteins, from the amino acid sequence of any protein of immunological interest. Starting from the primary structure of the target protein, individual three-dimensional structures of all possible MHC-peptide (8-, 9- and 10-mers) complexes are obtained by homology modelling. A free energy scoring function (Fresno) is then used to predict the absolute binding free energy of all possible peptides to the class I MHC restriction protein. Assuming that immunodominant epitopes are usually found among the top MHC binders, the method can thus be applied to predict the location of immunogenic peptides on the sequence of the protein target. When applied to the prediction of HLA-A*0201-restricted T-cell epitopes from the Hepatitis B virus, EpiDock was able to recover 92% of known high affinity binders and 80% of known epitopes within a filtered subset of all possible nonapeptides corresponding to about one tenth of the full theoretical list. The proposed method is fully automated and fast enough to scan a viral genome in less than an hour on a parallel computing architecture. As it requires very few starting experimental data, EpiDock can be used: (i) to predict potential T-cell epitopes from viral genomes (ii) to roughly predict still unknown peptide binding motifs for novel class I MHC alleles.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<item>
<term>antigen</term>
</item>
<item>
<term>epitope prediction</term>
</item>
<item>
<term>free energy scoring</term>
</item>
<item>
<term>homology modelling</term>
</item>
<item>
<term>major histocompatibility complex</term>
</item>
<item>
<term>threading</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>Chemistry</head>
<item>
<term>Computer Applications in Chemistry</term>
</item>
<item>
<term>Physical Chemistry</term>
</item>
<item>
<term>Animal Anatomy / Morphology / Histology</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2002-04-01">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/VQC-K4D7GJ9P-V/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus springer-journals not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//Springer-Verlag//DTD A++ V2.4//EN" URI="http://devel.springer.de/A++/V2.4/DTD/A++V2.4.dtd" name="istex:docType"></istex:docType>
<istex:document>
<Publisher>
<PublisherInfo>
<PublisherName>Kluwer Academic Publishers</PublisherName>
<PublisherLocation>Dordrecht</PublisherLocation>
</PublisherInfo>
<Journal>
<JournalInfo JournalProductType="ArchiveJournal" NumberingStyle="Unnumbered">
<JournalID>10822</JournalID>
<JournalPrintISSN>0920-654X</JournalPrintISSN>
<JournalElectronicISSN>1573-4951</JournalElectronicISSN>
<JournalTitle>Journal of Computer-Aided Molecular Design</JournalTitle>
<JournalAbbreviatedTitle>J Comput Aided Mol Des</JournalAbbreviatedTitle>
<JournalSubjectGroup>
<JournalSubject Type="Primary">Chemistry</JournalSubject>
<JournalSubject Type="Secondary">Computer Applications in Chemistry</JournalSubject>
<JournalSubject Type="Secondary">Physical Chemistry</JournalSubject>
<JournalSubject Type="Secondary">Animal Anatomy / Morphology / Histology</JournalSubject>
</JournalSubjectGroup>
</JournalInfo>
<Volume>
<VolumeInfo VolumeType="Regular" TocLevels="0">
<VolumeIDStart>16</VolumeIDStart>
<VolumeIDEnd>16</VolumeIDEnd>
<VolumeIssueCount>12</VolumeIssueCount>
</VolumeInfo>
<Issue IssueType="Regular">
<IssueInfo TocLevels="0">
<IssueIDStart>4</IssueIDStart>
<IssueIDEnd>4</IssueIDEnd>
<IssueArticleCount>5</IssueArticleCount>
<IssueHistory>
<CoverDate>
<Year>2002</Year>
<Month>4</Month>
</CoverDate>
</IssueHistory>
<IssueCopyright>
<CopyrightHolderName>Kluwer Academic Publishers</CopyrightHolderName>
<CopyrightYear>2002</CopyrightYear>
</IssueCopyright>
</IssueInfo>
<Article ID="Art1">
<ArticleInfo Language="En" ArticleType="OriginalPaper" NumberingStyle="Unnumbered" TocLevels="0" ContainsESM="No">
<ArticleID>5094325</ArticleID>
<ArticleDOI>10.1023/A:1020244329512</ArticleDOI>
<ArticleSequenceNumber>1</ArticleSequenceNumber>
<ArticleTitle Language="En">Recovery of known T-cell epitopes by computational scanning of a viral genome</ArticleTitle>
<ArticleFirstPage>229</ArticleFirstPage>
<ArticleLastPage>243</ArticleLastPage>
<ArticleHistory>
<RegistrationDate>
<Year>2004</Year>
<Month>10</Month>
<Day>12</Day>
</RegistrationDate>
</ArticleHistory>
<ArticleCopyright>
<CopyrightHolderName>Kluwer Academic Publishers</CopyrightHolderName>
<CopyrightYear>2002</CopyrightYear>
</ArticleCopyright>
<ArticleGrants Type="Regular">
<MetadataGrant Grant="OpenAccess"></MetadataGrant>
<AbstractGrant Grant="OpenAccess"></AbstractGrant>
<BodyPDFGrant Grant="Restricted"></BodyPDFGrant>
<BodyHTMLGrant Grant="Restricted"></BodyHTMLGrant>
<BibliographyGrant Grant="Restricted"></BibliographyGrant>
<ESMGrant Grant="Restricted"></ESMGrant>
</ArticleGrants>
<ArticleContext>
<JournalID>10822</JournalID>
<VolumeIDStart>16</VolumeIDStart>
<VolumeIDEnd>16</VolumeIDEnd>
<IssueIDStart>4</IssueIDStart>
<IssueIDEnd>4</IssueIDEnd>
</ArticleContext>
</ArticleInfo>
<ArticleHeader>
<AuthorGroup>
<Author AffiliationIDS="Aff1 Aff2">
<AuthorName DisplayOrder="Western">
<GivenName>Antoine</GivenName>
<FamilyName>Logean</FamilyName>
</AuthorName>
</Author>
<Author AffiliationIDS="Aff1" CorrespondingAffiliationID="Aff1">
<AuthorName DisplayOrder="Western">
<GivenName>Didier</GivenName>
<FamilyName>Rognan</FamilyName>
</AuthorName>
<Contact>
<Email>didier.rognan@pharma.u-strasbg.fr</Email>
</Contact>
</Author>
<Affiliation ID="Aff1">
<OrgDivision>Bioinformatic Group</OrgDivision>
<OrgName>Laboratoire de Pharmacochimie de la Communication Cellulaire, UMR CNRS 7081</OrgName>
<OrgAddress>
<Street>74 route du Rhin</Street>
<Postbox>B.P.24</Postbox>
<Postcode>F-67401</Postcode>
<City>Illkirch</City>
<Country>France</Country>
</OrgAddress>
</Affiliation>
<Affiliation ID="Aff2">
<OrgDivision>Department of Applied Biosciences</OrgDivision>
<OrgName>Swiss Federal Institute of Technology</OrgName>
<OrgAddress>
<Street>Winterthurerstrasse 190</Street>
<Postcode>CH 8057</Postcode>
<City>Zürich</City>
<Country>Switzerland</Country>
</OrgAddress>
</Affiliation>
</AuthorGroup>
<Abstract ID="Abs1" Language="En">
<Heading>Abstract</Heading>
<Para>A new computational method (EpiDock) is proposed for predicting peptide binding to class I MHC proteins, from the amino acid sequence of any protein of immunological interest. Starting from the primary structure of the target protein, individual three-dimensional structures of all possible MHC-peptide (8-, 9- and 10-mers) complexes are obtained by homology modelling. A free energy scoring function (Fresno) is then used to predict the absolute binding free energy of all possible peptides to the class I MHC restriction protein. Assuming that immunodominant epitopes are usually found among the top MHC binders, the method can thus be applied to predict the location of immunogenic peptides on the sequence of the protein target. When applied to the prediction of HLA-A
<Superscript>*</Superscript>
0201-restricted T-cell epitopes from the Hepatitis B virus, EpiDock was able to recover 92% of known high affinity binders and 80% of known epitopes within a filtered subset of all possible nonapeptides corresponding to about one tenth of the full theoretical list.</Para>
<Para>The proposed method is fully automated and fast enough to scan a viral genome in less than an hour on a parallel computing architecture. As it requires very few starting experimental data, EpiDock can be used: (i) to predict potential T-cell epitopes from viral genomes (ii) to roughly predict still unknown peptide binding motifs for novel class I MHC alleles.</Para>
</Abstract>
<KeywordGroup Language="En">
<Keyword>antigen</Keyword>
<Keyword>epitope prediction</Keyword>
<Keyword>free energy scoring</Keyword>
<Keyword>homology modelling</Keyword>
<Keyword>major histocompatibility complex</Keyword>
<Keyword>threading</Keyword>
</KeywordGroup>
</ArticleHeader>
<NoBody></NoBody>
</Article>
</Issue>
</Volume>
</Journal>
</Publisher>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Recovery of known T-cell epitopes by computational scanning of a viral genome</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Recovery of known T-cell epitopes by computational scanning of a viral genome</title>
</titleInfo>
<name type="personal">
<namePart type="given">Antoine</namePart>
<namePart type="family">Logean</namePart>
<affiliation>Bioinformatic Group, Laboratoire de Pharmacochimie de la Communication Cellulaire, UMR CNRS 7081, 74 route du Rhin, B.P.24, F-67401, Illkirch, France</affiliation>
<affiliation>Department of Applied Biosciences, Swiss Federal Institute of Technology, Winterthurerstrasse 190, CH 8057, Zürich, Switzerland</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal" displayLabel="corresp">
<namePart type="given">Didier</namePart>
<namePart type="family">Rognan</namePart>
<affiliation>Bioinformatic Group, Laboratoire de Pharmacochimie de la Communication Cellulaire, UMR CNRS 7081, 74 route du Rhin, B.P.24, F-67401, Illkirch, France</affiliation>
<affiliation>E-mail: didier.rognan@pharma.u-strasbg.fr</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="OriginalPaper" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>Kluwer Academic Publishers</publisher>
<place>
<placeTerm type="text">Dordrecht</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2002-04-01</dateIssued>
<copyrightDate encoding="w3cdtf">2002</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<abstract lang="en">Abstract: A new computational method (EpiDock) is proposed for predicting peptide binding to class I MHC proteins, from the amino acid sequence of any protein of immunological interest. Starting from the primary structure of the target protein, individual three-dimensional structures of all possible MHC-peptide (8-, 9- and 10-mers) complexes are obtained by homology modelling. A free energy scoring function (Fresno) is then used to predict the absolute binding free energy of all possible peptides to the class I MHC restriction protein. Assuming that immunodominant epitopes are usually found among the top MHC binders, the method can thus be applied to predict the location of immunogenic peptides on the sequence of the protein target. When applied to the prediction of HLA-A*0201-restricted T-cell epitopes from the Hepatitis B virus, EpiDock was able to recover 92% of known high affinity binders and 80% of known epitopes within a filtered subset of all possible nonapeptides corresponding to about one tenth of the full theoretical list. The proposed method is fully automated and fast enough to scan a viral genome in less than an hour on a parallel computing architecture. As it requires very few starting experimental data, EpiDock can be used: (i) to predict potential T-cell epitopes from viral genomes (ii) to roughly predict still unknown peptide binding motifs for novel class I MHC alleles.</abstract>
<subject lang="en">
<topic>antigen</topic>
<topic>epitope prediction</topic>
<topic>free energy scoring</topic>
<topic>homology modelling</topic>
<topic>major histocompatibility complex</topic>
<topic>threading</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Computer-Aided Molecular Design</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J Comput Aided Mol Des</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>Springer</publisher>
<dateIssued encoding="w3cdtf">2002-04-01</dateIssued>
<copyrightDate encoding="w3cdtf">2002</copyrightDate>
</originInfo>
<subject>
<genre>Chemistry</genre>
<topic>Computer Applications in Chemistry</topic>
<topic>Physical Chemistry</topic>
<topic>Animal Anatomy / Morphology / Histology</topic>
</subject>
<identifier type="ISSN">0920-654X</identifier>
<identifier type="eISSN">1573-4951</identifier>
<identifier type="JournalID">10822</identifier>
<identifier type="IssueArticleCount">5</identifier>
<identifier type="VolumeIssueCount">12</identifier>
<part>
<date>2002</date>
<detail type="volume">
<number>16</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>4</number>
<caption>no.</caption>
</detail>
<extent unit="pages">
<start>229</start>
<end>243</end>
</extent>
</part>
<recordInfo>
<recordOrigin>Kluwer Academic Publishers, 2002</recordOrigin>
</recordInfo>
</relatedItem>
<identifier type="istex">B1B29583F4FFC0308F42FE0E0BD1D6B7C029B1B1</identifier>
<identifier type="ark">ark:/67375/VQC-K4D7GJ9P-V</identifier>
<identifier type="DOI">10.1023/A:1020244329512</identifier>
<identifier type="ArticleID">5094325</identifier>
<identifier type="ArticleID">Art1</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Kluwer Academic Publishers, 2002</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-3XSW68JL-F">springer</recordContentSource>
<recordOrigin>Kluwer Academic Publishers, 2002</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/VQC-K4D7GJ9P-V/record.json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000164 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000164 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:B1B29583F4FFC0308F42FE0E0BD1D6B7C029B1B1
   |texte=   Recovery of known T-cell epitopes by computational scanning of a viral genome
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021