Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A Physical Origin for Functional Domain Structure in Nucleic Acids as Evidenced by Cross-linking Entropy: I

Identifieur interne : 000132 ( Istex/Corpus ); précédent : 000131; suivant : 000133

A Physical Origin for Functional Domain Structure in Nucleic Acids as Evidenced by Cross-linking Entropy: I

Auteurs : Wayne Dawson ; Kazuo Suzuki ; Kenji Yamamoto

Source :

RBID : ISTEX:AE53AC870FD697AA9B5A56FB52205DC4A63D234C

English descriptors

Abstract

Abstract: A global strategy for estimating the entropy of long sequences of RNA is proposed to help improve the predictive capacity of RNA secondary structure dynamic programming algorithm (DPA) free energy (FE) minimization methods. These DPA strategies only consider the effects that occur in the immediate (nearest neighbor) vicinity of a given base pair (bp) in a secondary structure plot. They are therefore defined as nearest-neighbor secondary structure (NNSS) strategies. The new approach utilizes the statistical properties of the Gaussian polymer chain model to introduce both local and global contributions to the entropy of a given secondary structure. These entropic contributions are primarily a function of the persistence length of the RNA. Limits on the domain size are strongly suggested by this model and these limits are a function of both the length and the percentage of bp enclosed within a given domain. The model generalizes the penalties found in the NNSS algorithms. The approach considers the importance of flexibility in the folding and stability of RNA by considering the role of the persistence length in a biopolymer structure. The theory also suggests that molecular machinery may also take advantage of this global entropic effect to bring about catalytic effects. The applications can also be extended to protein structure calculations with some additional considerations.

Url:
DOI: 10.1006/jtbi.2001.2436

Links to Exploration step

ISTEX:AE53AC870FD697AA9B5A56FB52205DC4A63D234C

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A Physical Origin for Functional Domain Structure in Nucleic Acids as Evidenced by Cross-linking Entropy: I</title>
<author>
<name sortKey="Dawson, Wayne" sort="Dawson, Wayne" uniqKey="Dawson W" first="Wayne" last="Dawson">Wayne Dawson</name>
<affiliation>
<mods:affiliation>Department of Bioactive Molecules, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Suzuki, Kazuo" sort="Suzuki, Kazuo" uniqKey="Suzuki K" first="Kazuo" last="Suzuki">Kazuo Suzuki</name>
<affiliation>
<mods:affiliation>Department of Bioactive Molecules, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yamamoto, Kenji" sort="Yamamoto, Kenji" uniqKey="Yamamoto K" first="Kenji" last="Yamamoto">Kenji Yamamoto</name>
<affiliation>
<mods:affiliation>Department of Medical Ecology, Tokyo International Medical Center Japan, 1-21-1 Toyama, Shinjuku-ku, 162-8640, Japan</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:AE53AC870FD697AA9B5A56FB52205DC4A63D234C</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1006/jtbi.2001.2436</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-S8QRL4ND-7/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000132</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000132</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">A Physical Origin for Functional Domain Structure in Nucleic Acids as Evidenced by Cross-linking Entropy: I</title>
<author>
<name sortKey="Dawson, Wayne" sort="Dawson, Wayne" uniqKey="Dawson W" first="Wayne" last="Dawson">Wayne Dawson</name>
<affiliation>
<mods:affiliation>Department of Bioactive Molecules, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Suzuki, Kazuo" sort="Suzuki, Kazuo" uniqKey="Suzuki K" first="Kazuo" last="Suzuki">Kazuo Suzuki</name>
<affiliation>
<mods:affiliation>Department of Bioactive Molecules, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yamamoto, Kenji" sort="Yamamoto, Kenji" uniqKey="Yamamoto K" first="Kenji" last="Yamamoto">Kenji Yamamoto</name>
<affiliation>
<mods:affiliation>Department of Medical Ecology, Tokyo International Medical Center Japan, 1-21-1 Toyama, Shinjuku-ku, 162-8640, Japan</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Theoretical Biology</title>
<title level="j" type="abbrev">YJTBI</title>
<idno type="ISSN">0022-5193</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001">2001</date>
<biblScope unit="volume">213</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="359">359</biblScope>
<biblScope unit="page" to="386">386</biblScope>
</imprint>
<idno type="ISSN">0022-5193</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-5193</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Academic press</term>
<term>Achter felsenfeld</term>
<term>Algorithm</term>
<term>Ambient temp</term>
<term>Average separation</term>
<term>Average structure</term>
<term>Base pair</term>
<term>Base pairing</term>
<term>Biol</term>
<term>Biopolymers</term>
<term>Central limit theorem</term>
<term>Chem</term>
<term>Chemical bond</term>
<term>Chemical bonds</term>
<term>Coil state</term>
<term>Conceptual model</term>
<term>Cornell university press</term>
<term>Crosslinking</term>
<term>Crosslinking entropy</term>
<term>Dawson</term>
<term>Dawson yamamoto</term>
<term>De5nition</term>
<term>Debe goddard</term>
<term>Delisi</term>
<term>Delisi crothers</term>
<term>Domain</term>
<term>Domain boundaries</term>
<term>Domain boundary</term>
<term>Domain size</term>
<term>Domain structure</term>
<term>Double strand</term>
<term>Dsdna</term>
<term>Dynamic programming algorithm</term>
<term>Eisenberg felsenfeld</term>
<term>Entire sequence</term>
<term>Entropic</term>
<term>Entropic contribution</term>
<term>Entropic contributions</term>
<term>Entropic penalties</term>
<term>Entropic penalty</term>
<term>Entropy</term>
<term>Entropy contribution</term>
<term>Entropy model</term>
<term>Eqns</term>
<term>Equilibrium separation</term>
<term>Equilibrium separation distance</term>
<term>Equilibrium thermodynamics</term>
<term>Escherichia coli</term>
<term>Exibility</term>
<term>Exible</term>
<term>Experimental conditions</term>
<term>Experimental evidence</term>
<term>Feller</term>
<term>Felsenfeld</term>
<term>Flory</term>
<term>Free energy</term>
<term>Functional domain</term>
<term>Functional domain structure</term>
<term>Functional domains</term>
<term>Gaussian</term>
<term>Gaussian polymer chain</term>
<term>Gaussian polymer chain model</term>
<term>Genome informatics series</term>
<term>Gibbs dimarzio</term>
<term>Gray bars</term>
<term>Grosberg</term>
<term>Grosberg khokhlov</term>
<term>Hairpin</term>
<term>Hairpin loop</term>
<term>Helix</term>
<term>Hemispheric balls</term>
<term>Hierarchal complexity</term>
<term>Hydrogen bonds</term>
<term>Hypothetical experiment</term>
<term>Ideal polymer chain</term>
<term>Imbl</term>
<term>Individual monomers</term>
<term>Internal loop</term>
<term>Internal loops</term>
<term>Intron</term>
<term>James guth</term>
<term>John wiley sons</term>
<term>Kcal</term>
<term>Khokhlov</term>
<term>Larger circle</term>
<term>Linear increase</term>
<term>Links</term>
<term>Logarithmic</term>
<term>Logarithmic contribution</term>
<term>Logarithmic term</term>
<term>Long list</term>
<term>Loop penalty</term>
<term>Loop regions</term>
<term>Maximum number</term>
<term>Mers</term>
<term>Minimum size</term>
<term>Molecular machinery</term>
<term>Molecular machines</term>
<term>Monomer</term>
<term>Monomer separation distance</term>
<term>Mrna</term>
<term>Multibranch</term>
<term>Multibranch loops</term>
<term>Natl acad</term>
<term>Nearest neighbor</term>
<term>Nnss</term>
<term>Nnss algorithms</term>
<term>Nnss strategies</term>
<term>Nucl</term>
<term>Nucleic</term>
<term>Nucleic acid</term>
<term>Nucleic acid sequences</term>
<term>Nucleic acids</term>
<term>Nucleotide</term>
<term>Other hand</term>
<term>Other words</term>
<term>Outer circle</term>
<term>Pairing</term>
<term>Partition function</term>
<term>Peptide</term>
<term>Persistence</term>
<term>Persistence length</term>
<term>Persistence lengths</term>
<term>Persistence ratio</term>
<term>Phantom network</term>
<term>Phys</term>
<term>Plischke bergersen</term>
<term>Pmbl</term>
<term>Poland scheraga</term>
<term>Polymer</term>
<term>Polymer chain</term>
<term>Polymer chains</term>
<term>Polymer physics</term>
<term>Polymer science</term>
<term>Private comm</term>
<term>Probability density function</term>
<term>Protein structure calculations</term>
<term>Reaction intermediates</term>
<term>Real polymer</term>
<term>Real polymers</term>
<term>Respective centers</term>
<term>Ribosomal subunit</term>
<term>Same chain</term>
<term>Same persistence length</term>
<term>Same polymer chain</term>
<term>Schematic example</term>
<term>Scheraga</term>
<term>Sears salinger</term>
<term>Secondary structure</term>
<term>Secondary structure calculations</term>
<term>Secondary structure plot</term>
<term>Secondary structure prediction</term>
<term>Secondary structures</term>
<term>Separation distance</term>
<term>Sequence length</term>
<term>Single strand</term>
<term>Small amount</term>
<term>Square displacement</term>
<term>Ssdna</term>
<term>Ssrna</term>
<term>Statistical mechanics</term>
<term>Structure prediction</term>
<term>Subdomain</term>
<term>Suboptimal structures</term>
<term>Temperature dependence</term>
<term>Temperature increases</term>
<term>Thermodynamic</term>
<term>Thermodynamic equilibrium</term>
<term>Thermodynamic probability</term>
<term>Thermodynamics</term>
<term>Thin lines</term>
<term>Tinoco</term>
<term>Total entropy</term>
<term>Total length</term>
<term>Total number</term>
<term>Traditional nnss approaches</term>
<term>Turner energy rules</term>
<term>Universal academy press</term>
<term>Volume dependence</term>
<term>Weight function</term>
<term>Weighted contribution</term>
<term>Williams tinoco</term>
<term>Yamamoto</term>
<term>Zuker</term>
<term>Zuker stiegler</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: A global strategy for estimating the entropy of long sequences of RNA is proposed to help improve the predictive capacity of RNA secondary structure dynamic programming algorithm (DPA) free energy (FE) minimization methods. These DPA strategies only consider the effects that occur in the immediate (nearest neighbor) vicinity of a given base pair (bp) in a secondary structure plot. They are therefore defined as nearest-neighbor secondary structure (NNSS) strategies. The new approach utilizes the statistical properties of the Gaussian polymer chain model to introduce both local and global contributions to the entropy of a given secondary structure. These entropic contributions are primarily a function of the persistence length of the RNA. Limits on the domain size are strongly suggested by this model and these limits are a function of both the length and the percentage of bp enclosed within a given domain. The model generalizes the penalties found in the NNSS algorithms. The approach considers the importance of flexibility in the folding and stability of RNA by considering the role of the persistence length in a biopolymer structure. The theory also suggests that molecular machinery may also take advantage of this global entropic effect to bring about catalytic effects. The applications can also be extended to protein structure calculations with some additional considerations.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>polymer</json:string>
<json:string>persistence length</json:string>
<json:string>secondary structure</json:string>
<json:string>nnss</json:string>
<json:string>mers</json:string>
<json:string>entropic</json:string>
<json:string>polymer chain</json:string>
<json:string>helix</json:string>
<json:string>grosberg</json:string>
<json:string>biol</json:string>
<json:string>khokhlov</json:string>
<json:string>grosberg khokhlov</json:string>
<json:string>persistence ratio</json:string>
<json:string>tinoco</json:string>
<json:string>yamamoto</json:string>
<json:string>chem</json:string>
<json:string>functional domain structure</json:string>
<json:string>subdomain</json:string>
<json:string>entropy</json:string>
<json:string>hairpin</json:string>
<json:string>zuker</json:string>
<json:string>phys</json:string>
<json:string>exibility</json:string>
<json:string>logarithmic</json:string>
<json:string>dawson</json:string>
<json:string>biopolymers</json:string>
<json:string>nucl</json:string>
<json:string>dsdna</json:string>
<json:string>exible</json:string>
<json:string>algorithm</json:string>
<json:string>nucleic</json:string>
<json:string>scheraga</json:string>
<json:string>ssrna</json:string>
<json:string>felsenfeld</json:string>
<json:string>de5nition</json:string>
<json:string>chemical bonds</json:string>
<json:string>imbl</json:string>
<json:string>pairing</json:string>
<json:string>delisi</json:string>
<json:string>ssdna</json:string>
<json:string>nnss algorithms</json:string>
<json:string>mrna</json:string>
<json:string>multibranch</json:string>
<json:string>free energy</json:string>
<json:string>kcal</json:string>
<json:string>equilibrium separation distance</json:string>
<json:string>pmbl</json:string>
<json:string>crosslinking</json:string>
<json:string>intron</json:string>
<json:string>monomer</json:string>
<json:string>domain boundary</json:string>
<json:string>polymer chains</json:string>
<json:string>poland scheraga</json:string>
<json:string>gaussian polymer chain</json:string>
<json:string>nucleic acids</json:string>
<json:string>coil state</json:string>
<json:string>sears salinger</json:string>
<json:string>peptide</json:string>
<json:string>single strand</json:string>
<json:string>logarithmic term</json:string>
<json:string>temperature dependence</json:string>
<json:string>domain boundaries</json:string>
<json:string>separation distance</json:string>
<json:string>real polymer</json:string>
<json:string>equilibrium thermodynamics</json:string>
<json:string>feller</json:string>
<json:string>eqns</json:string>
<json:string>genome informatics series</json:string>
<json:string>secondary structures</json:string>
<json:string>nnss strategies</json:string>
<json:string>nearest neighbor</json:string>
<json:string>thermodynamic equilibrium</json:string>
<json:string>crosslinking entropy</json:string>
<json:string>universal academy press</json:string>
<json:string>domain size</json:string>
<json:string>central limit theorem</json:string>
<json:string>domain</json:string>
<json:string>persistence</json:string>
<json:string>flory</json:string>
<json:string>thermodynamic</json:string>
<json:string>james guth</json:string>
<json:string>entropic contribution</json:string>
<json:string>internal loop</json:string>
<json:string>phantom network</json:string>
<json:string>maximum number</json:string>
<json:string>probability density function</json:string>
<json:string>chemical bond</json:string>
<json:string>total entropy</json:string>
<json:string>secondary structure prediction</json:string>
<json:string>nucleic acid</json:string>
<json:string>gray bars</json:string>
<json:string>academic press</json:string>
<json:string>suboptimal structures</json:string>
<json:string>other hand</json:string>
<json:string>sequence length</json:string>
<json:string>thermodynamic probability</json:string>
<json:string>turner energy rules</json:string>
<json:string>nucleic acid sequences</json:string>
<json:string>domain structure</json:string>
<json:string>logarithmic contribution</json:string>
<json:string>partition function</json:string>
<json:string>structure prediction</json:string>
<json:string>natl acad</json:string>
<json:string>plischke bergersen</json:string>
<json:string>links</json:string>
<json:string>nucleotide</json:string>
<json:string>gaussian</json:string>
<json:string>thermodynamics</json:string>
<json:string>hypothetical experiment</json:string>
<json:string>monomer separation distance</json:string>
<json:string>small amount</json:string>
<json:string>statistical mechanics</json:string>
<json:string>other words</json:string>
<json:string>individual monomers</json:string>
<json:string>reaction intermediates</json:string>
<json:string>respective centers</json:string>
<json:string>hemispheric balls</json:string>
<json:string>thin lines</json:string>
<json:string>hydrogen bonds</json:string>
<json:string>same persistence length</json:string>
<json:string>weighted contribution</json:string>
<json:string>weight function</json:string>
<json:string>average separation</json:string>
<json:string>real polymers</json:string>
<json:string>same polymer chain</json:string>
<json:string>hierarchal complexity</json:string>
<json:string>loop regions</json:string>
<json:string>polymer physics</json:string>
<json:string>entire sequence</json:string>
<json:string>entropy contribution</json:string>
<json:string>williams tinoco</json:string>
<json:string>secondary structure calculations</json:string>
<json:string>same chain</json:string>
<json:string>schematic example</json:string>
<json:string>multibranch loops</json:string>
<json:string>eisenberg felsenfeld</json:string>
<json:string>temperature increases</json:string>
<json:string>achter felsenfeld</json:string>
<json:string>internal loops</json:string>
<json:string>ambient temp</json:string>
<json:string>persistence lengths</json:string>
<json:string>traditional nnss approaches</json:string>
<json:string>minimum size</json:string>
<json:string>base pairing</json:string>
<json:string>ideal polymer chain</json:string>
<json:string>hairpin loop</json:string>
<json:string>average structure</json:string>
<json:string>double strand</json:string>
<json:string>dawson yamamoto</json:string>
<json:string>private comm</json:string>
<json:string>debe goddard</json:string>
<json:string>outer circle</json:string>
<json:string>larger circle</json:string>
<json:string>loop penalty</json:string>
<json:string>polymer science</json:string>
<json:string>entropic penalties</json:string>
<json:string>functional domains</json:string>
<json:string>entropic penalty</json:string>
<json:string>functional domain</json:string>
<json:string>delisi crothers</json:string>
<json:string>long list</json:string>
<json:string>entropy model</json:string>
<json:string>experimental evidence</json:string>
<json:string>gibbs dimarzio</json:string>
<json:string>linear increase</json:string>
<json:string>equilibrium separation</json:string>
<json:string>zuker stiegler</json:string>
<json:string>dynamic programming algorithm</json:string>
<json:string>conceptual model</json:string>
<json:string>protein structure calculations</json:string>
<json:string>cornell university press</json:string>
<json:string>john wiley sons</json:string>
<json:string>molecular machinery</json:string>
<json:string>entropic contributions</json:string>
<json:string>escherichia coli</json:string>
<json:string>ribosomal subunit</json:string>
<json:string>gaussian polymer chain model</json:string>
<json:string>molecular machines</json:string>
<json:string>experimental conditions</json:string>
<json:string>secondary structure plot</json:string>
<json:string>square displacement</json:string>
<json:string>total number</json:string>
<json:string>base pair</json:string>
<json:string>volume dependence</json:string>
<json:string>total length</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>WAYNE DAWSON</name>
<affiliations>
<json:string>Department of Bioactive Molecules, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan</json:string>
</affiliations>
</json:item>
<json:item>
<name>KAZUO SUZUKI</name>
<affiliations>
<json:string>Department of Bioactive Molecules, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan</json:string>
</affiliations>
</json:item>
<json:item>
<name>KENJI YAMAMOTO</name>
<affiliations>
<json:string>Department of Medical Ecology, Tokyo International Medical Center Japan, 1-21-1 Toyama, Shinjuku-ku, 162-8640, Japan</json:string>
</affiliations>
</json:item>
</author>
<arkIstex>ark:/67375/6H6-S8QRL4ND-7</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Abstract: A global strategy for estimating the entropy of long sequences of RNA is proposed to help improve the predictive capacity of RNA secondary structure dynamic programming algorithm (DPA) free energy (FE) minimization methods. These DPA strategies only consider the effects that occur in the immediate (nearest neighbor) vicinity of a given base pair (bp) in a secondary structure plot. They are therefore defined as nearest-neighbor secondary structure (NNSS) strategies. The new approach utilizes the statistical properties of the Gaussian polymer chain model to introduce both local and global contributions to the entropy of a given secondary structure. These entropic contributions are primarily a function of the persistence length of the RNA. Limits on the domain size are strongly suggested by this model and these limits are a function of both the length and the percentage of bp enclosed within a given domain. The model generalizes the penalties found in the NNSS algorithms. The approach considers the importance of flexibility in the folding and stability of RNA by considering the role of the persistence length in a biopolymer structure. The theory also suggests that molecular machinery may also take advantage of this global entropic effect to bring about catalytic effects. The applications can also be extended to protein structure calculations with some additional considerations.</abstract>
<qualityIndicators>
<score>9.568</score>
<pdfWordCount>15283</pdfWordCount>
<pdfCharCount>88652</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>28</pdfPageCount>
<pdfPageSize>586 x 789 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>214</abstractWordCount>
<abstractCharCount>1407</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>A Physical Origin for Functional Domain Structure in Nucleic Acids as Evidenced by Cross-linking Entropy: I</title>
<pmid>
<json:string>11735286</json:string>
</pmid>
<pii>
<json:string>S0022-5193(01)92436-1</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<serie>
<title>The RNA World</title>
<language>
<json:string>unknown</json:string>
</language>
<editor>
<json:item>
<name>R.E. Gesteland</name>
</json:item>
<json:item>
<name>T.R. Cech</name>
</json:item>
<json:item>
<name>J.F. Atkins</name>
</json:item>
</editor>
</serie>
<host>
<title>Journal of Theoretical Biology</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>2001</publicationDate>
<issn>
<json:string>0022-5193</json:string>
</issn>
<pii>
<json:string>S0022-5193(00)X0014-8</json:string>
</pii>
<volume>213</volume>
<issue>3</issue>
<pages>
<first>359</first>
<last>386</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>1-23-1</json:string>
<json:string>2001</json:string>
<json:string>1-21-1</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>-Department of Medical Ecology</json:string>
<json:string>Soyou Medical Foundation, and MTB</json:string>
<json:string>Nagoya University</json:string>
<json:string>JSPS</json:string>
<json:string>San Jose State University</json:string>
<json:string>Technology Exchange Center</json:string>
<json:string>Molecular Biosym Corp.</json:string>
<json:string>Japan Society for the Promotion of Science</json:string>
<json:string>Department of Complexity Science and Engineering</json:string>
<json:string>International Medical Center Japan</json:string>
<json:string>JISTEC</json:string>
<json:string>Japan International Science</json:string>
<json:string>University of Tokyo</json:string>
<json:string>University of Tokyo Institute of Medical Science</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>T. Takagi</json:string>
<json:string>Schuster</json:string>
<json:string>M. Doi</json:string>
<json:string>E. Lieb</json:string>
<json:string>Y. Fujitani</json:string>
<json:string>A. Ref</json:string>
<json:string>S. Morishita</json:string>
<json:string>Column</json:string>
</persName>
<placeName>
<json:string>Japan</json:string>
</placeName>
<ref_url>
<json:string>http://www.idealibrary.com</json:string>
</ref_url>
<ref_bibl>
<json:string>Flory & Semlyen, 1966</json:string>
<json:string>Studnicka et al., 1978</json:string>
<json:string>Mueller et al., 1999</json:string>
<json:string>Glotz & Brimacombe, 1980</json:string>
<json:string>Hermann & Patel, 1999</json:string>
<json:string>Nussinov & Jacobson, 1980</json:string>
<json:string>Eisenberg et al., 1967</json:string>
<json:string>Thirumalai, 1998</json:string>
<json:string>Lyngs+, 1999</json:string>
<json:string>Draper, 1999</json:string>
<json:string>Dawson & Yamamoto, 1998, 1999a, c</json:string>
<json:string>Mironov et al., 1985</json:string>
<json:string>Pan & Woodson, 1999</json:string>
<json:string>Brion & Westhof, 1997</json:string>
<json:string>Mueller et al., 2000</json:string>
<json:string>James & Guth, 1947</json:string>
<json:string>Li et al., 1999</json:string>
<json:string>Zuker & Stiegler, 1981</json:string>
<json:string>Plischke & Bergersen, 1994</json:string>
<json:string>Mathews et al., 1999</json:string>
<json:string>Inners et al., 1970</json:string>
<json:string>Fontana & Schuster, 1998</json:string>
<json:string>Smith et al., 1992</json:string>
<json:string>Zuker et al., 1998</json:string>
<json:string>Wimberly et al., 2000</json:string>
<json:string>Williams & Tinoco, 1986</json:string>
<json:string>Grosberg & Khokhlov, 1997</json:string>
<json:string>Wu & Tinoco, 1998</json:string>
<json:string>Comay et al., 1984</json:string>
<json:string>Brion et al., 1997</json:string>
<json:string>Youhei & Yamamoto, 1994</json:string>
<json:string>Searle & Williams, 1993</json:string>
<json:string>Femino et al., 1998</json:string>
<json:string>Debe & Goddard, 1999</json:string>
<json:string>Eisenberg & Felsenfeld, 1967</json:string>
<json:string>Turner et al., 1988</json:string>
<json:string>Keskin et al., 2000</json:string>
<json:string>Poland & Scheraga, 1966</json:string>
<json:string>Zuker, 1998</json:string>
<json:string>Flory et al., 1966</json:string>
<json:string>Dawson & Yamamoto, 1999b</json:string>
<json:string>Nussinov et al., 1982</json:string>
<json:string>Fisher, 1966</json:string>
<json:string>Smith et al., 1996</json:string>
<json:string>Reif et al.</json:string>
<json:string>Achter & Felsenfeld, 1971</json:string>
<json:string>Flory, 1953, 1956, 1976</json:string>
<json:string>Wyatt & Tinoco, 1993</json:string>
<json:string>Achter et al. (1971)</json:string>
<json:string>Hagerman, 1997</json:string>
<json:string>Gibbs & DiMarzio, 1958</json:string>
<json:string>Poland & Scheraga, 1965</json:string>
<json:string>Feller, 1971</json:string>
<json:string>Gelbin et al., 1996</json:string>
<json:string>Rief et al., 1999</json:string>
<json:string>Frederic et al., 1996</json:string>
<json:string>Freier et al., 1986</json:string>
<json:string>Burkard et al., 1999</json:string>
<json:string>Tinoco & Bustamante, 1999</json:string>
<json:string>Inners & Felsenfeld, 1970</json:string>
<json:string>most commonly the 2 endo and 3 endo; (Gautheret & Cedergren, 1993</json:string>
<json:string>Yamamoto et al., 1984</json:string>
<json:string>Fersht, 1999</json:string>
<json:string>Garner et al., 1999</json:string>
<json:string>McCaskill, 1990</json:string>
<json:string>Lustig et al., 1998</json:string>
<json:string>Doi & Edwards, 1986</json:string>
<json:string>Grosberg & Khokhlov, 1994</json:string>
<json:string>Holbrook & Kim, 1997</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/6H6-S8QRL4ND-7</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - mathematical & computational biology</json:string>
<json:string>2 - biology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - biology</json:string>
<json:string>3 - evolutionary biology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Mathematics</json:string>
<json:string>3 - Applied Mathematics</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Agricultural and Biological Sciences</json:string>
<json:string>3 - General Agricultural and Biological Sciences</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Immunology and Microbiology</json:string>
<json:string>3 - General Immunology and Microbiology</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - General Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Mathematics</json:string>
<json:string>3 - Modelling and Simulation</json:string>
<json:string>1 - Health Sciences</json:string>
<json:string>2 - Medicine</json:string>
<json:string>3 - General Medicine</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Mathematics</json:string>
<json:string>3 - Statistics and Probability</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>2001</publicationDate>
<copyrightDate>2001</copyrightDate>
<doi>
<json:string>10.1006/jtbi.2001.2436</json:string>
</doi>
<id>AE53AC870FD697AA9B5A56FB52205DC4A63D234C</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-S8QRL4ND-7/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-S8QRL4ND-7/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/6H6-S8QRL4ND-7/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">A Physical Origin for Functional Domain Structure in Nucleic Acids as Evidenced by Cross-linking Entropy: I</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://scientific-publisher.data.istex.fr">ELSEVIER</publisher>
<availability>
<licence>
<p>©2001 Academic Press</p>
</licence>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</p>
</availability>
<date>2001</date>
</publicationStmt>
<notesStmt>
<note type="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
<note type="content">Section title: Regular Article</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">A Physical Origin for Functional Domain Structure in Nucleic Acids as Evidenced by Cross-linking Entropy: I</title>
<author xml:id="author-0000">
<persName>
<forename type="first">WAYNE</forename>
<surname>DAWSON</surname>
</persName>
<affiliation>Department of Bioactive Molecules, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">KAZUO</forename>
<surname>SUZUKI</surname>
</persName>
<affiliation>Department of Bioactive Molecules, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">KENJI</forename>
<surname>YAMAMOTO</surname>
</persName>
<affiliation>Department of Medical Ecology, Tokyo International Medical Center Japan, 1-21-1 Toyama, Shinjuku-ku, 162-8640, Japan</affiliation>
</author>
<idno type="istex">AE53AC870FD697AA9B5A56FB52205DC4A63D234C</idno>
<idno type="ark">ark:/67375/6H6-S8QRL4ND-7</idno>
<idno type="DOI">10.1006/jtbi.2001.2436</idno>
<idno type="PII">S0022-5193(01)92436-1</idno>
</analytic>
<monogr>
<title level="j">Journal of Theoretical Biology</title>
<title level="j" type="abbrev">YJTBI</title>
<idno type="pISSN">0022-5193</idno>
<idno type="PII">S0022-5193(00)X0014-8</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001"></date>
<biblScope unit="volume">213</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="359">359</biblScope>
<biblScope unit="page" to="386">386</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2001</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Abstract: A global strategy for estimating the entropy of long sequences of RNA is proposed to help improve the predictive capacity of RNA secondary structure dynamic programming algorithm (DPA) free energy (FE) minimization methods. These DPA strategies only consider the effects that occur in the immediate (nearest neighbor) vicinity of a given base pair (bp) in a secondary structure plot. They are therefore defined as nearest-neighbor secondary structure (NNSS) strategies. The new approach utilizes the statistical properties of the Gaussian polymer chain model to introduce both local and global contributions to the entropy of a given secondary structure. These entropic contributions are primarily a function of the persistence length of the RNA. Limits on the domain size are strongly suggested by this model and these limits are a function of both the length and the percentage of bp enclosed within a given domain. The model generalizes the penalties found in the NNSS algorithms. The approach considers the importance of flexibility in the folding and stability of RNA by considering the role of the persistence length in a biopolymer structure. The theory also suggests that molecular machinery may also take advantage of this global entropic effect to bring about catalytic effects. The applications can also be extended to protein structure calculations with some additional considerations.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="2001">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-S8QRL4ND-7/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType"></istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla" xml:lang="en">
<item-info>
<jid>YJTBI</jid>
<aid>92436</aid>
<ce:pii>S0022-5193(01)92436-1</ce:pii>
<ce:doi>10.1006/jtbi.2001.2436</ce:doi>
<ce:copyright type="full-transfer" year="2001">Academic Press</ce:copyright>
</item-info>
<head>
<ce:dochead>
<ce:textfn>Regular Article</ce:textfn>
</ce:dochead>
<ce:title>A Physical Origin for Functional Domain Structure in Nucleic Acids as Evidenced by Cross-linking Entropy: I</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>WAYNE</ce:given-name>
<ce:surname>DAWSON</ce:surname>
<ce:cross-ref refid="A1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="A2">
<ce:sup>b</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="FN1">
<ce:sup>1</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>KAZUO</ce:given-name>
<ce:surname>SUZUKI</ce:surname>
<ce:cross-ref refid="A1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>KENJI</ce:given-name>
<ce:surname>YAMAMOTO</ce:surname>
<ce:cross-ref refid="A2">
<ce:sup>b</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation id="A1">
<ce:label>a</ce:label>
<ce:textfn>Department of Bioactive Molecules, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan</ce:textfn>
</ce:affiliation>
<ce:affiliation id="A2">
<ce:label>b</ce:label>
<ce:textfn>Department of Medical Ecology, Tokyo International Medical Center Japan, 1-21-1 Toyama, Shinjuku-ku, 162-8640, Japan</ce:textfn>
</ce:affiliation>
<ce:footnote id="FN1">
<ce:label>1</ce:label>
<ce:note-para>Author to whom correspondence should be addressed. E-mail: dawson@nih.go.jp</ce:note-para>
</ce:footnote>
</ce:author-group>
<ce:date-received day="14" month="7" year="2000"></ce:date-received>
<ce:date-accepted day="3" month="8" year="2001"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>A global strategy for estimating the entropy of long sequences of RNA is proposed to help improve the predictive capacity of RNA secondary structure dynamic programming algorithm (DPA) free energy (FE) minimization methods. These DPA strategies only consider the effects that occur in the immediate (nearest neighbor) vicinity of a given base pair (bp) in a secondary structure plot. They are therefore defined as nearest-neighbor secondary structure (NNSS) strategies. The new approach utilizes the statistical properties of the Gaussian polymer chain model to introduce both local and global contributions to the entropy of a given secondary structure. These entropic contributions are primarily a function of the persistence length of the RNA. Limits on the domain size are strongly suggested by this model and these limits are a function of both the length and the percentage of bp enclosed within a given domain. The model generalizes the penalties found in the NNSS algorithms. The approach considers the importance of flexibility in the folding and stability of RNA by considering the role of the persistence length in a biopolymer structure. The theory also suggests that molecular machinery may also take advantage of this global entropic effect to bring about catalytic effects. The applications can also be extended to protein structure calculations with some additional considerations.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>A Physical Origin for Functional Domain Structure in Nucleic Acids as Evidenced by Cross-linking Entropy: I</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>A Physical Origin for Functional Domain Structure in Nucleic Acids as Evidenced by Cross-linking Entropy: I</title>
</titleInfo>
<name type="personal">
<namePart type="given">WAYNE</namePart>
<namePart type="family">DAWSON</namePart>
<affiliation>Department of Bioactive Molecules, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan</affiliation>
<description>Author to whom correspondence should be addressed. E-mail: dawson@nih.go.jp</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">KAZUO</namePart>
<namePart type="family">SUZUKI</namePart>
<affiliation>Department of Bioactive Molecules, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">KENJI</namePart>
<namePart type="family">YAMAMOTO</namePart>
<affiliation>Department of Medical Ecology, Tokyo International Medical Center Japan, 1-21-1 Toyama, Shinjuku-ku, 162-8640, Japan</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2001</dateIssued>
<copyrightDate encoding="w3cdtf">2001</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: A global strategy for estimating the entropy of long sequences of RNA is proposed to help improve the predictive capacity of RNA secondary structure dynamic programming algorithm (DPA) free energy (FE) minimization methods. These DPA strategies only consider the effects that occur in the immediate (nearest neighbor) vicinity of a given base pair (bp) in a secondary structure plot. They are therefore defined as nearest-neighbor secondary structure (NNSS) strategies. The new approach utilizes the statistical properties of the Gaussian polymer chain model to introduce both local and global contributions to the entropy of a given secondary structure. These entropic contributions are primarily a function of the persistence length of the RNA. Limits on the domain size are strongly suggested by this model and these limits are a function of both the length and the percentage of bp enclosed within a given domain. The model generalizes the penalties found in the NNSS algorithms. The approach considers the importance of flexibility in the folding and stability of RNA by considering the role of the persistence length in a biopolymer structure. The theory also suggests that molecular machinery may also take advantage of this global entropic effect to bring about catalytic effects. The applications can also be extended to protein structure calculations with some additional considerations.</abstract>
<note type="content">Section title: Regular Article</note>
<relatedItem type="host">
<titleInfo>
<title>Journal of Theoretical Biology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>YJTBI</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2001</dateIssued>
</originInfo>
<identifier type="ISSN">0022-5193</identifier>
<identifier type="PII">S0022-5193(00)X0014-8</identifier>
<part>
<date>2001</date>
<detail type="volume">
<number>213</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>3</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>315</start>
<end>503</end>
</extent>
<extent unit="pages">
<start>359</start>
<end>386</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">AE53AC870FD697AA9B5A56FB52205DC4A63D234C</identifier>
<identifier type="ark">ark:/67375/6H6-S8QRL4ND-7</identifier>
<identifier type="DOI">10.1006/jtbi.2001.2436</identifier>
<identifier type="PII">S0022-5193(01)92436-1</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©2001 Academic Press</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
<recordOrigin>Academic Press, ©2001</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-S8QRL4ND-7/record.json</uri>
</json:item>
</metadata>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000132 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000132 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:AE53AC870FD697AA9B5A56FB52205DC4A63D234C
   |texte=   A Physical Origin for Functional Domain Structure in Nucleic Acids as Evidenced by Cross-linking Entropy: I
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021