Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Origin and Evolution of the Genetic Code

Identifieur interne : 001A17 ( Istex/Checkpoint ); précédent : 001A16; suivant : 001A18

The Origin and Evolution of the Genetic Code

Auteurs : Pierre Béland ; T. F. H. Allen

Source :

RBID : ISTEX:BBDB076FAC2A90BF7B2B90BAD953E19C9C79409B

Abstract

Abstract: We argue that a primitive genetic code with only 20 separate words explains that there are 20 coded amino acids in modern life. The existence of 64 words on the modern genetic code requires modern life to read almost exclusively one strand of DNA in one direction. In our primitive code, both the original and the complementary sequence are read in either direction to give the same strings of amino acids. The algebra of complements forces synonymy of primitive codons so as to reduce the 64 independent codons of the modern code to exactly 20 independent separate words in the primitive condition. The synonymy in the modern code is the result of selection rather than algebraic forcing. The primitive code has almost no resilience to base mutations, unlike the third base redundancy of the modern code. Our primitive and the modern code are orthogonal. If palindromic proteins were coded by hairpin DNA or RNA, then (i) no punctuation would be needed; (ii) the reverse reading would give the same secondarily folded protein structure; and (iii) the sugar backbone would be read in the conventional 5′ to 3′ direction for the original arm and its complement. Modern copying of genetic material is almost always antiparallel. However, occasional parallel copying, as does occur in modern life, would give the complementary hairpin that would also read 5′ to 3′ along its entire length. The parallel copy would reverse the direction of the order of bases with respect to the sugar backbone, and so it would be read in reverse order of bases, but by normal ribosomal processes. Our argument studiously avoids plausible anecdotes, an endemic flaw of evolutionary discussions.

Url:
DOI: 10.1006/jtbi.1994.1198


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:BBDB076FAC2A90BF7B2B90BAD953E19C9C79409B

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Origin and Evolution of the Genetic Code</title>
<author>
<name sortKey="Beland, Pierre" sort="Beland, Pierre" uniqKey="Beland P" first="Pierre" last="Béland">Pierre Béland</name>
</author>
<author>
<name sortKey="Allen, T F H" sort="Allen, T F H" uniqKey="Allen T" first="T. F. H." last="Allen">T. F. H. Allen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:BBDB076FAC2A90BF7B2B90BAD953E19C9C79409B</idno>
<date when="1994" year="1994">1994</date>
<idno type="doi">10.1006/jtbi.1994.1198</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-6N4B59WQ-K/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001789</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001789</idno>
<idno type="wicri:Area/Istex/Curation">001789</idno>
<idno type="wicri:Area/Istex/Checkpoint">001A17</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001A17</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">The Origin and Evolution of the Genetic Code</title>
<author>
<name sortKey="Beland, Pierre" sort="Beland, Pierre" uniqKey="Beland P" first="Pierre" last="Béland">Pierre Béland</name>
<affiliation>
<wicri:noCountry code="subField">1B4</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Allen, T F H" sort="Allen, T F H" uniqKey="Allen T" first="T. F. H." last="Allen">T. F. H. Allen</name>
<affiliation>
<wicri:noCountry code="subField">1B4</wicri:noCountry>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Theoretical Biology</title>
<title level="j" type="abbrev">YJTBI</title>
<idno type="ISSN">0022-5193</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1994">1994</date>
<biblScope unit="volume">170</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="359">359</biblScope>
<biblScope unit="page" to="365">365</biblScope>
</imprint>
<idno type="ISSN">0022-5193</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-5193</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: We argue that a primitive genetic code with only 20 separate words explains that there are 20 coded amino acids in modern life. The existence of 64 words on the modern genetic code requires modern life to read almost exclusively one strand of DNA in one direction. In our primitive code, both the original and the complementary sequence are read in either direction to give the same strings of amino acids. The algebra of complements forces synonymy of primitive codons so as to reduce the 64 independent codons of the modern code to exactly 20 independent separate words in the primitive condition. The synonymy in the modern code is the result of selection rather than algebraic forcing. The primitive code has almost no resilience to base mutations, unlike the third base redundancy of the modern code. Our primitive and the modern code are orthogonal. If palindromic proteins were coded by hairpin DNA or RNA, then (i) no punctuation would be needed; (ii) the reverse reading would give the same secondarily folded protein structure; and (iii) the sugar backbone would be read in the conventional 5′ to 3′ direction for the original arm and its complement. Modern copying of genetic material is almost always antiparallel. However, occasional parallel copying, as does occur in modern life, would give the complementary hairpin that would also read 5′ to 3′ along its entire length. The parallel copy would reverse the direction of the order of bases with respect to the sugar backbone, and so it would be read in reverse order of bases, but by normal ribosomal processes. Our argument studiously avoids plausible anecdotes, an endemic flaw of evolutionary discussions.</div>
</front>
</TEI>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Allen, T F H" sort="Allen, T F H" uniqKey="Allen T" first="T. F. H." last="Allen">T. F. H. Allen</name>
<name sortKey="Beland, Pierre" sort="Beland, Pierre" uniqKey="Beland P" first="Pierre" last="Béland">Pierre Béland</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A17 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Checkpoint/biblio.hfd -nk 001A17 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Checkpoint
   |type=    RBID
   |clé=     ISTEX:BBDB076FAC2A90BF7B2B90BAD953E19C9C79409B
   |texte=   The Origin and Evolution of the Genetic Code
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021