Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Weak definition of IKBKAP exon 20 leads to aberrant splicing in familial dysautonomia

Identifieur interne : 000187 ( France/Analysis ); précédent : 000186; suivant : 000188

Weak definition of IKBKAP exon 20 leads to aberrant splicing in familial dysautonomia

Auteurs : El Chérif Ibrahim [États-Unis, France] ; Matthew M. Hims [États-Unis] ; Noam Shomron [États-Unis] ; Christopher B. Burge [États-Unis] ; Susan A. Slaugenhaupt [États-Unis] ; Robin Reed [États-Unis]

Source :

RBID : ISTEX:EC7371E535E17CC99804388F1283D7CD45592640

English descriptors

Abstract

Splicing mutations that lead to devastating genetic diseases are often located in nonconserved or weakly conserved sequences that normally do not affect splicing. Thus, the underlying reason for the splicing defect is not immediately obvious. An example of this phenomenon is observed in the neurodevelopmental disease familial dysautonomia (FD), which is caused by a single‐base change in the 5′ splice site (5′ss) of intron 20 in the IKBKAP gene (c.2204+6T>C). This mutation, which is in the sixth position of the intron and results in exon 20 skipping, has no phenotype in many other introns. To determine why the position 6 mutation causes aberrant splicing only in certain cases, we first used an in silico approach to identify potential sequences involved in exon 20 skipping. Computational analyses of the exon 20 5′ss itself predicted that this nine‐nucleotide splicing signal, even when it contains the T>C mutation, is not sufficiently weak to explain the FD phenotype. However, the computational analysis predicted that both the upstream 3′ splice site (3′ss) and exon 20 contain weak splicing signals, indicating that the FD 5′ss, together with the surrounding splicing signals, are not adequate for defining exon 20. These in silico predictions were corroborated using IKBKAP minigenes in a new rapid and simple in vitro coupled RNA polymerase (RNAP) II transcription/splicing assay. Finally, the weak splicing signals that flank the T>C mutation were validated as the underlying cause of familial dysautonomia in vivo using transient transfection assays. Together, our study demonstrates the general utility of combining in silico data with an in vitro RNAP II transcription/splicing system for rapidly identifying critical sequences that underlie the numerous splicing diseases caused by otherwise silent mutations. Hum Mutat 28(1), 41–53, 2007. © 2006 Wiley‐Liss, Inc.

Url:
DOI: 10.1002/humu.20401


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:EC7371E535E17CC99804388F1283D7CD45592640

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Weak definition of IKBKAP exon 20 leads to aberrant splicing in familial dysautonomia</title>
<author>
<name sortKey="Ibrahim, El Cherif" sort="Ibrahim, El Cherif" uniqKey="Ibrahim E" first="El Chérif" last="Ibrahim">El Chérif Ibrahim</name>
</author>
<author>
<name sortKey="Hims, Matthew M" sort="Hims, Matthew M" uniqKey="Hims M" first="Matthew M." last="Hims">Matthew M. Hims</name>
</author>
<author>
<name sortKey="Shomron, Noam" sort="Shomron, Noam" uniqKey="Shomron N" first="Noam" last="Shomron">Noam Shomron</name>
</author>
<author>
<name sortKey="Burge, Christopher B" sort="Burge, Christopher B" uniqKey="Burge C" first="Christopher B." last="Burge">Christopher B. Burge</name>
</author>
<author>
<name sortKey="Slaugenhaupt, Susan A" sort="Slaugenhaupt, Susan A" uniqKey="Slaugenhaupt S" first="Susan A." last="Slaugenhaupt">Susan A. Slaugenhaupt</name>
</author>
<author>
<name sortKey="Reed, Robin" sort="Reed, Robin" uniqKey="Reed R" first="Robin" last="Reed">Robin Reed</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:EC7371E535E17CC99804388F1283D7CD45592640</idno>
<date when="2007" year="2007">2007</date>
<idno type="doi">10.1002/humu.20401</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-X1BMVP7G-K/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002394</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002394</idno>
<idno type="wicri:Area/Istex/Curation">002394</idno>
<idno type="wicri:Area/Istex/Checkpoint">000869</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000869</idno>
<idno type="wicri:doubleKey">1059-7794:2007:Ibrahim E:weak:definition:of</idno>
<idno type="wicri:Area/Main/Merge">002C42</idno>
<idno type="wicri:Area/Main/Curation">002C16</idno>
<idno type="wicri:Area/Main/Exploration">002C16</idno>
<idno type="wicri:Area/France/Extraction">000187</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Weak definition of IKBKAP exon 20 leads to aberrant splicing in familial dysautonomia</title>
<author>
<name sortKey="Ibrahim, El Cherif" sort="Ibrahim, El Cherif" uniqKey="Ibrahim E" first="El Chérif" last="Ibrahim">El Chérif Ibrahim</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Department of Cell Biology, Harvard Medical School, Boston</wicri:cityArea>
</affiliation>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Current Address: NICN‐UMR 6184 CNRS, Faculté de Médecine Nord‐IFR Jean Roche, Bd Pierre Dramard, 13916 Marseilles Cedex 20</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseilles</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hims, Matthew M" sort="Hims, Matthew M" uniqKey="Hims M" first="Matthew M." last="Hims">Matthew M. Hims</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Shomron, Noam" sort="Shomron, Noam" uniqKey="Shomron N" first="Noam" last="Shomron">Noam Shomron</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Department of Biology, Massachusetts Institute of Technology, Cambridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Burge, Christopher B" sort="Burge, Christopher B" uniqKey="Burge C" first="Christopher B." last="Burge">Christopher B. Burge</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Department of Biology, Massachusetts Institute of Technology, Cambridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Slaugenhaupt, Susan A" sort="Slaugenhaupt, Susan A" uniqKey="Slaugenhaupt S" first="Susan A." last="Slaugenhaupt">Susan A. Slaugenhaupt</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston</wicri:cityArea>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Susan A. Slaugenhaupt, Center for Human Genetic Research, Simches Research Center Room 5254, 185 Cambridge Street, Boston, MA 02114Robin Reed, Harvard Medical School, Department of Cell Biology, LHRRB 501 240 Longwood Avenue, Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Reed, Robin" sort="Reed, Robin" uniqKey="Reed R" first="Robin" last="Reed">Robin Reed</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Department of Cell Biology, Harvard Medical School, Boston</wicri:cityArea>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Susan A. Slaugenhaupt, Center for Human Genetic Research, Simches Research Center Room 5254, 185 Cambridge Street, Boston, MA 02114Robin Reed, Harvard Medical School, Department of Cell Biology, LHRRB 501 240 Longwood Avenue, Boston</wicri:cityArea>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Human Mutation</title>
<title level="j" type="alt">HUMAN MUTATION</title>
<idno type="ISSN">1059-7794</idno>
<idno type="eISSN">1098-1004</idno>
<imprint>
<biblScope unit="vol">28</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="41">41</biblScope>
<biblScope unit="page" to="53">53</biblScope>
<biblScope unit="page-count">13</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2007-01">2007-01</date>
</imprint>
<idno type="ISSN">1059-7794</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1059-7794</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Adml</term>
<term>Adml intron</term>
<term>Assay</term>
<term>Bifunctional</term>
<term>Binding sites</term>
<term>Biol</term>
<term>Burge</term>
<term>Cartegni</term>
<term>Chem</term>
<term>Computational analysis</term>
<term>Constitutive</term>
<term>Constitutive exons</term>
<term>Database</term>
<term>Denaturing</term>
<term>Denaturing polyacrylamide</term>
<term>Dysautonomia</term>
<term>Enhancer</term>
<term>Exon</term>
<term>Exonic</term>
<term>Familial dysautonomia</term>
<term>Genet</term>
<term>Hnrnp</term>
<term>Hnrnp proteins</term>
<term>Hollywood database</term>
<term>Human mutation</term>
<term>Ikbkap</term>
<term>Ikbkap exon</term>
<term>Ikbkap intron</term>
<term>Inclusion</term>
<term>Intron</term>
<term>Krainer</term>
<term>Lariat intermediates</term>
<term>Maniatis</term>
<term>Maxent</term>
<term>Minigene</term>
<term>Minigenes</term>
<term>Mrna</term>
<term>Mutation</term>
<term>Native polyacrylamide</term>
<term>Nucleic acids</term>
<term>Nucleotide</term>
<term>Oligonucleotide</term>
<term>Oligonucleotides</term>
<term>Polyacrylamide</term>
<term>Polymerase</term>
<term>Protein binding sites</term>
<term>Pyuag</term>
<term>Rnap</term>
<term>Senapathy</term>
<term>Sequence elements</term>
<term>Shapiro</term>
<term>Silencer</term>
<term>Silico</term>
<term>Silico analysis</term>
<term>Slaugenhaupt</term>
<term>Snrna</term>
<term>Splice</term>
<term>Splice site</term>
<term>Splice site selection</term>
<term>Splice sites</term>
<term>Spliceosome assembly</term>
<term>Transcription</term>
<term>Wang</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Splicing mutations that lead to devastating genetic diseases are often located in nonconserved or weakly conserved sequences that normally do not affect splicing. Thus, the underlying reason for the splicing defect is not immediately obvious. An example of this phenomenon is observed in the neurodevelopmental disease familial dysautonomia (FD), which is caused by a single‐base change in the 5′ splice site (5′ss) of intron 20 in the IKBKAP gene (c.2204+6T>C). This mutation, which is in the sixth position of the intron and results in exon 20 skipping, has no phenotype in many other introns. To determine why the position 6 mutation causes aberrant splicing only in certain cases, we first used an in silico approach to identify potential sequences involved in exon 20 skipping. Computational analyses of the exon 20 5′ss itself predicted that this nine‐nucleotide splicing signal, even when it contains the T>C mutation, is not sufficiently weak to explain the FD phenotype. However, the computational analysis predicted that both the upstream 3′ splice site (3′ss) and exon 20 contain weak splicing signals, indicating that the FD 5′ss, together with the surrounding splicing signals, are not adequate for defining exon 20. These in silico predictions were corroborated using IKBKAP minigenes in a new rapid and simple in vitro coupled RNA polymerase (RNAP) II transcription/splicing assay. Finally, the weak splicing signals that flank the T>C mutation were validated as the underlying cause of familial dysautonomia in vivo using transient transfection assays. Together, our study demonstrates the general utility of combining in silico data with an in vitro RNAP II transcription/splicing system for rapidly identifying critical sequences that underlie the numerous splicing diseases caused by otherwise silent mutations. Hum Mutat 28(1), 41–53, 2007. © 2006 Wiley‐Liss, Inc.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>France</li>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
<li>Provence-Alpes-Côte d'Azur</li>
</region>
<settlement>
<li>Marseilles</li>
</settlement>
</list>
<tree>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Ibrahim, El Cherif" sort="Ibrahim, El Cherif" uniqKey="Ibrahim E" first="El Chérif" last="Ibrahim">El Chérif Ibrahim</name>
</region>
<name sortKey="Burge, Christopher B" sort="Burge, Christopher B" uniqKey="Burge C" first="Christopher B." last="Burge">Christopher B. Burge</name>
<name sortKey="Hims, Matthew M" sort="Hims, Matthew M" uniqKey="Hims M" first="Matthew M." last="Hims">Matthew M. Hims</name>
<name sortKey="Reed, Robin" sort="Reed, Robin" uniqKey="Reed R" first="Robin" last="Reed">Robin Reed</name>
<name sortKey="Reed, Robin" sort="Reed, Robin" uniqKey="Reed R" first="Robin" last="Reed">Robin Reed</name>
<name sortKey="Reed, Robin" sort="Reed, Robin" uniqKey="Reed R" first="Robin" last="Reed">Robin Reed</name>
<name sortKey="Shomron, Noam" sort="Shomron, Noam" uniqKey="Shomron N" first="Noam" last="Shomron">Noam Shomron</name>
<name sortKey="Slaugenhaupt, Susan A" sort="Slaugenhaupt, Susan A" uniqKey="Slaugenhaupt S" first="Susan A." last="Slaugenhaupt">Susan A. Slaugenhaupt</name>
<name sortKey="Slaugenhaupt, Susan A" sort="Slaugenhaupt, Susan A" uniqKey="Slaugenhaupt S" first="Susan A." last="Slaugenhaupt">Susan A. Slaugenhaupt</name>
<name sortKey="Slaugenhaupt, Susan A" sort="Slaugenhaupt, Susan A" uniqKey="Slaugenhaupt S" first="Susan A." last="Slaugenhaupt">Susan A. Slaugenhaupt</name>
</country>
<country name="France">
<region name="Provence-Alpes-Côte d'Azur">
<name sortKey="Ibrahim, El Cherif" sort="Ibrahim, El Cherif" uniqKey="Ibrahim E" first="El Chérif" last="Ibrahim">El Chérif Ibrahim</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/France/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000187 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/France/Analysis/biblio.hfd -nk 000187 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    France
   |étape=   Analysis
   |type=    RBID
   |clé=     ISTEX:EC7371E535E17CC99804388F1283D7CD45592640
   |texte=   Weak definition of IKBKAP exon 20 leads to aberrant splicing in familial dysautonomia
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021