Serveur sur les données et bibliothèques médicales au Maghreb (version finale)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Heavy Metal Soil Contamination Detection Using Combined Geochemistry and Field Spectroradiometry in the United Kingdom.

Identifieur interne : 000278 ( PubMed/Corpus ); précédent : 000277; suivant : 000279

Heavy Metal Soil Contamination Detection Using Combined Geochemistry and Field Spectroradiometry in the United Kingdom.

Auteurs : Salim Lamine ; George P. Petropoulos ; Paul A. Brewer ; Nour-El-Islam Bachari ; Prashant K. Srivastava ; Kiril Manevski ; Chariton Kalaitzidis ; Mark G. Macklin

Source :

RBID : pubmed:30781812

Abstract

Technological advances in hyperspectral remote sensing have been widely applied in heavy metal soil contamination studies, as they are able to provide assessments in a rapid and cost-effective way. The present work investigates the potential role of combining field and laboratory spectroradiometry with geochemical data of lead (Pb), zinc (Zn), copper (Cu) and cadmium (Cd) in quantifying and modelling heavy metal soil contamination (HMSC) for a floodplain site located in Wales, United Kingdom. The study objectives were to: (i) collect field- and lab-based spectra from contaminated soils by using ASD FieldSpec® 3, where the spectrum varies between 350 and 2500 nm; (ii) build field- and lab-based spectral libraries; (iii) conduct geochemical analyses of Pb, Zn, Cu and Cd using atomic absorption spectrometer; (iv) identify the specific spectral regions associated to the modelling of HMSC; and (v) develop and validate heavy metal prediction models (HMPM) for the aforementioned contaminants, by considering their spectral features and concentrations in the soil. Herein, the field- and lab-based spectral features derived from 85 soil samples were used successfully to develop two spectral libraries, which along with the concentrations of Pb, Zn, Cu and Cd were combined to build eight HMPMs using stepwise multiple linear regression. The results showed, for the first time, the feasibility to predict HMSC in a highly contaminated floodplain site by combining soil geochemistry analyses and field spectroradiometry. The generated models help for mapping heavy metal concentrations over a huge area by using space-borne hyperspectral sensors. The results further demonstrated the feasibility of combining geochemistry analyses with filed spectroradiometric data to generate models that can predict heavy metal concentrations.

DOI: 10.3390/s19040762
PubMed: 30781812
PubMed Central: PMC6413008

Links to Exploration step

pubmed:30781812

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Heavy Metal Soil Contamination Detection Using Combined Geochemistry and Field Spectroradiometry in the United Kingdom.</title>
<author>
<name sortKey="Lamine, Salim" sort="Lamine, Salim" uniqKey="Lamine S" first="Salim" last="Lamine">Salim Lamine</name>
<affiliation>
<nlm:affiliation>Faculty of Natural Sciences, Life and Earth Sciences, University Akli Mohand Oulhadj of Bouira, 10000 Bouira, Algeria. salim.lamine@gmail.com.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Geography and Earth Sciences, University of Aberystwyth, Ceredigion, Wales SY23 3DB, UK. salim.lamine@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Petropoulos, George P" sort="Petropoulos, George P" uniqKey="Petropoulos G" first="George P" last="Petropoulos">George P. Petropoulos</name>
<affiliation>
<nlm:affiliation>Department of Soil and Water Resources, Institute of Industrial and Forage Crops, Hellenic Agricultural Organization "Demeter" (former NAGREF), Directorate General of Agricultural Research, 1, Theofrastou St., 41335 Larisa, Greece. petropoulos.george@gmail.com.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>School of Mineral and Resources Engineering, Technical University of Crete, Kounoupidiana Campus, 73100 Crete, Greece. petropoulos.george@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brewer, Paul A" sort="Brewer, Paul A" uniqKey="Brewer P" first="Paul A" last="Brewer">Paul A. Brewer</name>
<affiliation>
<nlm:affiliation>Department of Geography and Earth Sciences, University of Aberystwyth, Ceredigion, Wales SY23 3DB, UK. pqb@aber.ac.uk.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bachari, Nour El Islam" sort="Bachari, Nour El Islam" uniqKey="Bachari N" first="Nour-El-Islam" last="Bachari">Nour-El-Islam Bachari</name>
<affiliation>
<nlm:affiliation>Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, BP 32, El Alia, Bab Ezzouar 16111, Algeria. bacharinouri@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Srivastava, Prashant K" sort="Srivastava, Prashant K" uniqKey="Srivastava P" first="Prashant K" last="Srivastava">Prashant K. Srivastava</name>
<affiliation>
<nlm:affiliation>Institute of Environment and Sustainable Development & DST Mahamana Center for Excellence in Climate Change Research, Banaras Hindu University, Varanasi 221005, India. prashant.just@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Manevski, Kiril" sort="Manevski, Kiril" uniqKey="Manevski K" first="Kiril" last="Manevski">Kiril Manevski</name>
<affiliation>
<nlm:affiliation>Department of Agroecology, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark. kiril.manevski@agrsci.dk.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kalaitzidis, Chariton" sort="Kalaitzidis, Chariton" uniqKey="Kalaitzidis C" first="Chariton" last="Kalaitzidis">Chariton Kalaitzidis</name>
<affiliation>
<nlm:affiliation>Department of Geoinformation in Environmental Management, Mediterranean Agronomic Institute of Chania, 73100 Crete, Greece. chariton@maich.gr.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Macklin, Mark G" sort="Macklin, Mark G" uniqKey="Macklin M" first="Mark G" last="Macklin">Mark G. Macklin</name>
<affiliation>
<nlm:affiliation>School of Geography, College of Science, University of Lincoln, Brayford Pool, Lincoln, Lincolnshire LN6 7TS, UK. mmacklin@lincoln.ac.uk.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30781812</idno>
<idno type="pmid">30781812</idno>
<idno type="doi">10.3390/s19040762</idno>
<idno type="pmc">PMC6413008</idno>
<idno type="wicri:Area/PubMed/Corpus">000278</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000278</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Heavy Metal Soil Contamination Detection Using Combined Geochemistry and Field Spectroradiometry in the United Kingdom.</title>
<author>
<name sortKey="Lamine, Salim" sort="Lamine, Salim" uniqKey="Lamine S" first="Salim" last="Lamine">Salim Lamine</name>
<affiliation>
<nlm:affiliation>Faculty of Natural Sciences, Life and Earth Sciences, University Akli Mohand Oulhadj of Bouira, 10000 Bouira, Algeria. salim.lamine@gmail.com.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Geography and Earth Sciences, University of Aberystwyth, Ceredigion, Wales SY23 3DB, UK. salim.lamine@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Petropoulos, George P" sort="Petropoulos, George P" uniqKey="Petropoulos G" first="George P" last="Petropoulos">George P. Petropoulos</name>
<affiliation>
<nlm:affiliation>Department of Soil and Water Resources, Institute of Industrial and Forage Crops, Hellenic Agricultural Organization "Demeter" (former NAGREF), Directorate General of Agricultural Research, 1, Theofrastou St., 41335 Larisa, Greece. petropoulos.george@gmail.com.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>School of Mineral and Resources Engineering, Technical University of Crete, Kounoupidiana Campus, 73100 Crete, Greece. petropoulos.george@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brewer, Paul A" sort="Brewer, Paul A" uniqKey="Brewer P" first="Paul A" last="Brewer">Paul A. Brewer</name>
<affiliation>
<nlm:affiliation>Department of Geography and Earth Sciences, University of Aberystwyth, Ceredigion, Wales SY23 3DB, UK. pqb@aber.ac.uk.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bachari, Nour El Islam" sort="Bachari, Nour El Islam" uniqKey="Bachari N" first="Nour-El-Islam" last="Bachari">Nour-El-Islam Bachari</name>
<affiliation>
<nlm:affiliation>Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, BP 32, El Alia, Bab Ezzouar 16111, Algeria. bacharinouri@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Srivastava, Prashant K" sort="Srivastava, Prashant K" uniqKey="Srivastava P" first="Prashant K" last="Srivastava">Prashant K. Srivastava</name>
<affiliation>
<nlm:affiliation>Institute of Environment and Sustainable Development & DST Mahamana Center for Excellence in Climate Change Research, Banaras Hindu University, Varanasi 221005, India. prashant.just@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Manevski, Kiril" sort="Manevski, Kiril" uniqKey="Manevski K" first="Kiril" last="Manevski">Kiril Manevski</name>
<affiliation>
<nlm:affiliation>Department of Agroecology, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark. kiril.manevski@agrsci.dk.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kalaitzidis, Chariton" sort="Kalaitzidis, Chariton" uniqKey="Kalaitzidis C" first="Chariton" last="Kalaitzidis">Chariton Kalaitzidis</name>
<affiliation>
<nlm:affiliation>Department of Geoinformation in Environmental Management, Mediterranean Agronomic Institute of Chania, 73100 Crete, Greece. chariton@maich.gr.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Macklin, Mark G" sort="Macklin, Mark G" uniqKey="Macklin M" first="Mark G" last="Macklin">Mark G. Macklin</name>
<affiliation>
<nlm:affiliation>School of Geography, College of Science, University of Lincoln, Brayford Pool, Lincoln, Lincolnshire LN6 7TS, UK. mmacklin@lincoln.ac.uk.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Sensors (Basel, Switzerland)</title>
<idno type="eISSN">1424-8220</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Technological advances in hyperspectral remote sensing have been widely applied in heavy metal soil contamination studies, as they are able to provide assessments in a rapid and cost-effective way. The present work investigates the potential role of combining field and laboratory spectroradiometry with geochemical data of lead (Pb), zinc (Zn), copper (Cu) and cadmium (Cd) in quantifying and modelling heavy metal soil contamination (HMSC) for a floodplain site located in Wales, United Kingdom. The study objectives were to: (i) collect field- and lab-based spectra from contaminated soils by using ASD FieldSpec
<sup>®</sup>
3, where the spectrum varies between 350 and 2500 nm; (ii) build field- and lab-based spectral libraries; (iii) conduct geochemical analyses of Pb, Zn, Cu and Cd using atomic absorption spectrometer; (iv) identify the specific spectral regions associated to the modelling of HMSC; and (v) develop and validate heavy metal prediction models (HMPM) for the aforementioned contaminants, by considering their spectral features and concentrations in the soil. Herein, the field- and lab-based spectral features derived from 85 soil samples were used successfully to develop two spectral libraries, which along with the concentrations of Pb, Zn, Cu and Cd were combined to build eight HMPMs using stepwise multiple linear regression. The results showed, for the first time, the feasibility to predict HMSC in a highly contaminated floodplain site by combining soil geochemistry analyses and field spectroradiometry. The generated models help for mapping heavy metal concentrations over a huge area by using space-borne hyperspectral sensors. The results further demonstrated the feasibility of combining geochemistry analyses with filed spectroradiometric data to generate models that can predict heavy metal concentrations.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30781812</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>02</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1424-8220</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>19</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2019</Year>
<Month>Feb</Month>
<Day>13</Day>
</PubDate>
</JournalIssue>
<Title>Sensors (Basel, Switzerland)</Title>
<ISOAbbreviation>Sensors (Basel)</ISOAbbreviation>
</Journal>
<ArticleTitle>Heavy Metal Soil Contamination Detection Using Combined Geochemistry and Field Spectroradiometry in the United Kingdom.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E762</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/s19040762</ELocationID>
<Abstract>
<AbstractText>Technological advances in hyperspectral remote sensing have been widely applied in heavy metal soil contamination studies, as they are able to provide assessments in a rapid and cost-effective way. The present work investigates the potential role of combining field and laboratory spectroradiometry with geochemical data of lead (Pb), zinc (Zn), copper (Cu) and cadmium (Cd) in quantifying and modelling heavy metal soil contamination (HMSC) for a floodplain site located in Wales, United Kingdom. The study objectives were to: (i) collect field- and lab-based spectra from contaminated soils by using ASD FieldSpec
<sup>®</sup>
3, where the spectrum varies between 350 and 2500 nm; (ii) build field- and lab-based spectral libraries; (iii) conduct geochemical analyses of Pb, Zn, Cu and Cd using atomic absorption spectrometer; (iv) identify the specific spectral regions associated to the modelling of HMSC; and (v) develop and validate heavy metal prediction models (HMPM) for the aforementioned contaminants, by considering their spectral features and concentrations in the soil. Herein, the field- and lab-based spectral features derived from 85 soil samples were used successfully to develop two spectral libraries, which along with the concentrations of Pb, Zn, Cu and Cd were combined to build eight HMPMs using stepwise multiple linear regression. The results showed, for the first time, the feasibility to predict HMSC in a highly contaminated floodplain site by combining soil geochemistry analyses and field spectroradiometry. The generated models help for mapping heavy metal concentrations over a huge area by using space-borne hyperspectral sensors. The results further demonstrated the feasibility of combining geochemistry analyses with filed spectroradiometric data to generate models that can predict heavy metal concentrations.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lamine</LastName>
<ForeName>Salim</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0002-0183-8820</Identifier>
<AffiliationInfo>
<Affiliation>Faculty of Natural Sciences, Life and Earth Sciences, University Akli Mohand Oulhadj of Bouira, 10000 Bouira, Algeria. salim.lamine@gmail.com.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Geography and Earth Sciences, University of Aberystwyth, Ceredigion, Wales SY23 3DB, UK. salim.lamine@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Petropoulos</LastName>
<ForeName>George P</ForeName>
<Initials>GP</Initials>
<AffiliationInfo>
<Affiliation>Department of Soil and Water Resources, Institute of Industrial and Forage Crops, Hellenic Agricultural Organization "Demeter" (former NAGREF), Directorate General of Agricultural Research, 1, Theofrastou St., 41335 Larisa, Greece. petropoulos.george@gmail.com.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Mineral and Resources Engineering, Technical University of Crete, Kounoupidiana Campus, 73100 Crete, Greece. petropoulos.george@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brewer</LastName>
<ForeName>Paul A</ForeName>
<Initials>PA</Initials>
<Identifier Source="ORCID">0000-0003-0834-8848</Identifier>
<AffiliationInfo>
<Affiliation>Department of Geography and Earth Sciences, University of Aberystwyth, Ceredigion, Wales SY23 3DB, UK. pqb@aber.ac.uk.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bachari</LastName>
<ForeName>Nour-El-Islam</ForeName>
<Initials>NE</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, BP 32, El Alia, Bab Ezzouar 16111, Algeria. bacharinouri@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Srivastava</LastName>
<ForeName>Prashant K</ForeName>
<Initials>PK</Initials>
<Identifier Source="ORCID">0000-0002-4155-630X</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Environment and Sustainable Development & DST Mahamana Center for Excellence in Climate Change Research, Banaras Hindu University, Varanasi 221005, India. prashant.just@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Manevski</LastName>
<ForeName>Kiril</ForeName>
<Initials>K</Initials>
<Identifier Source="ORCID">0000-0003-2068-3040</Identifier>
<AffiliationInfo>
<Affiliation>Department of Agroecology, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark. kiril.manevski@agrsci.dk.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kalaitzidis</LastName>
<ForeName>Chariton</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Geoinformation in Environmental Management, Mediterranean Agronomic Institute of Chania, 73100 Crete, Greece. chariton@maich.gr.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Macklin</LastName>
<ForeName>Mark G</ForeName>
<Initials>MG</Initials>
<AffiliationInfo>
<Affiliation>School of Geography, College of Science, University of Lincoln, Brayford Pool, Lincoln, Lincolnshire LN6 7TS, UK. mmacklin@lincoln.ac.uk.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>02</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Sensors (Basel)</MedlineTA>
<NlmUniqueID>101204366</NlmUniqueID>
<ISSNLinking>1424-8220</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">floodplain</Keyword>
<Keyword MajorTopicYN="N">heavy metals</Keyword>
<Keyword MajorTopicYN="N">hyperspectral data</Keyword>
<Keyword MajorTopicYN="N">regression modelling</Keyword>
<Keyword MajorTopicYN="N">soil spectral library</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>11</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>01</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>02</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>2</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>2</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>2</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30781812</ArticleId>
<ArticleId IdType="pii">s19040762</ArticleId>
<ArticleId IdType="doi">10.3390/s19040762</ArticleId>
<ArticleId IdType="pmc">PMC6413008</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Dairy Sci. 1975 Dec;58(12):1767-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1107364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Qual. 2004 Nov-Dec;33(6):2056-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15537928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2009 Jun 1;407(12):3731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19327816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2011 Oct;159(10):3113-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21561697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2012 Apr 1;421-422:17-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21575982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2012 Jan;160(1):118-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22035934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Monit Assess. 2013 Feb;185(2):1095-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22592780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Spectrochim Acta A Mol Biomol Spectrosc. 2012 Oct;96:289-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22698846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Mar 22;339(6126):1382-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23520093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2014 Jan 30;265:166-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24361494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2014 Apr 1;476-477:165-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24463253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Environ Res Public Health. 2016 Jun 28;13(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27367708</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/MaghrebDataLibMedV2/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000278 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000278 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    MaghrebDataLibMedV2
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30781812
   |texte=   Heavy Metal Soil Contamination Detection Using Combined Geochemistry and Field Spectroradiometry in the United Kingdom.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:30781812" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MaghrebDataLibMedV2 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Wed Jun 30 18:27:05 2021. Site generation: Wed Jun 30 18:34:21 2021