Serveur sur les données et bibliothèques médicales au Maghreb (version finale)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tracing Potential Covalent Inhibitors of an E3 Ubiquitin Ligase through Target-Focused Modelling.

Identifieur interne : 000227 ( PubMed/Corpus ); précédent : 000226; suivant : 000228

Tracing Potential Covalent Inhibitors of an E3 Ubiquitin Ligase through Target-Focused Modelling.

Auteurs : Imane Bjij ; Pritika Ramharack ; Shama Khan ; Driss Cherqaoui ; Mahmoud E S. Soliman

Source :

RBID : pubmed:31466292

English descriptors

Abstract

The Nedd4-1 E3 Ubiquitin ligase has been implicated in multiple disease conditions due its overexpression. Although the enzyme may be targeted both covalently and non-covalently, minimal studies provide effective inhibitors against it. Recently, research has focused on covalent inhibitors based on their characteristic, highly-selective warheads and ability to prevent drug resistance. This prompted us to screen for new covalent inhibitors of Nedd4-1 using a combination of computational approaches. However, this task proved challenging due to the limited number of electrophilic moieties available in virtual libraries. Therefore, we opted to divide an existing covalent Nedd4-1 inhibitor into two parts: a non-covalent binding group and a pre-selected α, β-unsaturated ester that forms the covalent linkage with the protein. A non-covalent pharmacophore model was built based on molecular interactions at the binding site. The pharmacophore was then subjected to virtual screening to identify structurally similar hit compounds. Multiple filtrations were implemented prior to selecting four hits, which were validated with a covalent conjugation and later assessed by molecular dynamic simulations. The results showed that, of the four hit molecules, Zinc00937975 exhibited advantageous molecular groups, allowing for favourable interactions with one of the characteristic cysteine residues. Predictive pharmacokinetic analysis further justified the compound as a potential lead molecule, prompting its recommendation for confirmatory biological evaluation. Our inhouse, refined, pharmacophore model approach serves as a robust method that will encourage screening for novel covalent inhibitors in drug discovery.

DOI: 10.3390/molecules24173125
PubMed: 31466292
PubMed Central: PMC6749425

Links to Exploration step

pubmed:31466292

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tracing Potential Covalent Inhibitors of an E3 Ubiquitin Ligase through Target-Focused Modelling.</title>
<author>
<name sortKey="Bjij, Imane" sort="Bjij, Imane" uniqKey="Bjij I" first="Imane" last="Bjij">Imane Bjij</name>
<affiliation>
<nlm:affiliation>Molecular Bio-Computation & Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4000, South Africa.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Département de Chimie, Faculté des Sciences Semlalia, Université Cadi Ayyad, Av. My Abdellah, BP2390 Marrakech, Morocco.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ramharack, Pritika" sort="Ramharack, Pritika" uniqKey="Ramharack P" first="Pritika" last="Ramharack">Pritika Ramharack</name>
<affiliation>
<nlm:affiliation>Molecular Bio-Computation & Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4000, South Africa.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Khan, Shama" sort="Khan, Shama" uniqKey="Khan S" first="Shama" last="Khan">Shama Khan</name>
<affiliation>
<nlm:affiliation>Department of Clinical Microbiology and Infectious Diseases, School of Pathology, University of the Witwatersrand, Johannesburg 2193, South Africa.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cherqaoui, Driss" sort="Cherqaoui, Driss" uniqKey="Cherqaoui D" first="Driss" last="Cherqaoui">Driss Cherqaoui</name>
<affiliation>
<nlm:affiliation>Département de Chimie, Faculté des Sciences Semlalia, Université Cadi Ayyad, Av. My Abdellah, BP2390 Marrakech, Morocco.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Soliman, Mahmoud E S" sort="Soliman, Mahmoud E S" uniqKey="Soliman M" first="Mahmoud E S" last="Soliman">Mahmoud E S. Soliman</name>
<affiliation>
<nlm:affiliation>Molecular Bio-Computation & Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4000, South Africa. soliman@ukzn.ac.za.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31466292</idno>
<idno type="pmid">31466292</idno>
<idno type="doi">10.3390/molecules24173125</idno>
<idno type="pmc">PMC6749425</idno>
<idno type="wicri:Area/PubMed/Corpus">000227</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000227</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Tracing Potential Covalent Inhibitors of an E3 Ubiquitin Ligase through Target-Focused Modelling.</title>
<author>
<name sortKey="Bjij, Imane" sort="Bjij, Imane" uniqKey="Bjij I" first="Imane" last="Bjij">Imane Bjij</name>
<affiliation>
<nlm:affiliation>Molecular Bio-Computation & Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4000, South Africa.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Département de Chimie, Faculté des Sciences Semlalia, Université Cadi Ayyad, Av. My Abdellah, BP2390 Marrakech, Morocco.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ramharack, Pritika" sort="Ramharack, Pritika" uniqKey="Ramharack P" first="Pritika" last="Ramharack">Pritika Ramharack</name>
<affiliation>
<nlm:affiliation>Molecular Bio-Computation & Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4000, South Africa.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Khan, Shama" sort="Khan, Shama" uniqKey="Khan S" first="Shama" last="Khan">Shama Khan</name>
<affiliation>
<nlm:affiliation>Department of Clinical Microbiology and Infectious Diseases, School of Pathology, University of the Witwatersrand, Johannesburg 2193, South Africa.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cherqaoui, Driss" sort="Cherqaoui, Driss" uniqKey="Cherqaoui D" first="Driss" last="Cherqaoui">Driss Cherqaoui</name>
<affiliation>
<nlm:affiliation>Département de Chimie, Faculté des Sciences Semlalia, Université Cadi Ayyad, Av. My Abdellah, BP2390 Marrakech, Morocco.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Soliman, Mahmoud E S" sort="Soliman, Mahmoud E S" uniqKey="Soliman M" first="Mahmoud E S" last="Soliman">Mahmoud E S. Soliman</name>
<affiliation>
<nlm:affiliation>Molecular Bio-Computation & Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4000, South Africa. soliman@ukzn.ac.za.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecules (Basel, Switzerland)</title>
<idno type="eISSN">1420-3049</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binding Sites (MeSH)</term>
<term>Computer Simulation (MeSH)</term>
<term>Cysteine (metabolism)</term>
<term>Drug Discovery (MeSH)</term>
<term>Enzyme Inhibitors (chemistry)</term>
<term>Enzyme Inhibitors (pharmacology)</term>
<term>Humans (MeSH)</term>
<term>Hydrogen Bonding (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Docking Simulation (MeSH)</term>
<term>Molecular Dynamics Simulation (MeSH)</term>
<term>Molecular Structure (MeSH)</term>
<term>Structure-Activity Relationship (MeSH)</term>
<term>Ubiquitin-Protein Ligases (antagonists & inhibitors)</term>
<term>Ubiquitin-Protein Ligases (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Ubiquitin-Protein Ligases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Enzyme Inhibitors</term>
<term>Ubiquitin-Protein Ligases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cysteine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Enzyme Inhibitors</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding Sites</term>
<term>Computer Simulation</term>
<term>Drug Discovery</term>
<term>Humans</term>
<term>Hydrogen Bonding</term>
<term>Models, Molecular</term>
<term>Molecular Docking Simulation</term>
<term>Molecular Dynamics Simulation</term>
<term>Molecular Structure</term>
<term>Structure-Activity Relationship</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The Nedd4-1 E3 Ubiquitin ligase has been implicated in multiple disease conditions due its overexpression. Although the enzyme may be targeted both covalently and non-covalently, minimal studies provide effective inhibitors against it. Recently, research has focused on covalent inhibitors based on their characteristic, highly-selective warheads and ability to prevent drug resistance. This prompted us to screen for new covalent inhibitors of Nedd4-1 using a combination of computational approaches. However, this task proved challenging due to the limited number of electrophilic moieties available in virtual libraries. Therefore, we opted to divide an existing covalent Nedd4-1 inhibitor into two parts: a non-covalent binding group and a pre-selected α, β-unsaturated ester that forms the covalent linkage with the protein. A non-covalent pharmacophore model was built based on molecular interactions at the binding site. The pharmacophore was then subjected to virtual screening to identify structurally similar hit compounds. Multiple filtrations were implemented prior to selecting four hits, which were validated with a covalent conjugation and later assessed by molecular dynamic simulations. The results showed that, of the four hit molecules, Zinc00937975 exhibited advantageous molecular groups, allowing for favourable interactions with one of the characteristic cysteine residues. Predictive pharmacokinetic analysis further justified the compound as a potential lead molecule, prompting its recommendation for confirmatory biological evaluation. Our inhouse, refined, pharmacophore model approach serves as a robust method that will encourage screening for novel covalent inhibitors in drug discovery.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31466292</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>01</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1420-3049</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>24</Volume>
<Issue>17</Issue>
<PubDate>
<Year>2019</Year>
<Month>Aug</Month>
<Day>28</Day>
</PubDate>
</JournalIssue>
<Title>Molecules (Basel, Switzerland)</Title>
<ISOAbbreviation>Molecules</ISOAbbreviation>
</Journal>
<ArticleTitle>Tracing Potential Covalent Inhibitors of an E3 Ubiquitin Ligase through Target-Focused Modelling.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E3125</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/molecules24173125</ELocationID>
<Abstract>
<AbstractText>The Nedd4-1 E3 Ubiquitin ligase has been implicated in multiple disease conditions due its overexpression. Although the enzyme may be targeted both covalently and non-covalently, minimal studies provide effective inhibitors against it. Recently, research has focused on covalent inhibitors based on their characteristic, highly-selective warheads and ability to prevent drug resistance. This prompted us to screen for new covalent inhibitors of Nedd4-1 using a combination of computational approaches. However, this task proved challenging due to the limited number of electrophilic moieties available in virtual libraries. Therefore, we opted to divide an existing covalent Nedd4-1 inhibitor into two parts: a non-covalent binding group and a pre-selected α, β-unsaturated ester that forms the covalent linkage with the protein. A non-covalent pharmacophore model was built based on molecular interactions at the binding site. The pharmacophore was then subjected to virtual screening to identify structurally similar hit compounds. Multiple filtrations were implemented prior to selecting four hits, which were validated with a covalent conjugation and later assessed by molecular dynamic simulations. The results showed that, of the four hit molecules, Zinc00937975 exhibited advantageous molecular groups, allowing for favourable interactions with one of the characteristic cysteine residues. Predictive pharmacokinetic analysis further justified the compound as a potential lead molecule, prompting its recommendation for confirmatory biological evaluation. Our inhouse, refined, pharmacophore model approach serves as a robust method that will encourage screening for novel covalent inhibitors in drug discovery.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bjij</LastName>
<ForeName>Imane</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Molecular Bio-Computation & Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4000, South Africa.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Département de Chimie, Faculté des Sciences Semlalia, Université Cadi Ayyad, Av. My Abdellah, BP2390 Marrakech, Morocco.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ramharack</LastName>
<ForeName>Pritika</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Molecular Bio-Computation & Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4000, South Africa.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Khan</LastName>
<ForeName>Shama</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Clinical Microbiology and Infectious Diseases, School of Pathology, University of the Witwatersrand, Johannesburg 2193, South Africa.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cherqaoui</LastName>
<ForeName>Driss</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Département de Chimie, Faculté des Sciences Semlalia, Université Cadi Ayyad, Av. My Abdellah, BP2390 Marrakech, Morocco.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Soliman</LastName>
<ForeName>Mahmoud E S</ForeName>
<Initials>MES</Initials>
<AffiliationInfo>
<Affiliation>Molecular Bio-Computation & Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4000, South Africa. soliman@ukzn.ac.za.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>N/A</GrantID>
<Agency>College of Health Sciences, University of KwaZulu-Natal</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>08</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Molecules</MedlineTA>
<NlmUniqueID>100964009</NlmUniqueID>
<ISSNLinking>1420-3049</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004791">Enzyme Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.2.27</RegistryNumber>
<NameOfSubstance UI="D044767">Ubiquitin-Protein Ligases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055808" MajorTopicYN="N">Drug Discovery</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004791" MajorTopicYN="N">Enzyme Inhibitors</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006860" MajorTopicYN="N">Hydrogen Bonding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D062105" MajorTopicYN="N">Molecular Docking Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056004" MajorTopicYN="N">Molecular Dynamics Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015394" MajorTopicYN="N">Molecular Structure</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013329" MajorTopicYN="N">Structure-Activity Relationship</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044767" MajorTopicYN="N">Ubiquitin-Protein Ligases</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">NEDD4-1 E3 ligase</Keyword>
<Keyword MajorTopicYN="N">covalent inhibition</Keyword>
<Keyword MajorTopicYN="N">molecular dynamic simulations</Keyword>
<Keyword MajorTopicYN="N">molecular modeling</Keyword>
<Keyword MajorTopicYN="N">pharmacophore modeling</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>05</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>06</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>06</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>8</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>8</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>1</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31466292</ArticleId>
<ArticleId IdType="pii">molecules24173125</ArticleId>
<ArticleId IdType="doi">10.3390/molecules24173125</ArticleId>
<ArticleId IdType="pmc">PMC6749425</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1965 May;12:88-118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14343300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jan 1;32(Database issue):D129-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2004 Mar 15;23(11):1972-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15021885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2004 Oct;25(13):1605-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15264254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Graph Model. 2006 Oct;25(2):247-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16458552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Neuropharmacol. 2007 Sep;5(3):149-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19305797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2009 Dec;30(16):2785-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19399780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2009 Jun;10(6):398-409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19436320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2009;78:363-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19489724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2010 Jan 30;31(2):455-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19499576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2010 Jan;17(1):68-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19557014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Jan 1;285(1):255-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19864419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Inf Model. 2011 Jan 24;51(1):69-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21117705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yao Xue Xue Bao. 2010 Aug;45(8):945-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21351580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cheminform. 2011 Oct 07;3:33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21982300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Aided Mol Des. 2013 Mar;27(3):221-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23579614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biosyst. 2014 Jul;10(7):1643-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24457516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Inf Model. 2014 May 27;54(5):1552</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24702057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Cancer Drug Targets. 2014;14(6):549-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25088038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2015;1263:243-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25618350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Opin Drug Discov. 2015 May;10(5):449-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25835573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Aug;1856(1):91-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26116757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2015 Oct 7;137(39):12442-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26371805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Theory Comput. 2013 Jul 9;9(7):3084-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26583988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2016 Jan 26;17(2):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26821017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 May 5;533(7601):43-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27096359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tissue Barriers. 2015 Dec 15;4(1):e1129476</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27141418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Mar 03;7:42717</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28256516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2018 Aug;43(8):635-647</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30056838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein J. 2018 Dec;37(6):500-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30232697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Graph. 1996 Feb;14(1):33-8, 27-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8744570</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/MaghrebDataLibMedV2/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000227 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000227 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    MaghrebDataLibMedV2
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31466292
   |texte=   Tracing Potential Covalent Inhibitors of an E3 Ubiquitin Ligase through Target-Focused Modelling.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:31466292" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MaghrebDataLibMedV2 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Wed Jun 30 18:27:05 2021. Site generation: Wed Jun 30 18:34:21 2021