Serveur sur les données et bibliothèques médicales au Maghreb (version finale)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000171 ( Pmc/Corpus ); précédent : 0001709; suivant : 0001720 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Bioinformatics Analysis of Differentially Expressed Genes and miRNAs in Low-Grade Gliomas</title>
<author>
<name sortKey="Bendahou, Mohammed Amine" sort="Bendahou, Mohammed Amine" uniqKey="Bendahou M" first="Mohammed Amine" last="Bendahou">Mohammed Amine Bendahou</name>
<affiliation>
<nlm:aff id="aff1-1176935120969692">Medical Biotechnology Laboratory (MedBiotech), BioInova Research Center, Medical and Pharmacy School, Mohammed V University in Rabat, Morocco</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ibrahimi, Azeddine" sort="Ibrahimi, Azeddine" uniqKey="Ibrahimi A" first="Azeddine" last="Ibrahimi">Azeddine Ibrahimi</name>
<affiliation>
<nlm:aff id="aff1-1176935120969692">Medical Biotechnology Laboratory (MedBiotech), BioInova Research Center, Medical and Pharmacy School, Mohammed V University in Rabat, Morocco</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Boutarbouch, Mahjouba" sort="Boutarbouch, Mahjouba" uniqKey="Boutarbouch M" first="Mahjouba" last="Boutarbouch">Mahjouba Boutarbouch</name>
<affiliation>
<nlm:aff id="aff2-1176935120969692">Department of Neurosurgery, Hospital of Specialties, CHU Ibn Sina, Rabat, Medical and Pharmacy School, Mohammed V University in Rabat, Morocco</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">33223819</idno>
<idno type="pmc">7649870</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7649870</idno>
<idno type="RBID">PMC:7649870</idno>
<idno type="doi">10.1177/1176935120969692</idno>
<date when="2020">2020</date>
<idno type="wicri:Area/Pmc/Corpus">000171</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000171</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Bioinformatics Analysis of Differentially Expressed Genes and miRNAs in Low-Grade Gliomas</title>
<author>
<name sortKey="Bendahou, Mohammed Amine" sort="Bendahou, Mohammed Amine" uniqKey="Bendahou M" first="Mohammed Amine" last="Bendahou">Mohammed Amine Bendahou</name>
<affiliation>
<nlm:aff id="aff1-1176935120969692">Medical Biotechnology Laboratory (MedBiotech), BioInova Research Center, Medical and Pharmacy School, Mohammed V University in Rabat, Morocco</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ibrahimi, Azeddine" sort="Ibrahimi, Azeddine" uniqKey="Ibrahimi A" first="Azeddine" last="Ibrahimi">Azeddine Ibrahimi</name>
<affiliation>
<nlm:aff id="aff1-1176935120969692">Medical Biotechnology Laboratory (MedBiotech), BioInova Research Center, Medical and Pharmacy School, Mohammed V University in Rabat, Morocco</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Boutarbouch, Mahjouba" sort="Boutarbouch, Mahjouba" uniqKey="Boutarbouch M" first="Mahjouba" last="Boutarbouch">Mahjouba Boutarbouch</name>
<affiliation>
<nlm:aff id="aff2-1176935120969692">Department of Neurosurgery, Hospital of Specialties, CHU Ibn Sina, Rabat, Medical and Pharmacy School, Mohammed V University in Rabat, Morocco</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cancer Informatics</title>
<idno type="eISSN">1176-9351</idno>
<imprint>
<date when="2020">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Low-grade glioma is the most common type of primary intracranial tumor. In the last 3 years, new observations of molecular precursors in adults with gliomas have led to a modification in the histopathologic classification of these brain tumors. Among the biomarkers that have been highlighted, we have the micro RNAs (miRNAs) which play a crucial role in the regulation of gene expression and the long noncoding RNAs (lncRNAs) controlling various cellular and metabolic pathways. In our study, large-scale data on sequenced RNA and miRNAs from 516 patients were obtained from the Cancer Genome Atlas database by the TCGAbiolinks package. We identified the differential expression of miRNAs and genes using the Limma package and then we used the ClusterProfiler package for annotations of the biological pathways of the expressed genes, the survival package to estimate the survival analysis, and the GDCRNATools package to determine miRNAs-genes and miRNAs-lncRNAs interactions. We obtained a significant correlation between the miRNAs identified and the overall survival of the patients (log-rank
<italic>P</italic>
 < .05) and we have theoretically proposed a novel network of miRNAs involved in low-grade gliomas, specifically astrocytomas and oligodendrogliomas, which combine both genes and lncRNAs.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Wen, Py" uniqKey="Wen P">PY Wen</name>
</author>
<author>
<name sortKey="Huse, Jt" uniqKey="Huse J">JT. Huse</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bendahou, Ma" uniqKey="Bendahou M">MA Bendahou</name>
</author>
<author>
<name sortKey="Ibrahimi, A" uniqKey="Ibrahimi A">A Ibrahimi</name>
</author>
<author>
<name sortKey="Boutarbouch, M" uniqKey="Boutarbouch M">M Boutarbouch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H Wang</name>
</author>
<author>
<name sortKey="Diaz, Ak" uniqKey="Diaz A">AK Diaz</name>
</author>
<author>
<name sortKey="Shaw, Ti" uniqKey="Shaw T">TI Shaw</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, Z" uniqKey="Zhao Z">Z Zhao</name>
</author>
<author>
<name sortKey="Zhang, K" uniqKey="Zhang K">K Zhang</name>
</author>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bendahou, Ma" uniqKey="Bendahou M">MA Bendahou</name>
</author>
<author>
<name sortKey="Ibrahimi, A" uniqKey="Ibrahimi A">A Ibrahimi</name>
</author>
<author>
<name sortKey="Boutarbouch, M" uniqKey="Boutarbouch M">M Boutarbouch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gebert, Lfr" uniqKey="Gebert L">LFR Gebert</name>
</author>
<author>
<name sortKey="Macrae, Ij" uniqKey="Macrae I">IJ. MacRae</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peng, Y" uniqKey="Peng Y">Y Peng</name>
</author>
<author>
<name sortKey="Croce, C" uniqKey="Croce C">C. Croce</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Awad, Aj" uniqKey="Awad A">AJ Awad</name>
</author>
<author>
<name sortKey="Burns, Tc" uniqKey="Burns T">TC Burns</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Babae, N" uniqKey="Babae N">N Babae</name>
</author>
<author>
<name sortKey="Bourajjaj, M" uniqKey="Bourajjaj M">M Bourajjaj</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sanchez Calle, A" uniqKey="Sanchez Calle A">A Sanchez Calle</name>
</author>
<author>
<name sortKey="Kawamura, Y" uniqKey="Kawamura Y">Y Kawamura</name>
</author>
<author>
<name sortKey="Yamamoto, Y" uniqKey="Yamamoto Y">Y Yamamoto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, L" uniqKey="Xu L">L Xu</name>
</author>
<author>
<name sortKey="Chen, L" uniqKey="Chen L">L Chen</name>
</author>
<author>
<name sortKey="Li, F" uniqKey="Li F">F Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Z" uniqKey="Li Z">Z Li</name>
</author>
<author>
<name sortKey="Xu, C" uniqKey="Xu C">C Xu</name>
</author>
<author>
<name sortKey="Ding, B" uniqKey="Ding B">B Ding</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Colaprico, A" uniqKey="Colaprico A">A Colaprico</name>
</author>
<author>
<name sortKey="Silva, Tc" uniqKey="Silva T">TC Silva</name>
</author>
<author>
<name sortKey="Olsen, C" uniqKey="Olsen C">C Olsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ritchie, Me" uniqKey="Ritchie M">ME Ritchie</name>
</author>
<author>
<name sortKey="Phipson, B" uniqKey="Phipson B">B Phipson</name>
</author>
<author>
<name sortKey="Wu, D" uniqKey="Wu D">D Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, G" uniqKey="Yu G">G Yu</name>
</author>
<author>
<name sortKey="Wang, Lg" uniqKey="Wang L">LG Wang</name>
</author>
<author>
<name sortKey="Han, Y" uniqKey="Han Y">Y Han</name>
</author>
<author>
<name sortKey="He, Qy" uniqKey="He Q">QY. He</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lumley, Tsr" uniqKey="Lumley T">TSR Lumley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Warde Farley, D" uniqKey="Warde Farley D">D Warde-Farley</name>
</author>
<author>
<name sortKey="Donaldson, Sl" uniqKey="Donaldson S">SL Donaldson</name>
</author>
<author>
<name sortKey="Comes, O" uniqKey="Comes O">O Comes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sana, J" uniqKey="Sana J">J Sana</name>
</author>
<author>
<name sortKey="Busek, P" uniqKey="Busek P">P Busek</name>
</author>
<author>
<name sortKey="Fadrus, P" uniqKey="Fadrus P">P Fadrus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, R" uniqKey="Li R">R Li</name>
</author>
<author>
<name sortKey="Qu, H" uniqKey="Qu H">H Qu</name>
</author>
<author>
<name sortKey="Wang, S" uniqKey="Wang S">S Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Otasek, D" uniqKey="Otasek D">D Otasek</name>
</author>
<author>
<name sortKey="Morris, Jh" uniqKey="Morris J">JH Morris</name>
</author>
<author>
<name sortKey="Boucas, J" uniqKey="Boucas J">J Bouças</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, J" uniqKey="Li J">J Li</name>
</author>
<author>
<name sortKey="Tao, X" uniqKey="Tao X">X Tao</name>
</author>
<author>
<name sortKey="Shen, J" uniqKey="Shen J">J Shen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Janardhan, A" uniqKey="Janardhan A">A Janardhan</name>
</author>
<author>
<name sortKey="Kathera, C" uniqKey="Kathera C">C Kathera</name>
</author>
<author>
<name sortKey="Darsi, A" uniqKey="Darsi A">A Darsi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhong, Me" uniqKey="Zhong M">ME Zhong</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y Chen</name>
</author>
<author>
<name sortKey="Zhang, G" uniqKey="Zhang G">G Zhang</name>
</author>
<author>
<name sortKey="Xu, L" uniqKey="Xu L">L Xu</name>
</author>
<author>
<name sortKey="Ge, W" uniqKey="Ge W">W Ge</name>
</author>
<author>
<name sortKey="Wu, B" uniqKey="Wu B">B. Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, Rs" uniqKey="Zhou R">RS Zhou</name>
</author>
<author>
<name sortKey="Zhang, Ex" uniqKey="Zhang E">EX Zhang</name>
</author>
<author>
<name sortKey="Sun, Qf" uniqKey="Sun Q">QF Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, L" uniqKey="Li L">L Li</name>
</author>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X Liu</name>
</author>
<author>
<name sortKey="Ma, X" uniqKey="Ma X">X Ma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Papageorgiou, I" uniqKey="Papageorgiou I">I Papageorgiou</name>
</author>
<author>
<name sortKey="Court, Mh" uniqKey="Court M">MH Court</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X Chen</name>
</author>
<author>
<name sortKey="Dong, D" uniqKey="Dong D">D Dong</name>
</author>
<author>
<name sortKey="Pan, C" uniqKey="Pan C">C Pan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roberta, M" uniqKey="Roberta M">M Roberta</name>
</author>
<author>
<name sortKey="Eleonora, B" uniqKey="Eleonora B">B Eleonora</name>
</author>
<author>
<name sortKey="Enrica, F" uniqKey="Enrica F">F Enrica</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huo, L" uniqKey="Huo L">L Huo</name>
</author>
<author>
<name sortKey="Wang, B" uniqKey="Wang B">B Wang</name>
</author>
<author>
<name sortKey="Zheng, M" uniqKey="Zheng M">M Zheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, Q" uniqKey="Wu Q">Q Wu</name>
</author>
<author>
<name sortKey="Xu, L" uniqKey="Xu L">L Xu</name>
</author>
<author>
<name sortKey="Wang, C" uniqKey="Wang C">C Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mahmoudi, E" uniqKey="Mahmoudi E">E Mahmoudi</name>
</author>
<author>
<name sortKey="Cairns, Mj" uniqKey="Cairns M">MJ. Cairns</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wong, St" uniqKey="Wong S">ST Wong</name>
</author>
<author>
<name sortKey="Zhang, Xq" uniqKey="Zhang X">XQ Zhang</name>
</author>
<author>
<name sortKey="Zhuang, Jt" uniqKey="Zhuang J">JT Zhuang</name>
</author>
<author>
<name sortKey="Chan, Hl" uniqKey="Chan H">HL Chan</name>
</author>
<author>
<name sortKey="Li, Ch" uniqKey="Li C">CH Li</name>
</author>
<author>
<name sortKey="Leung, Gk" uniqKey="Leung G">GK. Leung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z Zhang</name>
</author>
<author>
<name sortKey="Song, X" uniqKey="Song X">X Song</name>
</author>
<author>
<name sortKey="Tian, H" uniqKey="Tian H">H Tian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Romeo, Sg" uniqKey="Romeo S">SG Romeo</name>
</author>
<author>
<name sortKey="Conti, A" uniqKey="Conti A">A Conti</name>
</author>
<author>
<name sortKey="Polito, F" uniqKey="Polito F">F Polito</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Munoz, Jl" uniqKey="Munoz J">JL Munoz</name>
</author>
<author>
<name sortKey="Walker, Nd" uniqKey="Walker N">ND Walker</name>
</author>
<author>
<name sortKey="Mareedu, S" uniqKey="Mareedu S">S Mareedu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z Zhang</name>
</author>
<author>
<name sortKey="Weaver, Dl" uniqKey="Weaver D">DL Weaver</name>
</author>
<author>
<name sortKey="Olsen, D" uniqKey="Olsen D">D Olsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, C" uniqKey="Li C">C Li</name>
</author>
<author>
<name sortKey="Miao, R" uniqKey="Miao R">R Miao</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wan, J" uniqKey="Wan J">J Wan</name>
</author>
<author>
<name sortKey="Huang, M" uniqKey="Huang M">M Huang</name>
</author>
<author>
<name sortKey="Zhao, H" uniqKey="Zhao H">H Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, J" uniqKey="Li J">J Li</name>
</author>
<author>
<name sortKey="Zhu, Y" uniqKey="Zhu Y">Y Zhu</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Han, Y" uniqKey="Han Y">Y Han</name>
</author>
<author>
<name sortKey="Wu, Z" uniqKey="Wu Z">Z Wu</name>
</author>
<author>
<name sortKey="Wu, T" uniqKey="Wu T">T Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Jx" uniqKey="Zhang J">JX Zhang</name>
</author>
<author>
<name sortKey="Han, L" uniqKey="Han L">L Han</name>
</author>
<author>
<name sortKey="Bao, Zs" uniqKey="Bao Z">ZS Bao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, K" uniqKey="Zhang K">K Zhang</name>
</author>
<author>
<name sortKey="Sun, X" uniqKey="Sun X">X Sun</name>
</author>
<author>
<name sortKey="Zhou, X" uniqKey="Zhou X">X Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, X" uniqKey="Zhao X">X Zhao</name>
</author>
<author>
<name sortKey="Wang, P" uniqKey="Wang P">P Wang</name>
</author>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guo, B" uniqKey="Guo B">B Guo</name>
</author>
<author>
<name sortKey="Zhang, Q" uniqKey="Zhang Q">Q Zhang</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H Wang</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Cancer Inform</journal-id>
<journal-id journal-id-type="iso-abbrev">Cancer Inform</journal-id>
<journal-id journal-id-type="publisher-id">CIX</journal-id>
<journal-id journal-id-type="hwp">spcix</journal-id>
<journal-title-group>
<journal-title>Cancer Informatics</journal-title>
</journal-title-group>
<issn pub-type="epub">1176-9351</issn>
<publisher>
<publisher-name>SAGE Publications</publisher-name>
<publisher-loc>Sage UK: London, England</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">33223819</article-id>
<article-id pub-id-type="pmc">7649870</article-id>
<article-id pub-id-type="doi">10.1177/1176935120969692</article-id>
<article-id pub-id-type="publisher-id">10.1177_1176935120969692</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Original Research</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Bioinformatics Analysis of Differentially Expressed Genes and miRNAs in Low-Grade Gliomas</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="false">https://orcid.org/0000-0003-3299-6458</contrib-id>
<name>
<surname>Bendahou</surname>
<given-names>Mohammed Amine</given-names>
</name>
<xref ref-type="aff" rid="aff1-1176935120969692">1</xref>
<xref ref-type="corresp" rid="corresp1-1176935120969692"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ibrahimi</surname>
<given-names>Azeddine</given-names>
</name>
<xref ref-type="aff" rid="aff1-1176935120969692">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Boutarbouch</surname>
<given-names>Mahjouba</given-names>
</name>
<xref ref-type="aff" rid="aff2-1176935120969692">2</xref>
</contrib>
</contrib-group>
<aff id="aff1-1176935120969692">
<label>1</label>
Medical Biotechnology Laboratory (MedBiotech), BioInova Research Center, Medical and Pharmacy School, Mohammed V University in Rabat, Morocco</aff>
<aff id="aff2-1176935120969692">
<label>2</label>
Department of Neurosurgery, Hospital of Specialties, CHU Ibn Sina, Rabat, Medical and Pharmacy School, Mohammed V University in Rabat, Morocco</aff>
<author-notes>
<corresp id="corresp1-1176935120969692">Mohammed Amine Bendahou, Medical Biotechnology Laboratory (MedBiotech), BioInova Research Center, Medical and Pharmacy School, Mohammed V University in Rabat, Avenue Mr Belarbi Alaoui Souissi BP6203, Rabat Institutes, Rabat 10000, Morocco. Email:
<email>amine.bendahou@um5s.net.ma</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>4</day>
<month>11</month>
<year>2020</year>
</pub-date>
<pub-date pub-type="collection">
<year>2020</year>
</pub-date>
<volume>19</volume>
<elocation-id>1176935120969692</elocation-id>
<history>
<date date-type="received">
<day>11</day>
<month>6</month>
<year>2020</year>
</date>
<date date-type="accepted">
<day>1</day>
<month>10</month>
<year>2020</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author(s) 2020</copyright-statement>
<copyright-year>2020</copyright-year>
<copyright-holder content-type="sage">SAGE Publications Ltd unless otherwise noted. Manuscript content on this site is licensed under Creative Commons Licenses</copyright-holder>
<license license-type="creative-commons" xlink:href="https://creativecommons.org/licenses/by-nc/4.0/">
<license-p>This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (
<ext-link ext-link-type="uri" xlink:href="https://creativecommons.org/licenses/by-nc/4.0/">https://creativecommons.org/licenses/by-nc/4.0/</ext-link>
) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (
<ext-link ext-link-type="uri" xlink:href="https://us.sagepub.com/en-us/nam/open-access-at-sage">https://us.sagepub.com/en-us/nam/open-access-at-sage</ext-link>
).</license-p>
</license>
</permissions>
<abstract>
<p>Low-grade glioma is the most common type of primary intracranial tumor. In the last 3 years, new observations of molecular precursors in adults with gliomas have led to a modification in the histopathologic classification of these brain tumors. Among the biomarkers that have been highlighted, we have the micro RNAs (miRNAs) which play a crucial role in the regulation of gene expression and the long noncoding RNAs (lncRNAs) controlling various cellular and metabolic pathways. In our study, large-scale data on sequenced RNA and miRNAs from 516 patients were obtained from the Cancer Genome Atlas database by the TCGAbiolinks package. We identified the differential expression of miRNAs and genes using the Limma package and then we used the ClusterProfiler package for annotations of the biological pathways of the expressed genes, the survival package to estimate the survival analysis, and the GDCRNATools package to determine miRNAs-genes and miRNAs-lncRNAs interactions. We obtained a significant correlation between the miRNAs identified and the overall survival of the patients (log-rank
<italic>P</italic>
 < .05) and we have theoretically proposed a novel network of miRNAs involved in low-grade gliomas, specifically astrocytomas and oligodendrogliomas, which combine both genes and lncRNAs.</p>
</abstract>
<kwd-group>
<kwd>Low-grade glioma</kwd>
<kwd>transcriptomics</kwd>
<kwd>epigenetics</kwd>
<kwd>network</kwd>
<kwd>miRNA</kwd>
<kwd>gene expression</kwd>
<kwd>lncRNA</kwd>
<kwd>TCGA</kwd>
</kwd-group>
<custom-meta-group>
<custom-meta>
<meta-name>cover-date</meta-name>
<meta-value>January-December 2020</meta-value>
</custom-meta>
<custom-meta>
<meta-name>typesetter</meta-name>
<meta-value>ts1</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="section1-1176935120969692">
<title>Introduction</title>
<p>Low-grade glioma (LGG) is a brain tumor that arises from the glial cells that support and protect the nervous system of the brain; they cause considerable difficulty and represent a therapeutic challenge due to the heterogeneity of their clinical behavior.
<sup>
<xref rid="bibr1-1176935120969692" ref-type="bibr">1</xref>
,
<xref rid="bibr2-1176935120969692" ref-type="bibr">2</xref>
</sup>
</p>
<p>The recent World Health Organization classification of 2016 updated the definition of these tumors to include isocitrate dehydrogenase mutation and 1p / 19q codeletion as an essential biomarker that characterizes gliomas. Indeed, it has become crucial to identify and characterize other candidate glioma biomarkers using bioinformatic analysis, such as genome scanning to detect cancer-specific mutations and the identification of altered epigenetic landscapes in cancer cells or by exploring the differential expression of genes, micro RNAs (miRNAs), and proteins by transcriptomics and proteomics techniques.
<sup>
<xref rid="bibr1-1176935120969692" ref-type="bibr">1</xref>
<xref rid="bibr2-1176935120969692" ref-type="bibr"></xref>
<xref rid="bibr3-1176935120969692" ref-type="bibr"></xref>
-
<xref rid="bibr4-1176935120969692" ref-type="bibr">4</xref>
,
<xref rid="bibr5-1176935120969692" ref-type="bibr">5</xref>
</sup>
</p>
<p>Among these high-throughput techniques, RNA sequencing (RNA-seq) is an effective method for robust characterization of the tumor microenvironment. The increasing use of RNA-seq in clinical and scientific contexts offers a powerful opportunity to access new therapeutic biomarkers such as miRNAs which are small noncoding RNAs of approximately 19 to 25 nucleotides in length. They can regulate various target genes and are therefore involved in the regulation of a variety of biological and pathological processes. Deregulated miRNAs have been shown to affect characteristics of cancer, including maintenance of proliferative signaling, bypassing growth suppressors, resistance to cell death, activation of invasion and metastasis, and induction of angiogenesis. Micro RNAs are recognized as potential biomarkers for the diagnosis of human cancer, prognosis and the development of precise therapeutic tools.
<sup>
<xref rid="bibr6-1176935120969692" ref-type="bibr">6</xref>
,
<xref rid="bibr7-1176935120969692" ref-type="bibr">7</xref>
</sup>
Some research has shown, for example, hsa-mir-21 is upregulated in gliomas and promotes invasion targeting specific inhibitors of the matrix metalloproteases
<sup>
<xref rid="bibr8-1176935120969692" ref-type="bibr">8</xref>
</sup>
or hsa-mir-7 is downregulated in gliomas and inhibits angiogenesis.
<sup>
<xref rid="bibr9-1176935120969692" ref-type="bibr">9</xref>
</sup>
We also have long noncoding RNAs (lncRNAs) which constitute a large class of transcripts ⩾200 nucleotides in length; lncRNAs can act as enhancers, scaffolds, or decoys by physically interacting with other RNAs or proteins, which has a direct impact on cell signaling cascades. They are regulators of cis or trans transcription and modulators of processing of mRNA, posttranscriptional control and protein activity, and organization of nuclear domains. They also have an implication in the cancer landscape based on their influence on the gain or loss of oncogenic signatures.
<sup>
<xref rid="bibr4-1176935120969692" ref-type="bibr">4</xref>
,
<xref rid="bibr10-1176935120969692" ref-type="bibr">10</xref>
</sup>
For example, some researchers have shown that HOXA transcript at the distal tip is a key factor in hypoxia and glioma metastases,
<sup>
<xref rid="bibr11-1176935120969692" ref-type="bibr">11</xref>
</sup>
or metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is associated with gliomas, with growth regulated by the extracellular signal-regulated kinase (ERK) and activated protein kinase.
<sup>
<xref rid="bibr12-1176935120969692" ref-type="bibr">12</xref>
</sup>
Micro RNAs do not hybridize perfectly with their targets, so they can target thousands of genes and lncRNAs whose protein products work in a variety of signaling pathways, therefore can affect multiple pathways and networks in carcinogenesis.</p>
<p>The huge data repositories in the TCGA database offer the possibility of analyzing these epitranscriptomic data. However, other studies have worked on the single-axis mechanism of miRNAs, lncRNAs, and genes. Therefore, it is important to study the involvement of the network in the regulation of other biomarkers such as genes and lncRNAs. In this study, we analyzed gene expression and we have theoretically proposed a new network that describes the association of differentially expressed miRNAs with genes and lncRNAs involved in LGGs.</p>
</sec>
<sec sec-type="materials|methods" id="section2-1176935120969692">
<title>Materials and Methods</title>
<sec id="section3-1176935120969692">
<title>Data processing</title>
<p>The RNA expression and miRNA datasets of 516 patients with LGGs, including astrocytomas and oligodendrogliomas, were downloaded from TCGA (
<ext-link ext-link-type="uri" xlink:href="https://gdc-portal.nci.nih.gov">https://gdc-portal.nci.nih.gov</ext-link>
) by the TCGAbiolinks R package version 2.12.6.
<sup>
<xref rid="bibr13-1176935120969692" ref-type="bibr">13</xref>
</sup>
</p>
<p>The data were derived from the Illumina HiSeq RNASeq and the Illumina HiSeq miRNASeq platforms. The data have been postprocessed and standardized in R software.</p>
</sec>
<sec id="section4-1176935120969692">
<title>RNA sequence analysis</title>
<sec id="section5-1176935120969692">
<title>Differentially expressed analysis</title>
<p>Compared with the normal group with LGGs, the Limma package version 3.42.0 in R software
<sup>
<xref rid="bibr14-1176935120969692" ref-type="bibr">14</xref>
</sup>
was used to identify differentially expressed genes (DEGs;
<xref ref-type="fig" rid="fig1-1176935120969692">Figure 1A</xref>
and
<xref ref-type="fig" rid="fig1-1176935120969692">B</xref>
) with thresholds of a
<italic>P</italic>
value < .05 and fold change |FC| > 1 (
<xref ref-type="fig" rid="fig2-1176935120969692">Figures 2A</xref>
,
<xref ref-type="fig" rid="fig3-1176935120969692">3A</xref>
and
<xref rid="table1-1176935120969692" ref-type="table">Table 1</xref>
) and differentially expressed miRNAs with a
<italic>P</italic>
value < .01 and fold change |FC| > 2 (
<xref ref-type="fig" rid="fig4-1176935120969692">Figure 4</xref>
and
<xref rid="table2-1176935120969692" ref-type="table">Table 2</xref>
).</p>
<fig id="fig1-1176935120969692" orientation="portrait" position="float">
<label>Figure 1.</label>
<caption>
<p>(A) Diagramme de volcan des DEG. (B) Diagramme à colonnes des DEG. (C) Diagramme à points de l’analyse d’enrichissement des OG. DEG indicates differentially expressed gene; FDR, false discovery rate; ncRNA, noncoding RNA</p>
</caption>
<graphic xlink:href="10.1177_1176935120969692-fig1"></graphic>
</fig>
<fig id="fig2-1176935120969692" orientation="portrait" position="float">
<label>Figure 2.</label>
<caption>
<p>(A) Highly expressed genes. (B) Kaplan-Meier curves for overall patient survival according to highly expressed genes.</p>
</caption>
<graphic xlink:href="10.1177_1176935120969692-fig2"></graphic>
</fig>
<fig id="fig3-1176935120969692" orientation="portrait" position="float">
<label>Figure 3.</label>
<caption>
<p>(A) Low expressed genes. (B) Kaplan-Meier curves for overall patient survival according to low expressed genes.</p>
</caption>
<graphic xlink:href="10.1177_1176935120969692-fig3"></graphic>
</fig>
<table-wrap id="table1-1176935120969692" orientation="portrait" position="float">
<label>Table 1.</label>
<caption>
<p>Top 8 highly expressed genes and low expressed genes in low-grade gliomas.</p>
</caption>
<alternatives>
<graphic xlink:href="10.1177_1176935120969692-table1"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="char" char="." span="1"></col>
<col align="char" char="." span="1"></col>
<col align="char" char="." span="1"></col>
<col align="char" char="." span="1"></col>
<col align="char" char="." span="1"></col>
</colgroup>
<thead>
<tr>
<th rowspan="1" colspan="1"></th>
<th align="left" rowspan="1" colspan="1">Genes</th>
<th align="left" rowspan="1" colspan="1">Ensembl ID</th>
<th align="left" rowspan="1" colspan="1">Log2 (mean expression)</th>
<th align="left" rowspan="1" colspan="1">
<italic>P</italic>
value</th>
<th align="left" rowspan="1" colspan="1">FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="1" colspan="1">Highly expressed genes</td>
<td rowspan="1" colspan="1">DSCAML1</td>
<td rowspan="1" colspan="1">ENSG00000177103</td>
<td rowspan="1" colspan="1">3.91</td>
<td rowspan="1" colspan="1">5.28e−05</td>
<td rowspan="1" colspan="1">1.69e−02</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">PEA15</td>
<td rowspan="1" colspan="1">ENSG00000162734</td>
<td rowspan="1" colspan="1">4.88</td>
<td rowspan="1" colspan="1">4.24e−04</td>
<td rowspan="1" colspan="1">2.57e−03</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">ALDOC</td>
<td rowspan="1" colspan="1">ENSG00000109107</td>
<td rowspan="1" colspan="1">2.97</td>
<td rowspan="1" colspan="1">1.09e−04</td>
<td rowspan="1" colspan="1">1.89e−07</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">PTPRT</td>
<td rowspan="1" colspan="1">ENSG00000196090</td>
<td rowspan="1" colspan="1">8.42</td>
<td rowspan="1" colspan="1">1.47e−12</td>
<td rowspan="1" colspan="1">2.32e−05</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">LUZP2</td>
<td rowspan="1" colspan="1">ENSG00000187398</td>
<td rowspan="1" colspan="1">5.71</td>
<td rowspan="1" colspan="1">1.36e−09</td>
<td rowspan="1" colspan="1">4.41e−11</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">NDRG2</td>
<td rowspan="1" colspan="1">ENSG00000165795</td>
<td rowspan="1" colspan="1">9.13</td>
<td rowspan="1" colspan="1">3.17e−07</td>
<td rowspan="1" colspan="1">3.28e−02</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">MASP1</td>
<td rowspan="1" colspan="1">ENSG00000127241</td>
<td rowspan="1" colspan="1">10.11</td>
<td rowspan="1" colspan="1">1.82e−02</td>
<td rowspan="1" colspan="1">2.16e−05</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">BCAN</td>
<td rowspan="1" colspan="1">ENSG00000132692</td>
<td rowspan="1" colspan="1">6.01</td>
<td rowspan="1" colspan="1">1.22e−04</td>
<td rowspan="1" colspan="1">1.90e−08</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Low expressed genes</td>
<td rowspan="1" colspan="1">VEGFA</td>
<td rowspan="1" colspan="1">ENSG00000112715</td>
<td rowspan="1" colspan="1">3.31</td>
<td rowspan="1" colspan="1">1.37e−06</td>
<td rowspan="1" colspan="1">2.07e−12</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">NAP1L1</td>
<td rowspan="1" colspan="1">ENSG00000187109</td>
<td rowspan="1" colspan="1">2.52</td>
<td rowspan="1" colspan="1">2.71e−06</td>
<td rowspan="1" colspan="1">2.15e−02</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">COL1A1</td>
<td rowspan="1" colspan="1">ENSG00000108821</td>
<td rowspan="1" colspan="1">5.39</td>
<td rowspan="1" colspan="1">3.29e−04</td>
<td rowspan="1" colspan="1">6.19e−04</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">NKD2</td>
<td rowspan="1" colspan="1">ENSG00000145506</td>
<td rowspan="1" colspan="1">8.07</td>
<td rowspan="1" colspan="1">2.31e−12</td>
<td rowspan="1" colspan="1">2.40e−06</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">NNMT</td>
<td rowspan="1" colspan="1">ENSG00000166741</td>
<td rowspan="1" colspan="1">6.85</td>
<td rowspan="1" colspan="1">1.85e−02</td>
<td rowspan="1" colspan="1">5.16e−09</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">ITGA2</td>
<td rowspan="1" colspan="1">ENSG00000169429</td>
<td rowspan="1" colspan="1">4.61</td>
<td rowspan="1" colspan="1">1.11e−17</td>
<td rowspan="1" colspan="1">2.76e−09</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">ANXA1</td>
<td rowspan="1" colspan="1">ENSG00000135046</td>
<td rowspan="1" colspan="1">8.29</td>
<td rowspan="1" colspan="1">2.72e−09</td>
<td rowspan="1" colspan="1">6.13e−05</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">LOX</td>
<td rowspan="1" colspan="1">ENSG00000113083</td>
<td rowspan="1" colspan="1">7.37</td>
<td rowspan="1" colspan="1">3.15e−01</td>
<td rowspan="1" colspan="1">1.66e−03</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="table-fn1-1176935120969692">
<p>Abbreviation: FDR, false discovery rate.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<fig id="fig4-1176935120969692" orientation="portrait" position="float">
<label>Figure 4.</label>
<caption>
<p>Heatmap of the differentially expressed miRNAs involved in low-grade gliomas. miRNAs indicates micro RNAs.</p>
</caption>
<graphic xlink:href="10.1177_1176935120969692-fig4"></graphic>
</fig>
<table-wrap id="table2-1176935120969692" orientation="portrait" position="float">
<label>Table 2.</label>
<caption>
<p>Top 8 highly expressed miRNAs and low expressed miRNAs in low-grade gliomas.</p>
</caption>
<alternatives>
<graphic xlink:href="10.1177_1176935120969692-table2"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="char" char="." span="1"></col>
<col align="char" char="." span="1"></col>
<col align="char" char="." span="1"></col>
<col align="char" char="." span="1"></col>
</colgroup>
<thead>
<tr>
<th rowspan="1" colspan="1"></th>
<th align="left" rowspan="1" colspan="1">miRNAs</th>
<th align="left" rowspan="1" colspan="1">Log2 (mean expression)</th>
<th align="left" rowspan="1" colspan="1">
<italic>P</italic>
value</th>
<th align="left" rowspan="1" colspan="1">FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="1" colspan="1">Highly expressed miRNAs</td>
<td rowspan="1" colspan="1">hsa-mir-18a-5p</td>
<td rowspan="1" colspan="1">2.16</td>
<td rowspan="1" colspan="1">.0026</td>
<td rowspan="1" colspan="1">0.047</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">hsa-mir-155-5p</td>
<td rowspan="1" colspan="1">5.09</td>
<td rowspan="1" colspan="1">.0012</td>
<td rowspan="1" colspan="1">0.02</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">hsa-mir-128-3p</td>
<td rowspan="1" colspan="1">9.84</td>
<td rowspan="1" colspan="1">.017</td>
<td rowspan="1" colspan="1">0.026</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">hsa-mir-21-5p</td>
<td rowspan="1" colspan="1">9.65</td>
<td rowspan="1" colspan="1">.0019</td>
<td rowspan="1" colspan="1">0.03</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">hsa-mir-124-3p</td>
<td rowspan="1" colspan="1">8.12</td>
<td rowspan="1" colspan="1">.013</td>
<td rowspan="1" colspan="1">0.12</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">hsa-mir-137</td>
<td rowspan="1" colspan="1">5.72</td>
<td rowspan="1" colspan="1">.025</td>
<td rowspan="1" colspan="1">0.076</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">hsa-mir-451a</td>
<td rowspan="1" colspan="1">9.97</td>
<td rowspan="1" colspan="1">.027</td>
<td rowspan="1" colspan="1">0.027</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">hsa-mir-221-3p</td>
<td rowspan="1" colspan="1">6.13</td>
<td rowspan="1" colspan="1">.002</td>
<td rowspan="1" colspan="1">0.007</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Low expressed miRNAs</td>
<td rowspan="1" colspan="1">hsa-mir-31-5p</td>
<td rowspan="1" colspan="1">0.74</td>
<td rowspan="1" colspan="1">.064</td>
<td rowspan="1" colspan="1">0.028</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">hsa-mir-222-3p</td>
<td rowspan="1" colspan="1">3.93</td>
<td rowspan="1" colspan="1">.0015</td>
<td rowspan="1" colspan="1">0.008</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">hsa-mir-17-5p</td>
<td rowspan="1" colspan="1">8.04</td>
<td rowspan="1" colspan="1">.019</td>
<td rowspan="1" colspan="1">0.083</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">hsa-mir-330-5p</td>
<td rowspan="1" colspan="1">5.55</td>
<td rowspan="1" colspan="1">.021</td>
<td rowspan="1" colspan="1">0.051</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">hsa-mir-330-3p</td>
<td rowspan="1" colspan="1">4.19</td>
<td rowspan="1" colspan="1">.009</td>
<td rowspan="1" colspan="1">0.018</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">hsa-mir-346</td>
<td rowspan="1" colspan="1">2.85</td>
<td rowspan="1" colspan="1">.091</td>
<td rowspan="1" colspan="1">0.003</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">hsa-mir-125b-5p</td>
<td rowspan="1" colspan="1">7.79</td>
<td rowspan="1" colspan="1">.07</td>
<td rowspan="1" colspan="1">0.06</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">hsa-mir-16-5p</td>
<td rowspan="1" colspan="1">8.39</td>
<td rowspan="1" colspan="1">.003</td>
<td rowspan="1" colspan="1">0.031</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="table-fn2-1176935120969692">
<p>Abbreviations: FDR, false discovery rate; miRNAs, micro RNAs.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</sec>
<sec id="section6-1176935120969692">
<title>Functional enrichment analysis</title>
<p>To analyze gene ontology biological processes (BPs) and functional enrichment, ClusterProfiler software in R
<sup>
<xref rid="bibr15-1176935120969692" ref-type="bibr">15</xref>
</sup>
was used with a significant level (
<italic>P</italic>
value < .01;
<xref ref-type="fig" rid="fig1-1176935120969692">Figure 1C</xref>
).</p>
</sec>
<sec id="section7-1176935120969692">
<title>Survival analysis</title>
<p>To identify the prognostic values of genes (
<xref ref-type="fig" rid="fig2-1176935120969692">Figures 2B</xref>
and
<xref ref-type="fig" rid="fig3-1176935120969692">3B</xref>
) and miRNAs (
<xref ref-type="fig" rid="fig5-1176935120969692">Figure 5</xref>
) found by combining data from clinical patients, Kaplan-Meier “survival” software in R
<sup>
<xref rid="bibr16-1176935120969692" ref-type="bibr">16</xref>
</sup>
was used with a
<italic>P</italic>
value < .05.</p>
<fig id="fig5-1176935120969692" orientation="portrait" position="float">
<label>Figure 5.</label>
<caption>
<p>(A) Kaplan-Meier curves for overall patient survival according to highly expressed miRNAs. (B) Low expressed miRNAs. miRNAs indicates micro RNAs.</p>
</caption>
<graphic xlink:href="10.1177_1176935120969692-fig5"></graphic>
</fig>
</sec>
<sec id="section8-1176935120969692">
<title>Construction of the genes and miRNA network</title>
<p>We built the gene expression network involved in LGGs by the GeneMANIA Cytoscape platform (
<ext-link ext-link-type="uri" xlink:href="http://www.genemania.org">http://www.genemania.org</ext-link>
).
<sup>
<xref rid="bibr17-1176935120969692" ref-type="bibr">17</xref>
</sup>
The network of miRNAs was founded on the reasoning that these noncoding RNAs can interact in the regulation of gene activity.
<sup>
<xref rid="bibr18-1176935120969692" ref-type="bibr">18</xref>
</sup>
</p>
<p>To determine the interactions between miRNAs-genes and miRNAs-lncRNAs, the GDCRNATools version 1.7.0 package
<sup>
<xref rid="bibr19-1176935120969692" ref-type="bibr">19</xref>
</sup>
in R software was used to integrate data from StarBase v2.0, miRcode, spongeScan, and miRTarBase v7.0. Finally, the miRNA network has been plotted with Cytoscape version 3.6.0
<sup>
<xref rid="bibr20-1176935120969692" ref-type="bibr">20</xref>
</sup>
(
<xref ref-type="fig" rid="fig4-1176935120969692">Figure 4</xref>
).</p>
</sec>
</sec>
</sec>
<sec sec-type="results" id="section9-1176935120969692">
<title>Results</title>
<sec id="section10-1176935120969692">
<title>Identification of DEGs and miRNAs</title>
<p>We explored 1082 genes (593 highly expressed genes and 489 low expressed genes;
<xref ref-type="fig" rid="fig1-1176935120969692">Figure 1A</xref>
,
<xref ref-type="fig" rid="fig1-1176935120969692">B</xref>
). The top 8 hyper expressed genes are DSCAML1, PEA15, ALDOC, PTPRT, LUZP2, NDRG2, MASP1, and BCAN (
<xref ref-type="fig" rid="fig2-1176935120969692">Figure 2A</xref>
); on the other hand, the top 8 low expressed genes are VEGFA, NAP1L1, COL1A1, NKD2, NNMT, ITGA2, ANXA1, and LOX (
<xref ref-type="fig" rid="fig3-1176935120969692">Figure 3A</xref>
;
<xref rid="table1-1176935120969692" ref-type="table">Table 1</xref>
). Among the genes identified for LGGs, we notice a different expression of the genes between astrocytomas and oligodendrogliomas. The MASP1, LOX, ITGA2, LUZP2, ANXA1, COL1A1, and NNMT genes are more expressed in patients with astrocytomas compared with patients with oligodendrogliomas. Otherwise, patients with oligodendrogliomas are characterized by a strong expression of the DSCAML1, NDRG2, ALDOC, BCAN, PEA15, PTPRT, NAP1L1, and NKD2 genes compared with patients with astrocytomas. However, the VEGFA gene is expressed in the same way for both tumor subtypes (
<xref ref-type="fig" rid="fig2-1176935120969692">Figures 2A</xref>
and
<xref ref-type="fig" rid="fig3-1176935120969692">3A</xref>
). Indeed, we have identified 1954 miRNAs (1343 highly expressed miRNAs and 611 low expressed miRNAs) which similarly expressed between the 2 subtypes of LGGs, including astrocytomas and oligodendrogliomas (
<xref ref-type="fig" rid="fig4-1176935120969692">Figure 4</xref>
).</p>
</sec>
<sec id="section11-1176935120969692">
<title>Pathway analysis of DEGs</title>
<p>We annotated the DEGs to provide systematic and complete information on pathways and biological functions. This analysis showed that changes in BPs, which are a complex of changes in the granularity of the cell, were significantly enriched in histone lysine demethylation, histone demethylation, protein demethylation, protein dealkylation, demethylation, and translational initiation. Changes in the cell component of DEGs, which is the complex structure from which cells are formed, were mainly enriched in the histone methyltransferase complex and methyltransferase. Changes in molecular function that modulates the activity of a gene complex, such as enzyme regulators and channel regulators, were mainly enriched in histone demethylase activity, demethylase activity, and dioxygenase activity (
<xref ref-type="fig" rid="fig1-1176935120969692">Figure 1C</xref>
).</p>
</sec>
<sec id="section12-1176935120969692">
<title>Patient survival analysis</title>
<p>The analysis of the overall survival of the patients as a function of the DEGs showed that patients who have a low expression of the LOX and NAP1L1 genes present a long survival; on the other hand, patients who are characterized by a low expression of the NKD2 and COL1A1 genes and high expression of the NAP1L1 gene show a poor survival.</p>
<p>For miRNAs, the overall survival of the patients was analyzed according to the 8 top highly expressed miRNAs (hsa-mir-18a-5p, hsa-mir-155-5p, hsa-mir-128-3p, hsa-mir-21-5p, hsa-mir-124-3p, hsa-mir-137, hsa-mir-451a, and hsa-mir-221-3p) and 8 top low expressed miRNAs (hsa-mir-31-5p, hsa-mir-222-3p, hsa-mir-17-5p, hsa-mir-330-5p, hsa-mir-330-3p, hsa-mir-346, hsa-mir-125b-5p, and hsa-mir-16-5p) which were expressed significantly differentially in the survival tests (
<xref ref-type="fig" rid="fig3-1176935120969692">Figure 3A</xref>
and
<xref ref-type="fig" rid="fig3-1176935120969692">B</xref>
;
<xref rid="table1-1176935120969692" ref-type="table">Table 1</xref>
). The prognostic value of the miRNAs identified was examined by the Kaplan-Meier method and the log-rank test according to clinical characteristics. It was found that hsa-mir-18a-5p, hsa-mir-330-3p, hsa-mir-15-5p, and hsa-mir-137 have a better prognosis than the other miRNAs identified.</p>
</sec>
<sec id="section13-1176935120969692">
<title>Construction of the gene and miRNA networks</title>
<p>We have built 2 networks: the first (
<xref ref-type="fig" rid="fig6-1176935120969692">Figure 6A</xref>
) contains low expressed genes and the second (
<xref ref-type="fig" rid="fig6-1176935120969692">Figure 6B</xref>
) contains highly expressed genes. These networks are characterized by several types of interaction between the identified genes and other genes. We find in the network (
<xref ref-type="fig" rid="fig6-1176935120969692">Figure 6A</xref>
), physical interactions (pink color), shared protein domains (dark gray color), colocalization of genes (blue color), genes involved in the same pathway (light gray color), and predicted functional relationships between genes (orange color).</p>
<fig id="fig6-1176935120969692" orientation="portrait" position="float">
<label>Figure 6.</label>
<caption>
<p>(A) The network of low expressed genes. (B) The network of highly expressed genes.</p>
</caption>
<graphic xlink:href="10.1177_1176935120969692-fig6"></graphic>
</fig>
<p>The network (
<xref ref-type="fig" rid="fig6-1176935120969692">Figure 6B</xref>
) is characterized by other types of interaction such as the coexpression of genes (purple color) and the genetic interaction between genes (green color).</p>
<p>We constructed the network based on miRNA expression patterns in patients with LGGs (
<xref ref-type="fig" rid="fig7-1176935120969692">Figure 7</xref>
). For the highly expressed miRNAs, a total of 8-node miRNAs, 22 gene nodes, and 90 edges were identified as differentially expressed profiles; on the other side, 8-node miRNAs, 22 nodes of lncRNAs, and 60 edges were identified as differentially expressed profiles (
<xref ref-type="fig" rid="fig4-1176935120969692">Figure 4A</xref>
). For low expressed miRNAs, a total of 8-node miRNAs, 22 gene nodes, and 80 edges were identified as differentially expressed profiles; however, the other part of the network has 8-node miRNAs, 22 nodes of lncRNAs, and 55 edges which were identified as differentially expressed profiles.</p>
<fig id="fig7-1176935120969692" orientation="portrait" position="float">
<label>Figure 7.</label>
<caption>
<p>The miRNA network. (A) The red squares indicate highly expressed miRNAs, the dark blue circles represent genes, and the light blue circles represent lncRNAs. (B) The green squares indicate low expressed miRNAs, the dark blue circles represent genes, and the light blue circles represent lncRNAs. lncRNAs indicates long noncoding RNAs; miRNAs, micro RNAs.</p>
</caption>
<graphic xlink:href="10.1177_1176935120969692-fig7"></graphic>
</fig>
</sec>
</sec>
<sec sec-type="discussion" id="section14-1176935120969692">
<title>Discussion</title>
<p>The development of omics approaches such as transcriptomics and epigenetics opens up new fields in the understanding of carcinogenesis. The overall content of RNA expression and miRNAs involved in LGGs, downloaded from the TCGA database, was analyzed using different types of large-scale methods, different numbers of tumor samples analyzed, as well as various reference samples (nontumor brain tissue). In this study, we have identified the DEGs involved in LGGs including astrocytomas and oligodendrogliomas. We find some genes, such as LUZP2, LOX, NNMT, and MASP1, which are more expressed in astrocytomas compared with oligodendrogliomas and genes, such as NKD2, PTPRT, ALDOC, and BCAN, which are strongly expressed in oligodendrogliomas (
<xref ref-type="fig" rid="fig2-1176935120969692">Figures 2A</xref>
and
<xref ref-type="fig" rid="fig3-1176935120969692">3A</xref>
). We identified the pathways and functions in which differential gene expression is involved. Previous studies have shown that some of the annotated pathways were associated with other types of cancer such as lung cancer, medulloblastoma, breast cancer, and bladder cancer.
<sup>
<xref rid="bibr20-1176935120969692" ref-type="bibr">20</xref>
<xref rid="bibr21-1176935120969692" ref-type="bibr"></xref>
-
<xref rid="bibr22-1176935120969692" ref-type="bibr">22</xref>
</sup>
The overall survival analysis showed that patients who have high expression of the NAP1L1 gene and low expression of the NKD2 and COL1A1 genes have poor survival, in contrast to patients who are characterized by low expression of the LOX and NAP1L1 genes with a long survival (
<xref ref-type="fig" rid="fig2-1176935120969692">Figures 2B</xref>
and
<xref ref-type="fig" rid="fig3-1176935120969692">3B</xref>
). Indeed, we identified 16 miRNAs that were significantly related to the overall survival of patients with LGGs (
<xref ref-type="fig" rid="fig5-1176935120969692">Figure 5</xref>
). However, it is becoming increasingly evident that cancer can rarely be attributed to a single genomic mutation. For example, genes are associated with other types of biomarkers in biological signaling pathways in the form of “networks.”</p>
<p>The network which links the DEGs identified shows several types of interactions. The link between the NKD2 and FUS genes is a physic interaction in which 2 gene products interact in a protein-protein interaction, or the colocalization link between the VEGFA and KDR genes means that the 2 genes are linked if they both are expressed in the same tissue or if their gene products are both identified in the same cellular location. The interaction of the 2 genes COL1A1 and GH1, which participate in the same reaction, is also found within a carbohydrate metabolism pathway. We have other types of interaction such as the functional relationships predicted between the genes as in the case between the NAP1L1 gene with both the HP1BP3 and H2AFJ genes (
<xref ref-type="fig" rid="fig6-1176935120969692">Figure 6A</xref>
). The binding of the coexpression of the genes reveals that the 2 genes have similar levels of expression; it is presented both between the DSCAML1 gene and the PTPRT gene and between the LUZP2 gene and the PEA15. We note the presence of genetic interaction between the BCAN gene and the 2 genes MLC1 and GPR68, which indicates that the genes are functionally associated if the effects of the disturbance of a gene have been shown to be modified by disturbances of a second gene (
<xref ref-type="fig" rid="fig6-1176935120969692">Figure 6B</xref>
). This new reasoning suggests that all transcripts should be combined through shared miRNA response elements (MREs), which could clarify the interactions between biomarkers and their implications for disease. A thorough analysis of the miRNAs can clarify the LGG’s progress, so we have built a network of RNAs based on large-scale TCGA data. Many studies have reported that miRNAs form complex regulatory networks in cell development, differentiation, and homeostasis. They intervene by binding to other RNAs to regulate their secondary structures, targeting them for splicing, transport, translation, and degradation. Deregulation of miRNA function is associated with an increasing number of human diseases, in particular, glioma.
<sup>
<xref rid="bibr23-1176935120969692" ref-type="bibr">23</xref>
<xref rid="bibr24-1176935120969692" ref-type="bibr"></xref>
-
<xref rid="bibr25-1176935120969692" ref-type="bibr">25</xref>
</sup>
Each network contains MREs for a combination of different miRNAs, and therefore, they can have an impact on several genes and target lncRNAs.
<sup>
<xref rid="bibr23-1176935120969692" ref-type="bibr">23</xref>
,
<xref rid="bibr26-1176935120969692" ref-type="bibr">26</xref>
</sup>
</p>
<p>In this study, 16 miRNAs interact with 44 genes and 44 lncRNAs (
<xref ref-type="fig" rid="fig7-1176935120969692">Figure 7</xref>
). Some miRNAs are cited in other studies as hsa-mir-18a-5p which was identified by Chen et al
<sup>
<xref rid="bibr27-1176935120969692" ref-type="bibr">27</xref>
</sup>
as upregulated in brainstem gliomas. Roberta et al
<sup>
<xref rid="bibr28-1176935120969692" ref-type="bibr">28</xref>
</sup>
have shown that hsa-mir-155-5p has antiapoptotic effects and regulates the sensitization of glioma to antitumor drugs. Then, Huo et al
<sup>
<xref rid="bibr29-1176935120969692" ref-type="bibr">29</xref>
</sup>
have identified miR-128-3p as an inhibitor of glioma growth by attacking the neuronal pentraxin 1 protein. Also, Wu et al
<sup>
<xref rid="bibr30-1176935120969692" ref-type="bibr">30</xref>
</sup>
have mentioned that has-mir-124-3p represses cell growth and cell motility by targeting EphA2 in glioma. Mahmoudi and Cairns
<sup>
<xref rid="bibr31-1176935120969692" ref-type="bibr">31</xref>
</sup>
have revealed that mir-137 contributes to several types of cancer, such as neuroblastoma and glioblastoma multiforme. Roberta et al
<sup>
<xref rid="bibr28-1176935120969692" ref-type="bibr">28</xref>
</sup>
cited that gliomas express 2 miRNAs, mir-155-5p and mir-221-3p, and that these are linked to antiapoptotic effects. The miRNAs displayed in the network (
<xref ref-type="fig" rid="fig7-1176935120969692">Figure 7</xref>
) interact with genes and lncRNAs for examination; the PTEN gene is linked with has-mir-221-3p, has-mir-18a-5p, has-mir-21-5p, has-mir-155-5p, and has-mir128-3p. In other studies, Wong et al
<sup>
<xref rid="bibr32-1176935120969692" ref-type="bibr">32</xref>
</sup>
have shown that mir-21 inhibition has been shown to enhance the chemosensitivity of human glioblastoma to Taxol, to activate caspase-3 and -9, and to suppress growth in glioma cells independently of PTEN regulation. Also, we find that Zhang et al
<sup>
<xref rid="bibr33-1176935120969692" ref-type="bibr">33</xref>
</sup>
have indicated that miR-137 may target the 3’-UTR of the epidermal growth factor receptor (EGFR) to reduce its protein translation, resulting in suppression of EGFR signaling in glioblastoma cells. Concerning the SIRT1 gene, it is linked in our network with has-mir-221-3p, hsa-mir-18a-5p, hsa-mir-124-3p, and hsa-mir-155-5p. On the other hand, Romeo et al
<sup>
<xref rid="bibr34-1176935120969692" ref-type="bibr">34</xref>
</sup>
have suggested a role for miRNA-34a, miRNA-132, and miRNA-217 in the epigenetic control of SIRT1 during gliomagenesis and progression. In
<xref ref-type="fig" rid="fig7-1176935120969692">Figure 7</xref>
, the CCND1 gene is bound with hsa-mir-330-5p, hsa-mir-16-5p, and hsa-mir-17-5p, and in the study by Munoz et al,
<sup>
<xref rid="bibr35-1176935120969692" ref-type="bibr">35</xref>
</sup>
they have identified mir-19, 23a/b, 93b, 193, and 373 as an individual target of CCND1. There are also interactions between miRNAs and lncRNAs such as KCNQ1OT1 which acts as a regulator of mir-504.
<sup>
<xref rid="bibr36-1176935120969692" ref-type="bibr">36</xref>
<xref rid="bibr37-1176935120969692" ref-type="bibr"></xref>
-
<xref rid="bibr38-1176935120969692" ref-type="bibr">38</xref>
</sup>
Zhou et al
<sup>
<xref rid="bibr24-1176935120969692" ref-type="bibr">24</xref>
</sup>
discovered that KCNQ1OT1 could cause the development of squamous cell carcinoma of the tongue and inhibit the sensitivity of the tumor to cisplatin. Other important biomarkers are MALAT1, which plays a role in promoting cell proliferation and inactivate ERK/MAPK (mitogen-activated protein kinase) signaling,
<sup>
<xref rid="bibr39-1176935120969692" ref-type="bibr">39</xref>
,
<xref rid="bibr40-1176935120969692" ref-type="bibr">40</xref>
</sup>
and HOTAIR, which binds to EZH2 and promote cell growth.
<sup>
<xref rid="bibr41-1176935120969692" ref-type="bibr">41</xref>
,
<xref rid="bibr42-1176935120969692" ref-type="bibr">42</xref>
</sup>
XIST promotes cell migration and interacts with mir-152.
<sup>
<xref rid="bibr42-1176935120969692" ref-type="bibr">42</xref>
</sup>
In our network, it interacts with hsa-mir-137, hsa-mir-21-5p, hsa-mir-18a-5p, and Gas5, which exerts tumor-suppressive functions in human glioma cells by targeting mir-222.
<sup>
<xref rid="bibr43-1176935120969692" ref-type="bibr">43</xref>
</sup>
Micro RNA interactions with genes and lncRNAs could be potential diagnostic and prognostic biomarkers of LGGs. Some of these key transcripts have also been found in other networks involved in other types of cancer.
<sup>
<xref rid="bibr44-1176935120969692" ref-type="bibr">44</xref>
</sup>
However, the study was based on a bioinformatic analysis using public data from the TCGA database and no further experimental validation was performed. Transcript research is still under development, and many aspects need improvement. Several miRNAs must be clinically validated for use in the diagnosis and prognosis of LGGs.</p>
</sec>
<sec sec-type="conclusions" id="section15-1176935120969692">
<title>Conclusions</title>
<p>In conclusion, this study has successfully applied bioinformatic analysis of epitranscriptomics data to establish a specific miRNA network in LGGs, which should help us to better understand the regulation of genes and lncRNAs by miRNAs and to have a clear idea of the interactions between these biomarkers involved in the gliomagenesis of these cerebral tumors.</p>
</sec>
<sec sec-type="supplementary-material" id="section16-1176935120969692" specific-use="figshare">
<title>Supplemental Material</title>
<supplementary-material content-type="local-data" id="suppl1-1176935120969692">
<caption>
<title>Spp_Mat_analysis – Supplemental material for Bioinformatics Analysis of Differentially Expressed Genes and miRNAs in Low-Grade Gliomas</title>
</caption>
<media xlink:href="Spp_Mat_analysis.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
<p>Supplemental material, Spp_Mat_analysis for Bioinformatics Analysis of Differentially Expressed Genes and miRNAs in Low-Grade Gliomas by Mohammed Amine Bendahou, Azeddine Ibrahimi and Mahjouba Boutarbouch in Cancer Informatics</p>
</supplementary-material>
<supplementary-material content-type="local-data" id="suppl2-1176935120969692">
<caption>
<title>Supp_Mat_edges_and_nodes – Supplemental material for Bioinformatics Analysis of Differentially Expressed Genes and miRNAs in Low-Grade Gliomas</title>
</caption>
<media xlink:href="Supp_Mat_edges_and_nodes.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
<p>Supplemental material, Supp_Mat_edges_and_nodes for Bioinformatics Analysis of Differentially Expressed Genes and miRNAs in Low-Grade Gliomas by Mohammed Amine Bendahou, Azeddine Ibrahimi and Mahjouba Boutarbouch in Cancer Informatics</p>
</supplementary-material>
</sec>
</body>
<back>
<fn-group>
<fn fn-type="financial-disclosure">
<p>
<bold>Funding:</bold>
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was performed under National funding from the Moroccan Ministry of Higher Education & Scientific Research (PPR program) to IA. This work was also supported by a grant from the National Institutes of Health for H3Africa BioNet to IA and Institut Research of the Foundation Lalla Salma, and scholarship of excellence from the National Center for Scientific and Technical Research in Morocco.</p>
</fn>
<fn fn-type="COI-statement">
<p>
<bold>Declaration of Conflicting Interests:</bold>
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.</p>
</fn>
<fn fn-type="con">
<p>
<bold>Author Contributions:</bold>
MAB conceptualized the study, conducted the formal analysis and investigation, and wrote the original draft of the article; IA and MB supervised the study; and all authors developed the study methodology and reviewed and edited the article.</p>
</fn>
<fn fn-type="other">
<p>
<bold>ORCID iD:</bold>
Mohammed Amine Bendahou
<inline-graphic xlink:href="10.1177_1176935120969692-img1.jpg"></inline-graphic>
<ext-link ext-link-type="uri" xlink:href="https://orcid.org/0000-0003-3299-6458">https://orcid.org/0000-0003-3299-6458</ext-link>
</p>
</fn>
<fn fn-type="supplementary-material">
<p>
<bold>Supplemental Material:</bold>
Supplemental material for this article is available online.</p>
</fn>
</fn-group>
<ref-list>
<title>References</title>
<ref id="bibr1-1176935120969692">
<label>1</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wen</surname>
<given-names>PY</given-names>
</name>
<name>
<surname>Huse</surname>
<given-names>JT.</given-names>
</name>
</person-group>
<year>2016</year>
<article-title>world health organization classification of central nervous system tumors</article-title>
.
<source>Continuum (Minneap Minn)</source>
.
<year>2017</year>
;
<volume>23</volume>
:
<fpage>1531</fpage>
-
<lpage>1547</lpage>
.</mixed-citation>
</ref>
<ref id="bibr2-1176935120969692">
<label>2</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bendahou</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Ibrahimi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Boutarbouch</surname>
<given-names>M</given-names>
</name>
</person-group>
,
<etal>et al</etal>
<article-title>Computational Analysis of IDH1, IDH2, and TP53 mutations in low-grade gliomas including oligodendrogliomas and astrocytomas</article-title>
.
<source>Cancer Inform</source>
.
<year>2020</year>
;
<volume>19</volume>
:1176935120915839.</mixed-citation>
</ref>
<ref id="bibr3-1176935120969692">
<label>3</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Diaz</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Shaw</surname>
<given-names>TI</given-names>
</name>
</person-group>
,
<etal>et al</etal>
<article-title>Deep multiomics profiling of brain tumors identifies signaling networks downstream of cancer driver genes</article-title>
.
<source>Nat Commun</source>
.
<year>2019</year>
;
<volume>10</volume>
:
<fpage>3718</fpage>
.
<pub-id pub-id-type="pmid">31420543</pub-id>
</mixed-citation>
</ref>
<ref id="bibr4-1176935120969692">
<label>4</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Z</given-names>
</name>
</person-group>
,
<etal>et al</etal>
<article-title>A comprehensive review of available omics data resources and molecular profiling for precision glioma studies</article-title>
.
<source>Biomed Rep</source>
.
<year>2019</year>
;
<volume>10</volume>
:
<fpage>3</fpage>
-
<lpage>9</lpage>
.
<pub-id pub-id-type="pmid">30588296</pub-id>
</mixed-citation>
</ref>
<ref id="bibr5-1176935120969692">
<label>5</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bendahou</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Ibrahimi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Boutarbouch</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Identification of potential biomarkers for low-grade gliomas by analyzing the genomics profiles and CpG Island methylator phenotype of patients in the TCGA database</article-title>
.
<source>Int J Appl Biol Pharm</source>
.
<volume>2020</volume>
:
<fpage>188</fpage>
-
<lpage>199</lpage>
.</mixed-citation>
</ref>
<ref id="bibr6-1176935120969692">
<label>6</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gebert</surname>
<given-names>LFR</given-names>
</name>
<name>
<surname>MacRae</surname>
<given-names>IJ.</given-names>
</name>
</person-group>
<article-title>Regulation of microRNA function in animals</article-title>
.
<source>Nat Rev Mol Cell Biol</source>
.
<year>2019</year>
;
<volume>20</volume>
:
<fpage>21</fpage>
-
<lpage>37</lpage>
.
<pub-id pub-id-type="pmid">30108335</pub-id>
</mixed-citation>
</ref>
<ref id="bibr7-1176935120969692">
<label>7</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peng</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Croce</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>The role of MicroRNAs in human cancer</article-title>
.
<source>Sig Transduct Target Ther</source>
.
<year>2016</year>
;
<volume>1</volume>
:15004.</mixed-citation>
</ref>
<ref id="bibr8-1176935120969692">
<label>8</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Awad</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Burns</surname>
<given-names>TC</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
</person-group>
,
<etal>et al</etal>
<article-title>Targeting MET for glioma therapy</article-title>
.
<source>Neurosurg Focus</source>
.
<year>2014</year>
;
<volume>37</volume>
:
<fpage>10</fpage>
.</mixed-citation>
</ref>
<ref id="bibr9-1176935120969692">
<label>9</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Babae</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Bourajjaj</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
</person-group>
,
<etal>et al</etal>
<article-title>Systemic miRNA-7 delivery inhibits tumor angiogenesis and growth in murine xenograft glioblastoma</article-title>
.
<source>Oncotarget</source>
.
<year>2014</year>
;
<volume>5</volume>
:
<fpage>6687</fpage>
-
<lpage>6700</lpage>
.
<pub-id pub-id-type="pmid">25149532</pub-id>
</mixed-citation>
</ref>
<ref id="bibr10-1176935120969692">
<label>10</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sanchez Calle</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kawamura</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yamamoto</surname>
<given-names>Y</given-names>
</name>
</person-group>
,
<etal>et al</etal>
<article-title>Emerging roles of long non-coding RNA in cancer</article-title>
.
<source>Cancer Sci</source>
.
<year>2018</year>
;
<volume>109</volume>
:
<fpage>2093</fpage>
-
<lpage>2100</lpage>
.
<pub-id pub-id-type="pmid">29774630</pub-id>
</mixed-citation>
</ref>
<ref id="bibr11-1176935120969692">
<label>11</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>F</given-names>
</name>
</person-group>
,
<etal>et al</etal>
<article-title>Over-expression of the non-coding RNA HOTTIP inhibits glioma cell growth by BRE</article-title>
.
<source>J Exp Clin Cancer Res</source>
.
<year>2016</year>
;
<volume>35</volume>
:
<fpage>162</fpage>
.
<pub-id pub-id-type="pmid">27733185</pub-id>
</mixed-citation>
</ref>
<ref id="bibr12-1176935120969692">
<label>12</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>B</given-names>
</name>
</person-group>
,
<etal>et al</etal>
<article-title>Long non-coding RNA MALAT1 promotes proliferation and suppresses apoptosis of glioma cells through derepressing Rap1B by sponging miR-101</article-title>
.
<source>J Neurooncol</source>
.
<year>2017</year>
;
<volume>134</volume>
:
<fpage>19</fpage>
-
<lpage>28</lpage>
.
<pub-id pub-id-type="pmid">28551849</pub-id>
</mixed-citation>
</ref>
<ref id="bibr13-1176935120969692">
<label>13</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Colaprico</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Silva</surname>
<given-names>TC</given-names>
</name>
<name>
<surname>Olsen</surname>
<given-names>C</given-names>
</name>
</person-group>
,
<etal>et al</etal>
<article-title>TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data</article-title>
.
<source>Nucleic Acids Res</source>
.
<year>2016</year>
;
<volume>44</volume>
:
<fpage>71</fpage>
.</mixed-citation>
</ref>
<ref id="bibr14-1176935120969692">
<label>14</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ritchie</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Phipson</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>D</given-names>
</name>
</person-group>
,
<etal>et al</etal>
<article-title>Limma powers differential expression analyses for RNA-sequencing and microarray studies</article-title>
.
<source>Nucleic Acids Res</source>
.
<year>2015</year>
;
<volume>43</volume>
:
<fpage>47</fpage>
.</mixed-citation>
</ref>
<ref id="bibr15-1176935120969692">
<label>15</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>LG</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>He</surname>
<given-names>QY.</given-names>
</name>
</person-group>
<article-title>ClusterProfiler: an R package for comparing biological themes among gene clusters</article-title>
.
<source>OMICS</source>
.
<year>2012</year>
;
<volume>16</volume>
:
<fpage>284</fpage>
-
<lpage>287</lpage>
.
<pub-id pub-id-type="pmid">22455463</pub-id>
</mixed-citation>
</ref>
<ref id="bibr16-1176935120969692">
<label>16</label>
<mixed-citation publication-type="web">
<person-group person-group-type="author">
<name>
<surname>Lumley</surname>
<given-names>TSR</given-names>
</name>
</person-group>
<article-title>Package survival</article-title>
,
<year>2019</year>
<ext-link ext-link-type="uri" xlink:href="https://cran.r-project.org/web/packages/survival/survival.pdf">https://cran.r-project.org/web/packages/survival/survival.pdf</ext-link>
.</mixed-citation>
</ref>
<ref id="bibr17-1176935120969692">
<label>17</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Warde-Farley</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Donaldson</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Comes</surname>
<given-names>O</given-names>
</name>
</person-group>
,
<etal>et al</etal>
<article-title>The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function</article-title>
.
<source>Nucleic Acids Res</source>
.
<year>2010</year>
;
<volume>38</volume>
:W214-W220.</mixed-citation>
</ref>
<ref id="bibr18-1176935120969692">
<label>18</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sana</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Busek</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Fadrus</surname>
<given-names>P</given-names>
</name>
</person-group>
,
<etal>et al</etal>
<article-title>Identification of microRNAs differentially expressed in glioblastoma stem-like cells and their association with patient survival</article-title>
.
<source>Sci Rep</source>
.
<year>2018</year>
;
<volume>8</volume>
:2836.</mixed-citation>
</ref>
<ref id="bibr19-1176935120969692">
<label>19</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Qu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>S</given-names>
</name>
</person-group>
,
<etal>et al</etal>
<article-title>GDCRNATools: an R/Bioconductor package for integrative analysis of lncRNA, miRNA and mRNA data in GDC</article-title>
.
<source>Bioinformatics</source>
.
<year>2018</year>
;
<volume>34</volume>
:
<fpage>2515</fpage>
-
<lpage>2517</lpage>
.
<pub-id pub-id-type="pmid">29509844</pub-id>
</mixed-citation>
</ref>
<ref id="bibr20-1176935120969692">
<label>20</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Otasek</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Morris</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Bouças</surname>
<given-names>J</given-names>
</name>
</person-group>
,
<etal>et al</etal>
<article-title>Cytoscape Automation: empowering workflow- based network analysis</article-title>
.
<source>Genome Biol</source>
.
<year>2019</year>
;
<volume>20</volume>
:
<fpage>185</fpage>
.
<pub-id pub-id-type="pmid">31477170</pub-id>
</mixed-citation>
</ref>
<ref id="bibr21-1176935120969692">
<label>21</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Tao</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>J</given-names>
</name>
</person-group>
,
<etal>et al</etal>
<article-title>The molecular landscape of histone lysine methyltransferases and demethylases in non-small cell lung cancer</article-title>
.
<source>Int J Med Sci</source>
.
<year>2019</year>
;
<volume>16</volume>
:
<fpage>922</fpage>
-
<lpage>930</lpage>
.
<pub-id pub-id-type="pmid">31341405</pub-id>
</mixed-citation>
</ref>
<ref id="bibr22-1176935120969692">
<label>22</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Janardhan</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kathera</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Darsi</surname>
<given-names>A</given-names>
</name>
</person-group>
,
<etal>et al</etal>
<article-title>Prominent role of histone lysine demethylases in cancer epigenetics and therapy</article-title>
.
<source>Oncotarget</source>
.
<year>2018</year>
;
<volume>9</volume>
:
<fpage>34429</fpage>
-
<lpage>34448</lpage>
.
<pub-id pub-id-type="pmid">30344952</pub-id>
</mixed-citation>
</ref>
<ref id="bibr23-1176935120969692">
<label>23</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhong</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ge</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>LncRNA H19 regulates PI3K–Akt signal pathway by functioning as a ceRNA and predicts poor prognosis in colorectal cancer: integrative analysis of dysregulated ncRNA-associated ceRNA network</article-title>
.
<source>Cancer Cell Int</source>
.
<year>2019</year>
;
<volume>19</volume>
:
<fpage>148</fpage>
.
<pub-id pub-id-type="pmid">31164794</pub-id>
</mixed-citation>
</ref>
<ref id="bibr24-1176935120969692">
<label>24</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>EX</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>QF</given-names>
</name>
</person-group>
,
<etal>et al</etal>
<article-title>Integrated analysis of lncRNA-miRNA-mRNA ceRNA network in squamous cell carcinoma of tongue</article-title>
.
<source>BMC Cancer</source>
.
<year>2019</year>
;
<volume>19</volume>
:
<fpage>779</fpage>
.
<pub-id pub-id-type="pmid">31391008</pub-id>
</mixed-citation>
</ref>
<ref id="bibr25-1176935120969692">
<label>25</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>X</given-names>
</name>
</person-group>
,
<etal>et al</etal>
<article-title>Identification of key candidate genes and pathways in glioblastoma by integrated bioinformatical analysis</article-title>
.
<source>Exp Ther Med</source>
.
<year>2019</year>
;
<volume>18</volume>
:
<fpage>3439</fpage>
-
<lpage>3449</lpage>
.
<pub-id pub-id-type="pmid">31602219</pub-id>
</mixed-citation>
</ref>
<ref id="bibr26-1176935120969692">
<label>26</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Papageorgiou</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Court</surname>
<given-names>MH</given-names>
</name>
</person-group>
<article-title>Identification and validation of the microRNA response elements in the 3’-untranslated region of the UDP glucuronosyltransferase (UGT) 2B7 and 2B15 genes by a functional genomics approach</article-title>
.
<source>Biochem Pharmacol</source>
.
<year>2017</year>
;
<volume>146</volume>
:
<fpage>199</fpage>
-
<lpage>213</lpage>
.
<pub-id pub-id-type="pmid">28962835</pub-id>
</mixed-citation>
</ref>
<ref id="bibr27-1176935120969692">
<label>27</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>C</given-names>
</name>
</person-group>
,
<etal>et al</etal>
<article-title>Identification of grade-associated MicroRNAs in brainstem gliomas based on microarray data</article-title>
.
<source>J Cancer</source>
.
<year>2018</year>
;
<volume>9</volume>
:
<fpage>4463</fpage>
-
<lpage>4476</lpage>
.
<pub-id pub-id-type="pmid">30519352</pub-id>
</mixed-citation>
</ref>
<ref id="bibr28-1176935120969692">
<label>28</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roberta</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Eleonora</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Enrica</surname>
<given-names>F</given-names>
</name>
</person-group>
,
<etal>et al</etal>
<article-title>Targeting miR-155-5p and miR-221-3p by peptide nucleic acids induces caspase-3 activation and apoptosis in temozolomide-resistant T98G glioma cells</article-title>
.
<source>Int J Oncol</source>
.
<year>2019</year>
;
<volume>55</volume>
:
<fpage>59</fpage>
-
<lpage>68</lpage>
.
<pub-id pub-id-type="pmid">31180529</pub-id>
</mixed-citation>
</ref>
<ref id="bibr29-1176935120969692">
<label>29</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huo</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>M</given-names>
</name>
</person-group>
,
<etal>et al</etal>
<article-title>miR-128-3p inhibits glioma cell proliferation and differentiation by targeting NPTX1 through IRS-1/PI3K/AKT signaling pathway</article-title>
.
<source>Exp Ther Med</source>
.
<year>2019</year>
;
<volume>17</volume>
:
<fpage>2921</fpage>
-
<lpage>2930</lpage>
.
<pub-id pub-id-type="pmid">30906475</pub-id>
</mixed-citation>
</ref>
<ref id="bibr30-1176935120969692">
<label>30</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>C</given-names>
</name>
</person-group>
,
<etal>et al</etal>
<article-title>MicroRNA-124-3p represses cell growth and cell motility by targeting EphA2 in glioma</article-title>
.
<source>Biochem Biophys Res Commun</source>
.
<year>2018</year>
;
<volume>503</volume>
:
<fpage>2436</fpage>
-
<lpage>2442</lpage>
.
<pub-id pub-id-type="pmid">29969628</pub-id>
</mixed-citation>
</ref>
<ref id="bibr31-1176935120969692">
<label>31</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mahmoudi</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Cairns</surname>
<given-names>MJ.</given-names>
</name>
</person-group>
<article-title>MiR-137: an important player in neural development and neoplastic transformation</article-title>
.
<source>Mol Psychiatry</source>
.
<year>2017</year>
;
<volume>22</volume>
:
<fpage>44</fpage>
-
<lpage>55</lpage>
.
<pub-id pub-id-type="pmid">27620842</pub-id>
</mixed-citation>
</ref>
<ref id="bibr32-1176935120969692">
<label>32</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wong</surname>
<given-names>ST</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>XQ</given-names>
</name>
<name>
<surname>Zhuang</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>HL</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>GK.</given-names>
</name>
</person-group>
<article-title>MicroRNA-21 inhibition enhances in vitro chemosensitivity of temozolomide-resistant glioblastoma cells</article-title>
.
<source>Anticancer Res</source>
.
<year>2012</year>
;
<volume>32</volume>
:
<fpage>2835</fpage>
-
<lpage>2841</lpage>
.
<pub-id pub-id-type="pmid">22753745</pub-id>
</mixed-citation>
</ref>
<ref id="bibr33-1176935120969692">
<label>33</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Tian</surname>
<given-names>H</given-names>
</name>
</person-group>
,
<etal>et al</etal>
<article-title>MicroRNA-137 inhibits growth of glioblastoma through EGFR suppression</article-title>
.
<source>Am J Transl Res</source>
.
<year>2017</year>
;
<volume>9</volume>
:
<fpage>1492</fpage>
-
<lpage>1499</lpage>
.
<pub-id pub-id-type="pmid">28386374</pub-id>
</mixed-citation>
</ref>
<ref id="bibr34-1176935120969692">
<label>34</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Romeo</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>Conti</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Polito</surname>
<given-names>F</given-names>
</name>
</person-group>
,
<etal>et al</etal>
<article-title>miRNA regulation of Sirtuin-1 expression in human astrocytoma</article-title>
.
<source>Oncol Lett</source>
.
<year>2016</year>
;
<volume>12</volume>
:
<fpage>2992</fpage>
-
<lpage>2998</lpage>
.
<pub-id pub-id-type="pmid">27698888</pub-id>
</mixed-citation>
</ref>
<ref id="bibr35-1176935120969692">
<label>35</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Munoz</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Walker</surname>
<given-names>ND</given-names>
</name>
<name>
<surname>Mareedu</surname>
<given-names>S</given-names>
</name>
</person-group>
,
<etal>et al</etal>
<article-title>Quiescence in temozolomide resistant glioblastoma cells is partly explained by microRNA-93 and -193-mediated decrease of cyclin D</article-title>
.
<source>Front Pharmacol</source>
.
<year>2019</year>
;
<volume>10</volume>
:
<fpage>134</fpage>
.
<pub-id pub-id-type="pmid">30853911</pub-id>
</mixed-citation>
</ref>
<ref id="bibr36-1176935120969692">
<label>36</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Weaver</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Olsen</surname>
<given-names>D</given-names>
</name>
</person-group>
,
<etal>et al</etal>
<article-title>Long non-coding RNA chromogenic in situ hybridisation signal pattern correlation with breast tumour pathology</article-title>
.
<source>J Clin Pathol</source>
.
<year>2016</year>
;
<volume>69</volume>
:
<fpage>76</fpage>
-
<lpage>81</lpage>
.
<pub-id pub-id-type="pmid">26323944</pub-id>
</mixed-citation>
</ref>
<ref id="bibr37-1176935120969692">
<label>37</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Miao</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J</given-names>
</name>
</person-group>
,
<etal>et al</etal>
<article-title>Long non-coding RNA KCNQ1OT1 mediates the growth of hepatocellular carcinoma by functioning as a competing endogenous RNA of miR-504</article-title>
.
<source>Int J Oncol</source>
.
<year>2018</year>
;
<volume>52</volume>
:
<fpage>1603</fpage>
-
<lpage>1612</lpage>
.
<pub-id pub-id-type="pmid">29532864</pub-id>
</mixed-citation>
</ref>
<ref id="bibr38-1176935120969692">
<label>38</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>H</given-names>
</name>
</person-group>
,
<etal>et al</etal>
<article-title>A novel tetranucleotide repeat polymorphism within KCNQ1OT1 confers risk for hepatocellular carcinoma</article-title>
.
<source>DNA Cell Biol</source>
.
<year>2013</year>
;
<volume>32</volume>
:
<fpage>628</fpage>
-
<lpage>634</lpage>
.
<pub-id pub-id-type="pmid">23984860</pub-id>
</mixed-citation>
</ref>
<ref id="bibr39-1176935120969692">
<label>39</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H</given-names>
</name>
</person-group>
,
<etal>et al</etal>
<article-title>Targeting long noncoding RNA in glioma: a pathway perspective</article-title>
.
<source>Mol Ther Nucleic Acids</source>
.
<year>2018</year>
;
<volume>13</volume>
:
<fpage>431</fpage>
-
<lpage>441</lpage>
.
<pub-id pub-id-type="pmid">30388617</pub-id>
</mixed-citation>
</ref>
<ref id="bibr40-1176935120969692">
<label>40</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Han</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>T</given-names>
</name>
</person-group>
,
<etal>et al</etal>
<article-title>Tumor-suppressive function of long noncoding RNA MALAT1 in glioma cells by downregulation of MMP2 and inactivation of ERK/MAPK signaling</article-title>
.
<source>Cell Death Dis</source>
.
<year>2016</year>
;
<volume>7</volume>
:2123.</mixed-citation>
</ref>
<ref id="bibr41-1176935120969692">
<label>41</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>JX</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Bao</surname>
<given-names>ZS</given-names>
</name>
</person-group>
,
<etal>et al</etal>
<article-title>HOTAIR, a cell cycle-associated long noncoding RNA and a strong predictor of survival, is preferentially expressed in classical and mesenchymal glioma</article-title>
.
<source>Neuro Oncol</source>
.
<year>2013</year>
;
<volume>15</volume>
:
<fpage>1595</fpage>
-
<lpage>1603</lpage>
.
<pub-id pub-id-type="pmid">24203894</pub-id>
</mixed-citation>
</ref>
<ref id="bibr42-1176935120969692">
<label>42</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>X</given-names>
</name>
</person-group>
,
<etal>et al</etal>
<article-title>Long non-coding RNA HOTAIR promotes glioblastoma cell cycle progression in an EZH2 dependent manner</article-title>
.
<source>Oncotarget</source>
.
<year>2015</year>
;
<volume>6</volume>
:
<fpage>537</fpage>
-
<lpage>546</lpage>
.
<pub-id pub-id-type="pmid">25428914</pub-id>
</mixed-citation>
</ref>
<ref id="bibr43-1176935120969692">
<label>43</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J</given-names>
</name>
</person-group>
,
<etal>et al</etal>
<article-title>Gas5 Exerts Tumor-suppressive Functions in Human Glioma Cells by Targeting miR-222</article-title>
.
<source>Mol Ther</source>
.
<year>2015</year>
;
<volume>23</volume>
:
<fpage>1899</fpage>
-
<lpage>1911</lpage>
.
<pub-id pub-id-type="pmid">26370254</pub-id>
</mixed-citation>
</ref>
<ref id="bibr44-1176935120969692">
<label>44</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guo</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H</given-names>
</name>
</person-group>
,
<etal>et al</etal>
<article-title>KCNQ1OT1 promotes melanoma growth and metastasis</article-title>
.
<source>Aging (Albany NY)</source>
<year>2018</year>
:
<volume>10</volume>
:
<fpage>632</fpage>
-
<lpage>644</lpage>
.
<pub-id pub-id-type="pmid">29667930</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/MaghrebDataLibMedV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000171  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000171  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    MaghrebDataLibMedV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Wed Jun 30 18:27:05 2021. Site generation: Wed Jun 30 18:34:21 2021