Serveur sur les données et bibliothèques médicales au Maghreb (version finale)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0000560 ( Pmc/Corpus ); précédent : 0000559; suivant : 0000561 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Novel amphiphilic pyridinium ionic liquids-supported Schiff bases: ultrasound assisted synthesis, molecular docking and anticancer evaluation</title>
<author>
<name sortKey="Al Blewi, Fawzia Faleh" sort="Al Blewi, Fawzia Faleh" uniqKey="Al Blewi F" first="Fawzia Faleh" last="Al-Blewi">Fawzia Faleh Al-Blewi</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1754 9358</institution-id>
<institution-id institution-id-type="GRID">grid.412892.4</institution-id>
<institution>Department of Chemistry, Faculty of Science,</institution>
<institution>Taibah University,</institution>
</institution-wrap>
Al-Madinah Al-Munawarah, Medina, 30002 Saudi Arabia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rezki, Nadjet" sort="Rezki, Nadjet" uniqKey="Rezki N" first="Nadjet" last="Rezki">Nadjet Rezki</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1754 9358</institution-id>
<institution-id institution-id-type="GRID">grid.412892.4</institution-id>
<institution>Department of Chemistry, Faculty of Science,</institution>
<institution>Taibah University,</institution>
</institution-wrap>
Al-Madinah Al-Munawarah, Medina, 30002 Saudi Arabia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">Department of Chemistry, Faculty of Sciences, University of Sciences and Technology Mohamed Boudiaf, Laboratoire de Chimie et Electrochimie des Complexes Metalliques (LCECM) USTO-MB, P.O. Box 1505, El M‘nouar, 31000 Oran, Algeria</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Al Sodies, Salsabeel Abdullah" sort="Al Sodies, Salsabeel Abdullah" uniqKey="Al Sodies S" first="Salsabeel Abdullah" last="Al-Sodies">Salsabeel Abdullah Al-Sodies</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1754 9358</institution-id>
<institution-id institution-id-type="GRID">grid.412892.4</institution-id>
<institution>Department of Chemistry, Faculty of Science,</institution>
<institution>Taibah University,</institution>
</institution-wrap>
Al-Madinah Al-Munawarah, Medina, 30002 Saudi Arabia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bardaweel, Sanaa K" sort="Bardaweel, Sanaa K" uniqKey="Bardaweel S" first="Sanaa K." last="Bardaweel">Sanaa K. Bardaweel</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2174 4509</institution-id>
<institution-id institution-id-type="GRID">grid.9670.8</institution-id>
<institution>Department of Pharmaceutical Sciences, Faculty of Pharmacy,</institution>
<institution>University of Jordan,</institution>
</institution-wrap>
Amman, 11942 Jordan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sabbah, Dima A" sort="Sabbah, Dima A" uniqKey="Sabbah D" first="Dima A." last="Sabbah">Dima A. Sabbah</name>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.443348.c</institution-id>
<institution>Faculty of Pharmacy,</institution>
<institution>Al-Zaytoonah University,</institution>
</institution-wrap>
Amman, 11733 Jordan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Messali, Mouslim" sort="Messali, Mouslim" uniqKey="Messali M" first="Mouslim" last="Messali">Mouslim Messali</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1754 9358</institution-id>
<institution-id institution-id-type="GRID">grid.412892.4</institution-id>
<institution>Department of Chemistry, Faculty of Science,</institution>
<institution>Taibah University,</institution>
</institution-wrap>
Al-Madinah Al-Munawarah, Medina, 30002 Saudi Arabia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Aouad, Mohamed Reda" sort="Aouad, Mohamed Reda" uniqKey="Aouad M" first="Mohamed Reda" last="Aouad">Mohamed Reda Aouad</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1754 9358</institution-id>
<institution-id institution-id-type="GRID">grid.412892.4</institution-id>
<institution>Department of Chemistry, Faculty of Science,</institution>
<institution>Taibah University,</institution>
</institution-wrap>
Al-Madinah Al-Munawarah, Medina, 30002 Saudi Arabia</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">30467608</idno>
<idno type="pmc">6768046</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6768046</idno>
<idno type="RBID">PMC:6768046</idno>
<idno type="doi">10.1186/s13065-018-0489-z</idno>
<date when="2018">2018</date>
<idno type="wicri:Area/Pmc/Corpus">000056</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000056</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Novel amphiphilic pyridinium ionic liquids-supported Schiff bases: ultrasound assisted synthesis, molecular docking and anticancer evaluation</title>
<author>
<name sortKey="Al Blewi, Fawzia Faleh" sort="Al Blewi, Fawzia Faleh" uniqKey="Al Blewi F" first="Fawzia Faleh" last="Al-Blewi">Fawzia Faleh Al-Blewi</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1754 9358</institution-id>
<institution-id institution-id-type="GRID">grid.412892.4</institution-id>
<institution>Department of Chemistry, Faculty of Science,</institution>
<institution>Taibah University,</institution>
</institution-wrap>
Al-Madinah Al-Munawarah, Medina, 30002 Saudi Arabia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rezki, Nadjet" sort="Rezki, Nadjet" uniqKey="Rezki N" first="Nadjet" last="Rezki">Nadjet Rezki</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1754 9358</institution-id>
<institution-id institution-id-type="GRID">grid.412892.4</institution-id>
<institution>Department of Chemistry, Faculty of Science,</institution>
<institution>Taibah University,</institution>
</institution-wrap>
Al-Madinah Al-Munawarah, Medina, 30002 Saudi Arabia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">Department of Chemistry, Faculty of Sciences, University of Sciences and Technology Mohamed Boudiaf, Laboratoire de Chimie et Electrochimie des Complexes Metalliques (LCECM) USTO-MB, P.O. Box 1505, El M‘nouar, 31000 Oran, Algeria</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Al Sodies, Salsabeel Abdullah" sort="Al Sodies, Salsabeel Abdullah" uniqKey="Al Sodies S" first="Salsabeel Abdullah" last="Al-Sodies">Salsabeel Abdullah Al-Sodies</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1754 9358</institution-id>
<institution-id institution-id-type="GRID">grid.412892.4</institution-id>
<institution>Department of Chemistry, Faculty of Science,</institution>
<institution>Taibah University,</institution>
</institution-wrap>
Al-Madinah Al-Munawarah, Medina, 30002 Saudi Arabia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bardaweel, Sanaa K" sort="Bardaweel, Sanaa K" uniqKey="Bardaweel S" first="Sanaa K." last="Bardaweel">Sanaa K. Bardaweel</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2174 4509</institution-id>
<institution-id institution-id-type="GRID">grid.9670.8</institution-id>
<institution>Department of Pharmaceutical Sciences, Faculty of Pharmacy,</institution>
<institution>University of Jordan,</institution>
</institution-wrap>
Amman, 11942 Jordan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sabbah, Dima A" sort="Sabbah, Dima A" uniqKey="Sabbah D" first="Dima A." last="Sabbah">Dima A. Sabbah</name>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.443348.c</institution-id>
<institution>Faculty of Pharmacy,</institution>
<institution>Al-Zaytoonah University,</institution>
</institution-wrap>
Amman, 11733 Jordan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Messali, Mouslim" sort="Messali, Mouslim" uniqKey="Messali M" first="Mouslim" last="Messali">Mouslim Messali</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1754 9358</institution-id>
<institution-id institution-id-type="GRID">grid.412892.4</institution-id>
<institution>Department of Chemistry, Faculty of Science,</institution>
<institution>Taibah University,</institution>
</institution-wrap>
Al-Madinah Al-Munawarah, Medina, 30002 Saudi Arabia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Aouad, Mohamed Reda" sort="Aouad, Mohamed Reda" uniqKey="Aouad M" first="Mohamed Reda" last="Aouad">Mohamed Reda Aouad</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1754 9358</institution-id>
<institution-id institution-id-type="GRID">grid.412892.4</institution-id>
<institution>Department of Chemistry, Faculty of Science,</institution>
<institution>Taibah University,</institution>
</institution-wrap>
Al-Madinah Al-Munawarah, Medina, 30002 Saudi Arabia</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Chemistry Central Journal</title>
<idno type="eISSN">1752-153X</idno>
<imprint>
<date when="2018">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Background</title>
<p id="Par1">Pyridinium Schiff bases and ionic liquids have attracted increasing interest in medicinal chemistry.</p>
</sec>
<sec>
<title>Results</title>
<p id="Par2">A library of 32 cationic fluorinated pyridinium hydrazone-based amphiphiles tethering fluorinated counteranions was synthesized by alkylation of 4-fluoropyridine hydrazone with various long alkyl iodide exploiting lead quaternization and metathesis strategies. All compounds were assessed for their anticancer inhibition activity towards different cancer cell lines and the results revealed that increasing the length of the hydrophobic chain of the synthesized analogues appears to significantly enhance their anticancer activities. Substantial increase in caspase-3 activity was demonstrated upon treatment with the most potent compounds, namely
<bold>8</bold>
,
<bold>28</bold>
,
<bold>29</bold>
and
<bold>32</bold>
suggesting an apoptotic cellular death pathway.</p>
</sec>
<sec>
<title>Conclusions</title>
<p id="Par3">Quantum-polarized ligand docking studies against phosphoinositide 3-kinase α displayed that compounds
<bold>2</bold>
<bold>6</bold>
bind to the kinase site and form H-bond with S774, K802, H917 and D933.
<graphic position="anchor" xlink:href="13065_2018_489_Figa_HTML" id="MO1"></graphic>
</p>
</sec>
<sec>
<title>Electronic supplementary material</title>
<p>The online version of this article (10.1186/s13065-018-0489-z) contains supplementary material, which is available to authorized users.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Rollas, S" uniqKey="Rollas S">S Rollas</name>
</author>
<author>
<name sortKey="Kucukguzel, Sg" uniqKey="Kucukguzel S">SG Küçükgüzel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Verma, G" uniqKey="Verma G">G Verma</name>
</author>
<author>
<name sortKey="Marella, A" uniqKey="Marella A">A Marella</name>
</author>
<author>
<name sortKey="Shaquiquzzaman, M" uniqKey="Shaquiquzzaman M">M Shaquiquzzaman</name>
</author>
<author>
<name sortKey="Akhtar, M" uniqKey="Akhtar M">M Akhtar</name>
</author>
<author>
<name sortKey="Ali, Mr" uniqKey="Ali M">MR Ali</name>
</author>
<author>
<name sortKey="Alam, Mm" uniqKey="Alam M">MM Alam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pieczonka, Am" uniqKey="Pieczonka A">AM Pieczonka</name>
</author>
<author>
<name sortKey="Strzelczyk, A" uniqKey="Strzelczyk A">A Strzelczyk</name>
</author>
<author>
<name sortKey="Sadowska, B" uniqKey="Sadowska B">B Sadowska</name>
</author>
<author>
<name sortKey="Mlosto, G" uniqKey="Mlosto G">G Mlostoń</name>
</author>
<author>
<name sortKey="St Czek, P" uniqKey="St Czek P">P Stączek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kumar, P" uniqKey="Kumar P">P Kumar</name>
</author>
<author>
<name sortKey="Narasimhan, B" uniqKey="Narasimhan B">B Narasimhan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ahmed, He" uniqKey="Ahmed H">HE Ahmed</name>
</author>
<author>
<name sortKey="Abdel Salam, Ha" uniqKey="Abdel Salam H">HA Abdel-Salam</name>
</author>
<author>
<name sortKey="Shaker, Ma" uniqKey="Shaker M">MA Shaker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Savini, L" uniqKey="Savini L">L Savini</name>
</author>
<author>
<name sortKey="Chiasserini, L" uniqKey="Chiasserini L">L Chiasserini</name>
</author>
<author>
<name sortKey="Travagli, V" uniqKey="Travagli V">V Travagli</name>
</author>
<author>
<name sortKey="Pellerano, C" uniqKey="Pellerano C">C Pellerano</name>
</author>
<author>
<name sortKey="Novellino, E" uniqKey="Novellino E">E Novellino</name>
</author>
<author>
<name sortKey="Cosentino, S" uniqKey="Cosentino S">S Cosentino</name>
</author>
<author>
<name sortKey="Pisano, Mb" uniqKey="Pisano M">MB Pisano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alt Ntop, Md" uniqKey="Alt Ntop M">MD Altıntop</name>
</author>
<author>
<name sortKey="Ozdemir, A" uniqKey="Ozdemir A">A Özdemir</name>
</author>
<author>
<name sortKey="Turan Zitouni, G" uniqKey="Turan Zitouni G">G Turan-Zitouni</name>
</author>
<author>
<name sortKey="Ilg N, S" uniqKey="Ilg N S">S Ilgın</name>
</author>
<author>
<name sortKey="Atl, O" uniqKey="Atl O">Ö Atlı</name>
</author>
<author>
<name sortKey=" Can, G" uniqKey=" Can G">G İşcan</name>
</author>
<author>
<name sortKey="Kaplanc Kl, Za" uniqKey="Kaplanc Kl Z">ZA Kaplancıklı</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, K" uniqKey="Chen K">K Chen</name>
</author>
<author>
<name sortKey="Hu, Y" uniqKey="Hu Y">Y Hu</name>
</author>
<author>
<name sortKey="Li, Q Sh" uniqKey="Li Q">Q-Sh Li</name>
</author>
<author>
<name sortKey="Lu, X" uniqKey="Lu X">X Lu</name>
</author>
<author>
<name sortKey="Yan, R" uniqKey="Yan R">R Yan</name>
</author>
<author>
<name sortKey="Zhu, H L" uniqKey="Zhu H">H-L Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lamaty, F" uniqKey="Lamaty F">F Lamaty</name>
</author>
<author>
<name sortKey="Martin, Ch" uniqKey="Martin C">Ch Martin</name>
</author>
<author>
<name sortKey="Martinez, J" uniqKey="Martinez J">J Martinez</name>
</author>
<author>
<name sortKey="Nun, P" uniqKey="Nun P">P Nun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tiwari, Vk" uniqKey="Tiwari V">VK Tiwari</name>
</author>
<author>
<name sortKey="Dubey, Ak" uniqKey="Dubey A">AK Dubey</name>
</author>
<author>
<name sortKey="Dikshit, Sn" uniqKey="Dikshit S">SN Dikshit</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Neha, S" uniqKey="Neha S">S Neha</name>
</author>
<author>
<name sortKey="Ritu, R" uniqKey="Ritu R">R Ritu</name>
</author>
<author>
<name sortKey="Manju, K" uniqKey="Manju K">K Manju</name>
</author>
<author>
<name sortKey="Birendra, K" uniqKey="Birendra K">K Birendra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Padmini, K" uniqKey="Padmini K">K Padmini</name>
</author>
<author>
<name sortKey="Preethi, Pj" uniqKey="Preethi P">PJ Preethi</name>
</author>
<author>
<name sortKey="Divya, M" uniqKey="Divya M">M Divya</name>
</author>
<author>
<name sortKey="Rohini, P" uniqKey="Rohini P">P Rohini</name>
</author>
<author>
<name sortKey="Lohita, M" uniqKey="Lohita M">M Lohita</name>
</author>
<author>
<name sortKey="Swetha, K" uniqKey="Swetha K">K Swetha</name>
</author>
<author>
<name sortKey="Kaladar, Pa" uniqKey="Kaladar P">PA Kaladar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Messali, M" uniqKey="Messali M">M Messali</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Messali, M" uniqKey="Messali M">M Messali</name>
</author>
<author>
<name sortKey="Almtiri, Mn" uniqKey="Almtiri M">MN Almtiri</name>
</author>
<author>
<name sortKey="Abderrahman, B" uniqKey="Abderrahman B">B Abderrahman</name>
</author>
<author>
<name sortKey="Salghi, R" uniqKey="Salghi R">R Salghi</name>
</author>
<author>
<name sortKey="Aouad, Mr" uniqKey="Aouad M">MR Aouad</name>
</author>
<author>
<name sortKey="Alshahateet, Sf" uniqKey="Alshahateet S">SF Alshahateet</name>
</author>
<author>
<name sortKey="Ali, Aa Sh" uniqKey="Ali A">AA-Sh Ali</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harjani, Jr" uniqKey="Harjani J">JR Harjani</name>
</author>
<author>
<name sortKey="Singer, Rd" uniqKey="Singer R">RD Singer</name>
</author>
<author>
<name sortKey="Garcia, Mt" uniqKey="Garcia M">MT Garcia</name>
</author>
<author>
<name sortKey="Scammells, Pj" uniqKey="Scammells P">PJ Scammells</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rezki, N" uniqKey="Rezki N">N Rezki</name>
</author>
<author>
<name sortKey="Al Sodies, Sa" uniqKey="Al Sodies S">SA Al-Sodies</name>
</author>
<author>
<name sortKey="Aouad, Mr" uniqKey="Aouad M">MR Aouad</name>
</author>
<author>
<name sortKey="Bardaweel, S" uniqKey="Bardaweel S">S Bardaweel</name>
</author>
<author>
<name sortKey="Messali, M" uniqKey="Messali M">M Messali</name>
</author>
<author>
<name sortKey="El Ashry, Esh" uniqKey="El Ashry E">ESH El Ashry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rezki, N" uniqKey="Rezki N">N Rezki</name>
</author>
<author>
<name sortKey="Al Yahyawi, Am" uniqKey="Al Yahyawi A">AM Al-Yahyawi</name>
</author>
<author>
<name sortKey="Bardaweel, Sk" uniqKey="Bardaweel S">SK Bardaweel</name>
</author>
<author>
<name sortKey="Al Blewi, Ff" uniqKey="Al Blewi F">FF Al-Blewi</name>
</author>
<author>
<name sortKey="Aouad, Mr" uniqKey="Aouad M">MR Aouad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aouad, Mr" uniqKey="Aouad M">MR Aouad</name>
</author>
<author>
<name sortKey="Messali, M" uniqKey="Messali M">M Messali</name>
</author>
<author>
<name sortKey="Rezki, N" uniqKey="Rezki N">N Rezki</name>
</author>
<author>
<name sortKey="Ali, Aa Sh" uniqKey="Ali A">AA-Sh Ali</name>
</author>
<author>
<name sortKey="Lesimple, A" uniqKey="Lesimple A">A Lesimple</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aouad, Mr" uniqKey="Aouad M">MR Aouad</name>
</author>
<author>
<name sortKey="Rezki, N" uniqKey="Rezki N">N Rezki</name>
</author>
<author>
<name sortKey="Kasmi, M" uniqKey="Kasmi M">M Kasmi</name>
</author>
<author>
<name sortKey="Aouad, L" uniqKey="Aouad L">L Aouad</name>
</author>
<author>
<name sortKey="Rezki, Ma" uniqKey="Rezki M">MA Rezki</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, C H" uniqKey="Huang C">C-H Huang</name>
</author>
<author>
<name sortKey="Mandelker, D" uniqKey="Mandelker D">D Mandelker</name>
</author>
<author>
<name sortKey="Schmidt Kittler, O" uniqKey="Schmidt Kittler O">O Schmidt-Kittler</name>
</author>
<author>
<name sortKey="Samuels, Y" uniqKey="Samuels Y">Y Samuels</name>
</author>
<author>
<name sortKey="Velculescu, Ve" uniqKey="Velculescu V">VE Velculescu</name>
</author>
<author>
<name sortKey="Kinzler, Kw" uniqKey="Kinzler K">KW Kinzler</name>
</author>
<author>
<name sortKey="Vogelstein, B" uniqKey="Vogelstein B">B Vogelstein</name>
</author>
<author>
<name sortKey="Gabelli, Sb" uniqKey="Gabelli S">SB Gabelli</name>
</author>
<author>
<name sortKey="Amzel, Lm" uniqKey="Amzel L">LM Amzel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ebi, H" uniqKey="Ebi H">H Ebi</name>
</author>
<author>
<name sortKey="Costa, C" uniqKey="Costa C">C Costa</name>
</author>
<author>
<name sortKey="Faber, Ac" uniqKey="Faber A">AC Faber</name>
</author>
<author>
<name sortKey="Nishtala, M" uniqKey="Nishtala M">M Nishtala</name>
</author>
<author>
<name sortKey="Kotani, H" uniqKey="Kotani H">H Kotani</name>
</author>
<author>
<name sortKey="Juric, D" uniqKey="Juric D">D Juric</name>
</author>
<author>
<name sortKey="Della Pelle, P" uniqKey="Della Pelle P">P Della-Pelle</name>
</author>
<author>
<name sortKey="Song, Y" uniqKey="Song Y">Y Song</name>
</author>
<author>
<name sortKey="Yano, S" uniqKey="Yano S">S Yano</name>
</author>
<author>
<name sortKey="Mino Kenudson, M" uniqKey="Mino Kenudson M">M Mino-Kenudson</name>
</author>
<author>
<name sortKey="Benes, Ch" uniqKey="Benes C">CH Benes</name>
</author>
<author>
<name sortKey="Engelman, Ja" uniqKey="Engelman J">JA Engelman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sanchez, Cg" uniqKey="Sanchez C">CG Sanchez</name>
</author>
<author>
<name sortKey="Ma, Cx" uniqKey="Ma C">CX Ma</name>
</author>
<author>
<name sortKey="Crowder, Rj" uniqKey="Crowder R">RJ Crowder</name>
</author>
<author>
<name sortKey="Guintoli, T" uniqKey="Guintoli T">T Guintoli</name>
</author>
<author>
<name sortKey="Phommaly, C" uniqKey="Phommaly C">C Phommaly</name>
</author>
<author>
<name sortKey="Gao, F" uniqKey="Gao F">F Gao</name>
</author>
<author>
<name sortKey="Lin, L" uniqKey="Lin L">L Lin</name>
</author>
<author>
<name sortKey="Ellis, Mj" uniqKey="Ellis M">MJ Ellis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spangle, Jm" uniqKey="Spangle J">JM Spangle</name>
</author>
<author>
<name sortKey="Dreijerink, Km" uniqKey="Dreijerink K">KM Dreijerink</name>
</author>
<author>
<name sortKey="Groner, Ac" uniqKey="Groner A">AC Groner</name>
</author>
<author>
<name sortKey="Cheng, H" uniqKey="Cheng H">H Cheng</name>
</author>
<author>
<name sortKey="Ohlson, Ce" uniqKey="Ohlson C">CE Ohlson</name>
</author>
<author>
<name sortKey="Reyes, J" uniqKey="Reyes J">J Reyes</name>
</author>
<author>
<name sortKey="Lin, Cy" uniqKey="Lin C">CY Lin</name>
</author>
<author>
<name sortKey="Bradner, J" uniqKey="Bradner J">J Bradner</name>
</author>
<author>
<name sortKey="Zhao, Jj" uniqKey="Zhao J">JJ Zhao</name>
</author>
<author>
<name sortKey="Roberts, Tm" uniqKey="Roberts T">TM Roberts</name>
</author>
<author>
<name sortKey="Brown, M" uniqKey="Brown M">M Brown</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kataoka, Y" uniqKey="Kataoka Y">Y Kataoka</name>
</author>
<author>
<name sortKey="Mukohara, T" uniqKey="Mukohara T">T Mukohara</name>
</author>
<author>
<name sortKey="Shimada, H" uniqKey="Shimada H">H Shimada</name>
</author>
<author>
<name sortKey="Saijo, N" uniqKey="Saijo N">N Saijo</name>
</author>
<author>
<name sortKey="Hirai, M" uniqKey="Hirai M">M Hirai</name>
</author>
<author>
<name sortKey="Minami, H" uniqKey="Minami H">H Minami</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sabine, Vs" uniqKey="Sabine V">VS Sabine</name>
</author>
<author>
<name sortKey="Crozier, C" uniqKey="Crozier C">C Crozier</name>
</author>
<author>
<name sortKey="Brookes, Cl" uniqKey="Brookes C">CL Brookes</name>
</author>
<author>
<name sortKey="Drake, C" uniqKey="Drake C">C Drake</name>
</author>
<author>
<name sortKey="Piper, T" uniqKey="Piper T">T Piper</name>
</author>
<author>
<name sortKey="Van De Velde, Cj" uniqKey="Van De Velde C">CJ Van de Velde</name>
</author>
<author>
<name sortKey="Hasenburg, A" uniqKey="Hasenburg A">A Hasenburg</name>
</author>
<author>
<name sortKey="Kieback, Dg" uniqKey="Kieback D">DG Kieback</name>
</author>
<author>
<name sortKey="Markopoulos, C" uniqKey="Markopoulos C">C Markopoulos</name>
</author>
<author>
<name sortKey="Dirix, L" uniqKey="Dirix L">L Dirix</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="J L, Liu" uniqKey="J L L">Liu J-l</name>
</author>
<author>
<name sortKey="Gao, G R" uniqKey="Gao G">G-R Gao</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X Zhang</name>
</author>
<author>
<name sortKey="Cao, S F" uniqKey="Cao S">S-F Cao</name>
</author>
<author>
<name sortKey="Guo, C L" uniqKey="Guo C">C-L Guo</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
<author>
<name sortKey="Tong, L J" uniqKey="Tong L">L-J Tong</name>
</author>
<author>
<name sortKey="Ding, J" uniqKey="Ding J">J Ding</name>
</author>
<author>
<name sortKey="Duan, W H" uniqKey="Duan W">W-H Duan</name>
</author>
<author>
<name sortKey="Meng, L H" uniqKey="Meng L">L-H Meng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hidalgo, Ij" uniqKey="Hidalgo I">IJ Hidalgo</name>
</author>
<author>
<name sortKey="Raub, Tj" uniqKey="Raub T">TJ Raub</name>
</author>
<author>
<name sortKey="Borchardt, Rt" uniqKey="Borchardt R">RT Borchardt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sambuy, Y" uniqKey="Sambuy Y">Y Sambuy</name>
</author>
<author>
<name sortKey="De Angelis, I" uniqKey="De Angelis I">I De Angelis</name>
</author>
<author>
<name sortKey="Ranaldi, G" uniqKey="Ranaldi G">G Ranaldi</name>
</author>
<author>
<name sortKey="Scarino, M" uniqKey="Scarino M">M Scarino</name>
</author>
<author>
<name sortKey="Stammati, A" uniqKey="Stammati A">A Stammati</name>
</author>
<author>
<name sortKey="Zucco, F" uniqKey="Zucco F">F Zucco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leone, V" uniqKey="Leone V">V Leone</name>
</author>
<author>
<name sortKey="Di Palma, A" uniqKey="Di Palma A">A Di Palma</name>
</author>
<author>
<name sortKey="Ricchi, P" uniqKey="Ricchi P">P Ricchi</name>
</author>
<author>
<name sortKey="Acquaviva, F" uniqKey="Acquaviva F">F Acquaviva</name>
</author>
<author>
<name sortKey="Giannouli, M" uniqKey="Giannouli M">M Giannouli</name>
</author>
<author>
<name sortKey="Di Prisco, Am" uniqKey="Di Prisco A">AM Di Prisco</name>
</author>
<author>
<name sortKey="Iuliano, F" uniqKey="Iuliano F">F Iuliano</name>
</author>
<author>
<name sortKey="Acquaviva, Am" uniqKey="Acquaviva A">AM Acquaviva</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Cm" uniqKey="Lee C">CM Lee</name>
</author>
<author>
<name sortKey="Fuhrman, Cb" uniqKey="Fuhrman C">CB Fuhrman</name>
</author>
<author>
<name sortKey="Planelles, V" uniqKey="Planelles V">V Planelles</name>
</author>
<author>
<name sortKey="Peltier, Mr" uniqKey="Peltier M">MR Peltier</name>
</author>
<author>
<name sortKey="Gaffney, Dk" uniqKey="Gaffney D">DK Gaffney</name>
</author>
<author>
<name sortKey="Soisson, Ap" uniqKey="Soisson A">AP Soisson</name>
</author>
<author>
<name sortKey="Dodson, Mk" uniqKey="Dodson M">MK Dodson</name>
</author>
<author>
<name sortKey="Tolley, Hd" uniqKey="Tolley H">HD Tolley</name>
</author>
<author>
<name sortKey="Green, Cl" uniqKey="Green C">CL Green</name>
</author>
<author>
<name sortKey="Zempolich, Ka" uniqKey="Zempolich K">KA Zempolich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sarbassov, Dd" uniqKey="Sarbassov D">DD Sarbassov</name>
</author>
<author>
<name sortKey="Guertin, Da" uniqKey="Guertin D">DA Guertin</name>
</author>
<author>
<name sortKey="Ali, Sm" uniqKey="Ali S">SM Ali</name>
</author>
<author>
<name sortKey="Sabatini, Dm" uniqKey="Sabatini D">DM Sabatini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, S" uniqKey="Lee S">S Lee</name>
</author>
<author>
<name sortKey="Choi, E J" uniqKey="Choi E">E-J Choi</name>
</author>
<author>
<name sortKey="Jin, C" uniqKey="Jin C">C Jin</name>
</author>
<author>
<name sortKey="Kim, D H" uniqKey="Kim D">D-H Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sabbah, Da" uniqKey="Sabbah D">DA Sabbah</name>
</author>
<author>
<name sortKey="Simms, Na" uniqKey="Simms N">NA Simms</name>
</author>
<author>
<name sortKey="Brattain, Mg" uniqKey="Brattain M">MG Brattain</name>
</author>
<author>
<name sortKey="Vennerstrom, Jl" uniqKey="Vennerstrom J">JL Vennerstrom</name>
</author>
<author>
<name sortKey="Zhong, H" uniqKey="Zhong H">H Zhong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sabbah, Da" uniqKey="Sabbah D">DA Sabbah</name>
</author>
<author>
<name sortKey="Simms, Na" uniqKey="Simms N">NA Simms</name>
</author>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W Wang</name>
</author>
<author>
<name sortKey="Dong, Y" uniqKey="Dong Y">Y Dong</name>
</author>
<author>
<name sortKey="Ezell, El" uniqKey="Ezell E">EL Ezell</name>
</author>
<author>
<name sortKey="Brattain, Mg" uniqKey="Brattain M">MG Brattain</name>
</author>
<author>
<name sortKey="Vennerstrom, Jl" uniqKey="Vennerstrom J">JL Vennerstrom</name>
</author>
<author>
<name sortKey="Zhong, Ha" uniqKey="Zhong H">HA Zhong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Friesner, Ra" uniqKey="Friesner R">RA Friesner</name>
</author>
<author>
<name sortKey="Banks, Jl" uniqKey="Banks J">JL Banks</name>
</author>
<author>
<name sortKey="Murphy, Rb" uniqKey="Murphy R">RB Murphy</name>
</author>
<author>
<name sortKey="Halgren, Ta" uniqKey="Halgren T">TA Halgren</name>
</author>
<author>
<name sortKey="Klicic, Jj" uniqKey="Klicic J">JJ Klicic</name>
</author>
<author>
<name sortKey="Mainz, Dt" uniqKey="Mainz D">DT Mainz</name>
</author>
<author>
<name sortKey="Repasky, Mp" uniqKey="Repasky M">MP Repasky</name>
</author>
<author>
<name sortKey="Knoll, Eh" uniqKey="Knoll E">EH Knoll</name>
</author>
<author>
<name sortKey="Shelley, M" uniqKey="Shelley M">M Shelley</name>
</author>
<author>
<name sortKey="Perry, Jk" uniqKey="Perry J">JK Perry</name>
</author>
<author>
<name sortKey="Shaw, De" uniqKey="Shaw D">DE Shaw</name>
</author>
<author>
<name sortKey="Francis, P" uniqKey="Francis P">P Francis</name>
</author>
<author>
<name sortKey="Shenkin, Ps" uniqKey="Shenkin P">PS Shenkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Friesner, Ra" uniqKey="Friesner R">RA Friesner</name>
</author>
<author>
<name sortKey="Murphy, Rb" uniqKey="Murphy R">RB Murphy</name>
</author>
<author>
<name sortKey="Repasky, Mp" uniqKey="Repasky M">MP Repasky</name>
</author>
<author>
<name sortKey="Frye, Ll" uniqKey="Frye L">LL Frye</name>
</author>
<author>
<name sortKey="Greenwood, Jr" uniqKey="Greenwood J">JR Greenwood</name>
</author>
<author>
<name sortKey="Halgren, Ta" uniqKey="Halgren T">TA Halgren</name>
</author>
<author>
<name sortKey="Sanschagrin, Pc" uniqKey="Sanschagrin P">PC Sanschagrin</name>
</author>
<author>
<name sortKey="Mainz, Dt" uniqKey="Mainz D">DT Mainz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sabbah, Da" uniqKey="Sabbah D">DA Sabbah</name>
</author>
<author>
<name sortKey="Vennerstrom, Jl" uniqKey="Vennerstrom J">JL Vennerstrom</name>
</author>
<author>
<name sortKey="Zhong, H" uniqKey="Zhong H">H Zhong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sweidan, K" uniqKey="Sweidan K">K Sweidan</name>
</author>
<author>
<name sortKey="Sabbah, Da" uniqKey="Sabbah D">DA Sabbah</name>
</author>
<author>
<name sortKey="Bardaweel, S" uniqKey="Bardaweel S">S Bardaweel</name>
</author>
<author>
<name sortKey="Dush, Ka" uniqKey="Dush K">KA Dush</name>
</author>
<author>
<name sortKey="Sheikha, Ga" uniqKey="Sheikha G">GA Sheikha</name>
</author>
<author>
<name sortKey="Mubarak, Ms" uniqKey="Mubarak M">MS Mubarak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sabbah, Da" uniqKey="Sabbah D">DA Sabbah</name>
</author>
<author>
<name sortKey="Vennerstrom, Jl" uniqKey="Vennerstrom J">JL Vennerstrom</name>
</author>
<author>
<name sortKey="Zhong, Ha" uniqKey="Zhong H">HA Zhong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sabbah, Da" uniqKey="Sabbah D">DA Sabbah</name>
</author>
<author>
<name sortKey="Saada, M" uniqKey="Saada M">M Saada</name>
</author>
<author>
<name sortKey="Khalaf, Ra" uniqKey="Khalaf R">RA Khalaf</name>
</author>
<author>
<name sortKey="Bardaweel, S" uniqKey="Bardaweel S">S Bardaweel</name>
</author>
<author>
<name sortKey="Sweidan, K" uniqKey="Sweidan K">K Sweidan</name>
</author>
<author>
<name sortKey="Al Qirim, T" uniqKey="Al Qirim T">T Al-Qirim</name>
</author>
<author>
<name sortKey="Al Zughier, A" uniqKey="Al Zughier A">A Al-Zughier</name>
</author>
<author>
<name sortKey="Halim, Ha" uniqKey="Halim H">HA Halim</name>
</author>
<author>
<name sortKey="Sheikha, Ga" uniqKey="Sheikha G">GA Sheikha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sweidan, K" uniqKey="Sweidan K">K Sweidan</name>
</author>
<author>
<name sortKey="Sabbah, Da" uniqKey="Sabbah D">DA Sabbah</name>
</author>
<author>
<name sortKey="Engelmann, J" uniqKey="Engelmann J">J Engelmann</name>
</author>
<author>
<name sortKey="Halim, Ha" uniqKey="Halim H">HA Halim</name>
</author>
<author>
<name sortKey="Sheikha, Ga" uniqKey="Sheikha G">GA Sheikha</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mandelker, D" uniqKey="Mandelker D">D Mandelker</name>
</author>
<author>
<name sortKey="Gabelli, Sb" uniqKey="Gabelli S">SB Gabelli</name>
</author>
<author>
<name sortKey="Schmidt Kittler, O" uniqKey="Schmidt Kittler O">O Schmidt-Kittler</name>
</author>
<author>
<name sortKey="Zhu, J" uniqKey="Zhu J">J Zhu</name>
</author>
<author>
<name sortKey="Cheong, I" uniqKey="Cheong I">I Cheong</name>
</author>
<author>
<name sortKey="Huang, C H" uniqKey="Huang C">C-H Huang</name>
</author>
<author>
<name sortKey="Kinzler, Kw" uniqKey="Kinzler K">KW Kinzler</name>
</author>
<author>
<name sortKey="Vogelstein, B" uniqKey="Vogelstein B">B Vogelstein</name>
</author>
<author>
<name sortKey="Amze, Lm" uniqKey="Amze L">LM Amze</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cho, Ae" uniqKey="Cho A">AE Cho</name>
</author>
<author>
<name sortKey="Guallar, V" uniqKey="Guallar V">V Guallar</name>
</author>
<author>
<name sortKey="Berne, Bj" uniqKey="Berne B">BJ Berne</name>
</author>
<author>
<name sortKey="Friesner, R" uniqKey="Friesner R">R Friesner</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, G" uniqKey="Wu G">G Wu</name>
</author>
<author>
<name sortKey="Xing, M" uniqKey="Xing M">M Xing</name>
</author>
<author>
<name sortKey="Mambo, E" uniqKey="Mambo E">E Mambo</name>
</author>
<author>
<name sortKey="Huang, X" uniqKey="Huang X">X Huang</name>
</author>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J Liu</name>
</author>
<author>
<name sortKey="Guo, Z" uniqKey="Guo Z">Z Guo</name>
</author>
<author>
<name sortKey="Chatterjee, A" uniqKey="Chatterjee A">A Chatterjee</name>
</author>
<author>
<name sortKey="Goldenberg, D" uniqKey="Goldenberg D">D Goldenberg</name>
</author>
<author>
<name sortKey="Gollin, Sm" uniqKey="Gollin S">SM Gollin</name>
</author>
<author>
<name sortKey="Sukumar, S" uniqKey="Sukumar S">S Sukumar</name>
</author>
<author>
<name sortKey="Trink, B" uniqKey="Trink B">B Trink</name>
</author>
<author>
<name sortKey="Sidransky, D" uniqKey="Sidransky D">D Sidransky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Beaver, Ja" uniqKey="Beaver J">JA Beaver</name>
</author>
<author>
<name sortKey="Gustin, Jp" uniqKey="Gustin J">JP Gustin</name>
</author>
<author>
<name sortKey="Yi, Kh" uniqKey="Yi K">KH Yi</name>
</author>
<author>
<name sortKey="Rajpurohit, A" uniqKey="Rajpurohit A">A Rajpurohit</name>
</author>
<author>
<name sortKey="Thomas, M" uniqKey="Thomas M">M Thomas</name>
</author>
<author>
<name sortKey="Gilbert, Sf" uniqKey="Gilbert S">SF Gilbert</name>
</author>
<author>
<name sortKey="Rose, Dm" uniqKey="Rose D">DM Rose</name>
</author>
<author>
<name sortKey="Park, Bh" uniqKey="Park B">BH Park</name>
</author>
<author>
<name sortKey="Lauring, J" uniqKey="Lauring J">J Lauring</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="She, Q B" uniqKey="She Q">Q-B She</name>
</author>
<author>
<name sortKey="Chandarlapaty, S" uniqKey="Chandarlapaty S">S Chandarlapaty</name>
</author>
<author>
<name sortKey="Ye, Q" uniqKey="Ye Q">Q Ye</name>
</author>
<author>
<name sortKey="Lobo, J" uniqKey="Lobo J">J Lobo</name>
</author>
<author>
<name sortKey="Haskell, Km" uniqKey="Haskell K">KM Haskell</name>
</author>
<author>
<name sortKey="Leander, Kr" uniqKey="Leander K">KR Leander</name>
</author>
<author>
<name sortKey="Defeo Jones, D" uniqKey="Defeo Jones D">D DeFeo-Jones</name>
</author>
<author>
<name sortKey="Huber, He" uniqKey="Huber H">HE Huber</name>
</author>
<author>
<name sortKey="Rosen, N" uniqKey="Rosen N">N Rosen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weigelt, B" uniqKey="Weigelt B">B Weigelt</name>
</author>
<author>
<name sortKey="Warne, Ph" uniqKey="Warne P">PH Warne</name>
</author>
<author>
<name sortKey="Downward, J" uniqKey="Downward J">J Downward</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zardavas, D" uniqKey="Zardavas D">D Zardavas</name>
</author>
<author>
<name sortKey="Phillips, Wa" uniqKey="Phillips W">WA Phillips</name>
</author>
<author>
<name sortKey="Loi, S" uniqKey="Loi S">S Loi</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Chem Cent J</journal-id>
<journal-id journal-id-type="iso-abbrev">Chem Cent J</journal-id>
<journal-title-group>
<journal-title>Chemistry Central Journal</journal-title>
</journal-title-group>
<issn pub-type="epub">1752-153X</issn>
<publisher>
<publisher-name>Springer International Publishing</publisher-name>
<publisher-loc>Cham</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">30467608</article-id>
<article-id pub-id-type="pmc">6768046</article-id>
<article-id pub-id-type="publisher-id">489</article-id>
<article-id pub-id-type="doi">10.1186/s13065-018-0489-z</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Novel amphiphilic pyridinium ionic liquids-supported Schiff bases: ultrasound assisted synthesis, molecular docking and anticancer evaluation</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Al-Blewi</surname>
<given-names>Fawzia Faleh</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Rezki</surname>
<given-names>Nadjet</given-names>
</name>
<address>
<email>nadjetrezki@yahoo.fr</email>
</address>
<xref ref-type="aff" rid="Aff1">1</xref>
<xref ref-type="aff" rid="Aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Al-Sodies</surname>
<given-names>Salsabeel Abdullah</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bardaweel</surname>
<given-names>Sanaa K.</given-names>
</name>
<xref ref-type="aff" rid="Aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sabbah</surname>
<given-names>Dima A.</given-names>
</name>
<xref ref-type="aff" rid="Aff4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Messali</surname>
<given-names>Mouslim</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Aouad</surname>
<given-names>Mohamed Reda</given-names>
</name>
<address>
<email>aouadmohamedreda@yahoo.fr</email>
</address>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<aff id="Aff1">
<label>1</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1754 9358</institution-id>
<institution-id institution-id-type="GRID">grid.412892.4</institution-id>
<institution>Department of Chemistry, Faculty of Science,</institution>
<institution>Taibah University,</institution>
</institution-wrap>
Al-Madinah Al-Munawarah, Medina, 30002 Saudi Arabia</aff>
<aff id="Aff2">
<label>2</label>
Department of Chemistry, Faculty of Sciences, University of Sciences and Technology Mohamed Boudiaf, Laboratoire de Chimie et Electrochimie des Complexes Metalliques (LCECM) USTO-MB, P.O. Box 1505, El M‘nouar, 31000 Oran, Algeria</aff>
<aff id="Aff3">
<label>3</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2174 4509</institution-id>
<institution-id institution-id-type="GRID">grid.9670.8</institution-id>
<institution>Department of Pharmaceutical Sciences, Faculty of Pharmacy,</institution>
<institution>University of Jordan,</institution>
</institution-wrap>
Amman, 11942 Jordan</aff>
<aff id="Aff4">
<label>4</label>
<institution-wrap>
<institution-id institution-id-type="GRID">grid.443348.c</institution-id>
<institution>Faculty of Pharmacy,</institution>
<institution>Al-Zaytoonah University,</institution>
</institution-wrap>
Amman, 11733 Jordan</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>22</day>
<month>11</month>
<year>2018</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>22</day>
<month>11</month>
<year>2018</year>
</pub-date>
<pub-date pub-type="collection">
<year>2018</year>
</pub-date>
<volume>12</volume>
<elocation-id>118</elocation-id>
<history>
<date date-type="received">
<day>15</day>
<month>3</month>
<year>2018</year>
</date>
<date date-type="accepted">
<day>13</day>
<month>11</month>
<year>2018</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author(s) 2018</copyright-statement>
<license license-type="OpenAccess">
<license-p>
<bold>Open Access</bold>
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/publicdomain/zero/1.0/">http://creativecommons.org/publicdomain/zero/1.0/</ext-link>
) applies to the data made available in this article, unless otherwise stated.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<sec>
<title>Background</title>
<p id="Par1">Pyridinium Schiff bases and ionic liquids have attracted increasing interest in medicinal chemistry.</p>
</sec>
<sec>
<title>Results</title>
<p id="Par2">A library of 32 cationic fluorinated pyridinium hydrazone-based amphiphiles tethering fluorinated counteranions was synthesized by alkylation of 4-fluoropyridine hydrazone with various long alkyl iodide exploiting lead quaternization and metathesis strategies. All compounds were assessed for their anticancer inhibition activity towards different cancer cell lines and the results revealed that increasing the length of the hydrophobic chain of the synthesized analogues appears to significantly enhance their anticancer activities. Substantial increase in caspase-3 activity was demonstrated upon treatment with the most potent compounds, namely
<bold>8</bold>
,
<bold>28</bold>
,
<bold>29</bold>
and
<bold>32</bold>
suggesting an apoptotic cellular death pathway.</p>
</sec>
<sec>
<title>Conclusions</title>
<p id="Par3">Quantum-polarized ligand docking studies against phosphoinositide 3-kinase α displayed that compounds
<bold>2</bold>
<bold>6</bold>
bind to the kinase site and form H-bond with S774, K802, H917 and D933.
<graphic position="anchor" xlink:href="13065_2018_489_Figa_HTML" id="MO1"></graphic>
</p>
</sec>
<sec>
<title>Electronic supplementary material</title>
<p>The online version of this article (10.1186/s13065-018-0489-z) contains supplementary material, which is available to authorized users.</p>
</sec>
</abstract>
<kwd-group xml:lang="en">
<title>Keywords</title>
<kwd>Cationic</kwd>
<kwd>Amphiphilic</kwd>
<kwd>Pyridinium</kwd>
<kwd>Hydrazones</kwd>
<kwd>Ultrasound</kwd>
<kwd>Anticancer</kwd>
<kwd>QPLD docking</kwd>
</kwd-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© The Author(s) 2018</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1">
<title>Introduction</title>
<p id="Par4">Schiff bases have been widely investigated due to a broad spectrum of relevant properties in biological and pharmaceutical areas [
<xref ref-type="bibr" rid="CR1">1</xref>
]. In addition, a number of molecules having azomethine Schiff base skeleton are the clinically approved drugs [
<xref ref-type="bibr" rid="CR2">2</xref>
]. Meanwhile, carbohydrazide hydrazone and their derivatives an interesting class of Schiff bases, represented reliable and highly efficient pharmacophores in drug discovery and played a vital role in medical chemistry due to their potency to exhibit significant antimicrobial [
<xref ref-type="bibr" rid="CR3">3</xref>
], anticancer [
<xref ref-type="bibr" rid="CR4">4</xref>
,
<xref ref-type="bibr" rid="CR5">5</xref>
], anti-HIV [
<xref ref-type="bibr" rid="CR6">6</xref>
], and anticandidal [
<xref ref-type="bibr" rid="CR7">7</xref>
] activities. Azomethine hydrazone linkages (RCONHN=CR
<sup>1</sup>
R
<sup>2</sup>
) are one of the versatile and attractive functional groups in organic synthesis [
<xref ref-type="bibr" rid="CR8">8</xref>
,
<xref ref-type="bibr" rid="CR9">9</xref>
]. Their ability to react with electrophilic and nucleophilic reagents make them valuable candidates for the construction of diverse heterocyclic scaffolds [
<xref ref-type="bibr" rid="CR10">10</xref>
]. Some pyridine hydrazones have been reported to possess fascinating chemotherapeutic properties [
<xref ref-type="bibr" rid="CR11">11</xref>
,
<xref ref-type="bibr" rid="CR12">12</xref>
]. On the other hand, biological and toxicity of pyridinium salts have been well documented due to their increasing applications. More specifically, pyridinium salts carrying long alkyl chains were found to be outstanding bioactive agents as antimicrobial [
<xref ref-type="bibr" rid="CR13">13</xref>
], anticancer [
<xref ref-type="bibr" rid="CR14">14</xref>
] and biodegradable [
<xref ref-type="bibr" rid="CR15">15</xref>
] agents. Recently, we have reported a green ultrasound synthesis of novel fluorinated pyridinium hydrazones using a series of alkyl halides ranging from C2 to C7 [
<xref ref-type="bibr" rid="CR16">16</xref>
]. The biological screening results revealed that the activity increased with increasing the length of the alkyl side chains, especially for hydrazones tethering fluorinated counteranions (PF
<sub>6</sub>
<sup></sup>
, BF
<sub>4</sub>
<sup></sup>
and CF
<sub>3</sub>
COO
<sup></sup>
). Encouraged by these findings and in continuation of our efforts in designing highly active heterocyclic hydrazones [
<xref ref-type="bibr" rid="CR17">17</xref>
<xref ref-type="bibr" rid="CR19">19</xref>
], we aim to introduce a lipophilic long alkyl chain to a hydrazone skeleton to develop a new class of bioactive molecules. In the present work, a series of novel cationic fluorinated pyridinium hydrazone-based amphiphiles tethering different fluorinated counteranions were designed, synthesized and screened for their anticancer activities against four different cell lines. Additionally, their activities were further characterized via investigating the Caspase-3 signaling pathway, a hallmark of apoptosis that is commonly studied to understand the mechanism of cellular death.</p>
<p id="Par5">Molecular quantum-polarized ligand docking (QPLD) studies were carried out employing MAESTRO [
<xref ref-type="bibr" rid="CR20">20</xref>
] software against the kinase domain of phosphoinositide 3-kinase α (PI3Kα) [
<xref ref-type="bibr" rid="CR21">21</xref>
] to identify their structural-basis of binding and ligand/receptor complex formation.</p>
</sec>
<sec id="Sec2">
<title>Results and discussion</title>
<sec id="Sec3">
<title>Synthesis</title>
<p id="Par6">The methodology for affecting the sequence of reactions utilized ultrasound irradiations which have been widely used by our team as an alternative source of energy. Starting from fluorinated pyridine hydrazone
<bold>1</bold>
, the quaternization of pyridine ring through its conventional alkylation with various long alkyl iodide with chain ranging from C
<sub>8</sub>
to C
<sub>18</sub>
, in boiling acetonitrile as well as under ultrasound irradiation and gave the desired cationic fluorinated pyridinium hydrazones
<bold>2</bold>
<bold>9</bold>
tethering lipophilic side chain and iodide counteranion in good yields (Scheme 
<xref rid="Sch1" ref-type="fig">1</xref>
). Short reactions time were required (10–12 h) when the ultrasound irradiations were used as an alternative energy source (Table 
<xref rid="Tab1" ref-type="table">1</xref>
).
<fig id="Sch1">
<label>Scheme 1</label>
<caption>
<p>Synthesis of pyridinium hydrazones
<bold>2</bold>
<bold>9</bold>
carrying iodide counter anion</p>
</caption>
<graphic xlink:href="13065_2018_489_Sch1_HTML" id="MO2"></graphic>
</fig>
<table-wrap id="Tab1">
<label>Table 1</label>
<caption>
<p>Times and yields of halogenated pyridinium hydrazones
<bold>2</bold>
<bold>9</bold>
under conventional and ultrasound</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="2">Compound no</th>
<th align="left" rowspan="2">R</th>
<th align="left" colspan="2">Conventional method
<break></break>
CM</th>
<th align="left" colspan="2">Ultrasound method
<break></break>
US</th>
</tr>
<tr>
<th align="left">Time (h)</th>
<th align="left">Yield (%)</th>
<th align="left">Time (h)</th>
<th align="left">Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">
<bold>2</bold>
</td>
<td align="left">C
<sub>8</sub>
H
<sub>17</sub>
</td>
<td char="." align="char">72</td>
<td char="." align="char">84</td>
<td char="." align="char">10</td>
<td char="." align="char">92</td>
</tr>
<tr>
<td align="left">
<bold>3</bold>
</td>
<td align="left">C
<sub>9</sub>
H
<sub>19</sub>
</td>
<td char="." align="char">72</td>
<td char="." align="char">90</td>
<td char="." align="char">10</td>
<td char="." align="char">96</td>
</tr>
<tr>
<td align="left">
<bold>4</bold>
</td>
<td align="left">C
<sub>10</sub>
H
<sub>21</sub>
</td>
<td char="." align="char">72</td>
<td char="." align="char">88</td>
<td char="." align="char">12</td>
<td char="." align="char">92</td>
</tr>
<tr>
<td align="left">
<bold>5</bold>
</td>
<td align="left">C
<sub>11</sub>
H
<sub>23</sub>
</td>
<td char="." align="char">72</td>
<td char="." align="char">92</td>
<td char="." align="char">12</td>
<td char="." align="char">98</td>
</tr>
<tr>
<td align="left">
<bold>6</bold>
</td>
<td align="left">C
<sub>12</sub>
H
<sub>25</sub>
</td>
<td char="." align="char">72</td>
<td char="." align="char">88</td>
<td char="." align="char">12</td>
<td char="." align="char">92</td>
</tr>
<tr>
<td align="left">
<bold>7</bold>
</td>
<td align="left">C
<sub>14</sub>
H
<sub>29</sub>
</td>
<td char="." align="char">72</td>
<td char="." align="char">85</td>
<td char="." align="char">12</td>
<td char="." align="char">92</td>
</tr>
<tr>
<td align="left">
<bold>8</bold>
</td>
<td align="left">C
<sub>16</sub>
H
<sub>33</sub>
</td>
<td char="." align="char">72</td>
<td char="." align="char">89</td>
<td char="." align="char">12</td>
<td char="." align="char">94</td>
</tr>
<tr>
<td align="left">
<bold>9</bold>
</td>
<td align="left">C
<sub>18</sub>
H
<sub>37</sub>
</td>
<td char="." align="char">72</td>
<td char="." align="char">83</td>
<td char="." align="char">12</td>
<td char="." align="char">96</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
<p id="Par7">The structure of newly designed pyridinium cationic surfactants
<bold>2</bold>
<bold>9</bold>
have been elucidated based on their spectral data (IR, NMR, Mass). Their IR spectra revealed the appearance of new characteristic bands at 2870–2969 cm
<sup>−1</sup>
attributed to the aliphatic C-H stretching which confirmed the presence of alkyl side chain in this structure. The
<sup>1</sup>
H NMR analysis showed one methyl and methylene groups resonating as two multiplets between δ
<sub>H</sub>
0.74–0.87 ppm and 1.16–1.32 ppm, respectively. The spectra also showed the presence of characteristic triplet and/or doublet of doublet ranging between δ
<sub>H</sub>
4.68–4.78 ppm assigned to NC
<bold>H</bold>
<sub>
<bold>2</bold>
</sub>
protons.</p>
<p id="Par8">In addition, the imine proton (H–C=N) resonated as two set of singlets at δ
<sub>H</sub>
8.15–8.50 ppm with a 1:3 ratio. The presence of such pairing of signals confirmed that these compounds exist as 
<italic>E</italic>
/cis and
<italic>E</italic>
/trans diastereomers.</p>
<p id="Par9">The
<sup>13</sup>
C NMR data also confirmed the appearance of
<italic>E</italic>
/cis and
<italic>E</italic>
/trans diastereomers through the presence of two peaks at δ
<sub>H</sub>
58.60 and 62.74 ppm for N
<bold>C</bold>
H
<sub>2</sub>
. In the downfield region between δ
<sub>C</sub>
156.38–165.76 ppm, the carbonyl and the imine carbons of the hydrazone linkage resonated as two sets of signals.</p>
<p id="Par10">In their
<sup>19</sup>
F NMR spectra, the aromatic fluorine atom appeared as two mutiplet signals between δ
<sub>H</sub>
(− 107.98 to − 109.89 ppm) and (− 107.72 to − 109.37 ppm).</p>
<p id="Par11">Treatment of the halogenated pyridinium hydrazones
<bold>2</bold>
<bold>9</bold>
with fluorinated metal salts (KPF
<sub>6</sub>
, NaBF
<sub>4</sub>
or NaOOCCF
<sub>3</sub>
) afforded the targeted cationic amphiphilic fluorinated pyridinium hydrazones
<bold>10</bold>
<bold>33</bold>
carrying variant fluorinated counteranions (Scheme 
<xref rid="Sch2" ref-type="fig">2</xref>
). The reaction involved the anion exchange and was carried out in short time (6 h) under ultrasound irradiation and gave comparative yields with those obtained using classical heating (16 h) (Table 
<xref rid="Tab2" ref-type="table">2</xref>
).
<fig id="Sch2">
<label>Scheme 2</label>
<caption>
<p>Synthesis of pyridinium hydrazones
<bold>10</bold>
<bold>33</bold>
carrying fluorinated counteranions</p>
</caption>
<graphic xlink:href="13065_2018_489_Sch2_HTML" id="MO3"></graphic>
</fig>
<table-wrap id="Tab2">
<label>Table 2</label>
<caption>
<p>Times and yields of pyridinium hydrazones
<bold>10</bold>
<bold>33</bold>
carrying fluorinated counter anions under conventional and ultrasound</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="2">Compound no</th>
<th align="left" rowspan="2">R</th>
<th align="left" rowspan="2">Y</th>
<th align="left" colspan="2">Conventional method
<break></break>
CM</th>
<th align="left" colspan="2">Ultrasound method
<break></break>
US</th>
</tr>
<tr>
<th align="left">Time (h)</th>
<th align="left">Yield (%)</th>
<th align="left">Time (h)</th>
<th align="left">Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">
<bold>10</bold>
</td>
<td align="left">C
<sub>8</sub>
H
<sub>17</sub>
</td>
<td align="left">PF
<sub>6</sub>
</td>
<td char="." align="char">16</td>
<td char="." align="char">83</td>
<td char="." align="char">6</td>
<td char="." align="char">90</td>
</tr>
<tr>
<td align="left">
<bold>11</bold>
</td>
<td align="left">C
<sub>8</sub>
H
<sub>17</sub>
</td>
<td align="left">BF
<sub>4</sub>
</td>
<td char="." align="char">16</td>
<td char="." align="char">98</td>
<td char="." align="char">6</td>
<td char="." align="char">98</td>
</tr>
<tr>
<td align="left">
<bold>12</bold>
</td>
<td align="left">C
<sub>8</sub>
H
<sub>17</sub>
</td>
<td align="left">COOCF
<sub>3</sub>
</td>
<td char="." align="char">16</td>
<td char="." align="char">80</td>
<td char="." align="char">6</td>
<td char="." align="char">88</td>
</tr>
<tr>
<td align="left">
<bold>13</bold>
</td>
<td align="left">C
<sub>9</sub>
H
<sub>19</sub>
</td>
<td align="left">PF
<sub>6</sub>
</td>
<td char="." align="char">16</td>
<td char="." align="char">90</td>
<td char="." align="char">6</td>
<td char="." align="char">94</td>
</tr>
<tr>
<td align="left">
<bold>14</bold>
</td>
<td align="left">C
<sub>9</sub>
H
<sub>19</sub>
</td>
<td align="left">BF
<sub>4</sub>
</td>
<td char="." align="char">16</td>
<td char="." align="char">85</td>
<td char="." align="char">6</td>
<td char="." align="char">90</td>
</tr>
<tr>
<td align="left">
<bold>15</bold>
</td>
<td align="left">C
<sub>9</sub>
H
<sub>19</sub>
</td>
<td align="left">COOCF
<sub>3</sub>
</td>
<td char="." align="char">16</td>
<td char="." align="char">87</td>
<td char="." align="char">6</td>
<td char="." align="char">92</td>
</tr>
<tr>
<td align="left">
<bold>16</bold>
</td>
<td align="left">C
<sub>10</sub>
H
<sub>21</sub>
</td>
<td align="left">PF
<sub>6</sub>
</td>
<td char="." align="char">16</td>
<td char="." align="char">98</td>
<td char="." align="char">6</td>
<td char="." align="char">98</td>
</tr>
<tr>
<td align="left">
<bold>17</bold>
</td>
<td align="left">C
<sub>10</sub>
H
<sub>21</sub>
</td>
<td align="left">BF
<sub>4</sub>
</td>
<td char="." align="char">16</td>
<td char="." align="char">88</td>
<td char="." align="char">6</td>
<td char="." align="char">90</td>
</tr>
<tr>
<td align="left">
<bold>18</bold>
</td>
<td align="left">C
<sub>10</sub>
H
<sub>21</sub>
</td>
<td align="left">COOCF
<sub>3</sub>
</td>
<td char="." align="char">16</td>
<td char="." align="char">86</td>
<td char="." align="char">6</td>
<td char="." align="char">92</td>
</tr>
<tr>
<td align="left">
<bold>19</bold>
</td>
<td align="left">C
<sub>11</sub>
H
<sub>23</sub>
</td>
<td align="left">PF
<sub>6</sub>
</td>
<td char="." align="char">16</td>
<td char="." align="char">94</td>
<td char="." align="char">6</td>
<td char="." align="char">98</td>
</tr>
<tr>
<td align="left">
<bold>20</bold>
</td>
<td align="left">C
<sub>11</sub>
H
<sub>23</sub>
</td>
<td align="left">BF
<sub>4</sub>
</td>
<td char="." align="char">16</td>
<td char="." align="char">93</td>
<td char="." align="char">6</td>
<td char="." align="char">94</td>
</tr>
<tr>
<td align="left">
<bold>21</bold>
</td>
<td align="left">C
<sub>11</sub>
H
<sub>23</sub>
</td>
<td align="left">COOCF
<sub>3</sub>
</td>
<td char="." align="char">16</td>
<td char="." align="char">90</td>
<td char="." align="char">6</td>
<td char="." align="char">94</td>
</tr>
<tr>
<td align="left">
<bold>22</bold>
</td>
<td align="left">C
<sub>12</sub>
H
<sub>25</sub>
</td>
<td align="left">PF
<sub>6</sub>
</td>
<td char="." align="char">16</td>
<td char="." align="char">87</td>
<td char="." align="char">6</td>
<td char="." align="char">90</td>
</tr>
<tr>
<td align="left">
<bold>23</bold>
</td>
<td align="left">C
<sub>12</sub>
H
<sub>25</sub>
</td>
<td align="left">BF
<sub>4</sub>
</td>
<td char="." align="char">16</td>
<td char="." align="char">82</td>
<td char="." align="char">6</td>
<td char="." align="char">90</td>
</tr>
<tr>
<td align="left">
<bold>24</bold>
</td>
<td align="left">C
<sub>12</sub>
H
<sub>25</sub>
</td>
<td align="left">COOCF
<sub>3</sub>
</td>
<td char="." align="char">16</td>
<td char="." align="char">88</td>
<td char="." align="char">6</td>
<td char="." align="char">92</td>
</tr>
<tr>
<td align="left">
<bold>25</bold>
</td>
<td align="left">C
<sub>14</sub>
H
<sub>29</sub>
</td>
<td align="left">PF
<sub>6</sub>
</td>
<td char="." align="char">16</td>
<td char="." align="char">95</td>
<td char="." align="char">6</td>
<td char="." align="char">98</td>
</tr>
<tr>
<td align="left">
<bold>26</bold>
</td>
<td align="left">C
<sub>14</sub>
H
<sub>29</sub>
</td>
<td align="left">BF
<sub>4</sub>
</td>
<td char="." align="char">16</td>
<td char="." align="char">93</td>
<td char="." align="char">6</td>
<td char="." align="char">96</td>
</tr>
<tr>
<td align="left">
<bold>27</bold>
</td>
<td align="left">C
<sub>14</sub>
H
<sub>29</sub>
</td>
<td align="left">COOCF
<sub>3</sub>
</td>
<td char="." align="char">16</td>
<td char="." align="char">97</td>
<td char="." align="char">6</td>
<td char="." align="char">98</td>
</tr>
<tr>
<td align="left">
<bold>28</bold>
</td>
<td align="left">C
<sub>16</sub>
H
<sub>33</sub>
</td>
<td align="left">PF
<sub>6</sub>
</td>
<td char="." align="char">16</td>
<td char="." align="char">89</td>
<td char="." align="char">6</td>
<td char="." align="char">92</td>
</tr>
<tr>
<td align="left">
<bold>29</bold>
</td>
<td align="left">C
<sub>16</sub>
H
<sub>33</sub>
</td>
<td align="left">BF
<sub>4</sub>
</td>
<td char="." align="char">16</td>
<td char="." align="char">90</td>
<td char="." align="char">6</td>
<td char="." align="char">94</td>
</tr>
<tr>
<td align="left">
<bold>30</bold>
</td>
<td align="left">C
<sub>16</sub>
H
<sub>33</sub>
</td>
<td align="left">COOCF
<sub>3</sub>
</td>
<td char="." align="char">16</td>
<td char="." align="char">88</td>
<td char="." align="char">6</td>
<td char="." align="char">92</td>
</tr>
<tr>
<td align="left">
<bold>31</bold>
</td>
<td align="left">C
<sub>18</sub>
H
<sub>37</sub>
</td>
<td align="left">PF
<sub>6</sub>
</td>
<td char="." align="char">16</td>
<td char="." align="char">88</td>
<td char="." align="char">6</td>
<td char="." align="char">92</td>
</tr>
<tr>
<td align="left">
<bold>32</bold>
</td>
<td align="left">C
<sub>18</sub>
H
<sub>37</sub>
</td>
<td align="left">BF
<sub>4</sub>
</td>
<td char="." align="char">16</td>
<td char="." align="char">87</td>
<td char="." align="char">6</td>
<td char="." align="char">90</td>
</tr>
<tr>
<td align="left">
<bold>33</bold>
</td>
<td align="left">C
<sub>18</sub>
H
<sub>37</sub>
</td>
<td align="left">COOCF
<sub>3</sub>
</td>
<td char="." align="char">16</td>
<td char="." align="char">84</td>
<td char="." align="char">6</td>
<td char="." align="char">90</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
<p id="Par12">Structural differentiation between the metathetical products
<bold>10</bold>
<bold>33</bold>
and their halogenated precursors
<bold>2</bold>
<bold>9</bold>
was very difficult on the basis of their
<sup>1</sup>
H NMR and
<sup>13</sup>
C NMR spectra because they displayed virtually the same characteristic proton and carbon signals.</p>
<p id="Par13">Consequently, other spectroscopic techniques (
<sup>19</sup>
F,
<sup>31</sup>
P,
<sup>11</sup>
B NMR and mass spectroscopy) have been adopted to confirm the presence of fluorinated counteranions (PF
<sub>6</sub>
<sup></sup>
, BF
<sub>4</sub>
<sup></sup>
and CF
<sub>3</sub>
COO
<sup></sup>
) in the structure of the resulted ILs
<bold>10</bold>
<bold>33</bold>
.</p>
<p id="Par14">Thus, the presence of PF
<sub>6</sub>
<sup></sup>
in ILs
<bold>10</bold>
,
<bold>13</bold>
,
<bold>16</bold>
,
<bold>19</bold>
,
<bold>22</bold>
,
<bold>25</bold>
,
<bold>28</bold>
and
<bold>31</bold>
has been established by their
<sup>31</sup>
P and
<sup>19</sup>
F NMR analysis. Thus, the resonance of a diagnostic multiplet between δ
<sub>P</sub>
− 152.70 and − 135.76 ppm in the
<sup>31</sup>
P NMR spectra confirmed the presence of  PF
<sub>6</sub>
<sup></sup>
in their structure.</p>
<p id="Par15">On the other hand, the
<sup>19</sup>
F NMR analysis of the same compounds revealed the appearance of new doublet at δ
<sub>F</sub>
− 70.39 and − 69.21 ppm attributed to the six fluorine atoms in PF
<sub>6</sub>
<sup></sup>
anions.</p>
<p id="Par16">The formation of ionic liquids
<bold>11</bold>
,
<bold>14</bold>
,
<bold>17</bold>
,
<bold>20</bold>
,
<bold>23</bold>
,
<bold>26</bold>
,
<bold>29</bold>
and
<bold>32</bold>
carrying BF
<sub>4</sub>
<sup></sup>
in their structures were supported by the
<sup>11</sup>
B and
<sup>19</sup>
F NMR experiments. Thus, their
<sup>11</sup>
B NMR spectra exhibited a multiplet between δ
<sub>B</sub>
− 1.30 and − 1.29 ppm confirming the presence of boron atom in its BF
<sub>4</sub>
<sup></sup>
form. Two doublets were recorded at δ
<sub>F</sub>
− 149.12 and − 148.12 ppm in their
<sup>19</sup>
F NMR spectra.</p>
<p id="Par17">Structural elucidation of the ionic liquids containing trifluoroacetate (C
<bold>F</bold>
<sub>
<bold>3</bold>
</sub>
COO
<sup></sup>
) was investigated by the
<sup>19</sup>
F NMR analysis which revealed the presence of characteristic singlet ranging from − 73.50 to − 75.30 ppm.</p>
<p id="Par18">The physical (state of product and melting points) and photochemical (fluorescence and λ
<sub>max</sub>
in UV) data of the synthesized pyridinium hydrazones
<bold>2</bold>
<bold>33</bold>
were investigated and recorded in Table 
<xref rid="Tab3" ref-type="table">3</xref>
.
<table-wrap id="Tab3">
<label>Table 3</label>
<caption>
<p>Physical and analytical data for the newly synthesized pyridinium hydrazones
<bold>2</bold>
<bold>33</bold>
</p>
<p>
<graphic position="anchor" xlink:href="13065_2018_489_Str1_HTML" id="MO4"></graphic>
</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left">Comp no</th>
<th align="left">R</th>
<th align="left">Y</th>
<th align="left">mp °C</th>
<th align="left">λ
<sub>max</sub>
(nm)</th>
<th align="left">Fluorescence</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">
<bold>2</bold>
</td>
<td align="left">C
<sub>8</sub>
H
<sub>17</sub>
</td>
<td align="left">I</td>
<td align="left">104–105</td>
<td align="left">222, 330, 430</td>
<td align="left">+</td>
</tr>
<tr>
<td align="left">
<bold>3</bold>
</td>
<td align="left">C
<sub>9</sub>
H
<sub>19</sub>
</td>
<td align="left">I</td>
<td align="left">91–93</td>
<td align="left">220, 332, 432</td>
<td align="left">+</td>
</tr>
<tr>
<td align="left">
<bold>4</bold>
</td>
<td align="left">C
<sub>10</sub>
H
<sub>21</sub>
</td>
<td align="left">I</td>
<td align="left">110–112</td>
<td align="left">220, 332, 430</td>
<td align="left">+</td>
</tr>
<tr>
<td align="left">
<bold>5</bold>
</td>
<td align="left">C
<sub>11</sub>
H
<sub>23</sub>
</td>
<td align="left">I</td>
<td align="left">82–83</td>
<td align="left">220, 332, 430</td>
<td align="left">+</td>
</tr>
<tr>
<td align="left">
<bold>6</bold>
</td>
<td align="left">C
<sub>12</sub>
H
<sub>25</sub>
</td>
<td align="left">I</td>
<td align="left">72–73</td>
<td align="left">220, 330, 430</td>
<td align="left">+</td>
</tr>
<tr>
<td align="left">
<bold>7</bold>
</td>
<td align="left">C
<sub>14</sub>
H
<sub>29</sub>
</td>
<td align="left">I</td>
<td align="left">86–88</td>
<td align="left">220, 332, 430</td>
<td align="left">+</td>
</tr>
<tr>
<td align="left">
<bold>8</bold>
</td>
<td align="left">C
<sub>16</sub>
H
<sub>33</sub>
</td>
<td align="left">I</td>
<td align="left">78–80</td>
<td align="left">220, 332, 430</td>
<td align="left">+</td>
</tr>
<tr>
<td align="left">
<bold>9</bold>
</td>
<td align="left">C
<sub>18</sub>
H
<sub>37</sub>
</td>
<td align="left">I</td>
<td align="left">98–99</td>
<td align="left">220, 332, 430</td>
<td align="left">+</td>
</tr>
<tr>
<td align="left">
<bold>10</bold>
</td>
<td align="left">C
<sub>8</sub>
H
<sub>17</sub>
</td>
<td align="left">PF
<sub>6</sub>
</td>
<td align="left">
<p>Yellow crystals</p>
<p>64–65</p>
</td>
<td align="left">220, 330, 430</td>
<td align="left">+</td>
</tr>
<tr>
<td align="left">
<bold>11</bold>
</td>
<td align="left">C
<sub>8</sub>
H
<sub>17</sub>
</td>
<td align="left">BF
<sub>4</sub>
</td>
<td align="left">
<p>Yellow crystals</p>
<p>80–82</p>
</td>
<td align="left">220, 332, 430</td>
<td align="left">+</td>
</tr>
<tr>
<td align="left">
<bold>12</bold>
</td>
<td align="left">C
<sub>8</sub>
H
<sub>17</sub>
</td>
<td align="left">COOCF
<sub>3</sub>
</td>
<td align="left">
<p>Yellow crystals</p>
<p>74–76</p>
</td>
<td align="left">220, 332, 430</td>
<td align="left">+</td>
</tr>
<tr>
<td align="left">
<bold>13</bold>
</td>
<td align="left">C
<sub>9</sub>
H
<sub>19</sub>
</td>
<td align="left">PF
<sub>6</sub>
</td>
<td align="left">
<p>Yellow crystals</p>
<p>69–70</p>
</td>
<td align="left">220, 330, 428</td>
<td align="left">+</td>
</tr>
<tr>
<td align="left">
<bold>14</bold>
</td>
<td align="left">C
<sub>9</sub>
H
<sub>19</sub>
</td>
<td align="left">BF
<sub>4</sub>
</td>
<td align="left">
<p>Yellow crystals</p>
<p>88–90</p>
</td>
<td align="left">222, 328, 426</td>
<td align="left">+</td>
</tr>
<tr>
<td align="left">
<bold>15</bold>
</td>
<td align="left">C
<sub>9</sub>
H
<sub>19</sub>
</td>
<td align="left">COOCF
<sub>3</sub>
</td>
<td align="left">
<p>Yellow crystals</p>
<p>96–98</p>
</td>
<td align="left">222, 332, 424</td>
<td align="left">+</td>
</tr>
<tr>
<td align="left">
<bold>16</bold>
</td>
<td align="left">C
<sub>10</sub>
H
<sub>21</sub>
</td>
<td align="left">PF
<sub>6</sub>
</td>
<td align="left">Yellow syrup</td>
<td align="left">220, 330, 428</td>
<td align="left">+</td>
</tr>
<tr>
<td align="left">
<bold>17</bold>
</td>
<td align="left">C
<sub>10</sub>
H
<sub>21</sub>
</td>
<td align="left">BF
<sub>4</sub>
</td>
<td align="left">Colorless syrup</td>
<td align="left">220, 330, 428</td>
<td align="left">+</td>
</tr>
<tr>
<td align="left">
<bold>18</bold>
</td>
<td align="left">C
<sub>10</sub>
H
<sub>21</sub>
</td>
<td align="left">COOCF
<sub>3</sub>
</td>
<td align="left">Yellow syrup</td>
<td align="left">222, 334, 432</td>
<td align="left">+</td>
</tr>
<tr>
<td align="left">
<bold>19</bold>
</td>
<td align="left">C
<sub>11</sub>
H
<sub>23</sub>
</td>
<td align="left">PF
<sub>6</sub>
</td>
<td align="left">Yellow syrup</td>
<td align="left">220, 330, 428</td>
<td align="left">+</td>
</tr>
<tr>
<td align="left">
<bold>20</bold>
</td>
<td align="left">C
<sub>11</sub>
H
<sub>23</sub>
</td>
<td align="left">BF
<sub>4</sub>
</td>
<td align="left">Yellow syrup</td>
<td align="left">220, 330, 426</td>
<td align="left">+</td>
</tr>
<tr>
<td align="left">
<bold>21</bold>
</td>
<td align="left">C
<sub>11</sub>
H
<sub>23</sub>
</td>
<td align="left">COOCF
<sub>3</sub>
</td>
<td align="left">Colorless syrup</td>
<td align="left">222, 332, 430</td>
<td align="left">+</td>
</tr>
<tr>
<td align="left">
<bold>22</bold>
</td>
<td align="left">C
<sub>12</sub>
H
<sub>25</sub>
</td>
<td align="left">PF
<sub>6</sub>
</td>
<td align="left">Yellow syrup</td>
<td align="left">222, 330, 430</td>
<td align="left">+</td>
</tr>
<tr>
<td align="left">
<bold>23</bold>
</td>
<td align="left">C
<sub>12</sub>
H
<sub>25</sub>
</td>
<td align="left">BF
<sub>4</sub>
</td>
<td align="left">Yellow syrup</td>
<td align="left">218, 332, 430</td>
<td align="left">+</td>
</tr>
<tr>
<td align="left">
<bold>24</bold>
</td>
<td align="left">C
<sub>12</sub>
H
<sub>25</sub>
</td>
<td align="left">COOCF
<sub>3</sub>
</td>
<td align="left">Colorless syrup</td>
<td align="left">220, 336, 428</td>
<td align="left">+</td>
</tr>
<tr>
<td align="left">
<bold>25</bold>
</td>
<td align="left">C
<sub>14</sub>
H
<sub>29</sub>
</td>
<td align="left">PF
<sub>6</sub>
</td>
<td align="left">Yellow syrup</td>
<td align="left">220, 332, 428</td>
<td align="left">+</td>
</tr>
<tr>
<td align="left">
<bold>26</bold>
</td>
<td align="left">C
<sub>14</sub>
H
<sub>29</sub>
</td>
<td align="left">BF
<sub>4</sub>
</td>
<td align="left">Yellow syrup</td>
<td align="left">220, 336, 430</td>
<td align="left">+</td>
</tr>
<tr>
<td align="left">
<bold>27</bold>
</td>
<td align="left">C
<sub>14</sub>
H
<sub>29</sub>
</td>
<td align="left">COOCF
<sub>3</sub>
</td>
<td align="left">Colorless syrup</td>
<td align="left">220, 330, 428</td>
<td align="left">+</td>
</tr>
<tr>
<td align="left">
<bold>28</bold>
</td>
<td align="left">C
<sub>16</sub>
H
<sub>33</sub>
</td>
<td align="left">PF
<sub>6</sub>
</td>
<td align="left">Yellow syrup</td>
<td align="left">220, 338, 432</td>
<td align="left">+</td>
</tr>
<tr>
<td align="left">
<bold>29</bold>
</td>
<td align="left">C
<sub>16</sub>
H
<sub>33</sub>
</td>
<td align="left">BF
<sub>4</sub>
</td>
<td align="left">Yellow syrup</td>
<td align="left">218, 332, 428</td>
<td align="left">+</td>
</tr>
<tr>
<td align="left">
<bold>30</bold>
</td>
<td align="left">C
<sub>16</sub>
H
<sub>33</sub>
</td>
<td align="left">COOCF
<sub>3</sub>
</td>
<td align="left">Colorless syrup</td>
<td align="left">220, 334, 430</td>
<td align="left">+</td>
</tr>
<tr>
<td align="left">
<bold>31</bold>
</td>
<td align="left">C
<sub>18</sub>
H
<sub>37</sub>
</td>
<td align="left">PF
<sub>6</sub>
</td>
<td align="left">Yellow syrup</td>
<td align="left">220, 330, 428</td>
<td align="left">+</td>
</tr>
<tr>
<td align="left">
<bold>32</bold>
</td>
<td align="left">C
<sub>18</sub>
H
<sub>37</sub>
</td>
<td align="left">BF
<sub>4</sub>
</td>
<td align="left">Yellow syrup</td>
<td align="left">220, 330, 432</td>
<td align="left">+</td>
</tr>
<tr>
<td align="left">
<bold>33</bold>
</td>
<td align="left">C
<sub>18</sub>
H
<sub>37</sub>
</td>
<td align="left">COOCF
<sub>3</sub>
</td>
<td align="left">Colorless syrup</td>
<td align="left">220, 332, 430</td>
<td align="left">+</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
</sec>
<sec id="Sec4">
<title>Biological results</title>
<p id="Par19">Attempting to characterize any potential biological activity associated with the newly synthesized compounds, an in vitro assessment of their antiproliferative activity was conducted on four different human cancerous cell lines; the human breast adenocarcinoma (MCF-7), human breast carcinoma (T47D), human colon epithelial (Caco-2) and human uterine cervical carcinoma (Hela) cell lines. Only compounds shown in Table 
<xref rid="Tab4" ref-type="table">4</xref>
demonstrated a reasonably high antiproliferative activity against the model cancer cell lines used.
<table-wrap id="Tab4">
<label>Table 4</label>
<caption>
<p>IC
<sub>50</sub>
values (µM) on 4 different cancer cell lines</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left">Code</th>
<th align="left">MCF-7</th>
<th align="left">T47D</th>
<th align="left">Caco-2</th>
<th align="left">Hela</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">
<bold>4</bold>
</td>
<td char="±" align="char">153 ± 12</td>
<td char="±" align="char">145 ± 10</td>
<td char="±" align="char">156 ± 9</td>
<td char="±" align="char">155 ± 11</td>
</tr>
<tr>
<td align="left">
<bold>5</bold>
</td>
<td char="±" align="char">136 ± 7</td>
<td char="±" align="char">134 ± 10</td>
<td char="±" align="char">139 ± 9</td>
<td char="±" align="char">142 ± 6</td>
</tr>
<tr>
<td align="left">
<bold>6</bold>
</td>
<td char="±" align="char">134 ± 9</td>
<td char="±" align="char">139 ± 7</td>
<td char="±" align="char">139 ± 9</td>
<td char="±" align="char">129 ± 11</td>
</tr>
<tr>
<td align="left">
<bold>7</bold>
</td>
<td char="±" align="char">120 ± 6</td>
<td char="±" align="char">123 ± 7</td>
<td char="±" align="char">128 ± 7</td>
<td char="±" align="char">119 ± 8</td>
</tr>
<tr>
<td align="left">
<bold>8</bold>
</td>
<td char="±" align="char">61 ± 5</td>
<td char="±" align="char">59 ± 7</td>
<td char="±" align="char">67 ± 6</td>
<td char="±" align="char">68 ± 5</td>
</tr>
<tr>
<td align="left">
<bold>9</bold>
</td>
<td char="±" align="char">20 ± 3</td>
<td char="±" align="char">23 ± 4</td>
<td char="±" align="char">18 ± 3</td>
<td char="±" align="char">25 ± 3</td>
</tr>
<tr>
<td align="left">
<bold>16</bold>
</td>
<td char="±" align="char">179 ± 15</td>
<td char="±" align="char">172 ± 13</td>
<td char="±" align="char">171 ± 19</td>
<td char="±" align="char">177 ± 10</td>
</tr>
<tr>
<td align="left">
<bold>17</bold>
</td>
<td char="±" align="char">176 ± 12</td>
<td char="±" align="char">170 ± 10</td>
<td char="±" align="char">168 ± 12</td>
<td char="±" align="char">177 ± 11</td>
</tr>
<tr>
<td align="left">
<bold>19</bold>
</td>
<td char="±" align="char">137 ± 8</td>
<td char="±" align="char">133 ± 11</td>
<td char="±" align="char">139 ± 6</td>
<td char="±" align="char">141 ± 10</td>
</tr>
<tr>
<td align="left">
<bold>20</bold>
</td>
<td char="±" align="char">132 ± 4</td>
<td char="±" align="char">139 ± 9</td>
<td char="±" align="char">134 ± 5</td>
<td char="±" align="char">138 ± 5</td>
</tr>
<tr>
<td align="left">
<bold>21</bold>
</td>
<td char="±" align="char">178 ± 10</td>
<td char="±" align="char">176 ± 19</td>
<td char="±" align="char">171 ± 15</td>
<td char="±" align="char">169 ± 17</td>
</tr>
<tr>
<td align="left">
<bold>22</bold>
</td>
<td char="±" align="char">129 ± 4</td>
<td char="±" align="char">129 ± 8</td>
<td char="±" align="char">125 ± 9</td>
<td char="±" align="char">124 ± 13</td>
</tr>
<tr>
<td align="left">
<bold>23</bold>
</td>
<td char="±" align="char">128 ± 10</td>
<td char="±" align="char">120 ± 9</td>
<td char="±" align="char">121 ± 14</td>
<td char="±" align="char">128 ± 11</td>
</tr>
<tr>
<td align="left">
<bold>24</bold>
</td>
<td char="±" align="char">131 ± 10</td>
<td char="±" align="char">139 ± 6</td>
<td char="±" align="char">145 ± 7</td>
<td char="±" align="char">132 ± 12</td>
</tr>
<tr>
<td align="left">
<bold>25</bold>
</td>
<td char="±" align="char">134 ± 10</td>
<td char="±" align="char">133 ± 9</td>
<td char="±" align="char">132 ± 5</td>
<td char="±" align="char">131 ± 9</td>
</tr>
<tr>
<td align="left">
<bold>26</bold>
</td>
<td char="±" align="char">123 ± 10</td>
<td char="±" align="char">127 ± 15</td>
<td char="±" align="char">127 ± 12</td>
<td char="±" align="char">129 ± 11</td>
</tr>
<tr>
<td align="left">
<bold>27</bold>
</td>
<td char="±" align="char">67 ± 4</td>
<td char="±" align="char">61 ± 2</td>
<td char="±" align="char">67 ± 4</td>
<td char="±" align="char">68 ± 6</td>
</tr>
<tr>
<td align="left">
<bold>28</bold>
</td>
<td char="±" align="char">39 ± 5</td>
<td char="±" align="char">40 ± 6</td>
<td char="±" align="char">32 ± 4</td>
<td char="±" align="char">36 ± 4</td>
</tr>
<tr>
<td align="left">
<bold>29</bold>
</td>
<td char="±" align="char">21 ± 3</td>
<td char="±" align="char">20 ± 4</td>
<td char="±" align="char">19 ± 1</td>
<td char="±" align="char">26 ± 2</td>
</tr>
<tr>
<td align="left">
<bold>30</bold>
</td>
<td char="±" align="char">45 ± 6</td>
<td char="±" align="char">46 ± 4</td>
<td char="±" align="char">41 ± 3</td>
<td char="±" align="char">48 ± 6</td>
</tr>
<tr>
<td align="left">
<bold>31</bold>
</td>
<td char="±" align="char">71 ± 3</td>
<td char="±" align="char">77 ± 8</td>
<td char="±" align="char">74 ± 5</td>
<td char="±" align="char">79 ± 2</td>
</tr>
<tr>
<td align="left">
<bold>32</bold>
</td>
<td char="±" align="char">39 ± 7</td>
<td char="±" align="char">34 ± 4</td>
<td char="±" align="char">38 ± 7</td>
<td char="±" align="char">35 ± 7</td>
</tr>
<tr>
<td align="left">
<bold>33</bold>
</td>
<td char="±" align="char">41 ± 5</td>
<td char="±" align="char">48 ± 7</td>
<td char="±" align="char">44 ± 3</td>
<td char="±" align="char">49 ± 5</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Values are expressed as mean ± SD of three experiments</p>
</table-wrap-foot>
</table-wrap>
</p>
<p id="Par20">Remarkably, increasing the length of the hydrophobic chain appears to significantly potentiate the antiproliferative activities associated with the examined analogues, probably owing to their better penetration into the cellular compartment.</p>
<p id="Par21">To determine the apoptotic effects of cytotoxic compounds and to evaluate modulators of the cell death cascade, activation of the caspase-3 pathway, a hallmark of apoptosis, can be employed in cellular assays. According to the demonstrated results (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
) and in response to 48 h treatment with the most potent compounds, significant increase in caspase-3 activity is yielded suggesting that the antiproliferative activities of the examined compounds are most likely mediated by an apoptotic cellular death pathway.
<fig id="Fig1">
<label>Fig. 1</label>
<caption>
<p>Caspase3 activity in MCF7 cells after 48 h. The results are the means of two independent experiments. P < 0.05 was considered significant</p>
</caption>
<graphic xlink:href="13065_2018_489_Fig1_HTML" id="MO5"></graphic>
</fig>
</p>
<p id="Par22">Further exploration of possible pathways by which these compounds exert their antiproliferative activities should shed light onto prospective molecular targets with which the compounds may interrelate.</p>
</sec>
<sec id="Sec5">
<title>Docking results</title>
<p id="Par23">In order to explain the anticancer activity of the verified compounds
<bold>2</bold>
<bold>9</bold>
against the examined cancer cell lines, we recruited the crystal structure of PI3Kα (PDB ID: 2RD0) [
<xref ref-type="bibr" rid="CR21">21</xref>
] to determine the binding interaction of these compounds in PI3Kα kinase domain. Noting that these cell lines express phosphatidylinositol 3-kinase (PI3Kα) particularly MCF-7 [
<xref ref-type="bibr" rid="CR22">22</xref>
<xref ref-type="bibr" rid="CR26">26</xref>
], T47D [
<xref ref-type="bibr" rid="CR22">22</xref>
,
<xref ref-type="bibr" rid="CR25">25</xref>
<xref ref-type="bibr" rid="CR32">32</xref>
], Caco-2 [
<xref ref-type="bibr" rid="CR33">33</xref>
<xref ref-type="bibr" rid="CR35">35</xref>
] and Hela [
<xref ref-type="bibr" rid="CR36">36</xref>
<xref ref-type="bibr" rid="CR38">38</xref>
].</p>
<p id="Par24">The binding site of 2RD0 is composed of M772, K776, W780, I800, K802, L807, D810, Y836, I848, E849, V850, V851, S854, T856, Q859, M922, F930, I932 and D933 [
<xref ref-type="bibr" rid="CR39">39</xref>
]. The hydrophobic and polar residues are located in the binding domain. It’s worth noting that the exposed hydrophilic and hydrophobic surface areas of the co-crystallized ligand agree with the surrounding residues. The polar residues furnish hydrogen-bonding, ion–dipole and dipole–dipole interactions.</p>
<p id="Par25">Furthermore, the polar acidic or basic residues mediate an ionic (electrostatic) bonding. The nonpolar motif such as the aromatic and/or hydrophobic residue affords π-stacking aromatic and hydrophobic (van der Waals) interaction, respectively.</p>
<p id="Par26">In order to identify the structural-basis of PI3Kα/ligand interaction of the verified compounds in the catalytic kinase domain of PI3Kα, we employed QPLD docking [
<xref ref-type="bibr" rid="CR40">40</xref>
,
<xref ref-type="bibr" rid="CR41">41</xref>
] against the kinase cleft of 2RD0. Our QPLD docking data show that some of the synthesized molecules
<bold>2</bold>
<bold>9</bold>
bind to the kinase domain of PI3Kα (Fig. 
<xref rid="Fig2" ref-type="fig">2</xref>
, part a). Indeed, compounds having side chain alkyl group more than twelve carbon atoms
<bold>7</bold>
<bold>9</bold>
extend beyond the binding cleft boundary.
<fig id="Fig2">
<label>Fig. 2</label>
<caption>
<p>The catalytic kinase domain of (
<bold>a</bold>
) 2RD0 harbors the QPLD docked poses of some of the verified molecules
<bold>2</bold>
<bold>9</bold>
and (
<bold>b</bold>
) superposition of the QPLD docked pose
<bold>2</bold>
and the co-crystallized ligand represented in red and blue colors, respectively</p>
</caption>
<graphic xlink:href="13065_2018_489_Fig2_HTML" id="MO6"></graphic>
</fig>
</p>
<p id="Par27">Moreover, a part of the docked pose of
<bold>2</bold>
superposes that of the co-crystalized ligand (Fig. 
<xref rid="Fig2" ref-type="fig">2</xref>
, part b).</p>
<p id="Par28">Some of key binding residues are shown and H atoms are hidden for clarity purpose. Picture is captured by PYMOL. The backbones of
<bold>2</bold>
<bold>9</bold>
tend to form H-bond with S774, K802, H917, and D933 (Table 
<xref rid="Tab5" ref-type="table">5</xref>
) (Fig. 
<xref rid="Fig3" ref-type="fig">3</xref>
). Additionally,
<bold>2</bold>
<bold>9</bold>
showed comparable QPLD binding affinity thus referring that the flexibility of the side-chain carbon atoms might ameliorate the steric effect. Other computational [
<xref ref-type="bibr" rid="CR41">41</xref>
<xref ref-type="bibr" rid="CR45">45</xref>
] and experimental studies [
<xref ref-type="bibr" rid="CR21">21</xref>
] reported the significance of these residues in PI3Kα/ligand formation.
<table-wrap id="Tab5">
<label>Table 5</label>
<caption>
<p>The QPLD docking scores (Kcal/mol) and H-bond interactions between the verified compounds
<bold>2</bold>
<bold>9</bold>
and PI3Kα</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left">Compound no</th>
<th align="left">Docking score (Kcal/mol)</th>
<th align="left">H-bond</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">
<bold>2</bold>
</td>
<td char="." align="char">− 6.03</td>
<td align="left">K802</td>
</tr>
<tr>
<td align="left">
<bold>3</bold>
</td>
<td char="." align="char">− 5.93</td>
<td align="left">K802</td>
</tr>
<tr>
<td align="left">
<bold>4</bold>
</td>
<td char="." align="char">− 5.78</td>
<td align="left">D933</td>
</tr>
<tr>
<td align="left">
<bold>5</bold>
</td>
<td char="." align="char">− 6.16</td>
<td align="left">H917, D933</td>
</tr>
<tr>
<td align="left">
<bold>6</bold>
</td>
<td char="." align="char">− 5.69</td>
<td align="left">S774, D933</td>
</tr>
<tr>
<td align="left">
<bold>7</bold>
</td>
<td char="." align="char">− 5.68</td>
<td align="left">NA</td>
</tr>
<tr>
<td align="left">
<bold>8</bold>
</td>
<td char="." align="char">− 5.36</td>
<td align="left">K802</td>
</tr>
<tr>
<td align="left">
<bold>9</bold>
</td>
<td char="." align="char">− 4.58</td>
<td align="left">NA</td>
</tr>
</tbody>
</table>
</table-wrap>
<fig id="Fig3">
<label>Fig. 3</label>
<caption>
<p>The ligand/protein complex of
<bold>a 2</bold>
,
<bold>b 3</bold>
,
<bold>c 6</bold>
, and
<bold>d 9</bold>
</p>
</caption>
<graphic xlink:href="13065_2018_489_Fig3_HTML" id="MO7"></graphic>
</fig>
</p>
<p id="Par29">Noticing that the whole synthesized compounds,
<bold>2</bold>
<bold>18</bold>
and
<bold>22</bold>
<bold>23</bold>
, share the core nucleus but differs in the side-chain carbon atoms number as well as the counterpart anion, for example
<bold>2</bold>
matches
<bold>10</bold>
,
<bold>11</bold>
, and
<bold>12</bold>
. It’s worth noting that the effect of salt enhances compound solubility and assists for better biological investigation.</p>
<p id="Par30">Contrarily, in silico modeling neglects the effect of the counterpart anion thus we carried out the docking studies for
<bold>2</bold>
<bold>9</bold>
as representative models for the whole dataset. Figure 
<xref rid="Fig4" ref-type="fig">4</xref>
shows that there is a positive correlation factor (R
<sup>2</sup>
 = 0.828) between the QPLD docking scores against PI3Kα and IC
<sub>50</sub>
.
<fig id="Fig4">
<label>Fig. 4</label>
<caption>
<p>The correlation between the QPLD docking scores and between IC
<sub>50</sub>
for the tested compounds</p>
</caption>
<graphic xlink:href="13065_2018_489_Fig4_HTML" id="MO8"></graphic>
</fig>
</p>
<p id="Par31">In order to get further details about the functionalities of
<bold>2</bold>
<bold>9</bold>
, we screened them against a reported PI3Kα inhibitor pharmacophore model [
<xref ref-type="bibr" rid="CR42">42</xref>
]. The verified compounds
<bold>2</bold>
<bold>9</bold>
sparingly match the fingerprint of active PI3Kα inhibitors; three out of five functionalities for
<bold>2</bold>
<bold>9</bold>
(Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
a, b) whereas two out of five functionalities for
<bold>6</bold>
<bold>9</bold>
(Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
c, d). This finding explains their moderate to weak PI3Kα inhibitory activity and recommends optimizing the core skeleton of this library aiming to improve the biological activity.
<fig id="Fig5">
<label>Fig. 5</label>
<caption>
<p>PI3Kα inhibitor pharmacophore model with
<bold>a 2</bold>
,
<bold>b 3</bold>
,
<bold>c 6</bold>
, and
<bold>d 9</bold>
. Aro stands for aromatic ring; Acc for H-bond acceptor; and Hyd for hydrophobic group. Picture made by MOE
<sup>52</sup>
</p>
</caption>
<graphic xlink:href="13065_2018_489_Fig5_HTML" id="MO9"></graphic>
</fig>
</p>
<p id="Par32">Strikingly, the biological activity of
<bold>8</bold>
<bold>9</bold>
would suggest that the hydrophobicity of the attached alkyl group as well as the lipid membrane solubility parameter might affect their attachment to the cell line membrane.</p>
<p id="Par33">In order to evaluate the performance of QPLD program, we compared the QPLD-docked pose of KWT in the mutant H1047R PI3Kα (PDB ID: 3HHM) [
<xref ref-type="bibr" rid="CR46">46</xref>
] to its native conformation in the crystal structure. Figure 
<xref rid="Fig6" ref-type="fig">6</xref>
shows the superposition of the QPLD-generated KWT pose and the native conformation in 3HHM. The RMSD for heavy atoms of KWT between QPLD-generated docked pose and the native pose was 0.409 Å. This demonstrates that QPLD dock is able to reproduce the native conformation in the crystal structure and can reliably predict the ligand binding conformation.
<fig id="Fig6">
<label>Fig. 6</label>
<caption>
<p>The superposition of KWT QPLD-docked pose and its native conformation in 3HHM. The native coordinates are represented in orange and the docked pose in green color. Picture visualized by PYMOL</p>
</caption>
<graphic xlink:href="13065_2018_489_Fig6_HTML" id="MO10"></graphic>
</fig>
</p>
</sec>
</sec>
<sec id="Sec6">
<title>Experimental</title>
<sec id="Sec7">
<title>Apparatus and analysis</title>
<p id="Par34">The Stuart Scientific SMP1 apparatus (Stuart, Red Hill, UK) was used in recording of the uncorrected melting points.</p>
<p id="Par35">The SHIMADZU FTIR-8400S spectrometer (SHIMADZU, Boston, MA, USA) was used on the IR measurement.</p>
<p id="Par36">The Bruker spectrometer (400 and 600 MHz, Brucker, Fällanden, Switzerland) was used in the NMR analysis using Tetramethylsilane (TMS) (0.00 ppm) as an internal standard.</p>
<p id="Par37">The Finnigan LCQ and Finnigan MAT 95XL spectrometers (Finnigan, Darmstadt, Germany) were used in the ESI and EI measurement, respectively.</p>
<p id="Par38">The Kunshan KQ-250B ultrasound cleaner (50 kHz, 240 W, Kunshan Ultrasonic Instrument, Kunshan, China) was used for carrying out all reactions.</p>
</sec>
<sec id="Sec8">
<title>General alkylation procedure for the synthesis of cationic amphiphilic fluorinated pyridinium hydrazones
<bold>2</bold>
<bold>9</bold>
</title>
<sec id="Sec9">
<title>Conventional method (CM)</title>
<p id="Par39">To a mixture of pyridine hydrazone
<bold>1</bold>
(1 mmol) in acetonitrile (30 ml) was added an appropriate long alkyl iodides with chain ranging from C
<sub>8</sub>
to C
<sub>18</sub>
(1.5 mmol) under stirring. The mixture was refluxed for 72 h, then the solvent was reduced under pressure. The obtained solid was collected by filtration and washed with acetonitrile to give the target ILs
<bold>2</bold>
<bold>9</bold>
.</p>
</sec>
<sec id="Sec10">
<title>Ultrasound method (US)</title>
<p id="Par40">To a mixture of pyridine hydrazone
<bold>1</bold>
(1 mmol) in acetonitrile (30 ml) was added an appropriate long alkyl iodides with chain ranging from C
<sub>8</sub>
to C
<sub>18</sub>
(1.5 mmol) under stirring. The mixture was irradiated by ultrasound irradiation for 10–12 h. The reaction was processed as described above to give the same target ILs
<bold>2</bold>
<bold>9</bold>
.</p>
<sec id="FPar1">
<title>
<italic>4</italic>
-
<italic>(2</italic>
-
<italic>(4</italic>
-
<italic>Fluorobenzylidene) hydrazinecarbonyl)</italic>
-
<italic>1</italic>
-
<italic>octylpyridin</italic>
-
<italic>1</italic>
-
<italic>ium iodide (</italic>
<bold>
<italic>2</italic>
</bold>
<italic>)</italic>
</title>
<p id="Par41">It was obtained as yellow crystals; mp: 104–105 °C. FT-IR (KBr), cm
<sup>−1</sup>
: ῡ = 1595 (C=N), 1670 (C=O), 2870, 2960 (Al–H), 3071 (Ar–H).
<sup>1</sup>
H NMR (400 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>H</sub>
 = 0.83–0.87 (m, 3H, C
<bold>H</bold>
<sub>3</sub>
), 1.25–1.32 (m, 10H, 5× C
<bold>H</bold>
<sub>2</sub>
), 1.94–1.99 (m, 2H, NCH
<sub>2</sub>
C
<bold>H</bold>
<sub>2</sub>
), 4.68 (t, 2H,
<italic>J</italic>
 = 8 Hz, NC
<bold>H</bold>
<sub>2</sub>
), 7.22 (t, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.34 (t, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.62 (dd, 0.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 7.88 (dd, 1.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 8.16 (s, 0.25H,
<bold>H</bold>
–C=N), 8.39 (d, 0.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 8.50 (s, 0.75H,
<bold>H</bold>
–C=N), 8.53 (d, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 9.25 (d, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 9.33 (d, 1.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 12.47 (bs, 1H, CON
<bold>H</bold>
).
<sup>13</sup>
C NMR (100 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>C</sub>
 = 13.89 (
<bold>C</bold>
H
<sub>3</sub>
), 21.99, 25.36, 25.41, 28.30, 28.40, 30.50, 30.63, 31.08 (6×
<bold>C</bold>
H
<sub>2</sub>
), 60.95, 61.02 (N
<bold>C</bold>
H
<sub>2</sub>
), 115.74, 115.95, 116.17, 126.14, 127.11, 129.36, 129.44, 129.73, 129.81, 130.21, 130.24, 145.08, 145.67, 147.33, 149.36, 149.63 (Ar–
<bold>C</bold>
), 158.76, 162.28, 164.75, 165.21 (
<bold>C</bold>
=N,
<bold>C</bold>
=O).
<sup>19</sup>
F NMR (377 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>F</sub>
 = (− 109.72 to − 109.65), (− 109.20 to − 109.12) (2m, 1F, Ar–
<bold>F</bold>
). MS (ES)
<italic>m/z </italic>
= 483.32 [M
<sup>+</sup>
].</p>
</sec>
<sec id="FPar2">
<title>
<italic>4</italic>
-
<italic>(2</italic>
-
<italic>(4</italic>
-
<italic>Fluorobenzylidene) hydrazinecarbonyl)</italic>
-
<italic>1</italic>
-
<italic>nonylpyridin</italic>
-
<italic>1</italic>
-
<italic>ium iodide (</italic>
<bold>
<italic>3</italic>
</bold>
<italic>)</italic>
</title>
<p id="Par42">It was obtained as yellow crystals; mp: 91–93 °C. FT-IR (KBr), cm
<sup>−1</sup>
: ῡ= 1598 (C=N), 1682 (C=O), 2872, 2969 (Al–H), 3078 (Ar–H).
<sup>1</sup>
H NMR (400 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>H</sub>
 = 0.83–0.87 (m, 3H, C
<bold>H</bold>
<sub>3</sub>
), 1.25–1.32 (m, 12H, 6× C
<bold>H</bold>
<sub>2</sub>
), 1.94–1.99 (m, 2H, NCH
<sub>2</sub>
C
<bold>H</bold>
<sub>2</sub>
), 4.69 (dd, 2H,
<italic>J</italic>
 = 4 Hz, 8 Hz, NC
<bold>H</bold>
<sub>2</sub>
), 7.25 (dd, 0.5H,
<italic>J</italic>
 = 8 Hz, 12 Hz, Ar–
<bold>H</bold>
), 7.37 (dd, 1.5H,
<italic>J</italic>
 = 8 Hz, 12 Hz, Ar–
<bold>H</bold>
), 7.62 (dd, 0.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 7.89 (dd, 1.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 8.15 (s, 0.25H,
<bold>H</bold>
–C=N), 8.40 (d, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 8.50 (s, 0.75H,
<bold>H</bold>
–C=N), 8.53 (d, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 9.25 (d, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 9.33 (d, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 12.46 (s, 0.75H, CON
<bold>H</bold>
), 12.51 (s, 0.25H, CON
<bold>H</bold>
).
<sup>13</sup>
C NMR (100 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>C</sub>
 = 13.92 (
<bold>C</bold>
H
<sub>3</sub>
), 22.03, 25.36, 25.41, 28.35, 28.52, 28.70, 30.51, 30.64, 31.18 (7×
<bold>C</bold>
H
<sub>2</sub>
), 60.93, 61.01 (N
<bold>C</bold>
H
<sub>2</sub>
), 115.74, 115.96, 116.18, 126.15, 127.11, 129.35, 129.43, 129.73, 129.82, 130.20, 130.23, 145.06, 145.69, 147.31, 149.33, 149.64 (Ar–
<bold>C</bold>
), 158.75, 162.28, 164.76, 165.23 (
<bold>C</bold>
=N,
<bold>C</bold>
=O).
<sup>19</sup>
F NMR (377 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>F</sub>
 = (− 109.94 to − 109.86), (− 109.42 to − 109.34) (2m, 1F, Ar–
<bold>F</bold>
). MS (ES)
<italic>m/z </italic>
= 497.10 [M
<sup>+</sup>
].</p>
</sec>
<sec id="FPar3">
<title>
<italic>1</italic>
-
<italic>Decyl</italic>
-
<italic>4</italic>
-
<italic>(2</italic>
-
<italic>(4</italic>
-
<italic>fluorobenzylidene) hydrazinecarbonyl)pyridin</italic>
-
<italic>1</italic>
-
<italic>ium iodide (</italic>
<bold>
<italic>4</italic>
</bold>
<italic>)</italic>
</title>
<p id="Par43">It was obtained as yellow crystals; mp: 110–112 °C. FT-IR (KBr), cm
<sup>−1</sup>
: ῡ = 1615 (C=N), 1690 (C=O), 2873, 2966 (Al–H), 3074 (Ar–H).
<sup>1</sup>
H NMR (400 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>H</sub>
 = 0.83–0.87 (m, 3H, C
<bold>H</bold>
<sub>3</sub>
), 1.25–1.32 (m, 14H, 7× C
<bold>H</bold>
<sub>2</sub>
), 1.94–1.99 (m, 2H, NCH
<sub>2</sub>
C
<bold>H</bold>
<sub>2</sub>
), 4.68 (t, 2H,
<italic>J</italic>
 = 8 Hz, NC
<bold>H</bold>
<sub>2</sub>
), 7.23 (t, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.38 (dd, 1.5H,
<italic>J</italic>
 = 8 Hz, 12 Hz, Ar–
<bold>H</bold>
), 7.62 (dd, 0.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 7.89 (dd, 1.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 8.16 (s, 0.25H,
<bold>H</bold>
–C=N), 8.40 (d, 0.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 8.50 (s, 0.75H,
<bold>H</bold>
–C=N), 8.54 (d, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 9.25 (d, 0.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 9.34 (d, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 12.48 (bs, 1H, CON
<bold>H</bold>
).
<sup>13</sup>
C NMR (100 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>C</sub>
 = 12.40, 12.42 (
<bold>C</bold>
H
<sub>3</sub>
), 20.55, 23.85, 23.89, 26.84, 27.11, 27.24, 27.28, 27.32, 28.99, 29.13, 29.72 (8×
<bold>C</bold>
H
<sub>2</sub>
), 59.42, 59.49 (N
<bold>C</bold>
H
<sub>2</sub>
), 114.24, 114.46, 114.68, 124.63, 125.59, 127.84, 127.92, 128.22, 128.31, 128.55, 128.68, 128.71, 143.54, 144.18, 145.78, 147.80, 148.12 (Ar–
<bold>C</bold>
), 157.25, 160.77, 163.24, 163.73 (
<bold>C</bold>
=N,
<bold>C</bold>
=O).
<sup>19</sup>
F NMR (377 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>F</sub>
 = (− 109.94 to − 109.85), (− 109.42 to − 109.34) (2m, 1F, Ar–
<bold>F</bold>
). MS (ES)
<italic>m/z </italic>
= 511.05 [M
<sup>+</sup>
].</p>
</sec>
<sec id="FPar4">
<title>
<italic>4</italic>
-
<italic>(2</italic>
-
<italic>(4</italic>
-
<italic>Fluorobenzylidene)hydrazinecarbonyl)</italic>
-
<italic>1</italic>
-
<italic>undecylpyridin</italic>
-
<italic>1</italic>
-
<italic>ium iodide (</italic>
<bold>
<italic>5</italic>
</bold>
<italic>)</italic>
</title>
<p id="Par44">It was obtained as yellow crystals; mp: 82–83 °C. FT-IR (KBr), cm
<sup>−1</sup>
: ῡ = 1598 (C=N), 1677 (C=O), 2872, 2967 (Al–H), 3078 (Ar–H).
<sup>1</sup>
H NMR (400 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>H</sub>
 = 0.83–0.87 (m, 3H, C
<bold>H</bold>
<sub>3</sub>
), 1.24–1.32 (m, 16H, 8× C
<bold>H</bold>
<sub>2</sub>
), 1.96–1.99 (m, 2H, NCH
<sub>2</sub>
C
<bold>H</bold>
<sub>2</sub>
), 4.68 (t, 2H,
<italic>J</italic>
 = 8 Hz, NC
<bold>H</bold>
<sub>2</sub>
), 7.22 (t, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.34 (t, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.62 (dd, 0.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 7.89 (dd, 1.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 8.16 (s, 0.25H,
<bold>H</bold>
–C=N), 8.39 (d, 0.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 8.50 (s, 0.75H,
<bold>H</bold>
–C=N), 8.53 (d, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 9.25 (d, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 9.34 (d, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 12.45 (bs, 1H, CON
<bold>H</bold>
).
<sup>13</sup>
C NMR (100 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>C</sub>
 = 12.39 (
<bold>C</bold>
H
<sub>3</sub>
), 20.53, 23.86, 26.83, 27.13, 27.23, 27.37, 27.40, 28.98, 29.12, 29.74 (9×
<bold>C</bold>
H
<sub>2</sub>
), 59.46, 59.53 (N
<bold>C</bold>
H
<sub>2</sub>
), 114.23, 114.44, 114.66, 124.63, 125.61, 127.85, 127.93, 128.22, 128.31, 128.53, 128.56, 128.71, 128.74, 143.58, 144.18, 145.82, 147.88, 148.15 (Ar–
<bold>C</bold>
), 157.23, 160.78, 163.26, 163.69 (
<bold>C</bold>
=N,
<bold>C</bold>
=O).
<sup>19</sup>
F NMR (377 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>F</sub>
 = (− 109.95 to − 109.88), (− 109.35 to − 109.37) (2m, 1F, Ar–
<bold>F</bold>
). MS (ES)
<italic>m/z </italic>
= 525.10 [M
<sup>+</sup>
].</p>
</sec>
<sec id="FPar5">
<title>
<italic>1</italic>
-
<italic>Dodecyl</italic>
-
<italic>4</italic>
-
<italic>(2</italic>
-
<italic>(4</italic>
-
<italic>fluorobenzylidene) hydrazinecarbonyl)pyridin</italic>
-
<italic>1</italic>
-
<italic>ium iodide (</italic>
<bold>
<italic>6</italic>
</bold>
<italic>)</italic>
</title>
<p id="Par45">It was obtained as yellow crystals; mp: 72–73 °C. FT-IR (KBr), cm
<sup>−1</sup>
: ῡ = 1605 (C=N), 1688 (C=O), 2883, 2961 (Al–H), 3074 (Ar–H).
<sup>1</sup>
H NMR (400 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>H</sub>
 = 0.83–0.87 (m, 3H, C
<bold>H</bold>
<sub>3</sub>
), 1.24–1.32 (m, 18H, 9× C
<bold>H</bold>
<sub>2</sub>
), 1.96–1.99 (m, 2H, NCH
<sub>2</sub>
C
<bold>H</bold>
<sub>2</sub>
), 4.70 (dd, 2H,
<italic>J</italic>
 = 4 Hz, 8 Hz, NC
<bold>H</bold>
<sub>2</sub>
), 7.22 (t, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.34 (t, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.62 (dd, 0.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 7.88 (dd, 1.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 8.16 (s, 0.25H,
<bold>H</bold>
–C=N), 8.39 (d, 0.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 8.50 (s, 0.75H,
<bold>H</bold>
–C=N), 8.53 (d, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 9.25 (d, 0.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 9.34 (d, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 12.46 (bs, 1H, CON
<bold>H</bold>
).
<sup>13</sup>
C NMR (100 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>C</sub>
 = 11.54, 11.59 (
<bold>C</bold>
H
<sub>3</sub>
), 19.68, 23.00, 25.98, 26.30, 26.38, 26.51, 26.60, 28.13, 28.27, 28.88 (10×
<bold>C</bold>
H
<sub>2</sub>
), 58.60, 58.67 (N
<bold>C</bold>
H
<sub>2</sub>
), 113.37, 113.59, 113.80, 123.78, 124.75, 127.00, 127.08, 127.36, 127.45, 127.86, 127.89, 142.72, 143.33, 144.97, 147.02, 127.29 (Ar–
<bold>C</bold>
), 156.38, 159.93, 162.40, 162.83 (
<bold>C</bold>
=N,
<bold>C</bold>
=O).
<sup>19</sup>
F NMR (377 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>F</sub>
 = (− 109.95 to − 109.88), (− 109.44 to − 109.36) (2m, 1F, Ar–
<bold>F</bold>
). MS (ES)
<italic>m/z </italic>
= 539.40 [M
<sup>+</sup>
].</p>
</sec>
<sec id="FPar6">
<title>
<italic>4</italic>
-
<italic>(2</italic>
-
<italic>(4</italic>
-
<italic>Fluorobenzylidene)hydrazinecarbonyl)</italic>
-
<italic>1</italic>
-
<italic>tetradecylpyridin</italic>
-
<italic>1</italic>
-
<italic>ium iodide (</italic>
<bold>
<italic>7</italic>
</bold>
<italic>)</italic>
</title>
<p id="Par46">It was obtained as yellow crystals; mp: 86–88 °C. FT-IR (KBr), cm
<sup>−1</sup>
: ῡ = 1590 (C=N), 1679 (C=O), 2878, 2964 (Al–H), 3078 (Ar–H).
<sup>1</sup>
H NMR (400 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>H</sub>
 = 0.83–0.86 (m, 3H, C
<bold>H</bold>
<sub>3</sub>
), 1.24–1.32 (m, 22H, 11× C
<bold>H</bold>
<sub>2</sub>
), 1.94–1.98 (m, 2H, NCH
<sub>2</sub>
C
<bold>H</bold>
<sub>2</sub>
), 4.68 (t, 2H,
<italic>J</italic>
 = 8 Hz, NC
<bold>H</bold>
<sub>2</sub>
), 7.22 (t, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.34 (t, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.62 (dd, 0.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 7.89 (dd, 1.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 8.16 (s, 0.25H,
<bold>H</bold>
–C=N), 8.39 (d, 0.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 8.50 (s, 0.75H,
<bold>H</bold>
–C=N), 8.53 (d, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 9.25 (d, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 9.33 (d, 1.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 12.44 (s, 0.75H, CON
<bold>H</bold>
), 12.49 (s, 0.25H, CON
<bold>H</bold>
).
<sup>13</sup>
C NMR (100 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>C</sub>
 = 13.89 (
<bold>C</bold>
H
<sub>3</sub>
), 22.03, 25.36, 27.80, 28.34, 28.65, 28.74, 28.86, 28.96, 28.99, 29.77, 30.48, 30.62, 31.24, 32.85 (12×
<bold>C</bold>
H
<sub>2</sub>
), 60.96, 61.03 (N
<bold>C</bold>
H
<sub>2</sub>
), 115.73, 115.94, 116.16, 126.13, 127.11, 129.34, 129.43, 129.72, 129.81, 130.21, 130.24, 145.08, 145.68, 147.31, 149.38, 149.65 (Ar–
<bold>C</bold>
), 158.73, 162.29, 164.29, 165.18 (
<bold>C</bold>
=N,
<bold>C</bold>
=O).
<sup>19</sup>
F NMR (377 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>F</sub>
 = (− 109.96 to − 109.89), (− 109.44 to − 109.36) (2m, 1F, Ar–
<bold>F</bold>
). MS (ES)
<italic>m/z </italic>
= 567.20 [M
<sup>+</sup>
].</p>
</sec>
<sec id="FPar7">
<title>
<italic>4</italic>
-
<italic>(2</italic>
-
<italic>(4</italic>
-
<italic>Fluorobenzylidene)hydrazinecarbonyl)</italic>
-
<italic>1</italic>
-
<italic>hexadecylpyridin</italic>
-
<italic>1</italic>
-
<italic>ium iodide (</italic>
<bold>
<italic>8</italic>
</bold>
<italic>)</italic>
</title>
<p id="Par47">It was obtained as yellow crystals; mp: 78–80 °C. FT-IR (KBr), cm
<sup>−1</sup>
: ῡ = 1610 (C=N), 1677 (C=O), 2887, 2969 (Al–H), 3076 (Ar–H).
<sup>1</sup>
H NMR (400 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>H</sub>
 = 0.83–0.86 (m, 3H, C
<bold>H</bold>
<sub>3</sub>
), 1.23–1.30 (m, 26H, 13× C
<bold>H</bold>
<sub>2</sub>
), 1.96–1.98 (m, 2H, NCH
<sub>2</sub>
C
<bold>H</bold>
<sub>2</sub>
), 4.68 (t, 2H,
<italic>J</italic>
 = 8 Hz, NC
<bold>H</bold>
<sub>2</sub>
), 7.22 (t, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.34 (t, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.62 (dd, 0.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 7.89 (dd, 1.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 8.16 (s, 0.25H,
<bold>H</bold>
–C=N), 8.39 (d, 0.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 8.50 (s, 0.75H,
<bold>H</bold>
–C=N), 8.53 (d, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 9.25 (d, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 9.34 (d, 1.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 12.45 (s, 0.75H, CON
<bold>H</bold>
), 12.49 (s, 0.25H, CON
<bold>H</bold>
).
<sup>13</sup>
C NMR (100 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>C</sub>
 = 13.88 (
<bold>C</bold>
H
<sub>3</sub>
), 22.03, 25.36, 28.34, 28.64, 28.74, 28.87, 28.96, 29.00, 30.49, 30.62, 31.24 (12×
<bold>C</bold>
H
<sub>2</sub>
), 60.96, 61.03 (N
<bold>C</bold>
H
<sub>2</sub>
), 115.73, 115.94, 116.16, 126.14, 127.11, 129.34, 129.43, 129.72, 129.81, 130.04, 130.24, 145.08, 145.69, 147.31, 149.37 (Ar–
<bold>C</bold>
), 158.72, 162.29, 164.76, 165.18 (
<bold>C</bold>
=N,
<bold>C</bold>
=O).
<sup>19</sup>
F NMR (377 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>F</sub>
 = (− 109.97 to − 109.89), (− 109.45 to − 109.37) (2m, 1F, Ar–
<bold>F</bold>
). MS (ES)
<italic>m/z </italic>
= 595.30 [M
<sup>+</sup>
].</p>
</sec>
<sec id="FPar8">
<title>
<italic>4</italic>
-
<italic>(2</italic>
-
<italic>(4</italic>
-
<italic>Fluorobenzylidene)hydrazinecarbonyl)</italic>
-
<italic>1</italic>
-
<italic>octadecylpyridin</italic>
-
<italic>1</italic>
-
<italic>ium iodide (</italic>
<bold>
<italic>9</italic>
</bold>
<italic>)</italic>
</title>
<p id="Par48">It was obtained as yellow crystals; mp: 98–99 °C. FT-IR (KBr), cm
<sup>−1</sup>
: ῡ= 1612 (C=N), 1678 (C=O), 2887, 2955 (Al–H), 3086 (Ar–H).
<sup>1</sup>
H NMR (400 MHz, CDCl
<sub>3</sub>
): δ
<sub>H</sub>
 = 0.79–0.82 (m, 3H, C
<bold>H</bold>
<sub>3</sub>
), 1.16–1.20 (m, 30H, 15× C
<bold>H</bold>
<sub>2</sub>
), 1.96–2.00 (m, 2H, NCH
<sub>2</sub>
C
<bold>H</bold>
<sub>2</sub>
), 4.78 (dd, 2H,
<italic>J</italic>
 = 4 Hz, 8 Hz, NC
<bold>H</bold>
<sub>2</sub>
), 6.97 (t, 2H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.71 (dd, 2H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 8.87 (d, 2H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 9.08 (s, 1H,
<bold>H</bold>
–C=N), 9.12 (d, 2H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 12.18 (bs, 1H, CON
<bold>H</bold>
).
<sup>13</sup>
C NMR (100 MHz, CDCl
<sub>3</sub>
): δ
<sub>C</sub>
 = 14.08 (
<bold>C</bold>
H
<sub>3</sub>
), 22.66, 26.10, 28.96, 29.31, 29.33, 29.48, 29.57, 29.63, 29.68, 31.67, 31.90 (16×
<bold>C</bold>
H
<sub>2</sub>
), 62.74 (N
<bold>C</bold>
H
<sub>2</sub>
), 115.85, 116.07, 127.88, 129.47, 130.14, 130.22, 144.82, 147.91, 151.67 (Ar–
<bold>C</bold>
), 158.57, 163.22, 163.25, 165.76 (
<bold>C</bold>
=N,
<bold>C</bold>
=O).
<sup>19</sup>
F NMR (377 MHz, CDCl
<sub>3</sub>
): δ
<sub>F</sub>
 = (− 107.98 to − 107.89), (− 107.72 to − 107.65) (2 m, 1F, Ar–
<bold>F</bold>
). MS (ES)
<italic>m/z </italic>
= 623.30 [M
<sup>+</sup>
].</p>
</sec>
</sec>
</sec>
<sec id="Sec11">
<title>General metathesis procedure for the synthesis of pyridinium hydrazones
<bold>10</bold>
<bold>33</bold>
</title>
<sec id="Sec12">
<title>Conventional method (CM)</title>
<p id="Par49">A mixture of equimolar of IL
<bold>2</bold>
<bold>9</bold>
(1 mmol) and fluorinated metal salt (KPF
<sub>6</sub>
, NaBF
<sub>4</sub>
and/or NaCF
<sub>3</sub>
COO) (1 mmol) in dichloromethane (15 ml) was heated under reflux for 12 h. After cooling, the solid formed was collected by extraction and/or by filtration. The solid was washed by dichloromethane to afford the task-specific ILs
<bold>10</bold>
<bold>33</bold>
.</p>
</sec>
<sec id="Sec13">
<title>Ultrasound method (US)</title>
<p id="Par50">A mixture of equimolar of IL
<bold>2</bold>
<bold>9</bold>
(1 mmol) and fluorinated metal salt (KPF
<sub>6</sub>
, NaBF
<sub>4</sub>
and/or NaCF
<sub>3</sub>
COO) (1 mmol) in dichloromethane (15 ml) was irradiated by ultrasound irradiation for 6 h. The reaction was processed as described above to give the same task-specific ILs
<bold>10</bold>
<bold>33</bold>
.</p>
<sec id="FPar9">
<title>
<italic>4</italic>
-
<italic>(2</italic>
-
<italic>(4</italic>
-
<italic>Fluorobenzylidene) hydrazinecarbonyl)</italic>
-
<italic>1</italic>
-
<italic>octylpyridin</italic>
-
<italic>1</italic>
-
<italic>ium hexafluorophosphate (</italic>
<bold>
<italic>10</italic>
</bold>
<italic>)</italic>
</title>
<p id="Par51">It was obtained as yellow crystals; mp: 64–65 °C.
<sup>1</sup>
H NMR (400 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>H</sub>
 = 0.82–0.88 (m, 3H, C
<bold>H</bold>
<sub>3</sub>
), 1.26–1.30 (m, 10H, 5×C
<bold>H</bold>
<sub>2</sub>
), 1.94–2.00 (m, 2H, NCH
<sub>2</sub>
C
<bold>H</bold>
<sub>2</sub>
), 4.68 (t, 2H,
<italic>J</italic>
 = 8 Hz, NC
<bold>H</bold>
<sub>2</sub>
), 7.26 (dd, 0.5H,
<italic>J</italic>
 = 8 Hz, 12 Hz, Ar–
<bold>H</bold>
), 7.38 (dd, 1.5H,
<italic>J</italic>
 = 8 Hz, 12 Hz, Ar–
<bold>H</bold>
), 7.62 (dd, 0.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 7.89 (dd, 1.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 8.16 (s, 0.25H,
<bold>H</bold>
–C=N), 8.40 (d, 0.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 8.50 (s, 0.75H,
<bold>H</bold>
–C=N), 8.53 (d, 1.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 9.25 (d, 0.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 9.33 (d, 1.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 12.50 (bs, 1H, CON
<bold>H</bold>
).
<sup>13</sup>
C NMR (100 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>C</sub>
 = 13.09 (
<bold>C</bold>
H
<sub>3</sub>
), 22.00, 25.36, 25.41, 28.30, 28.40, 30.51, 30.64, 31.09 (6×
<bold>C</bold>
H
<sub>2</sub>
), 60.95, 61.02 (N
<bold>C</bold>
H
<sub>2</sub>
), 115.75, 115.96, 116.18, 126.14, 127.11, 129.35, 129.44, 129.73, 129.81, 130.05, 130.24, 130.24, 145.06, 145.67, 147.35, 149.35, 149.63 (Ar–
<bold>C</bold>
), 158.78, 162.28, 164.75, 165.22 (
<bold>C</bold>
=N,
<bold>C</bold>
=O). 
<sup>31</sup>
P NMR (162 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>P</sub>
 = − 152.70 to − 135.29 (m, 1P,
<bold>P</bold>
F
<sub>6</sub>
).
<sup>19</sup>
F NMR (377 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>F</sub>
 = − 69.98 (d, 6F, P
<bold>F</bold>
<sub>
<bold>6</bold>
</sub>
), (− 109.72 to − 109.65), (− 109.20 to − 109.12) (2m, 1F, Ar–
<bold>F</bold>
). MS (ES)
<italic>m/z </italic>
= 501.20 [M
<sup>+</sup>
].</p>
</sec>
<sec id="FPar10">
<title>
<italic>4</italic>
-
<italic>(2</italic>
-
<italic>(4</italic>
-
<italic>Fluorobenzylidene) hydrazinecarbonyl)</italic>
-
<italic>1</italic>
-
<italic>octylpyridin</italic>
-
<italic>1</italic>
-
<italic>ium tetrafluoroborate (</italic>
<bold>
<italic>11</italic>
</bold>
<italic>)</italic>
</title>
<p id="Par52">It was obtained as yellow crystals; mp: 80–82 °C.
<sup>1</sup>
H NMR (400 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>H</sub>
 = 0.84–0.88 (m, 3H, C
<bold>H</bold>
<sub>3</sub>
), 1.26–1.31 (m, 10H, 5×C
<bold>H</bold>
<sub>2</sub>
), 1.95–2.00 (m, 2H, NCH
<sub>2</sub>
C
<bold>H</bold>
<sub>2</sub>
), 4.70 (dd, 2H,
<italic>J</italic>
 = 4 Hz, 8 Hz, NC
<bold>H</bold>
<sub>2</sub>
), 7.26 (dd, 0.5H,
<italic>J</italic>
 = 8 Hz, 12 Hz, Ar–
<bold>H</bold>
), 7.38 (dd, 1.5H,
<italic>J</italic>
 = 8 Hz, 12 Hz, Ar–
<bold>H</bold>
), 7.63 (dd, 0.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 7.90 (dd, 1.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 8.16 (s, 0.25H,
<bold>H</bold>
–C=N), 8.41 (d, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 8.51 (s, 0.75H,
<bold>H</bold>
–C=N), 8.54 (d, 1.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 9.27 (d, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 9.36 (d, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 12.49 (s, 0.75H, CON
<bold>H</bold>
), 12.53 (s, 0.25H, CON
<bold>H</bold>
).
<sup>13</sup>
C NMR (100 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>C</sub>
 = 13.87 (
<bold>C</bold>
H
<sub>3</sub>
), 21.97, 25.32, 25.38, 28.27, 28.37, 28.40, 30.48, 30.61, 31.06 (6×
<bold>C</bold>
H
<sub>2</sub>
), 60.89, 60.96 (N
<bold>C</bold>
H
<sub>2</sub>
), 115.71, 115.92, 116.14, 126.10, 127.07, 129.33, 129.41, 129.69, 129.78, 130.01, 130.15, 130.18, 145.02, 145.65, 147.23, 149.28, 149.57 (Ar–
<bold>C</bold>
), 158.72, 161.89, 162.23, 164.70, 165.19 (
<bold>C</bold>
=N,
<bold>C</bold>
=O).
<sup>11</sup>
B NMR (128 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>B</sub>
 = − 1.31 to − 1.30 (m, 1B,
<bold>B</bold>
F
<sub>4</sub>
).
<sup>19</sup>
F NMR (377 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>F</sub>
 = (− 109.82 to − 109.74), (− 109.29 to − 109.21) (2m, 1F, Ar–
<bold>F</bold>
); − 148.12, − 148.07 (2d, 4F, B
<bold>F</bold>
<sub>4</sub>
). MS (ES)
<italic>m/z </italic>
= 443.20 [M
<sup>+</sup>
].</p>
</sec>
<sec id="FPar11">
<title>
<italic>4</italic>
-
<italic>(2</italic>
-
<italic>(4</italic>
-
<italic>Fluorobenzylidene) hydrazinecarbonyl)</italic>
-
<italic>1</italic>
-
<italic>octylpyridin</italic>
-
<italic>1</italic>
-
<italic>ium trifluoroacetate (</italic>
<bold>
<italic>12</italic>
</bold>
<italic>)</italic>
</title>
<p id="Par53">It was obtained as yellow crystals; mp: 74–76 °C.
<sup>1</sup>
H NMR (400 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>H</sub>
 = 0.84–0.88 (m, 3H, C
<bold>H</bold>
<sub>3</sub>
), 1.26–1.30 (m, 10H, 5×C
<bold>H</bold>
<sub>2</sub>
), 1.95–1.97 (m, 2H, NCH
<sub>2</sub>
C
<bold>H</bold>
<sub>2</sub>
), 4.69 (dd, 2H,
<italic>J</italic>
 = 4 Hz, 8 Hz, NC
<bold>H</bold>
<sub>2</sub>
), 7.26 (dd, 0.5H,
<italic>J</italic>
 = 8 Hz, 12 Hz, Ar–
<bold>H</bold>
), 7.35 (t, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.62 (dd, 0.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 7.88 (dd, 1.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 8.16 (s, 0.25H,
<bold>H</bold>
–C=N), 8.40 (d, 0.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 8.49 (s, 0.75H,
<bold>H</bold>
–C=N), 8.54 (d, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 9.25 (d, 0.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 9.32 (d, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 12.54 (bs, 1H, CON
<bold>H</bold>
).
<sup>13</sup>
C NMR (100 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>C</sub>
 = 13.85 (
<bold>C</bold>
H
<sub>3</sub>
), 21.95, 25.30, 25.35, 28.25, 28.35, 28.38, 30.46, 30.58, 31.03 (6×
<bold>C</bold>
H
<sub>2</sub>
), 60.85, 60.88 (N
<bold>C</bold>
H
<sub>2</sub>
), 115.69, 115.88, 116.10, 126.05, 127.04, 129.28, 129.36, 129.61, 129.70, 129.99, 130.24, 130.27, 144.98, 145.54, 147.59, 149.20, 149.56 (Ar–
<bold>C</bold>
), 158.84, 162.15, 165.19 (
<bold>C</bold>
=N,
<bold>C</bold>
=O).
<sup>19</sup>
F NMR (377 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>F</sub>
 = − 73.50 (s, 3F, C
<bold>F</bold>
<sub>
<bold>3</bold>
</sub>
), (− 109.92 to − 109.84), (− 109.53 to − 109.45) (2m, 1F, Ar–
<bold>F</bold>
). MS (ESI)
<italic>m/z </italic>
= 467.10 [M
<sup>+</sup>
+ 1].</p>
</sec>
<sec id="FPar12">
<title>
<italic>4</italic>
-
<italic>(2</italic>
-
<italic>(4</italic>
-
<italic>Fluorobenzylidene) hydrazinecarbonyl)</italic>
-
<italic>1</italic>
-
<italic>nonylpyridin</italic>
-
<italic>1</italic>
-
<italic>ium hexafluorophosphate (</italic>
<bold>
<italic>13</italic>
</bold>
<italic>)</italic>
</title>
<p id="Par54">It was obtained as yellow crystals; mp: 69–70 °C.
<sup>1</sup>
H NMR (400 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>H</sub>
 = 0.83–0.87 (m, 3H, C
<bold>H</bold>
<sub>3</sub>
), 1.25–1.30 (m, 12H, 6×C
<bold>H</bold>
<sub>2</sub>
), 1.94–1.99 (m, 2H, NCH
<sub>2</sub>
C
<bold>H</bold>
<sub>2</sub>
), 4.69 (dd, 2H,
<italic>J</italic>
 = 4 Hz, 8 Hz, NC
<bold>H</bold>
<sub>2</sub>
), 7.25 (dd, 0.5H,
<italic>J</italic>
 = 8 Hz, 12 Hz, Ar–
<bold>H</bold>
), 7.37 (dd, 1.5H,
<italic>J</italic>
 = 8 Hz, 12 Hz, Ar–
<bold>H</bold>
), 7.62 (dd, 0.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 7.89 (dd, 1.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 8.15 (s, 0.25H,
<bold>H</bold>
–C=N), 8.40 (d, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 8.51 (s, 0.75H,
<bold>H</bold>
–C=N), 8.54 (d, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 9.24 (d, 0.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 9.33 (d, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 12.51 (s, 1H, CON
<bold>H</bold>
).
<sup>13</sup>
C NMR (100 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>C</sub>
 = 13.92 (
<bold>C</bold>
H
<sub>3</sub>
), 22.03, 25.36, 25.41, 28.35, 28.52, 28.70, 28.74, 30.51, 30.64, 31.18 (7×
<bold>C</bold>
H
<sub>2</sub>
), 60.93, 61.01 (N
<bold>C</bold>
H
<sub>2</sub>
), 115.74, 115.96, 116.18, 126.16, 127.11, 129.34, 129.43, 129.72, 129.81, 130.21, 130.24, 145.06, 145.68, 147.30, 149.34 (Ar–
<bold>C</bold>
), 158.75, 162.28, 164.75, 165.23 (
<bold>C</bold>
=N,
<bold>C</bold>
=O). 
<sup>31</sup>
P NMR (162 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>P</sub>
 = − 152.98 to − 135.42 (m, 1P,
<bold>P</bold>
F
<sub>6</sub>
).
<sup>19</sup>
F NMR (377 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>F</sub>
 = − 69.21 (d, 6F, P
<bold>F</bold>
<sub>
<bold>6</bold>
</sub>
), (− 109.94 to − 109.86), (− 109.42 to − 109.34) (2m, 1F, Ar–
<bold>F</bold>
). MS (ES)
<italic>m/z </italic>
= 515.20 [M
<sup>+</sup>
].</p>
</sec>
<sec id="FPar13">
<title>
<italic>4</italic>
-
<italic>(2</italic>
-
<italic>(4</italic>
-
<italic>Fluorobenzylidene) hydrazinecarbonyl)</italic>
-
<italic>1</italic>
-
<italic>nonylpyridin</italic>
-
<italic>1</italic>
-
<italic>ium tetrafluoroborate (</italic>
<bold>
<italic>14</italic>
</bold>
<italic>)</italic>
</title>
<p id="Par55">It was obtained as yellow crystals; mp: 88–90 °C.
<sup>1</sup>
H NMR (400 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>H</sub>
 = 0.83–0.87 (m, 3H, C
<bold>H</bold>
<sub>3</sub>
), 1.25–1.30 (m, 12H, 6×C
<bold>H</bold>
<sub>2</sub>
), 1.95–1.99 (m, 2H, NCH
<sub>2</sub>
C
<bold>H</bold>
<sub>2</sub>
), 4.67 (t, 2H,
<italic>J</italic>
 = 8 Hz, NC
<bold>H</bold>
<sub>2</sub>
), 7.25 (dd, 0.5H,
<italic>J</italic>
 = 8 Hz, 12 Hz, Ar–
<bold>H</bold>
), 7.35 (t, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.61 (dd, 0.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 7.89 (dd, 1.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 8.15 (s, 0.25H,
<bold>H</bold>
–C=N), 8.40 (d, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 8.51 (s, 0.75H,
<bold>H</bold>
–C=N), 8.53 (d, 1.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 9.24 (d, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 9.32 (d, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 12.49 (bs, 1H, CON
<bold>H</bold>
).
<sup>13</sup>
C NMR (100 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>C</sub>
 = 13.92 (
<bold>C</bold>
H
<sub>3</sub>
), 22.03, 25.36, 28.35, 28.52, 28.70, 30.51, 30.64, 31.18 (7×
<bold>C</bold>
H
<sub>2</sub>
), 60.94, 61.02 (N
<bold>C</bold>
H
<sub>2</sub>
), 115.74, 115.97, 116.19, 126.16, 127.11, 129.34, 129.43, 129.72, 129.81, 130.21, 145.07, 145.68, 147.32, 149.34 (Ar–
<bold>C</bold>
), 158.75, 162.29, 164.76, 165.24 (
<bold>C</bold>
=N,
<bold>C</bold>
=O).
<sup>11</sup>
B NMR (128 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>B</sub>
 = − 1.31 to − 1.30 (m, 1B,
<bold>B</bold>
F
<sub>4</sub>
).
<sup>19</sup>
F NMR (377 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>F</sub>
 = (− 109.94 to − 109.86), (− 109.42 to − 109.34) (2m, 1F, Ar–
<bold>F</bold>
); − 148.29, − 148.24 (2d, 4F, B
<bold>F</bold>
<sub>4</sub>
). MS (ES)
<italic>m/z </italic>
= 457.15 [M
<sup>+</sup>
].</p>
</sec>
<sec id="FPar14">
<title>
<italic>4</italic>
-
<italic>(2</italic>
-
<italic>(4</italic>
-
<italic>Fluorobenzylidene) hydrazinecarbonyl)</italic>
-
<italic>1</italic>
-
<italic>nonylpyridin</italic>
-
<italic>1</italic>
-
<italic>ium trifluoroacetate (</italic>
<bold>
<italic>15</italic>
</bold>
<italic>)</italic>
</title>
<p id="Par56">It was obtained as yellow crystals; mp: 96–98 °C.
<sup>1</sup>
H NMR (400 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>H</sub>
 = 0.83–0.87 (t, 3H,
<italic>J</italic>
 = 4 Hz, C
<bold>H</bold>
<sub>3</sub>
), 1.25–1.30 (m, 12H, 6×C
<bold>H</bold>
<sub>2</sub>
), 1.94–1.99 (m, 2H, NCH
<sub>2</sub>
C
<bold>H</bold>
<sub>2</sub>
), 4.68 (t, 2H,
<italic>J</italic>
 = 8 Hz, NC
<bold>H</bold>
<sub>2</sub>
), 7.25 (dd, 0.5H,
<italic>J</italic>
 = 8 Hz, 12 Hz, Ar–
<bold>H</bold>
), 7.37 (dd, 1.5H,
<italic>J</italic>
 = 8 Hz, 12 Hz, Ar–
<bold>H</bold>
), 7.62 (dd, 0.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 7.88 (dd, 1.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 8.16 (s, 0.25H,
<bold>H</bold>
–C=N), 8.40 (d, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 8.51 (s, 0.75H,
<bold>H</bold>
–C=N), 8.53 (d, 1.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 9.25 (d, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 9.33 (d, 1.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 12.50 (s, 0.75H, CON
<bold>H</bold>
), 12.51 (s, 0.25H, CON
<bold>H</bold>
).
<sup>13</sup>
C NMR (100 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>C</sub>
 = 13.91 (
<bold>C</bold>
H
<sub>3</sub>
), 22.03, 25.36, 28.34, 25.41, 28.34, 28.52, 28.70, 28.73, 30.51, 30.64, 31.18 (7×
<bold>C</bold>
H
<sub>2</sub>
), 60.93, 61.00 (N
<bold>C</bold>
H
<sub>2</sub>
), 115.74, 115.96, 116.18, 126.15, 127.11, 129.34, 129.43, 129.80, 130.04, 130.21, 130.24, 145.07, 145.69, 147.31, 149.35, 149.65 (Ar–
<bold>C</bold>
), 158.75, 162.28, 164.75, 165.23 (
<bold>C</bold>
=N,
<bold>C</bold>
=O). 
<sup>19</sup>
F NMR (377 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>F</sub>
 = − 73.50 (s, 3F, C
<bold>F</bold>
<sub>
<bold>3</bold>
</sub>
), (− 109.96 to − 109.88), (− 109.44 to − 109.36) (2 m, 1F, Ar–
<bold>F</bold>
). MS (ES)
<italic>m/z </italic>
= 483.20 [M
<sup>+</sup>
].</p>
</sec>
<sec id="FPar15">
<title>
<italic>1</italic>
-
<italic>Decyl</italic>
-
<italic>4</italic>
-
<italic>(2</italic>
-
<italic>(4</italic>
-
<italic>fluorobenzylidene) hydrazinecarbonyl)pyridin</italic>
-
<italic>1</italic>
-
<italic>ium hexafluorophosphate (</italic>
<bold>
<italic>16</italic>
</bold>
<italic>)</italic>
</title>
<p id="Par57">It was obtained as yellow syrup.
<sup>1</sup>
H NMR (400 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>H</sub>
 = 0.83–0.88 (m, 3H, C
<bold>H</bold>
<sub>3</sub>
), 1.25–1.30 (m, 14H, 7×C
<bold>H</bold>
<sub>2</sub>
), 1.95–1.98 (m, 2H, NCH
<sub>2</sub>
C
<bold>H</bold>
<sub>2</sub>
), 4.67 (t, 2H,
<italic>J</italic>
 = 8 Hz, NC
<bold>H</bold>
<sub>2</sub>
), 7.25 (dd, 0.5H,
<italic>J</italic>
 = 8 Hz, 12 Hz, Ar–
<bold>H</bold>
), 7.35 (t, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.62 (dd, 0.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 7.89 (dd, 1.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 8.16 (s, 0.25H,
<bold>H</bold>
–C=N), 8.40 (d, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 8.50 (s, 0.75H,
<bold>H</bold>
–C=N), 8.53 (d, 1.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 9.23 (d, 0.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 9.31 (d, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 12.48 (bs, 1H, CON
<bold>H</bold>
).
<sup>13</sup>
C NMR (100 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>C</sub>
 = 13.90 (
<bold>C</bold>
H
<sub>3</sub>
), 22.04, 25.36, 25.40, 28.33, 28.60, 28.74, 28.77, 28.82, 30.50, 30.63, 31.23 (8×
<bold>C</bold>
H
<sub>2</sub>
), 60.96, 61.06 (N
<bold>C</bold>
H
<sub>2</sub>
), 115.72, 115.95, 116.16, 126.15, 127.12, 129.32, 129.41, 129.72, 129.81, 130.07, 130.21, 130.24, 145.05, 145.67, 147.34, 149.36, 149.67, (Ar–
<bold>C</bold>
), 158.75, 162.28, 164.77, 165.22 (
<bold>C</bold>
=N,
<bold>C</bold>
=O).
<sup>31</sup>
P NMR (162 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>P</sub>
 = − 157.37 to − 131.02 (m, 1P,
<bold>P</bold>
F
<sub>6</sub>
).
<sup>19</sup>
F NMR (377 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>F</sub>
 = − 69.22 (d, 6F, P
<bold>F</bold>
<sub>
<bold>6</bold>
</sub>
), (− 109.94 to − 109.85), (− 109.42 to − 109.34) (2m, 1F, Ar–
<bold>F</bold>
). MS (ES)
<italic>m/z </italic>
= 529.70 [M
<sup>+</sup>
].</p>
</sec>
<sec id="FPar16">
<title>
<italic>1</italic>
-
<italic>Decyl</italic>
-
<italic>4</italic>
-
<italic>(2</italic>
-
<italic>(4</italic>
-
<italic>fluorobenzylidene) hydrazinecarbonyl)pyridin</italic>
-
<italic>1</italic>
-
<italic>ium tetrafluoroborate (</italic>
<bold>
<italic>17</italic>
</bold>
<italic>)</italic>
</title>
<p id="Par58">It was obtained as colorless syrup.
<sup>1</sup>
H NMR (400 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>H</sub>
 = 0.83–0.87 (m, 3H, C
<bold>H</bold>
<sub>3</sub>
), 1.25–1.30 (m, 14H, 7×C
<bold>H</bold>
<sub>2</sub>
), 1.95–1.98 (m, 2H, NCH
<sub>2</sub>
C
<bold>H</bold>
<sub>2</sub>
), 4.67 (t, 2H,
<italic>J</italic>
 = 8 Hz, NC
<bold>H</bold>
<sub>2</sub>
), 7.25 (dd, 0.5H,
<italic>J</italic>
 = 8 Hz, 12 Hz, Ar–
<bold>H</bold>
), 7.35 (t, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.62 (dd, 0.5H,
<italic>J</italic>
 = 8 Hz, 12 Hz, Ar–
<bold>H</bold>
), 7.89 (dd, 1.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 8.16 (s, 0.25H,
<bold>H</bold>
–C=N), 8.40 (d, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 8.52 (s, 0.75H,
<bold>H</bold>
–C=N), 8.55 (d, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 9.24 (d, 0.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 9.32 (d, 1.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 12.52 (bs, 1H, CON
<bold>H</bold>
).
<sup>13</sup>
C NMR (100 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>C</sub>
 = 13.90, 13.91 (
<bold>C</bold>
H
<sub>3</sub>
), 22.05, 25.36, 25.40, 28.34, 28.61, 28.75, 28.78, 28.83, 30.50, 30.63, 31.23, (8×
<bold>C</bold>
H
<sub>2</sub>
), 60.94, 61.01 (N
<bold>C</bold>
H
<sub>2</sub>
), 115.74, 115.96, 116.18, 126.16, 127.11, 129.34, 129.42, 129.71, 129.80, 130.07, 130.23, 130.26, 145.07, 145.67, 147.34, 149.35 (Ar–
<bold>C</bold>
), 158.76, 162.28, 164.75, 165.23, (
<bold>C</bold>
=N,
<bold>C</bold>
=O).
<sup>11</sup>
B NMR (128 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>B</sub>
 = − 1.31 to − 1.29 (m, 1B,
<bold>B</bold>
F
<sub>4</sub>
).
<sup>19</sup>
F NMR (377 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>F</sub>
 = (− 109.94 to − 109.88), (− 109.44 to − 109.36) (2m, 1F, Ar–
<bold>F</bold>
); − 148.30, − 148.24 (2d, 4F, B
<bold>F</bold>
<sub>4</sub>
). MS (ES)
<italic>m/z </italic>
= 471.60 [M
<sup>+</sup>
].</p>
</sec>
<sec id="FPar17">
<title>
<italic>1</italic>
-
<italic>Decyl</italic>
-
<italic>4</italic>
-
<italic>(2</italic>
-
<italic>(4</italic>
-
<italic>fluorobenzylidene) hydrazinecarbonyl)pyridin</italic>
-
<italic>1</italic>
-
<italic>ium trifluoroacetate (</italic>
<bold>
<italic>18</italic>
</bold>
<italic>)</italic>
</title>
<p id="Par59">It was obtained as yellow syrup.
<sup>1</sup>
H NMR (400 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>H</sub>
 = 0.83–0.87 (m, 3H, C
<bold>H</bold>
<sub>3</sub>
), 1.25–1.30 (m, 14H, 7×C
<bold>H</bold>
<sub>2</sub>
), 1.95–1.98 (m, 2H, NCH
<sub>2</sub>
C
<bold>H</bold>
<sub>2</sub>
), 4.68 (t, 2H,
<italic>J</italic>
 = 8 Hz, NC
<bold>H</bold>
<sub>2</sub>
), 7.25 (dd, 0.5H,
<italic>J</italic>
 = 8 Hz, 12 Hz, Ar–
<bold>H</bold>
), 7.37 (dd, 1.5H,
<italic>J</italic>
 = 8 Hz, 12 Hz, Ar–
<bold>H</bold>
), 7.62 (dd, 0.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 7.88 (dd, 1.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 8.17 (s, 0.25H,
<bold>H</bold>
–C=N), 8.40 (d, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 8.52 (s, 0.75H,
<bold>H</bold>
–C=N), 8.55 (d, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 9.25 (d, 0.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 9.33 (d, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 12.56 (bs, 1H, CON
<bold>H</bold>
).
<sup>13</sup>
C NMR (100 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>C</sub>
 = 13.89, 13.91 (
<bold>C</bold>
H
<sub>3</sub>
), 22.05, 25.36, 25.40, 28.34, 28.61, 28.74, 28.78, 28.82, 30.50, 30.64, 31.23 (8×
<bold>C</bold>
H
<sub>2</sub>
), 60.94, 60.98 (N
<bold>C</bold>
H
<sub>2</sub>
), 115.74, 115.95, 116.16, 126.13, 127.11, 129.33, 129.42, 129.69, 129.77, 130.07, 130.28, 130.31, 145.07, 145.65, 147.48, 149.35 (Ar–
<bold>C</bold>
), 158.82, 162.25, 164.73, 165.23 (
<bold>C</bold>
=N,
<bold>C</bold>
=O).
<sup>19</sup>
F NMR (377 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>F</sub>
 = − 73.52 (s, 3F, C
<bold>F</bold>
<sub>
<bold>3</bold>
</sub>
), (− 109.95 to − 109.87), (− 109.50 to − 109.42) (2m, 1F, Ar–
<bold>F</bold>
). MS (ES)
<italic>m/z </italic>
= 497.33 [M
<sup>+</sup>
].</p>
</sec>
<sec id="FPar18">
<title>
<italic>4</italic>
-
<italic>(2</italic>
-
<italic>(4</italic>
-
<italic>Fluorobenzylidene)hydrazinecarbonyl)</italic>
-
<italic>1</italic>
-
<italic>undecylpyridin</italic>
-
<italic>1</italic>
-
<italic>ium hexafluorophosphate (</italic>
<bold>
<italic>19</italic>
</bold>
<italic>)</italic>
</title>
<p id="Par60">It was obtained as yellow syrup.
<sup>1</sup>
H NMR (400 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>H</sub>
 = 0.83–0.87 (m, 3H, C
<bold>H</bold>
<sub>3</sub>
), 1.24–1.30 (m, 16H, 8×C
<bold>H</bold>
<sub>2</sub>
), 1.96–1.99 (m, 2H, NCH
<sub>2</sub>
C
<bold>H</bold>
<sub>2</sub>
), 4.69 (dd, 2H,
<italic>J</italic>
 = 4 Hz, 8 Hz, NC
<bold>H</bold>
<sub>2</sub>
), 7.22 (t, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.36 (dd, 1.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 7.61 (dd, 0.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 7.88 (dd, 1.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 8.16 (s, 0.25H,
<bold>H</bold>
–C=N), 8.39 (d, 0.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 8.53 (s, 0.75H,
<bold>H</bold>
–C=N), 8.54 (d, 1.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 9.24 (d, 0.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 9.33 (d, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 12.51 (bs, 1H, CON
<bold>H</bold>
).
<sup>13</sup>
C NMR (100 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>C</sub>
 = 13.90 (
<bold>C</bold>
H
<sub>3</sub>
), 22.04, 25.36, 28.34, 28.64, 28.74, 28.87, 28.91, 30.49, 30.63, 31.24 (9×
<bold>C</bold>
H
<sub>2</sub>
), 60.95, 61.03 (N
<bold>C</bold>
H
<sub>2</sub>
), 115.73, 115.95, 116.17, 126.16, 127.11, 129.34, 129.42, 129.71, 128.80, 130.07, 130.26, 145.08, 145.67, 147.32, 149.38, 149.66 (Ar–
<bold>C</bold>
), 158.73, 162.28, 164.76, 165.20 (
<bold>C</bold>
=N,
<bold>C</bold>
=O). 
<sup>31</sup>
P NMR (162 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>P</sub>
 = − 152.97 to − 135.41 (m, 1P,
<bold>P</bold>
F
<sub>6</sub>
).
<sup>19</sup>
F NMR (377 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>F</sub>
 = − 69.24 (d, 6F, P
<bold>F</bold>
<sub>
<bold>6</bold>
</sub>
), (− 109.95 to − 109.88), (− 109.35 to − 109.37) (2m, 1F, Ar–
<bold>F</bold>
). MS (ES)
<italic>m/z </italic>
= 543.40 [M
<sup>+</sup>
].</p>
</sec>
<sec id="FPar19">
<title>
<italic>4</italic>
-
<italic>(2</italic>
-
<italic>(4</italic>
-
<italic>Fluorobenzylidene)hydrazinecarbonyl)</italic>
-
<italic>1</italic>
-
<italic>undecylpyridin</italic>
-
<italic>1</italic>
-
<italic>ium tetrafluoroborate (</italic>
<bold>
<italic>20</italic>
</bold>
<italic>)</italic>
</title>
<p id="Par61">It was obtained as yellow syrup.
<sup>1</sup>
H NMR (400 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>H</sub>
 = 0.83–0.87 (m, 3H, C
<bold>H</bold>
<sub>3</sub>
), 1.24–1.30 (m, 16H, 8×C
<bold>H</bold>
<sub>2</sub>
), 1.96–1.99 (m, 2H, NCH
<sub>2</sub>
C
<bold>H</bold>
<sub>2</sub>
), 4.68 (t, 2H,
<italic>J</italic>
 = 8 Hz, NC
<bold>H</bold>
<sub>2</sub>
), 7.22 (t, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.34 (t, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.61 (dd, 0.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 7.88 (dd, 1.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 8.17 (s, 0.25H,
<bold>H</bold>
–C=N), 8.39 (d, 0.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 8.56 (s, 0.75H,
<bold>H</bold>
–C=N), 8.58 (d, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 9.25 (d, 0.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 9.34 (d, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 12.52 (s, 0.25H, CON
<bold>H</bold>
), 12.64 (s, 0.75H, CON
<bold>H</bold>
).
<sup>13</sup>
C NMR (100 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>C</sub>
 = 13.89 (
<bold>C</bold>
H
<sub>3</sub>
), 22.03, 25.36, 28.34, 28.64, 28.73, 28.87, 28.91, 30.49, 30.63, 31.24 (9×
<bold>C</bold>
H
<sub>2</sub>
), 60.95, 61.01 (N
<bold>C</bold>
H
<sub>2</sub>
), 115.73, 115.94, 116.16, 126.19, 127.10, 129.34, 129.43, 129.69, 129.78, 130.07, 130.25, 130.28, 145.08, 145.66, 147.25, 149.40, 149.66 (Ar–
<bold>C</bold>
), 158.70, 162.27, 164.74, 165.19 (
<bold>C</bold>
=N,
<bold>C</bold>
=O).
<sup>11</sup>
B NMR (128 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>B</sub>
 = − 1.30 to − 1.28 (m, 1B,
<bold>B</bold>
F
<sub>4</sub>
).
<sup>19</sup>
F NMR (377 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>F</sub>
 = (− 109.97 to − 109.89), (− 109.48 to − 109.40) (2m, 1F, Ar–
<bold>F</bold>
); − 148.36, − 148.30 (2d, 4F, B
<bold>F</bold>
<sub>4</sub>
). MS (ES)
<italic>m/z </italic>
= 485.20 [M
<sup>+</sup>
].</p>
</sec>
<sec id="FPar20">
<title>
<italic>4</italic>
-
<italic>(2</italic>
-
<italic>(4</italic>
-
<italic>Fluorobenzylidene)hydrazinecarbonyl)</italic>
-
<italic>1</italic>
-
<italic>undecylpyridin</italic>
-
<italic>1</italic>
-
<italic>ium trifluoroacetate (</italic>
<bold>
<italic>21</italic>
</bold>
<italic>)</italic>
</title>
<p id="Par62">It was obtained as colorless syrup.
<sup>1</sup>
H NMR (400 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>H</sub>
 = 0.83–0.87 (m, 3H, C
<bold>H</bold>
<sub>3</sub>
), 1.24–1.30 (m, 16H, 8×C
<bold>H</bold>
<sub>2</sub>
), 1.96–1.99 (m, 2H, NCH
<sub>2</sub>
C
<bold>H</bold>
<sub>2</sub>
), 4.69 (dd, 2H,
<italic>J</italic>
 = 4 Hz, 8 Hz, NC
<bold>H</bold>
<sub>2</sub>
), 7.22 (t, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.36 (dd, 1.5H,
<italic>J</italic>
 = 8 Hz, 12 Hz, Ar–
<bold>H</bold>
), 7.61 (dd, 0.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 7.87 (dd, 1.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 8.16 (s, 0.25H,
<bold>H</bold>
–C=N), 8.39 (d, 0.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 8.51 (s, 0.75H,
<bold>H</bold>
–C=N), 8.54 (d, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 9.25 (d, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 9.32 (d, 1.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 12.54 (bs, 1H, CON
<bold>H</bold>
).
<sup>13</sup>
C NMR (100 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>C</sub>
 = 13.89 (
<bold>C</bold>
H
<sub>3</sub>
), 22.03, 25.36, 28.33, 28.64, 28.73, 28.87, 28.91, 30.49, 30.63, 31.24 (9×
<bold>C</bold>
H
<sub>2</sub>
), 60.96, 60.99 (N
<bold>C</bold>
H
<sub>2</sub>
), 115.73, 115.93, 116.15, 126.12, 127.11, 129.34, 129.42, 129.67, 129.76, 130.05, 130.30, 130.33, 145.07, 145.63, 147.55, 149.38, 149.67 (Ar–
<bold>C</bold>
), 158.82, 162.25, 164.72, 165.20 (
<bold>C</bold>
=N,
<bold>C</bold>
=O).
<sup>19</sup>
F NMR (377 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>F</sub>
 = − 73.53 (s, 3F, C
<bold>F</bold>
<sub>
<bold>3</bold>
</sub>
), (− 109.97 to − 109.89), (− 109.54 to − 109.46) (2 m, 1F, Ar–
<bold>F</bold>
). MS (ES)
<italic>m/z </italic>
= 511.30 [M
<sup>+</sup>
].</p>
</sec>
<sec id="FPar21">
<title>
<italic>1</italic>
-
<italic>Dodecyl</italic>
-
<italic>4</italic>
-
<italic>(2</italic>
-
<italic>(4</italic>
-
<italic>fluorobenzylidene) hydrazinecarbonyl)pyridin</italic>
-
<italic>1</italic>
-
<italic>ium hexafluorophosphate (</italic>
<bold>
<italic>22</italic>
</bold>
<italic>)</italic>
</title>
<p id="Par63">It was obtained as yellow syrup.
<sup>1</sup>
H NMR (400 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>H</sub>
 = 0.83–0.87 (m, 3H, C
<bold>H</bold>
<sub>3</sub>
), 1.24–1.30 (m, 18H, 9×C
<bold>H</bold>
<sub>2</sub>
), 1.96–1.98 (m, 2H, NCH
<sub>2</sub>
C
<bold>H</bold>
<sub>2</sub>
), 4.69 (dd, 2H,
<italic>J</italic>
 = 4 Hz, 8 Hz, NC
<bold>H</bold>
<sub>2</sub>
), 7.22 (t, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.37 (dd, 1.5H,
<italic>J</italic>
 = 8 Hz, 12 Hz, Ar–
<bold>H</bold>
), 7.61 (dd, 0.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 7.89 (dd, 1.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 8.16 (s, 0.25H,
<bold>H</bold>
–C=N), 8.39 (d, 0.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 8.51 (s, 0.75H,
<bold>H</bold>
–C=N), 8.53 (d, 1.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 9.24 (d, 0.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 9.33 (d, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 12.47 (bs, 1H, CON
<bold>H</bold>
).
<sup>13</sup>
C NMR (100 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>C</sub>
 = 13.89 (
<bold>C</bold>
H
<sub>3</sub>
), 22.03, 25.36, 28.33, 28.65, 28.73, 28.86, 28.95, 30.48, 30.62, 31.24 (10×
<bold>C</bold>
H
<sub>2</sub>
), 60.96, 61.03 (N
<bold>C</bold>
H
<sub>2</sub>
), 115.73, 115.95, 116.17, 126.14, 127.11, 129.34, 129.43, 129.72, 129.81, 130.04, 130.25, 145.09, 145.68, 147.34, 149.38, 149.66 (Ar–
<bold>C</bold>
), 158.74, 162.29, 164.76, 165.20 (
<bold>C</bold>
=N,
<bold>C</bold>
=O).
<sup>31</sup>
P NMR (162 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>P</sub>
 = − 157.37 to − 131.02 (m, 1P,
<bold>P</bold>
F
<sub>6</sub>
).
<sup>19</sup>
F NMR (377 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>F</sub>
 = − 69.25 (d, 6F, P
<bold>F</bold>
<sub>
<bold>6</bold>
</sub>
), (− 109.95 to − 109.88), (− 109.44 to − 109.36) (2m, 1F, Ar–
<bold>F</bold>
). MS (ES)
<italic>m/z </italic>
= 557.30 [M
<sup>+</sup>
].</p>
</sec>
<sec id="FPar22">
<title>
<italic>1</italic>
-
<italic>Dodecyl</italic>
-
<italic>4</italic>
-
<italic>(2</italic>
-
<italic>(4</italic>
-
<italic>fluorobenzylidene) hydrazinecarbonyl)pyridin</italic>
-
<italic>1</italic>
-
<italic>ium tetrafluoroborate (</italic>
<bold>
<italic>23</italic>
</bold>
<italic>)</italic>
</title>
<p id="Par64">It was obtained as yellow syrup.
<sup>1</sup>
H NMR (400 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>H</sub>
 = 0.83 (t, 3H,
<italic>J</italic>
 = 8 Hz, C
<bold>H</bold>
<sub>3</sub>
), 1.24–1.30 (m, 18H, 9×C
<bold>H</bold>
<sub>2</sub>
), 1.96–1.98 (m, 2H, NCH
<sub>2</sub>
C
<bold>H</bold>
<sub>2</sub>
), 4.68 (t, 2H,
<italic>J</italic>
 = 8 Hz, NC
<bold>H</bold>
<sub>2</sub>
), 7.22 (t, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.34 (t, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.62 (dd, 0.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 7.88 (dd, 1.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 8.16 (s, 0.25H,
<bold>H</bold>
–C=N), 8.39 (d, 0.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 8.52 (s, 0.75H,
<bold>H</bold>
–C=N), 8.54 (d, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 9.25 (d, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 9.33 (d, 1.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 12.48 (bs, 1H, CON
<bold>H</bold>
).
<sup>13</sup>
C NMR (100 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>C</sub>
 = 13.89 (
<bold>C</bold>
H
<sub>3</sub>
), 22.03, 25.36, 28.33, 28.65, 28.74, 28.86, 28.95, 30.48, 30.62, 31.24 (10×
<bold>C</bold>
H
<sub>2</sub>
), 60.96, 61.03 (N
<bold>C</bold>
H
<sub>2</sub>
), 115.73, 115.94, 116.16, 126.15, 127.11, 129.34, 129.43, 129.72, 129.80, 130.22, 130.25, 145.08, 145.69, 147.32, 149.38, 149.66 (Ar–
<bold>C</bold>
), 158.73, 162.29, 164.76, 165.19 (
<bold>C</bold>
=N,
<bold>C</bold>
=O).
<sup>11</sup>
B NMR (128 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>B</sub>
 = − 1.31 to − 1.28 (m, 1B,
<bold>B</bold>
F
<sub>4</sub>
).
<sup>19</sup>
F NMR (377 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>F</sub>
 = (− 109.96 to − 109.88), (− 109.45 to − 109.37) (2m, 1F, Ar–
<bold>F</bold>
); − 148.36, − 148.30 (2d, 4F, B
<bold>F</bold>
<sub>4</sub>
). MS (ES)
<italic>m/z </italic>
= 499.20 [M
<sup>+</sup>
].</p>
</sec>
<sec id="FPar23">
<title>
<italic>1</italic>
-
<italic>Dodecyl</italic>
-
<italic>4</italic>
-
<italic>(2</italic>
-
<italic>(4</italic>
-
<italic>fluorobenzylidene) hydrazinecarbonyl)pyridin</italic>
-
<italic>1</italic>
-
<italic>ium trifluoroacetate (</italic>
<bold>
<italic>24</italic>
</bold>
<italic>)</italic>
</title>
<p id="Par65">It was obtained as colorless syrup.
<sup>1</sup>
H NMR (400 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>H</sub>
 = 0.85 (t, 3H,
<italic>J</italic>
 = 8 Hz, C
<bold>H</bold>
<sub>3</sub>
), 1.24–1.30 (m, 18H, 9×C
<bold>H</bold>
<sub>2</sub>
), 1.96–1.98 (m, 2H, NCH
<sub>2</sub>
C
<bold>H</bold>
<sub>2</sub>
), 4.68 (t, 2H,
<italic>J</italic>
 = 8 Hz, NC
<bold>H</bold>
<sub>2</sub>
), 7.22 (t, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.34 (t, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.61 (dd, 0.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 7.88 (dd, 1.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 8.16 (s, 0.25H,
<bold>H</bold>
–C=N), 8.39 (d, 0.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 8.53 (s, 0.75H,
<bold>H</bold>
–C=N), 8.54 (d, 1.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 9.25 (d, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 9.33 (d, 1.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 12.51 (bs, 1H, CON
<bold>H</bold>
).
<sup>13</sup>
C NMR (100 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>C</sub>
 = 13.89 (
<bold>C</bold>
H
<sub>3</sub>
), 22.03, 25.36, 28.33, 28.65, 28.73, 28.86, 28.95, 30.48, 30.63, 31.24 (10×
<bold>C</bold>
H
<sub>2</sub>
), 60.96, 61.01 (N
<bold>C</bold>
H
<sub>2</sub>
), 115.73, 115.94, 116.16, 126.14, 127.11, 129.34, 129.43, 129.70, 129.79, 130.25, 130.28, 145.08, 145.67, 147.37, 149.39, 149.66 (Ar–
<bold>C</bold>
), 158.75, 162.27, 164.75, 165.19 (
<bold>C</bold>
=N,
<bold>C</bold>
=O).
<sup>19</sup>
F NMR (377 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>F</sub>
 = − 73.53 (s, 3F, C
<bold>F</bold>
<sub>
<bold>3</bold>
</sub>
), (− 109.97 to − 109.89), (− 109.48 to − 109.40) (2m, 1F, Ar–
<bold>F</bold>
). MS (ES)
<italic>m/z </italic>
= 525.20 [M
<sup>+</sup>
].</p>
</sec>
<sec id="FPar24">
<title>
<italic>4</italic>
-
<italic>(2</italic>
-
<italic>(4</italic>
-
<italic>Fluorobenzylidene)hydrazinecarbonyl)</italic>
-
<italic>1</italic>
-
<italic>tetradecylpyridin</italic>
-
<italic>1</italic>
-
<italic>ium hexafluorophosphte (</italic>
<bold>
<italic>25</italic>
</bold>
<italic>)</italic>
</title>
<p id="Par66">It was obtained as yellow syrup.
<sup>1</sup>
H NMR (400 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>H</sub>
 = 0.83–0.87 (m, 3H, C
<bold>H</bold>
<sub>3</sub>
), 1.24–1.30 (m, 22H, 11×C
<bold>H</bold>
<sub>2</sub>
), 1.96–1.99 (m, 2H, NCH
<sub>2</sub>
C
<bold>H</bold>
<sub>2</sub>
), 4.68 (t, 2H,
<italic>J</italic>
 = 8 Hz, NC
<bold>H</bold>
<sub>2</sub>
), 7.22 (t, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.34 (t, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.61 (dd, 0.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 7.89 (dd, 1.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 8.16 (s, 0.25H,
<bold>H</bold>
–C=N), 8.39 (d, 0.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 8.50 (s, 0.75H,
<bold>H</bold>
–C=N), 8.53 (d, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 9.24 (d, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 9.33 (d, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 12.44 (s, 0.75H, CON
<bold>H</bold>
), 12.49 (s, 0.25H, CON
<bold>H</bold>
).
<sup>13</sup>
C NMR (100 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>C</sub>
 = 13.88 (
<bold>C</bold>
H
<sub>3</sub>
), 22.03, 25.36, 28.33, 28.65, 28.73, 28.86, 28.95, 28.99, 30.48, 30.62, 31.24, 32.84 (12×
<bold>C</bold>
H
<sub>2</sub>
), 60.97, 61.04 (N
<bold>C</bold>
H
<sub>2</sub>
), 115.73, 115.94, 116.16, 126.14, 127.11, 129.34, 129.43, 129.72, 129.81, 130.07, 130.21, 130.24, 145.07, 145.68, 147.32, 149.38 (Ar–
<bold>C</bold>
), 158.73, 162.29, 164.77, 165.19 (
<bold>C</bold>
=N,
<bold>C</bold>
=O).
<sup>31</sup>
P NMR (162 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>P</sub>
 = − 152.97 to − 135.41 (m, 1P,
<bold>P</bold>
F
<sub>6</sub>
).
<sup>19</sup>
F NMR (377 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>F</sub>
 = − 69.26 (d, 6F, P
<bold>F</bold>
<sub>
<bold>6</bold>
</sub>
), (− 109.96 to − 109.89), (− 109.44 to − 109.36) (2m, 1F, Ar–
<bold>F</bold>
). MS (ES)
<italic>m/z </italic>
= 585.50 [M
<sup>+</sup>
].</p>
</sec>
<sec id="FPar25">
<title>
<italic>4</italic>
-
<italic>(2</italic>
-
<italic>(4</italic>
-
<italic>Fluorobenzylidene)hydrazinecarbonyl)</italic>
-
<italic>1</italic>
-
<italic>tetradecylpyridin</italic>
-
<italic>1</italic>
-
<italic>ium tetrafluoroborate (</italic>
<bold>
<italic>26</italic>
</bold>
<italic>)</italic>
</title>
<p id="Par67">It was obtained as yellow syrup.
<sup>1</sup>
H NMR (400 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>H</sub>
 = 0.85 (t, 3H,
<italic>J</italic>
 = 8 Hz, C
<bold>H</bold>
<sub>3</sub>
), 1.24–1.30 (m, 22H, 11×C
<bold>H</bold>
<sub>2</sub>
), 1.96–1.99 (m, 2H, NCH
<sub>2</sub>
C
<bold>H</bold>
<sub>2</sub>
), 4.68 (t, 2H,
<italic>J</italic>
 = 8 Hz, NC
<bold>H</bold>
<sub>2</sub>
), 7.22 (t, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.34 (t, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.62 (dd, 0.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 7.89 (dd, 1.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 8.16 (s, 0.25H,
<bold>H</bold>
–C=N), 8.39 (d, 0.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 8.50 (s, 0.75H,
<bold>H</bold>
–C=N), 8.53 (d, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 9.25 (d, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 9.33 (d, 1.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 12.44 (s, 0.75H, CON
<bold>H</bold>
), 12.49 (s, 0.25H, CON
<bold>H</bold>
).
<sup>13</sup>
C NMR (100 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>C</sub>
 = 13.88 (
<bold>C</bold>
H
<sub>3</sub>
), 22.03, 25.36, 28.34, 28.65, 28.74, 28.87, 28.96, 28.99, 30.48, 30.62, 31.24 (12×
<bold>C</bold>
H
<sub>2</sub>
), 60.96, 61.03 (N
<bold>C</bold>
H
<sub>2</sub>
), 115.73, 115.94, 116.16, 126.14, 127.11, 129.34, 129.43, 129.72, 129.81, 130.07, 130.21, 130.24, 145.08, 145.69, 147.32, 149.38, 149.66 (Ar–
<bold>C</bold>
), 158.72, 162.29, 164.77, 165.19 (
<bold>C</bold>
=N,
<bold>C</bold>
=O).
<sup>11</sup>
B NMR (128 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>B</sub>
 = − 1.30 to − 1.29 (m, 1B,
<bold>B</bold>
F
<sub>4</sub>
).
<sup>19</sup>
F NMR (377 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>F</sub>
 = (− 109.97 to − 109.89), (− 109.45 to − 109.37) (2m, 1F, Ar–
<bold>F</bold>
); − 148.37, − 148.32 (2d, 4F, B
<bold>F</bold>
<sub>4</sub>
). MS (ES)
<italic>m/z </italic>
= 527.40 [M
<sup>+</sup>
].</p>
</sec>
<sec id="FPar26">
<title>
<italic>4</italic>
-
<italic>(2</italic>
-
<italic>(4</italic>
-
<italic>Fluorobenzylidene)hydrazinecarbonyl)</italic>
-
<italic>1</italic>
-
<italic>tetradecylpyridin</italic>
-
<italic>1</italic>
-
<italic>ium trifluoroacetate (</italic>
<bold>
<italic>27</italic>
</bold>
<italic>)</italic>
</title>
<p id="Par68">It was obtained as colorless syrup.
<sup>1</sup>
H NMR (400 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>H</sub>
 = 0.85 (t, 3H,
<italic>J</italic>
 = 8 Hz, C
<bold>H</bold>
<sub>3</sub>
), 1.24–1.30 (m, 22H, 11×C
<bold>H</bold>
<sub>2</sub>
), 1.96–1.98 (m, 2H, NCH
<sub>2</sub>
C
<bold>H</bold>
<sub>2</sub>
), 4.68 (t, 2H,
<italic>J</italic>
 = 8 Hz, NC
<bold>H</bold>
<sub>2</sub>
), 7.22 (t, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.34 (t, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.61 (dd, 0.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 7.88 (dd, 1.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 8.16 (s, 0.25H,
<bold>H</bold>
–C=N), 8.39 (d, 0.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 8.51 (s, 0.75H,
<bold>H</bold>
–C=N), 8.53 (d, 1.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 9.25 (d, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 9.33 (d, 1.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 12.47 (s, 0.75H, CON
<bold>H</bold>
), 12.49 (s, 0.25H, CON
<bold>H</bold>
).
<sup>13</sup>
C NMR (100 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>C</sub>
 = 13.88 (
<bold>C</bold>
H
<sub>3</sub>
), 22.03, 25.36, 28.33, 28.65, 28.74, 28.86, 28.95, 28.99, 30.49, 30.62, 31.24 (12×
<bold>C</bold>
H
<sub>2</sub>
), 60.95, 61.03 (N
<bold>C</bold>
H
<sub>2</sub>
), 115.72, 115.94, 116.16, 126.14, 127.11, 129.34, 129.43, 129.71, 129.80, 130.22, 130.25, 145.08, 145.69, 147.32, 149.38, 149.66 (Ar–
<bold>C</bold>
), 158.73, 162.29, 164.76, 165.19 (
<bold>C</bold>
=N,
<bold>C</bold>
=O).
<sup>19</sup>
F NMR (377 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>F</sub>
 = − 73.55 (s, 3F, C
<bold>F</bold>
<sub>
<bold>3</bold>
</sub>
), (− 109.97 to − 109.89), (− 109.45 to − 109.38) (2m, 1F, Ar–
<bold>F</bold>
). MS (ES)
<italic>m/z </italic>
= 553.30 [M
<sup>+</sup>
].</p>
</sec>
<sec id="FPar27">
<title>
<italic>4</italic>
-
<italic>(2</italic>
-
<italic>(4</italic>
-
<italic>Fluorobenzylidene)hydrazinecarbonyl)</italic>
-
<italic>1</italic>
-
<italic>hexadecylpyridin</italic>
-
<italic>1</italic>
-
<italic>ium hexaflurophosphate (</italic>
<bold>
<italic>28</italic>
</bold>
<italic>)</italic>
</title>
<p id="Par69">It was obtained as yellow syrup.
<sup>1</sup>
H NMR (400 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>H</sub>
 = 0.83–0.88 (m, 3H, C
<bold>H</bold>
<sub>3</sub>
), 1.23–1.30 (m, 26H, 13×C
<bold>H</bold>
<sub>2</sub>
), 1.96–2.00 (m, 2H, NCH
<sub>2</sub>
C
<bold>H</bold>
<sub>2</sub>
), 4.68 (t, 2H,
<italic>J</italic>
 = 8 Hz, NC
<bold>H</bold>
<sub>2</sub>
), 7.24 (dd, 0.5H,
<italic>J</italic>
 = 8 Hz, 12 Hz, Ar–
<bold>H</bold>
), 7.34 (t, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.62 (dd, 0.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 7.89 (dd, 1.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 8.16 (s, 0.25H,
<bold>H</bold>
–C=N), 8.39 (d, 0.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 8.51 (s, 0.75H,
<bold>H</bold>
–C=N), 8.53 (d, 1.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 9.25 (d, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 9.33 (d, 1.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 12.44 (s, 0.75H, CON
<bold>H</bold>
), 12.49 (s, 0.25H, CON
<bold>H</bold>
).
<sup>13</sup>
C NMR (100 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>C</sub>
 = 13.88 (
<bold>C</bold>
H
<sub>3</sub>
), 22.03, 25.36, 28.34, 28.64, 28.74, 28.87, 28.96, 29.00, 30.49, 30.62, 31.24 (14×
<bold>C</bold>
H
<sub>2</sub>
), 60.96, 61.03 (N
<bold>C</bold>
H
<sub>2</sub>
), 115.72, 115.94, 116.15, 126.13, 127.11, 129.34, 129.43, 129.72, 129.81, 130.21, 130.24, 145.07, 145.69, 147.32, 149.37, 149.65 (Ar–
<bold>C</bold>
), 158.71, 162.29, 164.76, 165.18 (
<bold>C</bold>
=N,
<bold>C</bold>
=O).
<sup>31</sup>
P NMR (162 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>P</sub>
 = − 152.97 to − 135.41 (m, 1P,
<bold>P</bold>
F
<sub>6</sub>
).
<sup>19</sup>
F NMR (377 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>F</sub>
 = − 69.26 (d, 6F, P
<bold>F</bold>
<sub>
<bold>6</bold>
</sub>
), (− 109.97 to − 109.89), (− 109.45 to − 109.37) (2m, 1F, Ar–
<bold>F</bold>
). MS (ES)
<italic>m/z </italic>
= 613.30 [M
<sup>+</sup>
].</p>
</sec>
<sec id="FPar28">
<title>
<italic>4</italic>
-
<italic>(2</italic>
-
<italic>(4</italic>
-
<italic>Fluorobenzylidene)hydrazinecarbonyl)</italic>
-
<italic>1</italic>
-
<italic>hexadecylpyridin</italic>
-
<italic>1</italic>
-
<italic>ium tetrafluoroborate (</italic>
<bold>
<italic>29</italic>
</bold>
<italic>)</italic>
</title>
<p id="Par70">It was obtained as yellow syrup.
<sup>1</sup>
H NMR (400 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>H</sub>
 = 0.83–0.87 (m, 3H, C
<bold>H</bold>
<sub>3</sub>
), 1.23–1.30 (m, 26H, 13×C
<bold>H</bold>
<sub>2</sub>
), 1.94–2.00 (m, 2H, NCH
<sub>2</sub>
C
<bold>H</bold>
<sub>2</sub>
), 4.70 (dd, 2H,
<italic>J</italic>
 = 4 Hz, 8 Hz, NC
<bold>H</bold>
<sub>2</sub>
), 7.24 (dd, 0.5H,
<italic>J</italic>
 = 8 Hz, 12 Hz, Ar–
<bold>H</bold>
), 7.34 (t, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.62 (dd, 0.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 7.88 (dd, 1.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 8.16 (s, 0.25H,
<bold>H</bold>
–C=N), 8.39 (d, 0.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 8.51 (s, 0.75H,
<bold>H</bold>
–C=N), 8.53 (d, 1.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 9.25 (d, 0.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 9.34 (d, 1.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 12.45 (s, 0.75H, CON
<bold>H</bold>
), 12.49 (s, 0.25H, CON
<bold>H</bold>
).
<sup>13</sup>
C NMR (100 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>C</sub>
 = 13.88 (
<bold>C</bold>
H
<sub>3</sub>
), 22.03, 25.36, 28.34, 28.65, 28.75, 28.87, 28.96, 29.00, 30.49, 30.63, 31.24 (14×
<bold>C</bold>
H
<sub>2</sub>
), 60.96, 61.03 (N
<bold>C</bold>
H
<sub>2</sub>
), 115.72, 115.93, 116.15, 126.13, 127.11, 129.35, 129.43, 129.72, 129.80, 130.04, 130.21, 130.24, 145.07, 145.69, 147.30, 149.37, 149.64 (Ar–
<bold>C</bold>
), 158.71, 162.28, 164.76, 165.17 (
<bold>C</bold>
=N,
<bold>C</bold>
=O).
<sup>11</sup>
B NMR (128 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>B</sub>
 = − 1.29 to − 1.28 (m, 1B,
<bold>B</bold>
F
<sub>4</sub>
).
<sup>19</sup>
F NMR (377 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>F</sub>
 = (− 109.97 to − 109.90), (− 109.46 to − 109.38) (2m, 1F, Ar–
<bold>F</bold>
); − 148.36, − 148.31 (2d, 4F, B
<bold>F</bold>
<sub>4</sub>
). MS (ES)
<italic>m/z </italic>
= 555.35 [M
<sup>+</sup>
].</p>
</sec>
<sec id="FPar29">
<title>
<italic>4</italic>
-
<italic>(2</italic>
-
<italic>(4</italic>
-
<italic>Fluorobenzylidene)hydrazinecarbonyl)</italic>
-
<italic>1</italic>
-
<italic>hexadecylpyridin</italic>
-
<italic>1</italic>
-
<italic>ium trifluoroacetate (</italic>
<bold>
<italic>30</italic>
</bold>
<italic>)</italic>
</title>
<p id="Par71">It was obtained as colorless syrup.
<sup>1</sup>
H NMR (400 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>H</sub>
 = 0.85 (t, 3H,
<italic>J</italic>
 = 8 Hz, C
<bold>H</bold>
<sub>3</sub>
), 1.23–1.30 (m, 26H, 13×C
<bold>H</bold>
<sub>2</sub>
), 1.96–1.98 (m, 2H, NCH
<sub>2</sub>
C
<bold>H</bold>
<sub>2</sub>
), 4.69 (dd, 2H,
<italic>J</italic>
 = 4 Hz, 8 Hz, NC
<bold>H</bold>
<sub>2</sub>
), 7.22 (t, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.34 (t, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.61 (dd, 0.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 7.88 (dd, 1.5H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 8.16 (s, 0.25H,
<bold>H</bold>
–C=N), 8.39 (d, 0.5H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 8.52 (s, 0.75H,
<bold>H</bold>
–C=N), 8.54 (d, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 9.25 (d, 0.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 9.33 (d, 1.5H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 12.50 (s, 1H, CON
<bold>H</bold>
).
<sup>13</sup>
C NMR (100 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>C</sub>
 = 13.88 (
<bold>C</bold>
H
<sub>3</sub>
), 22.03, 25.35, 28.33, 28.64, 28.73, 28.86, 28.95, 29.00, 30.49, 30.62, 31.23 (14×
<bold>C</bold>
H
<sub>2</sub>
), 60.95, 61.02 (N
<bold>C</bold>
H
<sub>2</sub>
), 115.72, 115.94, 116.16, 126.14, 127.11, 129.33, 129.42, 129.71, 129.80, 130.08, 130.26, 145.08, 145.68, 147.33, 149.39 (Ar–
<bold>C</bold>
), 158.73, 162.29, 164.76, 165.19 (
<bold>C</bold>
=N,
<bold>C</bold>
=O).
<sup>19</sup>
F NMR (377 MHz, DMSO-
<italic>d</italic>
<sub>6</sub>
): δ
<sub>F</sub>
 = − 73.52 (s, 3F, C
<bold>F</bold>
<sub>
<bold>3</bold>
</sub>
), (− 109.96 to − 109.88), (− 109.46 to − 109.38) (2m, 1F, Ar–
<bold>F</bold>
). MS (ES)
<italic>m/z </italic>
= 581.30 [M
<sup>+</sup>
].</p>
</sec>
<sec id="FPar30">
<title>
<italic>4</italic>
-
<italic>(2</italic>
-
<italic>(4</italic>
-
<italic>Fluorobenzylidene)hydrazinecarbonyl)</italic>
-
<italic>1</italic>
-
<italic>octadecylpyridin</italic>
-
<italic>1</italic>
-
<italic>ium hexafluorophosphate (</italic>
<bold>
<italic>31</italic>
</bold>
<italic>)</italic>
</title>
<p id="Par72">It was obtained as yellow syrup.
<sup>1</sup>
H NMR (400 MHz, CDCl
<sub>3</sub>
): δ
<sub>H</sub>
 = 0.82 (dd, 3H,
<italic>J</italic>
 = 4 Hz, 8 Hz, C
<bold>H</bold>
<sub>3</sub>
), 1.15–1.18 (m, 30H, 15×C
<bold>H</bold>
<sub>2</sub>
), 1.94–1.98 (m, 2H, NCH
<sub>2</sub>
C
<bold>H</bold>
<sub>2</sub>
), 4.72 (t, 2H,
<italic>J</italic>
 = 8 Hz, NC
<bold>H</bold>
<sub>2</sub>
), 6.95 (t, 2H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.67 (dd, 2H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 8.82 (d, 2H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 9.01 (s, 1H,
<bold>H</bold>
–C=N), 9.08 (d, 2H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 12.14 (bs, 1H, CON
<bold>H</bold>
).
<sup>13</sup>
C NMR (100 MHz, CDCl
<sub>3</sub>
): δ
<sub>C</sub>
 = 14.08 (
<bold>C</bold>
H
<sub>3</sub>
), 22.66, 26.09, 28.97, 29.33, 29.49, 29.59, 29.64, 29.68, 31.64, 31.90 (16×
<bold>C</bold>
H
<sub>2</sub>
), 62.69 (N
<bold>C</bold>
H
<sub>2</sub>
), 115.87, 116.09, 127.71, 129.45, 130.09, 130.18, 144.87, 147.76, 151.75 (Ar–
<bold>C</bold>
), 158.62, 163.23, 165.74 (
<bold>C</bold>
=N,
<bold>C</bold>
=O). 
<sup>31</sup>
P NMR (162 MHz, CDCl
<sub>3</sub>
): δ
<sub>P</sub>
 = − 153.38 to − 135.76 (m, 1P,
<bold>P</bold>
F
<sub>6</sub>
).
<sup>19</sup>
F NMR (377 MHz, CDCl
<sub>3</sub>
): δ
<sub>F</sub>
 = − 70.39 (d, 6F, P
<bold>F</bold>
<sub>
<bold>6</bold>
</sub>
), (− 107.98 to − 107.89), (− 107.72 to − 107.65) (2m, 1F, Ar–
<bold>F</bold>
). MS (ES)
<italic>m/z </italic>
= 641.55 [M
<sup>+</sup>
].</p>
</sec>
<sec id="FPar31">
<title>
<italic>4</italic>
-
<italic>(2</italic>
-
<italic>(4</italic>
-
<italic>Fluorobenzylidene)hydrazinecarbonyl)</italic>
-
<italic>1</italic>
-
<italic>octadecylpyridin</italic>
-
<italic>1</italic>
-
<italic>ium tetrafluoroborate (</italic>
<bold>
<italic>32</italic>
</bold>
<italic>)</italic>
</title>
<p id="Par73">It was obtained as yellow syrup.
<sup>1</sup>
H NMR (400 MHz, CDCl
<sub>3</sub>
): δ
<sub>H</sub>
 = 0.82 (dd, 3H,
<italic>J</italic>
 = 4 Hz, 8 Hz, C
<bold>H</bold>
<sub>3</sub>
), 1.16–1.20 (m, 30H, 15×C
<bold>H</bold>
<sub>2</sub>
), 1.94–1.98 (m, 2H, NCH
<sub>2</sub>
C
<bold>H</bold>
<sub>2</sub>
), 4.73 (t, 2H,
<italic>J</italic>
 = 8 Hz, NC
<bold>H</bold>
<sub>2</sub>
), 6.99 (dd, 2H,
<italic>J</italic>
 = 8 Hz, 12 Hz, Ar–
<bold>H</bold>
), 7.69 (dd, 2H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 8.83 (d, 2H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 9.00 (s, 1H,
<bold>H</bold>
–C=N), 9.06 (d, 2H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 12.11 (bs, 1H, CON
<bold>H</bold>
).
<sup>13</sup>
C NMR (100 MHz, CDCl
<sub>3</sub>
): δ
<sub>C</sub>
 = 14.08 (
<bold>C</bold>
H
<sub>3</sub>
), 22.66, 26.10, 28.97, 29.33, 29.48, 29.57, 29.63, 29.68, 31.66, 31.90 (16×
<bold>C</bold>
H
<sub>2</sub>
), 62.64 (N
<bold>C</bold>
H
<sub>2</sub>
), 115.85, 116.07, 127.76, 129.46, 130.12, 130.21, 144.82, 147.96, 151.72 (Ar–
<bold>C</bold>
), 158.57, 163.25, 165.76 (
<bold>C</bold>
=N,
<bold>C</bold>
=O). 
<sup>11</sup>
B NMR (128 MHz, CDCl
<sub>3</sub>
): δ
<sub>B</sub>
 = − 1.29 to 1.28 (m, 1B,
<bold>B</bold>
F
<sub>4</sub>
).
<sup>19</sup>
F NMR (377 MHz, CDCl
<sub>3</sub>
): δ
<sub>F</sub>
 = (− 107.98 to − 107.85) to (107.82 to − 107.75) (2m, 1F, Ar–
<bold>F</bold>
); − 149.14, 149.19 (2d, 4F, B
<bold>F</bold>
<sub>4</sub>
). MS (ES)
<italic>m/z </italic>
= 583.45 [M
<sup>+</sup>
].</p>
</sec>
<sec id="FPar32">
<title>
<italic>4</italic>
-
<italic>(2</italic>
-
<italic>(4</italic>
-
<italic>Fluorobenzylidene)hydrazinecarbonyl)</italic>
-
<italic>1</italic>
-
<italic>octadecylpyridin</italic>
-
<italic>1</italic>
-
<italic>ium trifluoroacetate (</italic>
<bold>
<italic>33</italic>
</bold>
<italic>)</italic>
</title>
<p id="Par74">It was obtained as colorless syrup.
<sup>1</sup>
H NMR (400 MHz, CDCl
<sub>3</sub>
): δ
<sub>H</sub>
 = 0.82 (dd, 3H,
<italic>J</italic>
 = 4 Hz, 8 Hz, C
<bold>H</bold>
<sub>3</sub>
), 1.16–1.19 (m, 30H, 15×C
<bold>H</bold>
<sub>2</sub>
), 1.95–1.99 (m, 2H, NCH
<sub>2</sub>
C
<bold>H</bold>
<sub>2</sub>
), 4.75 (t, 2H,
<italic>J</italic>
 = 8 Hz, NC
<bold>H</bold>
<sub>2</sub>
), 6.96 (t, 2H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 7.68 (dd, 2H,
<italic>J</italic>
 = 4 Hz, 8 Hz, Ar–
<bold>H</bold>
), 8.84 (d, 2H,
<italic>J</italic>
 = 8 Hz, Ar–
<bold>H</bold>
), 8.94 (s, 1H,
<bold>H</bold>
–C=N), 9.12 (d, 2H,
<italic>J</italic>
 = 4 Hz, Ar–
<bold>H</bold>
), 12.46 (bs, 1H, CON
<bold>H</bold>
).
<sup>13</sup>
C NMR (100 MHz, CDCl
<sub>3</sub>
): δ
<sub>C</sub>
 = 14.07 (
<bold>C</bold>
H
<sub>3</sub>
), 22.66, 26.09, 28.96, 29.33, 29.47, 29.57, 29.63, 29.68, 31.66, 31.90 (16×
<bold>C</bold>
H
<sub>2</sub>
), 62.66 (N
<bold>C</bold>
H
<sub>2</sub>
), 115.85, 116.07, 127.72, 129.53, 130.09, 130.17, 144.87, 148.01, 151.77 (Ar–
<bold>C</bold>
), 158.62, 163.22, 165.73 (
<bold>C</bold>
=N,
<bold>C</bold>
=O). 
<sup>19</sup>
F NMR (377 MHz, CDCl
<sub>3</sub>
): δ
<sub>F</sub>
 = − 75.30 (s, 3F, C
<bold>F</bold>
<sub>
<bold>3</bold>
</sub>
), (− 108.01 to − 107.94), (− 107.85 to − 107.78) (2m, 1F, Ar–
<bold>F</bold>
). MS (ES)
<italic>m/z </italic>
= 609.35 [M
<sup>+</sup>
].</p>
</sec>
</sec>
</sec>
<sec id="Sec14">
<title>Biological studies</title>
<sec id="Sec15">
<title>Antiproliferative activity</title>
<p id="Par75">MCF-7, T47D, HeLa and Caco-II cell lines were cultivated in Dulbecco’s modified Eagles medium (DMEM, Biochrom, Berlin, Germany). Cell lines were maintained at 37 °C and all media were supplemented with 1% of 2 mM 
<sc>l</sc>
-glutamine (Lonza), 10% fetal calf serum (Gibco, Paisley, UK), 50 IU/ml penicillin/streptomycin (Sigma, St. Louis, MO) and amphotericin B (Sigma, St. Louis, MO). Cells from passage number 10–16 were used. For the antiproliferative activity test, compounds under examination, dissolved in DMSO, were added to the culture medium and incubated for 48 h incubation period in an atmosphere of 5% CO
<sub>2</sub>
and 95 relative humidity at 37 °C.</p>
<p id="Par76">Cells were seeded at a density of 8 × 10
<sup>3</sup>
cells per well in 96-well plates in appropriate medium. When the exposure period ends, Promega Cell Titer 96 Aqueous Non-Radioactive Cell Proliferation (MTS) assay was carried out according to the manufacturer’s protocol. Absorbance values of each well were determined with a microplate enzyme-linked immuno-assay (ELISA) reader equipped with a 492 nm filter. Survival rates of the controls were set to represent 100% viability. Untreated cultures were used as controls groups.</p>
</sec>
<sec id="Sec16">
<title>Caspase-3 enzyme activity</title>
<p id="Par77">To assess changes in caspase-3 activity, the caspase-3 colorimetric assay kit (BioVision Research Products, Milpitas, CA) was used after treatment with 100 µM of each compound and incubation for 48 h. Briefly, apoptosis was provoked in treated cells before cells were collected by centrifugation at 1000 rpm for 10 min. Cells were lysed and supernatants were separated according to the manufacture’s protocol. Protein concentration in the supernatant was determined using the Bradford method. 50 µl of the reaction buffer, 200 µM of DEVD-pNA substrate were added to 50 µl supernatant in a 96-well plate and incubated at 37 °C for 2 h. After incubation, the plate was read under 405 nm wavelength using an ELISA reader (Tecan Group Ltd., Mannedorf, Switzerland).</p>
</sec>
</sec>
<sec id="Sec17">
<title>Computational methods</title>
<sec id="Sec18">
<title>Preparation of protein structure</title>
<p id="Par78">The crystal structure of apo PI3Kα (PDB ID: 2RD0) [(
<bold>2</bold>
)] was retrieved from the RCSB Protein Data Bank. The homology modeled structure of 2RD0 was adopted for this study [
<xref ref-type="bibr" rid="CR47">47</xref>
]. The coordinates of wortmannin in 3HHM [
<xref ref-type="bibr" rid="CR48">48</xref>
] were moved to 2RD0 and assigned as the ligand. Minimization of the protein side chains was applied to reduce the steric clashes recruiting MacroModel [
<xref ref-type="bibr" rid="CR20">20</xref>
] module in MAESTRO. Further preparation of the coordinates was carried out using Protein Preparation [
<xref ref-type="bibr" rid="CR20">20</xref>
] wizard in Schrödinger to maximize the H-bond interactions between residues.</p>
</sec>
<sec id="Sec19">
<title>Preparation of ligand structures</title>
<p id="Par79">The synthesized compounds (ligands) were built based on the coordinates of wortmannin in 3 HHM. The ligands were built using MAESTRO [
<xref ref-type="bibr" rid="CR20">20</xref>
] BUILD module and then subjected for energy minimization using OPLS2005 force field in MacroModel program.</p>
</sec>
<sec id="Sec20">
<title>Quantum–polarized ligand docking (QPLD)</title>
<p id="Par80">QPLD [
<xref ref-type="bibr" rid="CR20">20</xref>
,
<xref ref-type="bibr" rid="CR45">45</xref>
] (
<bold>3</bold>
,
<bold>4</bold>
) docking employed the combined QM/MM approach to determine ligand/protein complex formation. The Glide [
<xref ref-type="bibr" rid="CR49">49</xref>
<xref ref-type="bibr" rid="CR51">51</xref>
] docking was implemented in QPLD to generate a list of ligand docked poses that fit the protein binding site. The binding energy of the protein/newly generated ligand pose was derived using the molecular mechanical (MM) method for the protein coordinates while the quantum mechanical (QM) method was applied for ligand pose recruiting the QSite wizard in Schrödinger [
<xref ref-type="bibr" rid="CR45">45</xref>
]. The Qsite program generated the atomic partial charges for the ligand pose within the protein environment. The ligand pose with QM-generated partial charges were redocked to the binding pocket using Glide [
<xref ref-type="bibr" rid="CR45">45</xref>
] program with XP-scoring function. Specifically, the polarization effect of the protein binding pocket was accounted during the docking procedure. The ligand pose with the lowest root mean square deviation (RMSD) was investigated. The kinase binding domain was defined using the ligand as a centroid. The scaling of receptor Vander Waals for the non-polar atoms was set to 0.75.</p>
</sec>
</sec>
</sec>
<sec id="Sec21">
<title>Conclusions</title>
<p id="Par81">Novel cationic fluorinated pyridinium hydrazones tethering lipophilic side chain were designed and synthesized under both conventional and green ultrasound conditions. The synthesized compounds were assessed for their anticancer activities and the results revealed that adding to the length of the hydrophobic chain significantly enhances their anticancer activities. Considerable increase in caspase-3 activity was associated with the most potent compounds, namely
<bold>8</bold>
,
<bold>28</bold>
,
<bold>29</bold>
and
<bold>32</bold>
suggesting an apoptotic cellular death pathway. Molecular Docking studies employing QPLD approach against PI3Kα demonstrated that compounds
<bold>2</bold>
<bold>9</bold>
accommodate the kinase site and form H-bond with S774, K802, H917, and D933 (Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
).</p>
</sec>
<sec sec-type="supplementary-material">
<title>Additional file</title>
<sec id="Sec22">
<p>
<supplementary-material content-type="local-data" id="MOESM1">
<media xlink:href="13065_2018_489_MOESM1_ESM.pdf">
<caption>
<p>
<bold>Additional file 1.</bold>
Additional figures.</p>
</caption>
</media>
</supplementary-material>
</p>
</sec>
</sec>
</body>
<back>
<ack>
<title>Authors’ contributions</title>
<p>NR, MRA, and MM conceived the presented study. NR, FFA and SAS contributed to the design and implementation of the work, to the collection of the experimental results and to the writing of the manuscript. SKB and DAS performed the biological and simulation part. MRA, NR, MM and FFA contributed to the interpretation of the results. All authors provided critical feedback and helped shape the research, analysis and manuscript. All authors read and approved the final manuscript.</p>
<sec id="FPar33" sec-type="COI-statement">
<title>Competing interests</title>
<p id="Par82">The authors declare that they have no competing interests.</p>
</sec>
<sec id="FPar34">
<title>Consent for publication</title>
<p id="Par83">Not applicable.</p>
</sec>
<sec id="FPar35">
<title>Ethics approval and consent to participate</title>
<p id="Par84">Not applicable.</p>
</sec>
<sec id="FPar36">
<title>Publisher’s Note</title>
<p id="Par85">Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p>
</sec>
</ack>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rollas</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Küçükgüzel</surname>
<given-names>SG</given-names>
</name>
</person-group>
<article-title>Biological activities of hydrazone derivatives</article-title>
<source>Molecules</source>
<year>2007</year>
<volume>12</volume>
<fpage>1910</fpage>
<lpage>1939</lpage>
<pub-id pub-id-type="doi">10.3390/12081910</pub-id>
<pub-id pub-id-type="pmid">17960096</pub-id>
</element-citation>
</ref>
<ref id="CR2">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Verma</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Marella</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Shaquiquzzaman</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Akhtar</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ali</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Alam</surname>
<given-names>MM</given-names>
</name>
</person-group>
<article-title>A review exploring biological activities of hydrazones</article-title>
<source>J Pharm Bioallied Sci</source>
<year>2014</year>
<volume>6</volume>
<fpage>69</fpage>
<lpage>80</lpage>
<pub-id pub-id-type="doi">10.4103/0975-7406.129170</pub-id>
<pub-id pub-id-type="pmid">24741273</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pieczonka</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Strzelczyk</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sadowska</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Mlostoń</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Stączek</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Synthesis and evaluation of antimicrobial activity of hydrazones derived from 3-oxido-1
<italic>H</italic>
-imidazole-4-carbohydrazides</article-title>
<source>Eur J Med Chem</source>
<year>2013</year>
<volume>64</volume>
<fpage>389</fpage>
<lpage>395</lpage>
<pub-id pub-id-type="doi">10.1016/j.ejmech.2013.04.023</pub-id>
<pub-id pub-id-type="pmid">23648974</pub-id>
</element-citation>
</ref>
<ref id="CR4">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kumar</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Narasimhan</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Hydrazides/hydrazones as antimicrobial and anticancer agents in the new millennium</article-title>
<source>Mini Rev Med Chem</source>
<year>2013</year>
<volume>13</volume>
<fpage>971</fpage>
<lpage>987</lpage>
<pub-id pub-id-type="doi">10.2174/1389557511313070003</pub-id>
<pub-id pub-id-type="pmid">23621689</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ahmed</surname>
<given-names>HE</given-names>
</name>
<name>
<surname>Abdel-Salam</surname>
<given-names>HA</given-names>
</name>
<name>
<surname>Shaker</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>Synthesis, characterization, molecular modeling, and potential antimicrobial and anticancer activities of novel 2-aminoisoindoline-1,3-dione derivatives</article-title>
<source>Bioorg Chem</source>
<year>2016</year>
<volume>6</volume>
<fpage>1</fpage>
<lpage>11</lpage>
<pub-id pub-id-type="doi">10.1016/j.bioorg.2016.03.003</pub-id>
</element-citation>
</ref>
<ref id="CR6">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Savini</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Chiasserini</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Travagli</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Pellerano</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Novellino</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Cosentino</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Pisano</surname>
<given-names>MB</given-names>
</name>
</person-group>
<article-title>New alpha-(
<italic>N</italic>
)-heterocyclichydrazones: evaluation of anticancer, anti-HIV and antimicrobial activity</article-title>
<source>Eur J Med Chem</source>
<year>2004</year>
<volume>39</volume>
<fpage>113</fpage>
<lpage>122</lpage>
<pub-id pub-id-type="doi">10.1016/j.ejmech.2003.09.012</pub-id>
<pub-id pub-id-type="pmid">14987820</pub-id>
</element-citation>
</ref>
<ref id="CR7">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Altıntop</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Özdemir</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Turan-Zitouni</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Ilgın</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Atlı</surname>
<given-names>Ö</given-names>
</name>
<name>
<surname>İşcan</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Kaplancıklı</surname>
<given-names>ZA</given-names>
</name>
</person-group>
<article-title>Synthesis and biological evaluation of some hydrazone derivatives as new anticandidal and anticancer agents</article-title>
<source>Eur J Med Chem</source>
<year>2012</year>
<volume>58</volume>
<fpage>299</fpage>
<lpage>307</lpage>
<pub-id pub-id-type="doi">10.1016/j.ejmech.2012.10.011</pub-id>
<pub-id pub-id-type="pmid">23142671</pub-id>
</element-citation>
</ref>
<ref id="CR8">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Q-Sh</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>H-L</given-names>
</name>
</person-group>
<article-title>Design, synthesis, biological evaluation and molecular modeling of 1,3,4-oxadiazoline analogs of COMBRETASTATIN-A4 as novel antitubulin agents</article-title>
<source>Bioorg Med Chem</source>
<year>2012</year>
<volume>20</volume>
<fpage>903</fpage>
<lpage>909</lpage>
<pub-id pub-id-type="doi">10.1016/j.bmc.2011.11.057</pub-id>
<pub-id pub-id-type="pmid">22192936</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lamaty</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>Ch</given-names>
</name>
<name>
<surname>Martinez</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Nun</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Solvent-free synthesis of hydrazones and their subsequent N-alkylation in a Ball-mill</article-title>
<source>Tetrahedron</source>
<year>2013</year>
<volume>67</volume>
<fpage>8187</fpage>
<lpage>8194</lpage>
</element-citation>
</ref>
<ref id="CR10">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tiwari</surname>
<given-names>VK</given-names>
</name>
<name>
<surname>Dubey</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Dikshit</surname>
<given-names>SN</given-names>
</name>
</person-group>
<article-title>Synthesis, spectral and biological activities of pyridine 2,6 dicarboxalic acid hydrazone derivatives and its metal complexes</article-title>
<source>J Chem Chem Sci</source>
<year>2016</year>
<volume>6</volume>
<fpage>911</fpage>
<lpage>918</lpage>
</element-citation>
</ref>
<ref id="CR11">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Neha</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ritu</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Manju</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Birendra</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>A review on biological activities of hydrazone derivatives</article-title>
<source>Int J Pharm Clin Res</source>
<year>2016</year>
<volume>8</volume>
<fpage>162</fpage>
<lpage>166</lpage>
</element-citation>
</ref>
<ref id="CR12">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Padmini</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Preethi</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Divya</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rohini</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Lohita</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Swetha</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kaladar</surname>
<given-names>PA</given-names>
</name>
</person-group>
<article-title>Review on biological importance of hydrazones</article-title>
<source>Int J Pharm Res Rev</source>
<year>2013</year>
<volume>2</volume>
<fpage>43</fpage>
<lpage>58</lpage>
</element-citation>
</ref>
<ref id="CR13">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Messali</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Eco-friendly synthesis of a new class of pyridinium-based ionic liquids with attractive antimicrobial activity</article-title>
<source>Molecules</source>
<year>2015</year>
<volume>20</volume>
<fpage>14936</fpage>
<lpage>14949</lpage>
<pub-id pub-id-type="doi">10.3390/molecules200814936</pub-id>
<pub-id pub-id-type="pmid">26287148</pub-id>
</element-citation>
</ref>
<ref id="CR14">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Messali</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Almtiri</surname>
<given-names>MN</given-names>
</name>
<name>
<surname>Abderrahman</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Salghi</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Aouad</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Alshahateet</surname>
<given-names>SF</given-names>
</name>
<name>
<surname>Ali</surname>
<given-names>AA-Sh</given-names>
</name>
</person-group>
<article-title>New pyridazinium-based ionic liquids: an eco-friendly ultrasound-assisted synthesis, characterization and biological activity</article-title>
<source>S Afr J Chem</source>
<year>2015</year>
<volume>68</volume>
<fpage>219</fpage>
<lpage>225</lpage>
</element-citation>
</ref>
<ref id="CR15">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harjani</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Singer</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Garcia</surname>
<given-names>MT</given-names>
</name>
<name>
<surname>Scammells</surname>
<given-names>PJ</given-names>
</name>
</person-group>
<article-title>Biodegradable pyridinium ionic liquids: design, synthesis and evaluation</article-title>
<source>Green Chem</source>
<year>2009</year>
<volume>11</volume>
<fpage>83</fpage>
<lpage>90</lpage>
<pub-id pub-id-type="doi">10.1039/B811814K</pub-id>
</element-citation>
</ref>
<ref id="CR16">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rezki</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Al-Sodies</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Aouad</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Bardaweel</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Messali</surname>
<given-names>M</given-names>
</name>
<name>
<surname>El Ashry</surname>
<given-names>ESH</given-names>
</name>
</person-group>
<article-title>An eco-friendly ultrasound-assisted synthesis of novel fluorinated pyridinium salts-based hydrazones and antimicrobial and antitumor screening</article-title>
<source>Int J Mol Sci</source>
<year>2016</year>
<volume>17</volume>
<fpage>766</fpage>
<lpage>785</lpage>
<pub-id pub-id-type="doi">10.3390/ijms17050766</pub-id>
</element-citation>
</ref>
<ref id="CR17">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rezki</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Al-Yahyawi</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Bardaweel</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Al-Blewi</surname>
<given-names>FF</given-names>
</name>
<name>
<surname>Aouad</surname>
<given-names>MR</given-names>
</name>
</person-group>
<article-title>Synthesis of novel 2,5-disubstituted-1,3,4-thiadiazoles clubbed 1,2,4-Triazole, 1,3,4-thiadiazole, 1,3,4-oxadiazole and/or Schiff base as potential antimicrobial and antiproliferative agents</article-title>
<source>Molecules</source>
<year>2015</year>
<volume>20</volume>
<fpage>16048</fpage>
<lpage>16067</lpage>
<pub-id pub-id-type="doi">10.3390/molecules200916048</pub-id>
<pub-id pub-id-type="pmid">26364633</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aouad</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Messali</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rezki</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Ali</surname>
<given-names>AA-Sh</given-names>
</name>
<name>
<surname>Lesimple</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Synthesis and characterization of some novel 1,2,4-triazoles, 1,3,4-thiadiazoles and Schiff bases incorporating imidazole moiety as potential antimicrobial agents</article-title>
<source>Acta pharmaceutica</source>
<year>2015</year>
<volume>65</volume>
<fpage>117</fpage>
<lpage>132</lpage>
<pub-id pub-id-type="doi">10.1515/acph-2015-0011</pub-id>
<pub-id pub-id-type="pmid">26011929</pub-id>
</element-citation>
</ref>
<ref id="CR19">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aouad</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Rezki</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Kasmi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Aouad</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Rezki</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>Synthesis, characterization and evaluation of antimicrobial activity of some novel 1,2,4-triazoles and 1,3,4-thiadiazoles bearing imidazole nucleus</article-title>
<source>Heterocycles</source>
<year>2012</year>
<volume>85</volume>
<fpage>1141</fpage>
<lpage>1154</lpage>
<pub-id pub-id-type="doi">10.3987/COM-12-12456</pub-id>
</element-citation>
</ref>
<ref id="CR20">
<label>20.</label>
<mixed-citation publication-type="other">Protein Preparation Wizard, Maestro, Macromodel, and QPLD-dock, Schrödinger, LLC, Portland, OR, USA. 97204;2016</mixed-citation>
</ref>
<ref id="CR21">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>C-H</given-names>
</name>
<name>
<surname>Mandelker</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Schmidt-Kittler</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Samuels</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Velculescu</surname>
<given-names>VE</given-names>
</name>
<name>
<surname>Kinzler</surname>
<given-names>KW</given-names>
</name>
<name>
<surname>Vogelstein</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Gabelli</surname>
<given-names>SB</given-names>
</name>
<name>
<surname>Amzel</surname>
<given-names>LM</given-names>
</name>
</person-group>
<article-title>The structure of a human p110 alpha/p85 alpha complex elucidates the effects of oncogenic PI3K alpha mutations</article-title>
<source>Science</source>
<year>2007</year>
<volume>318</volume>
<fpage>1744</fpage>
<lpage>1748</lpage>
<pub-id pub-id-type="doi">10.1126/science.1150799</pub-id>
<pub-id pub-id-type="pmid">18079394</pub-id>
</element-citation>
</ref>
<ref id="CR22">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ebi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Costa</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Faber</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Nishtala</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kotani</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Juric</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Della-Pelle</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yano</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Mino-Kenudson</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Benes</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Engelman</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>PI3 K regulates MEK/ERK signaling in breast cancer via the Rac-GEF, P-Rex1</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2013</year>
<volume>110</volume>
<fpage>21124</fpage>
<lpage>21129</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1314124110</pub-id>
<pub-id pub-id-type="pmid">24327733</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sanchez</surname>
<given-names>CG</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>CX</given-names>
</name>
<name>
<surname>Crowder</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Guintoli</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Phommaly</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ellis</surname>
<given-names>MJ</given-names>
</name>
</person-group>
<article-title>Preclinical modeling of combined phosphatidylinositol-3-kinase inhibition with endocrine therapy for estrogen receptor-positive breast cancer</article-title>
<source>Breast Cancer Res</source>
<year>2011</year>
<volume>13</volume>
<fpage>R21</fpage>
<lpage>R28</lpage>
<pub-id pub-id-type="doi">10.1186/bcr2833</pub-id>
<pub-id pub-id-type="pmid">21362200</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Spangle</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Dreijerink</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Groner</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Ohlson</surname>
<given-names>CE</given-names>
</name>
<name>
<surname>Reyes</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>CY</given-names>
</name>
<name>
<surname>Bradner</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Roberts</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>PI3K/AKT signaling regulates H3K4 methylation in breast cancer</article-title>
<source>Cell Rep</source>
<year>2016</year>
<volume>15</volume>
<fpage>2692</fpage>
<lpage>2704</lpage>
<pub-id pub-id-type="doi">10.1016/j.celrep.2016.05.046</pub-id>
<pub-id pub-id-type="pmid">27292631</pub-id>
</element-citation>
</ref>
<ref id="CR25">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kataoka</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Mukohara</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Shimada</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Saijo</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Hirai</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Minami</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Association between gain-of-function mutations in PIK3CA and resistance to HER2-targeted agents in HER2-amplified breast cancer cell lines</article-title>
<source>Ann Oncol</source>
<year>2010</year>
<volume>21</volume>
<fpage>255</fpage>
<lpage>262</lpage>
<pub-id pub-id-type="doi">10.1093/annonc/mdp304</pub-id>
<pub-id pub-id-type="pmid">19633047</pub-id>
</element-citation>
</ref>
<ref id="CR26">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sabine</surname>
<given-names>VS</given-names>
</name>
<name>
<surname>Crozier</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Brookes</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Drake</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Piper</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Van de Velde</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Hasenburg</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kieback</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>Markopoulos</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Dirix</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Mutational analysis of PI3 K/AKT signaling pathway in tamoxifen exemestane adjuvant multinational pathology study</article-title>
<source>J Clin Oncol</source>
<year>2014</year>
<volume>32</volume>
<fpage>2951</fpage>
<lpage>2958</lpage>
<pub-id pub-id-type="doi">10.1200/JCO.2013.53.8272</pub-id>
<pub-id pub-id-type="pmid">25071141</pub-id>
</element-citation>
</ref>
<ref id="CR27">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>J-l</surname>
<given-names>Liu</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>G-R</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>S-F</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>C-L</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Tong</surname>
<given-names>L-J</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Duan</surname>
<given-names>W-H</given-names>
</name>
<name>
<surname>Meng</surname>
<given-names>L-H</given-names>
</name>
</person-group>
<article-title>DW09849, a selective phosphatidylinositol 3-kinase (PI3K) inhibitor, prevents pi3k signaling and preferentially inhibits proliferation of cells containing the oncogenic mutation p110α (H1047R)</article-title>
<source>J Pharm Exp Ther</source>
<year>2014</year>
<volume>348</volume>
<fpage>432</fpage>
<lpage>441</lpage>
<pub-id pub-id-type="doi">10.1124/jpet.113.210724</pub-id>
</element-citation>
</ref>
<ref id="CR28">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hidalgo</surname>
<given-names>IJ</given-names>
</name>
<name>
<surname>Raub</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Borchardt</surname>
<given-names>RT</given-names>
</name>
</person-group>
<article-title>Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability</article-title>
<source>Gastroenterol</source>
<year>1989</year>
<volume>96</volume>
<fpage>736</fpage>
<lpage>749</lpage>
<pub-id pub-id-type="doi">10.1016/0016-5085(89)90897-4</pub-id>
</element-citation>
</ref>
<ref id="CR29">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sambuy</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>De Angelis</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Ranaldi</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Scarino</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Stammati</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Zucco</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics</article-title>
<source>Cell Biol Toxicol</source>
<year>2005</year>
<volume>21</volume>
<fpage>1</fpage>
<lpage>26</lpage>
<pub-id pub-id-type="doi">10.1007/s10565-005-0085-6</pub-id>
<pub-id pub-id-type="pmid">15868485</pub-id>
</element-citation>
</ref>
<ref id="CR30">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leone</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Di Palma</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ricchi</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Acquaviva</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Giannouli</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Di Prisco</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Iuliano</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Acquaviva</surname>
<given-names>AM</given-names>
</name>
</person-group>
<article-title>PGE2 inhibits apoptosis in human adenocarcinoma Caco-2 cell line through Ras-PI3K association and cAMP-dependent kinase A activation</article-title>
<source>Am J Physiol Gastrointest Liver Physiol</source>
<year>2007</year>
<volume>293</volume>
<fpage>G673</fpage>
<lpage>G681</lpage>
<pub-id pub-id-type="doi">10.1152/ajpgi.00584.2006</pub-id>
<pub-id pub-id-type="pmid">17640974</pub-id>
</element-citation>
</ref>
<ref id="CR31">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Fuhrman</surname>
<given-names>CB</given-names>
</name>
<name>
<surname>Planelles</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Peltier</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Gaffney</surname>
<given-names>DK</given-names>
</name>
<name>
<surname>Soisson</surname>
<given-names>AP</given-names>
</name>
<name>
<surname>Dodson</surname>
<given-names>MK</given-names>
</name>
<name>
<surname>Tolley</surname>
<given-names>HD</given-names>
</name>
<name>
<surname>Green</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Zempolich</surname>
<given-names>KA</given-names>
</name>
</person-group>
<article-title>Phosphatidylinositol 3-kinase inhibition by LY294002 radiosensitizes human cervical cancer cell lines</article-title>
<source>Clin Cancer Res</source>
<year>2006</year>
<volume>12</volume>
<fpage>250</fpage>
<lpage>256</lpage>
<pub-id pub-id-type="doi">10.1158/1078-0432.CCR-05-1084</pub-id>
<pub-id pub-id-type="pmid">16397049</pub-id>
</element-citation>
</ref>
<ref id="CR32">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sarbassov</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Guertin</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Ali</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Sabatini</surname>
<given-names>DM</given-names>
</name>
</person-group>
<article-title>Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex</article-title>
<source>Science</source>
<year>2005</year>
<volume>307</volume>
<fpage>1098</fpage>
<lpage>1101</lpage>
<pub-id pub-id-type="doi">10.1126/science.1106148</pub-id>
<pub-id pub-id-type="pmid">15718470</pub-id>
</element-citation>
</ref>
<ref id="CR33">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>E-J</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>D-H</given-names>
</name>
</person-group>
<article-title>Activation of PI3K/Akt pathway by PTEN reduction and PIK3CA mRNA amplification contributes to cisplatin resistance in an ovarian cancer cell line</article-title>
<source>Gyneco Oncol</source>
<year>2005</year>
<volume>97</volume>
<fpage>26</fpage>
<lpage>34</lpage>
<pub-id pub-id-type="doi">10.1016/j.ygyno.2004.11.051</pub-id>
</element-citation>
</ref>
<ref id="CR34">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sabbah</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Simms</surname>
<given-names>NA</given-names>
</name>
<name>
<surname>Brattain</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Vennerstrom</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Zhong</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Biological evaluation and docking studies of recently identified inhibitors of phosphoinositide-3-kinases</article-title>
<source>Bioorg Med Chem Lett</source>
<year>2012</year>
<volume>22</volume>
<fpage>876</fpage>
<lpage>880</lpage>
<pub-id pub-id-type="doi">10.1016/j.bmcl.2011.12.044</pub-id>
<pub-id pub-id-type="pmid">22212721</pub-id>
</element-citation>
</ref>
<ref id="CR35">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sabbah</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Simms</surname>
<given-names>NA</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ezell</surname>
<given-names>EL</given-names>
</name>
<name>
<surname>Brattain</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Vennerstrom</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Zhong</surname>
<given-names>HA</given-names>
</name>
</person-group>
<article-title>
<italic>N</italic>
-Phenyl-4-hydroxy-2-quinolone-3-carboxamides as selective inhibitors of mutant H1047R phosphoinositide-3-kinase (PI3Kα)</article-title>
<source>Bioorg Med Chem</source>
<year>2012</year>
<volume>20</volume>
<fpage>7175</fpage>
<lpage>7183</lpage>
<pub-id pub-id-type="doi">10.1016/j.bmc.2012.09.059</pub-id>
<pub-id pub-id-type="pmid">23121722</pub-id>
</element-citation>
</ref>
<ref id="CR36">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Friesner</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Banks</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Murphy</surname>
<given-names>RB</given-names>
</name>
<name>
<surname>Halgren</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Klicic</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Mainz</surname>
<given-names>DT</given-names>
</name>
<name>
<surname>Repasky</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Knoll</surname>
<given-names>EH</given-names>
</name>
<name>
<surname>Shelley</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Perry</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Shaw</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Francis</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Shenkin</surname>
<given-names>PS</given-names>
</name>
</person-group>
<article-title>Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy</article-title>
<source>J Med Chem</source>
<year>2004</year>
<volume>47</volume>
<fpage>1739</fpage>
<lpage>1749</lpage>
<pub-id pub-id-type="doi">10.1021/jm0306430</pub-id>
<pub-id pub-id-type="pmid">15027865</pub-id>
</element-citation>
</ref>
<ref id="CR37">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Friesner</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Murphy</surname>
<given-names>RB</given-names>
</name>
<name>
<surname>Repasky</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Frye</surname>
<given-names>LL</given-names>
</name>
<name>
<surname>Greenwood</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Halgren</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Sanschagrin</surname>
<given-names>PC</given-names>
</name>
<name>
<surname>Mainz</surname>
<given-names>DT</given-names>
</name>
</person-group>
<article-title>Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes</article-title>
<source>J Med Chem</source>
<year>2006</year>
<volume>49</volume>
<fpage>6177</fpage>
<lpage>6196</lpage>
<pub-id pub-id-type="doi">10.1021/jm051256o</pub-id>
<pub-id pub-id-type="pmid">17034125</pub-id>
</element-citation>
</ref>
<ref id="CR38">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sabbah</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Vennerstrom</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Zhong</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Docking studies on isoform-specific inhibition of phosphoinositide-3-kinases</article-title>
<source>J Chem Inf Model</source>
<year>2010</year>
<volume>50</volume>
<fpage>1887</fpage>
<lpage>1898</lpage>
<pub-id pub-id-type="doi">10.1021/ci1002679</pub-id>
<pub-id pub-id-type="pmid">20866085</pub-id>
</element-citation>
</ref>
<ref id="CR39">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sweidan</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Sabbah</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Bardaweel</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Dush</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Sheikha</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Mubarak</surname>
<given-names>MS</given-names>
</name>
</person-group>
<article-title>Computer-aided design, synthesis, and biological evaluation of new indole-2-carboxamide derivatives as PI3Kα/EGFR inhibitors</article-title>
<source>Bioorg Med Chem Lett</source>
<year>2016</year>
<volume>26</volume>
<issue>11</issue>
<fpage>2685</fpage>
<lpage>2690</lpage>
<pub-id pub-id-type="doi">10.1016/j.bmcl.2016.04.011</pub-id>
<pub-id pub-id-type="pmid">27084677</pub-id>
</element-citation>
</ref>
<ref id="CR40">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sabbah</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Vennerstrom</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Zhong</surname>
<given-names>HA</given-names>
</name>
</person-group>
<article-title>Binding selectivity studies of phosphoinositide 3-kinases using free energy calculations</article-title>
<source>J Chem Inf Model</source>
<year>2012</year>
<volume>52</volume>
<fpage>3213</fpage>
<lpage>3224</lpage>
<pub-id pub-id-type="doi">10.1021/ci3003057</pub-id>
<pub-id pub-id-type="pmid">23157418</pub-id>
</element-citation>
</ref>
<ref id="CR41">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sabbah</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Saada</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Khalaf</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Bardaweel</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Sweidan</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Al-Qirim</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Al-Zughier</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Halim</surname>
<given-names>HA</given-names>
</name>
<name>
<surname>Sheikha</surname>
<given-names>GA</given-names>
</name>
</person-group>
<article-title>Molecular modeling based approach, synthesis, and cytotoxic activity of novel benzoin derivatives targeting phosphoinostide 3-kinase (PI3Kα)</article-title>
<source>Bioorg Med Chem Lett</source>
<year>2015</year>
<volume>25</volume>
<fpage>3120</fpage>
<lpage>3124</lpage>
<pub-id pub-id-type="doi">10.1016/j.bmcl.2015.06.011</pub-id>
<pub-id pub-id-type="pmid">26099539</pub-id>
</element-citation>
</ref>
<ref id="CR42">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sweidan</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Sabbah</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Engelmann</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Halim</surname>
<given-names>HA</given-names>
</name>
<name>
<surname>Sheikha</surname>
<given-names>GA</given-names>
</name>
</person-group>
<article-title>Computational docking studies of novel heterocyclic carboxamides as potential PI3Kα inhibitors</article-title>
<source>Lett Drug Des Discov</source>
<year>2015</year>
<volume>12</volume>
<fpage>856</fpage>
<lpage>863</lpage>
<pub-id pub-id-type="doi">10.2174/1570180812666150529205248</pub-id>
</element-citation>
</ref>
<ref id="CR43">
<label>43.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<collab>The Molecular operating</collab>
</person-group>
<source>Environment chemical computing group</source>
<year>2016</year>
<publisher-loc>Quebec Canada</publisher-loc>
<publisher-name>Inc Montreal</publisher-name>
</element-citation>
</ref>
<ref id="CR44">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mandelker</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Gabelli</surname>
<given-names>SB</given-names>
</name>
<name>
<surname>Schmidt-Kittler</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Cheong</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>C-H</given-names>
</name>
<name>
<surname>Kinzler</surname>
<given-names>KW</given-names>
</name>
<name>
<surname>Vogelstein</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Amze</surname>
<given-names>LM</given-names>
</name>
</person-group>
<article-title>A frequent kinase domain mutation that changes the interaction between PI3K alpha and the membrane</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2009</year>
<volume>106</volume>
<fpage>16996</fpage>
<lpage>17001</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0908444106</pub-id>
<pub-id pub-id-type="pmid">19805105</pub-id>
</element-citation>
</ref>
<ref id="CR45">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cho</surname>
<given-names>AE</given-names>
</name>
<name>
<surname>Guallar</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Berne</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Friesner</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Importance of accurate charges in molecular docking: quantum mechanical/molecular mechanical (QM/MM) approach</article-title>
<source>J Comput Chem</source>
<year>2005</year>
<volume>26</volume>
<fpage>915</fpage>
<lpage>931</lpage>
<pub-id pub-id-type="doi">10.1002/jcc.20222</pub-id>
<pub-id pub-id-type="pmid">15841474</pub-id>
</element-citation>
</ref>
<ref id="CR46">
<label>46.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<collab>Protein Preparation Wizard</collab>
</person-group>
<source>Maestro, macromodel, phase, induced fit, jaguar, and glide</source>
<year>2012</year>
<publisher-loc>Portland</publisher-loc>
<publisher-name>Schrödinger, LLC</publisher-name>
</element-citation>
</ref>
<ref id="CR47">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Xing</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Mambo</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Chatterjee</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Goldenberg</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Gollin</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Sukumar</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Trink</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Sidransky</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Somatic mutation and gain of copy number of PIK3CA in human breast cancer</article-title>
<source>Breast Cancer Res</source>
<year>2005</year>
<volume>7</volume>
<fpage>R609</fpage>
<lpage>R616</lpage>
<pub-id pub-id-type="doi">10.1186/bcr1262</pub-id>
<pub-id pub-id-type="pmid">16168105</pub-id>
</element-citation>
</ref>
<ref id="CR48">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Beaver</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Gustin</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Yi</surname>
<given-names>KH</given-names>
</name>
<name>
<surname>Rajpurohit</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gilbert</surname>
<given-names>SF</given-names>
</name>
<name>
<surname>Rose</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>BH</given-names>
</name>
<name>
<surname>Lauring</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>PIK3CA and AKT1 mutations have distinct effects on sensitivity to targeted pathway inhibitors in an isogenic luminal breast cancer model system</article-title>
<source>Clin Cancer Res</source>
<year>2013</year>
<volume>19</volume>
<fpage>5413</fpage>
<lpage>5422</lpage>
<pub-id pub-id-type="doi">10.1158/1078-0432.CCR-13-0884</pub-id>
<pub-id pub-id-type="pmid">23888070</pub-id>
</element-citation>
</ref>
<ref id="CR49">
<label>49.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>She</surname>
<given-names>Q-B</given-names>
</name>
<name>
<surname>Chandarlapaty</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ye</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Lobo</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Haskell</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Leander</surname>
<given-names>KR</given-names>
</name>
<name>
<surname>DeFeo-Jones</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Huber</surname>
<given-names>HE</given-names>
</name>
<name>
<surname>Rosen</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Breast tumor cells with PI3K mutation or HER2 amplification are selectively addicted to Akt signaling</article-title>
<source>PLoS ONE</source>
<year>2008</year>
<volume>3</volume>
<fpage>e3065</fpage>
<lpage>e3068</lpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0003065</pub-id>
<pub-id pub-id-type="pmid">18725974</pub-id>
</element-citation>
</ref>
<ref id="CR50">
<label>50.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weigelt</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Warne</surname>
<given-names>PH</given-names>
</name>
<name>
<surname>Downward</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>PIK3CA mutation, but not PTEN loss of function, determines the sensitivity of breast cancer cells to mTOR inhibitory drugs</article-title>
<source>Oncogene</source>
<year>2011</year>
<volume>30</volume>
<fpage>3222</fpage>
<lpage>3233</lpage>
<pub-id pub-id-type="doi">10.1038/onc.2011.42</pub-id>
<pub-id pub-id-type="pmid">21358673</pub-id>
</element-citation>
</ref>
<ref id="CR51">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zardavas</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Phillips</surname>
<given-names>WA</given-names>
</name>
<name>
<surname>Loi</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>PIK3CA mutations in breast cancer: reconciling findings from preclinical and clinical data</article-title>
<source>Breast Cancer Res</source>
<year>2014</year>
<volume>16</volume>
<fpage>201</fpage>
<lpage>208</lpage>
<pub-id pub-id-type="doi">10.1186/bcr3605</pub-id>
<pub-id pub-id-type="pmid">25192370</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/MaghrebDataLibMedV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0000560 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0000560 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    MaghrebDataLibMedV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Wed Jun 30 18:27:05 2021. Site generation: Wed Jun 30 18:34:21 2021