Serveur sur les données et bibliothèques médicales au Maghreb (version finale)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000050 ( Pmc/Corpus ); précédent : 0000499; suivant : 0000510 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Statistical Approach and Neutron Activation Analysis for Determining Essential and Toxic Elements in Two Kinds of Algerian
<italic>Artemisia</italic>
Plant</title>
<author>
<name sortKey="Begaa, Samir" sort="Begaa, Samir" uniqKey="Begaa S" first="Samir" last="Begaa">Samir Begaa</name>
<affiliation>
<nlm:aff id="Aff1">Neutron Activation Analysis Department, Nuclear Research Centre of Birine, PO Box 180, 17200 Ain Oussera, Djelfa Algeria</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Messaoudi, Mohammed" sort="Messaoudi, Mohammed" uniqKey="Messaoudi M" first="Mohammed" last="Messaoudi">Mohammed Messaoudi</name>
<affiliation>
<nlm:aff id="Aff1">Neutron Activation Analysis Department, Nuclear Research Centre of Birine, PO Box 180, 17200 Ain Oussera, Djelfa Algeria</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Benarfa, Adel" sort="Benarfa, Adel" uniqKey="Benarfa A" first="Adel" last="Benarfa">Adel Benarfa</name>
<affiliation>
<nlm:aff id="Aff2">Technical Platform of Physico-Chemical Analysis (PTAPC-Laghouat), P.O. Box. 37G, Road of Ghardaïa, 03000 Laghouat, Algeria</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.440472.1</institution-id>
<institution>Laboratory of Fundamental Sciences,</institution>
<institution>University Amar Telidji of Laghouat,</institution>
</institution-wrap>
P.O. Box. 37G, Road of Ghardaïa, 03000 Laghouat, Algeria</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">32862398</idno>
<idno type="pmc">7456357</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7456357</idno>
<idno type="RBID">PMC:7456357</idno>
<idno type="doi">10.1007/s12011-020-02358-7</idno>
<date when="2020">2020</date>
<idno type="wicri:Area/Pmc/Corpus">000050</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000050</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Statistical Approach and Neutron Activation Analysis for Determining Essential and Toxic Elements in Two Kinds of Algerian
<italic>Artemisia</italic>
Plant</title>
<author>
<name sortKey="Begaa, Samir" sort="Begaa, Samir" uniqKey="Begaa S" first="Samir" last="Begaa">Samir Begaa</name>
<affiliation>
<nlm:aff id="Aff1">Neutron Activation Analysis Department, Nuclear Research Centre of Birine, PO Box 180, 17200 Ain Oussera, Djelfa Algeria</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Messaoudi, Mohammed" sort="Messaoudi, Mohammed" uniqKey="Messaoudi M" first="Mohammed" last="Messaoudi">Mohammed Messaoudi</name>
<affiliation>
<nlm:aff id="Aff1">Neutron Activation Analysis Department, Nuclear Research Centre of Birine, PO Box 180, 17200 Ain Oussera, Djelfa Algeria</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Benarfa, Adel" sort="Benarfa, Adel" uniqKey="Benarfa A" first="Adel" last="Benarfa">Adel Benarfa</name>
<affiliation>
<nlm:aff id="Aff2">Technical Platform of Physico-Chemical Analysis (PTAPC-Laghouat), P.O. Box. 37G, Road of Ghardaïa, 03000 Laghouat, Algeria</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.440472.1</institution-id>
<institution>Laboratory of Fundamental Sciences,</institution>
<institution>University Amar Telidji of Laghouat,</institution>
</institution-wrap>
P.O. Box. 37G, Road of Ghardaïa, 03000 Laghouat, Algeria</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biological Trace Element Research</title>
<idno type="ISSN">0163-4984</idno>
<idno type="eISSN">1559-0720</idno>
<imprint>
<date when="2020">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="Par1">In this study, two kinds of Artemisia plant,
<italic>Artemisia campestris</italic>
L. and
<italic>Artemisia herba-alba</italic>
Asso
<italic>.</italic>
, collected from different locations in Djelfa province, Algeria, were subjected to an instrumental neutron activation analysis (INAA) in order to determine their essential and toxic elements for the first time. The obtained results for both types revealed the existence of twenty-one elements, namely, As, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Na, Rb, Sb, Sc, Sm, Sr, Yb, and Zn, where, the elements K, Ca, Fe, and Na respectively showed a significant concentration. On the other hand, the tolerable daily intake (TDI) of the studied plants for an adult person per day was within the tolerance limits imposed by the World Health Organization (WHO). Hence, these findings might therefore be used to offer scientific basis for an optimum usage of the studied plants and so enriches the database of medicinal herbs.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karunamoorthi, K" uniqKey="Karunamoorthi K">K Karunamoorthi</name>
</author>
<author>
<name sortKey="Jegajeevanram, K" uniqKey="Jegajeevanram K">K Jegajeevanram</name>
</author>
<author>
<name sortKey="Vijayalakshmi, J" uniqKey="Vijayalakshmi J">J Vijayalakshmi</name>
</author>
<author>
<name sortKey="Mengistie, E" uniqKey="Mengistie E">E Mengistie</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rashid, N" uniqKey="Rashid N">N Rashid</name>
</author>
<author>
<name sortKey="Gbedomon, Rc" uniqKey="Gbedomon R">RC Gbedomon</name>
</author>
<author>
<name sortKey="Ahmad, M" uniqKey="Ahmad M">M Ahmad</name>
</author>
<author>
<name sortKey="Salako, Vk" uniqKey="Salako V">VK Salako</name>
</author>
<author>
<name sortKey="Zafar, M" uniqKey="Zafar M">M Zafar</name>
</author>
<author>
<name sortKey="Malik, K" uniqKey="Malik K">K Malik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mehani, M" uniqKey="Mehani M">M Mehani</name>
</author>
<author>
<name sortKey="Segni, L" uniqKey="Segni L">L Segni</name>
</author>
<author>
<name sortKey="Terzi, V" uniqKey="Terzi V">V Terzi</name>
</author>
<author>
<name sortKey="Morcia, C" uniqKey="Morcia C">C Morcia</name>
</author>
<author>
<name sortKey="Ghizzoni, R" uniqKey="Ghizzoni R">R Ghizzoni</name>
</author>
<author>
<name sortKey="Goudgil, B" uniqKey="Goudgil B">B Goudgil</name>
</author>
<author>
<name sortKey="Benchikh, S" uniqKey="Benchikh S">S Benchikh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boulanouar, B" uniqKey="Boulanouar B">B Boulanouar</name>
</author>
<author>
<name sortKey="Abdelaziz, G" uniqKey="Abdelaziz G">G Abdelaziz</name>
</author>
<author>
<name sortKey="Aazza, S" uniqKey="Aazza S">S Aazza</name>
</author>
<author>
<name sortKey="Gago, C" uniqKey="Gago C">C Gago</name>
</author>
<author>
<name sortKey="Miguel, Mg" uniqKey="Miguel M">MG Miguel</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dob, T" uniqKey="Dob T">T Dob</name>
</author>
<author>
<name sortKey="Dahmane, D" uniqKey="Dahmane D">D Dahmane</name>
</author>
<author>
<name sortKey="Berramdane, T" uniqKey="Berramdane T">T Berramdane</name>
</author>
<author>
<name sortKey="Chelghoum, C" uniqKey="Chelghoum C">C Chelghoum</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bertella, A" uniqKey="Bertella A">A Bertella</name>
</author>
<author>
<name sortKey="Benlahcen, K" uniqKey="Benlahcen K">K Benlahcen</name>
</author>
<author>
<name sortKey="Abouamama, S" uniqKey="Abouamama S">S Abouamama</name>
</author>
<author>
<name sortKey="Pinto, Dcga" uniqKey="Pinto D">DCGA Pinto</name>
</author>
<author>
<name sortKey="Maamar, K" uniqKey="Maamar K">K Maamar</name>
</author>
<author>
<name sortKey="Kihal, M" uniqKey="Kihal M">M Kihal</name>
</author>
<author>
<name sortKey="Silva, Ams" uniqKey="Silva A">AMS Silva</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zaidi, Jh" uniqKey="Zaidi J">JH Zaidi</name>
</author>
<author>
<name sortKey="Fatima, I" uniqKey="Fatima I">I Fatima</name>
</author>
<author>
<name sortKey="Qureshi, Ih" uniqKey="Qureshi I">IH Qureshi</name>
</author>
<author>
<name sortKey="Subhani, Ms" uniqKey="Subhani M">MS Subhani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Serfor Armah, Y" uniqKey="Serfor Armah Y">Y Serfor-Armah</name>
</author>
<author>
<name sortKey="Akaho, E" uniqKey="Akaho E">E Akaho</name>
</author>
<author>
<name sortKey="Nyarko, B" uniqKey="Nyarko B">B Nyarko</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Begaa, S" uniqKey="Begaa S">S Begaa</name>
</author>
<author>
<name sortKey="Messaoudi, M" uniqKey="Messaoudi M">M Messaoudi</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Beto, Ja" uniqKey="Beto J">JA Beto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Szentmihalyi, K" uniqKey="Szentmihalyi K">K Szentmihályi</name>
</author>
<author>
<name sortKey="Kery, A" uniqKey="Kery A">Á Kéry</name>
</author>
<author>
<name sortKey="Then, M" uniqKey="Then M">M Then</name>
</author>
<author>
<name sortKey="Lakatos, B" uniqKey="Lakatos B">B Lakatos</name>
</author>
<author>
<name sortKey="Sandor, Z" uniqKey="Sandor Z">Z Sándor</name>
</author>
<author>
<name sortKey="Vinkler, P" uniqKey="Vinkler P">P Vinkler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arzani, A" uniqKey="Arzani A">A Arzani</name>
</author>
<author>
<name sortKey="Zeinali, H" uniqKey="Zeinali H">H Zeinali</name>
</author>
<author>
<name sortKey="Razmjo, K" uniqKey="Razmjo K">K Razmjo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prasad, As" uniqKey="Prasad A">AS Prasad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mertz, W" uniqKey="Mertz W">W Mertz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ku Elewska, I" uniqKey="Ku Elewska I">I Kużelewska</name>
</author>
<author>
<name sortKey="Polkowska Motrenko, H" uniqKey="Polkowska Motrenko H">H Polkowska-Motrenko</name>
</author>
<author>
<name sortKey="Danko, B" uniqKey="Danko B">B Danko</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Benarfa, A" uniqKey="Benarfa A">A Benarfa</name>
</author>
<author>
<name sortKey="Gourine, N" uniqKey="Gourine N">N Gourine</name>
</author>
<author>
<name sortKey="Mahfoudi, R" uniqKey="Mahfoudi R">R Mahfoudi</name>
</author>
<author>
<name sortKey="Harrat, M" uniqKey="Harrat M">M Harrat</name>
</author>
<author>
<name sortKey="Yousfi, M" uniqKey="Yousfi M">M Yousfi</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khaled, S" uniqKey="Khaled S">S Khaled</name>
</author>
<author>
<name sortKey="Mouzai, M" uniqKey="Mouzai M">M Mouzai</name>
</author>
<author>
<name sortKey="Ararem, A" uniqKey="Ararem A">A Ararem</name>
</author>
<author>
<name sortKey="Hamidatou, L" uniqKey="Hamidatou L">L Hamidatou</name>
</author>
<author>
<name sortKey="Zouranen, B" uniqKey="Zouranen B">B Zouranen</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Biol Trace Elem Res</journal-id>
<journal-id journal-id-type="iso-abbrev">Biol Trace Elem Res</journal-id>
<journal-title-group>
<journal-title>Biological Trace Element Research</journal-title>
</journal-title-group>
<issn pub-type="ppub">0163-4984</issn>
<issn pub-type="epub">1559-0720</issn>
<publisher>
<publisher-name>Springer US</publisher-name>
<publisher-loc>New York</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">32862398</article-id>
<article-id pub-id-type="pmc">7456357</article-id>
<article-id pub-id-type="publisher-id">2358</article-id>
<article-id pub-id-type="doi">10.1007/s12011-020-02358-7</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Statistical Approach and Neutron Activation Analysis for Determining Essential and Toxic Elements in Two Kinds of Algerian
<italic>Artemisia</italic>
Plant</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0003-1841-2153</contrib-id>
<name>
<surname>Begaa</surname>
<given-names>Samir</given-names>
</name>
<address>
<email>samirbegaa@yahoo.fr</email>
</address>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Messaoudi</surname>
<given-names>Mohammed</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Benarfa</surname>
<given-names>Adel</given-names>
</name>
<xref ref-type="aff" rid="Aff2">2</xref>
<xref ref-type="aff" rid="Aff3">3</xref>
</contrib>
<aff id="Aff1">
<label>1</label>
Neutron Activation Analysis Department, Nuclear Research Centre of Birine, PO Box 180, 17200 Ain Oussera, Djelfa Algeria</aff>
<aff id="Aff2">
<label>2</label>
Technical Platform of Physico-Chemical Analysis (PTAPC-Laghouat), P.O. Box. 37G, Road of Ghardaïa, 03000 Laghouat, Algeria</aff>
<aff id="Aff3">
<label>3</label>
<institution-wrap>
<institution-id institution-id-type="GRID">grid.440472.1</institution-id>
<institution>Laboratory of Fundamental Sciences,</institution>
<institution>University Amar Telidji of Laghouat,</institution>
</institution-wrap>
P.O. Box. 37G, Road of Ghardaïa, 03000 Laghouat, Algeria</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>29</day>
<month>8</month>
<year>2020</year>
</pub-date>
<fpage>1</fpage>
<lpage>7</lpage>
<history>
<date date-type="received">
<day>23</day>
<month>6</month>
<year>2020</year>
</date>
<date date-type="accepted">
<day>25</day>
<month>8</month>
<year>2020</year>
</date>
</history>
<permissions>
<copyright-statement>© Springer Science+Business Media, LLC, part of Springer Nature 2020</copyright-statement>
<license>
<license-p>This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<p id="Par1">In this study, two kinds of Artemisia plant,
<italic>Artemisia campestris</italic>
L. and
<italic>Artemisia herba-alba</italic>
Asso
<italic>.</italic>
, collected from different locations in Djelfa province, Algeria, were subjected to an instrumental neutron activation analysis (INAA) in order to determine their essential and toxic elements for the first time. The obtained results for both types revealed the existence of twenty-one elements, namely, As, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Na, Rb, Sb, Sc, Sm, Sr, Yb, and Zn, where, the elements K, Ca, Fe, and Na respectively showed a significant concentration. On the other hand, the tolerable daily intake (TDI) of the studied plants for an adult person per day was within the tolerance limits imposed by the World Health Organization (WHO). Hence, these findings might therefore be used to offer scientific basis for an optimum usage of the studied plants and so enriches the database of medicinal herbs.</p>
</abstract>
<kwd-group xml:lang="en">
<title>Keywords</title>
<kwd>
<italic>Artemisia campestris</italic>
L.</kwd>
<kwd>
<italic>Artemisia herba-alba</italic>
Asso
<italic>.</italic>
</kwd>
<kwd>Essential elements</kwd>
<kwd>Toxic elements</kwd>
<kwd>Instrumental neutron activation analysis</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec id="Sec1">
<title>Introduction</title>
<p id="Par2">In recent years, despite globalization and scientific progress, the system of alternative medicine and/or traditional medicine was considered as a sensory system of primary health care in many countries like China, India, and Pakistan, as well as regarded as an important constituent in the indigenous medical systems [
<xref ref-type="bibr" rid="CR1">1</xref>
,
<xref ref-type="bibr" rid="CR2">2</xref>
]. Indeed, these days, aromatic plants are playing a strategic role after using it at various traditional medicines and physiotherapy to maintain good health and relieve ailments and diseases. Hence, aromatic plants have gained a great attention from researchers and scientific community in all across the world [
<xref ref-type="bibr" rid="CR3">3</xref>
<xref ref-type="bibr" rid="CR6">6</xref>
]. The World Health Organization (WHO) indicated that between 60 and 80% of the populations of countries throughout the world, particularly those in Asia, Africa, Latin America, and the Middle East, are currently using traditional medicine, including herbal medicines, as remedies [
<xref ref-type="bibr" rid="CR7">7</xref>
]. Among the famous herbal used worldwide is the genus
<italic>Artemisia</italic>
(family
<italic>Asteraceae</italic>
); this genus is widespread over the world and growing wildly and comprises over 400 species. Recently, some reports suggested that a domain of non-pharmaceutical products produced from
<italic>Artemisia</italic>
plant material—like herbal teas—might be effective in treating or preventing malaria. This information makes us say that
<italic>Artemisia</italic>
plant material could be a potential solution or have a curative effect on COVID-19. Indeed, the recent work of Faiz Ul Haq et al. [
<xref ref-type="bibr" rid="CR8">8</xref>
] reported that
<italic>Artemisia annua</italic>
ethanolic extract showed a remarkable inhibition against SARS-CoV, with 50% effective concentration (EC
<sub>50</sub>
) value of 34.5 ± 2.6 μg/mL and 50% cytotoxic concentration (CC
<sub>50</sub>
) of 1053 ± 92.8 μg/mL.</p>
<p id="Par3">Eleven species of
<italic>Artemisia</italic>
genus could be found in the Algerian flora including,
<italic>A. campestris</italic>
L. and
<italic>A. herba-alba</italic>
Asso. These two plants are in fact widely used by the Algerian population and considered as a therapeutic herb to treat several stomach aches and disorders. The consumption way of these plants for almost all the Algerian people is by preparing them as remedies after soaking them in hot water for at least half an hour [
<xref ref-type="bibr" rid="CR6">6</xref>
,
<xref ref-type="bibr" rid="CR9">9</xref>
,
<xref ref-type="bibr" rid="CR10">10</xref>
].
<italic>A. campestris</italic>
L., known in Algeria as “Dgouft” and/or “Armoise rouge,” grows wildly in steppe and desert zones; this plant was used for a long time ago in the Algerian folk medicine in both rural and urban territories, and it is well-known for its valuable effects in the treatment of gastrointestinal complaints, including the most common stomach ache “peptic ulcer.” Moreover, this plant is renowned as a versatile source of components with bioactive properties [
<xref ref-type="bibr" rid="CR6">6</xref>
,
<xref ref-type="bibr" rid="CR9">9</xref>
]. On the other side, unlike
<italic>A. campestris</italic>
L.,
<italic>A. herba-alba</italic>
Asso., known as “desert wormwood” and called in the Algerian vernacular language as “shih” and/or “Armoise blanche”, grows spontaneously in arid and semi-arid areas of the Mediterranean basin, and spreads even far to the northwestern Himalayas; this plant has been used in traditional medicine by many cultures since ancient times as hemostatic agents, analgesic, antibacterial, and antispasmodic [
<xref ref-type="bibr" rid="CR10">10</xref>
].</p>
<p id="Par4">For the determination of chemical elements of a biological sample, one can select a technique from a variety of reliable and routinely used methods; the technique based on the principles of neutron activation like instrumental neutron activation analysis has been most extensively used in many areas of life, such as nutrition, environment fields, and biology, due to its remarkable high sensitivity, accuracy, versatility, and multi-elemental character [
<xref ref-type="bibr" rid="CR11">11</xref>
<xref ref-type="bibr" rid="CR13">13</xref>
]. Accordingly, this study was meant, for the first time, to employ a sensitive nuclear analytical approach (Instrumental Neutron Activation Analysis (INAA)), to investigate and assess both essential and toxic elements amounts presented in
<italic>A. campestris</italic>
L. and
<italic>A. herba-alba</italic>
Asso. plants. Hence, provides reliable data to the scientific literature for an optimum usage of the studied plants and so enrich the database of the inorganic medicinal herbs.</p>
</sec>
<sec id="Sec2">
<title>Materials and Methods</title>
<sec id="Sec3">
<title>Sampling and Sample Preparation</title>
<p id="Par5">Two types of
<italic>Artemisia</italic>
plant,
<italic>A. campestris</italic>
L. and
<italic>A. herba-alba</italic>
Asso. (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
), collected in June 2013 from different locations in Djelfa province, Algeria, were oriented to an elemental analysis; firstly, the samples (three samples for each type) were washed several times with deionized water in order to remove soil particles and dust, then dried in shade for 3 weeks at room temperature. Next, the samples were grounded using an agate mortar and pestle, then sieved to get identical fine powder. After that, the resulted powder of each sample was stored in precleaned polyethylene-capped bottles until use [
<xref ref-type="bibr" rid="CR14">14</xref>
,
<xref ref-type="bibr" rid="CR15">15</xref>
]. In this work, the standard reference material GBW 07605 was used to determine the elemental concentration, whereas the analytical results obtained for two standard reference materials NIST-SRM 1573a (tomato leaves) obtained from the National Institute of Standard and Technology (NIST) and Chinese tea leaves (GBW 07605) procured from the National Research Center of CRM, Langfang, China, were subjected to internal quality control procedure. Finally, both samples and standards were placed in aluminum irradiation capsule.
<fig id="Fig1">
<label>Fig. 1</label>
<caption>
<p>Photographs of (
<bold>a</bold>
)
<italic>A. campestris</italic>
L. and (
<bold>b</bold>
)
<italic>A. herba-alba</italic>
Asso</p>
</caption>
<graphic xlink:href="12011_2020_2358_Fig1_HTML" id="MO1"></graphic>
</fig>
</p>
</sec>
<sec id="Sec4">
<title>Irradiation and Counting</title>
<p id="Par6">The prepared aluminum capsule was placed in the appropriate irradiation site for 6 h at a thermal neutron flux of 4.5 × 10
<sup>13</sup>
 cm
<sup>−2</sup>
 s
<sup>−1</sup>
in a vertical experimental channel of the Algerian Es-Salam research reactor. After an appropriate cooling time, the irradiated samples together with the standard were measured using a coaxial HPGe detector (Canberra) with 1.8-keV resolution at 1332 keV of
<sup>60</sup>
Co with 40% relative efficiency with GENIE-2k software. Cooling time was in the range of 2–5 days and the counting time was about 10,800 s. The second measurements were executed after 16–20 days.</p>
</sec>
<sec id="Sec5">
<title>Quality Control and Quality Assurance</title>
<p id="Par7">Quality assurance is a proactive operation to minimize the probability of errors in an analytical procedure. It also includes quality control, the operation by which the occurrence of errors is inspected once the analysis has been completed. Quality assurance procedures are described for individual steps in neutron activation analysis, namely, preparation of the test portion, selection of analytical protocol, calibration, instrument performance checks, irradiation, decay, measurement, spectrum analysis and interpretation, and internal and external quality control, as well as for ensuring the technical competence of the personnel involved. For INAA determinations, two CRMs like NIST1573a (tomato leaves) and GSV4 (tea leaves) were used for quality control purposes (Tables 
<xref rid="Tab1" ref-type="table">1</xref>
and
<xref rid="Tab2" ref-type="table">2</xref>
).
<table-wrap id="Tab1">
<label>Table 1</label>
<caption>
<p>Comparison of measured values with certified values in the certified reference materials of standard reference materials NIST-SRM 1573a. Values represent mean ± standard deviation (
<italic>n</italic>
 = 3)</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th rowspan="2">Element</th>
<th colspan="5">NIST-SRM 1573a (tomato leaves)</th>
</tr>
<tr>
<th>Certified value</th>
<th>This work measured value</th>
<th>
<italic>U</italic>
-score</th>
<th>
<italic>Z</italic>
-score</th>
<th>Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba (μg/g)</td>
<td>(63)</td>
<td>66.3 ± 9.0</td>
<td>0.26</td>
<td>-</td>
<td>5.24</td>
</tr>
<tr>
<td>Br (μg/g)</td>
<td>(1300)</td>
<td>1268 ± 133</td>
<td>0.13</td>
<td>-</td>
<td>− 2.46</td>
</tr>
<tr>
<td>Ca (μg/g)</td>
<td>50,500 ± 900</td>
<td>51,194 ± 5541</td>
<td>0.12</td>
<td>0.77</td>
<td>1.37</td>
</tr>
<tr>
<td>Ce (μg/g)</td>
<td>(2)</td>
<td>2.04 ± 0.24</td>
<td>0.09</td>
<td>-</td>
<td>2.00</td>
</tr>
<tr>
<td>Co (μg/g)</td>
<td>0.57 ± 0.02</td>
<td>0.53 ± 0.05</td>
<td>0.69</td>
<td>2.00</td>
<td>− 7.02</td>
</tr>
<tr>
<td>Fe (μg/g)</td>
<td>368 ± 7</td>
<td>360.6 ± 27.6</td>
<td>0.26</td>
<td>1.06</td>
<td>− 2.01</td>
</tr>
<tr>
<td>K (%)</td>
<td>2.70 ± 0.05</td>
<td>2.752 ± 0.103</td>
<td>0.13</td>
<td>1.04</td>
<td>1.93</td>
</tr>
<tr>
<td>La (μg/g)</td>
<td>(2.30)</td>
<td>2.34 ± 0.18</td>
<td>0.10</td>
<td>-</td>
<td>1.74</td>
</tr>
<tr>
<td>Na (μg/g)</td>
<td>136 ± 4</td>
<td>146.5 ± 17.1</td>
<td>0.60</td>
<td>2.63</td>
<td>7.72</td>
</tr>
<tr>
<td>Rb (μg/g)</td>
<td>14.89 ± 0.27</td>
<td>14.8 ± 1.3</td>
<td>0.07</td>
<td>0.33</td>
<td>− 0.60</td>
</tr>
<tr>
<td>Sc (μg/g)</td>
<td>(0.1)</td>
<td>0.101 ± 0.062</td>
<td>0.02</td>
<td>-</td>
<td>1.00</td>
</tr>
<tr>
<td>Sm (μg/g)</td>
<td>(0.19)</td>
<td>0.205 ± 0.029</td>
<td>0.36</td>
<td>-</td>
<td>7.89</td>
</tr>
<tr>
<td>Th (μg/g)</td>
<td>(0.12)</td>
<td>0.111 ± 0.015</td>
<td>0.39</td>
<td>-</td>
<td>− 7.50</td>
</tr>
<tr>
<td>Zn (μg/g)</td>
<td>30.9 ± 0.7</td>
<td>29.4 ± 1.4</td>
<td>0.92</td>
<td>2.14</td>
<td>− 4.85</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Values between parentheses are non-certified</p>
</table-wrap-foot>
</table-wrap>
<table-wrap id="Tab2">
<label>Table 2</label>
<caption>
<p>Comparison of measured values with certified values in the certified reference materials of GBW 07605 (tea leaves). Values represent mean ± standard deviation (
<italic>n</italic>
 = 3)</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th rowspan="2">Elements</th>
<th colspan="5">GBW 07605 (tea leaves)</th>
</tr>
<tr>
<th>Certified value</th>
<th>This work measured value</th>
<th>
<italic>U</italic>
-score</th>
<th>
<italic>Z</italic>
-score</th>
<th>Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba (μg/g)</td>
<td>58 ± 3</td>
<td>55.09 ± 9.43</td>
<td>0.29</td>
<td>0.97</td>
<td>−  5.02</td>
</tr>
<tr>
<td>Br (μg/g)</td>
<td>3.4 ± 0.4</td>
<td>3.62 ± 0.55</td>
<td>0.32</td>
<td>0.55</td>
<td>6.47</td>
</tr>
<tr>
<td>Ca (μg/g)</td>
<td>4300 ± 200</td>
<td>4180 ± 620</td>
<td>0.18</td>
<td>0.60</td>
<td>− 2.79</td>
</tr>
<tr>
<td>Ce (μg/g)</td>
<td>1.0 ± 0.1</td>
<td>1.01 ± 0.30</td>
<td>0.03</td>
<td>0.10</td>
<td>1.00</td>
</tr>
<tr>
<td>Co (μg/g)</td>
<td>0.18 ± 0.02</td>
<td>0.190 ± 0.026</td>
<td>0.30</td>
<td>0.50</td>
<td>5.56</td>
</tr>
<tr>
<td>Fe (μg/g)</td>
<td>264 ± 10</td>
<td>272 ± 29</td>
<td>0.26</td>
<td>0.80</td>
<td>3.03</td>
</tr>
<tr>
<td>K (%)</td>
<td>1.66 ± 0.06</td>
<td>1.60 ± 0.03</td>
<td>0.88</td>
<td>1.00</td>
<td>− 3.61</td>
</tr>
<tr>
<td>La (μg/g)</td>
<td>0.6 ± 0.03</td>
<td>0.59 ± 0.09</td>
<td>0.11</td>
<td>0.33</td>
<td>− 1.67</td>
</tr>
<tr>
<td>Na (μg/g)</td>
<td>44 ± 4</td>
<td>46.6 ± 5.4</td>
<td>0.39</td>
<td>0.65</td>
<td>5.91</td>
</tr>
<tr>
<td>Rb (μg/g)</td>
<td>74 ± 4</td>
<td>71.2 ± 5.9</td>
<td>0.40</td>
<td>0.70</td>
<td>− 3.78</td>
</tr>
<tr>
<td>Sc (μg/g)</td>
<td>0.085 ± 0.009</td>
<td>0.084 ± 0.013</td>
<td>0.06</td>
<td>0.11</td>
<td>− 1.18</td>
</tr>
<tr>
<td>Sm (μg/g)</td>
<td>0.085 ± 0.017</td>
<td>0.091 ± 0.015</td>
<td>0.26</td>
<td>0.35</td>
<td>7.06</td>
</tr>
<tr>
<td>Th (μg/g)</td>
<td>0.061 ± 0.06</td>
<td>0.065 ± 0.015</td>
<td>0.25</td>
<td>0.67</td>
<td>6.56</td>
</tr>
<tr>
<td>Zn (μg/g)</td>
<td>26.3 ± 0.9</td>
<td>27.1 ± 2.1</td>
<td>0.33</td>
<td>0.89</td>
<td>3.04</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
<p id="Par8">In order to evaluate the laboratory performance, we determined the
<italic>U</italic>
-score,
<italic>Z</italic>
-score, and relative bias (RB). These parameters were calculated according to the following equations (1–3):
<disp-formula id="Equ1">
<label>1</label>
<alternatives>
<tex-math id="M1">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {U}_{\mathrm{score}}=\frac{\left|{X}_{\mathrm{Lab}}-{X}_{\mathrm{Ref}}\right|}{\sqrt{\mu_{\mathrm{Lab}}^2+{\sigma}_{\mathrm{Ref}}^2}} $$\end{document}</tex-math>
<mml:math id="M2" display="block">
<mml:msub>
<mml:mi>U</mml:mi>
<mml:mtext>score</mml:mtext>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mfenced close="|" open="|">
<mml:mrow>
<mml:msub>
<mml:mi>X</mml:mi>
<mml:mi>Lab</mml:mi>
</mml:msub>
<mml:mo></mml:mo>
<mml:msub>
<mml:mi>X</mml:mi>
<mml:mi>Ref</mml:mi>
</mml:msub>
</mml:mrow>
</mml:mfenced>
<mml:msqrt>
<mml:mrow>
<mml:msubsup>
<mml:mi>μ</mml:mi>
<mml:mi>Lab</mml:mi>
<mml:mn>2</mml:mn>
</mml:msubsup>
<mml:mo>+</mml:mo>
<mml:msubsup>
<mml:mi>σ</mml:mi>
<mml:mi>Ref</mml:mi>
<mml:mn>2</mml:mn>
</mml:msubsup>
</mml:mrow>
</mml:msqrt>
</mml:mfrac>
</mml:math>
<graphic xlink:href="12011_2020_2358_Article_Equ1.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
<disp-formula id="Equ2">
<label>2</label>
<alternatives>
<tex-math id="M3">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {Z}_{\mathrm{score}}=\frac{\left|{X}_{\mathrm{Lab}}-{X}_{\mathrm{Ref}}\right|}{\mu_{\mathrm{Lab}}} $$\end{document}</tex-math>
<mml:math id="M4" display="block">
<mml:msub>
<mml:mi>Z</mml:mi>
<mml:mtext>score</mml:mtext>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mfenced close="|" open="|">
<mml:mrow>
<mml:msub>
<mml:mi>X</mml:mi>
<mml:mi>Lab</mml:mi>
</mml:msub>
<mml:mo></mml:mo>
<mml:msub>
<mml:mi>X</mml:mi>
<mml:mi>Ref</mml:mi>
</mml:msub>
</mml:mrow>
</mml:mfenced>
<mml:msub>
<mml:mi>μ</mml:mi>
<mml:mi>Lab</mml:mi>
</mml:msub>
</mml:mfrac>
</mml:math>
<graphic xlink:href="12011_2020_2358_Article_Equ2.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
<disp-formula id="Equ3">
<label>3</label>
<alternatives>
<tex-math id="M5">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{Relative}\ \mathrm{bias}\ \left(\mathrm{RB}\right)=\frac{X_{\mathrm{Lab}}-{X}_{\mathrm{Ref}}}{X_{\mathrm{Ref}}}\times 100 $$\end{document}</tex-math>
<mml:math id="M6" display="block">
<mml:mtext>Relative bias</mml:mtext>
<mml:mspace width="0.25em"></mml:mspace>
<mml:mfenced close=")" open="(">
<mml:mi>RB</mml:mi>
</mml:mfenced>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:msub>
<mml:mi>X</mml:mi>
<mml:mi>Lab</mml:mi>
</mml:msub>
<mml:mo></mml:mo>
<mml:msub>
<mml:mi>X</mml:mi>
<mml:mi>Ref</mml:mi>
</mml:msub>
</mml:mrow>
<mml:msub>
<mml:mi>X</mml:mi>
<mml:mi>Ref</mml:mi>
</mml:msub>
</mml:mfrac>
<mml:mo>×</mml:mo>
<mml:mn>100</mml:mn>
</mml:math>
<graphic xlink:href="12011_2020_2358_Article_Equ3.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
where
<italic>X</italic>
<sub>Lab</sub>
,
<italic>μ</italic>
<sub>Lab</sub>
,
<italic>X</italic>
<sub>Ref</sub>
, and
<italic>σ</italic>
<sub>Ref</sub>
are the laboratory results, standard deviation, recommended uncertainty, and standard uncertainty respectively.</p>
<p id="Par9">The laboratory performance is evaluated as
<bold>follows</bold>
: satisfactory if
<italic>U</italic>
-score ≤ 1, and satisfactory if
<italic>Z</italic>
-score ≤ 2, questionable for 2 < 
<italic>Z</italic>
-score < 3
<bold>,</bold>
and unsatisfactory for
<italic>Z</italic>
-score ≥ 3.</p>
</sec>
</sec>
<sec id="Sec6">
<title>Results and Discussions</title>
<sec id="Sec7">
<title>Concentrations of Trace Elements</title>
<p id="Par10">Elemental concentrations of the studied plants
<italic>A. campestris</italic>
L. and
<italic>A. herba-alba</italic>
Asso. were calculated using INAA technique. The illustrated results in Table
<xref rid="Tab1" ref-type="table">1</xref>
and Table
<xref rid="Tab2" ref-type="table">2</xref>
show that all the element concentrations are in good arrangement with the certified values after using two CRMs: NIST-SRM 1573a and GBW 07605. This calculation exposed a great quality results found in this examination which could be observed through the statistical assessment and evaluation where, the statistical parameters “Relative bias (RB)”,
<italic>Z</italic>
-score, and
<italic>U</italic>
-score calculated for all elements are acceptable. The amounts of both essential and non-essential chemical elements detected and calculated in both studied plants are illustrated in Table
<xref rid="Tab3" ref-type="table">3</xref>
; in this work, CRM of GBW 07605 was employed to determine the chemical elemental concentrations for both studied samples of
<italic>Artemisia</italic>
. It is obvious that the analyzed samples are characterized by a large variety within investigated groups.
<table-wrap id="Tab3">
<label>Table 3</label>
<caption>
<p>Mean values of chemical component mass fractions (μg/g on dry mass basis) determined in two types of
<italic>Artemisia</italic>
(
<italic>A. campestris</italic>
L. and
<italic>A. herba-alba</italic>
Asso.) by INAA technique. SD represents standard deviation (
<italic>n</italic>
 = 3)</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th rowspan="2">Elements (μg/g)</th>
<th colspan="3">
<italic>A. campestris</italic>
L.</th>
<th colspan="3">
<italic>A. herba-alba</italic>
Asso.</th>
</tr>
<tr>
<th>Mean</th>
<th></th>
<th>SD</th>
<th>Mean</th>
<th></th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="7">Essential chemical elements</td>
</tr>
<tr>
<td>  Ca</td>
<td>8700</td>
<td>±</td>
<td>500</td>
<td>11,500</td>
<td>±</td>
<td>600</td>
</tr>
<tr>
<td>  K</td>
<td>10,000</td>
<td>±</td>
<td>300</td>
<td>17,000</td>
<td>±</td>
<td>122</td>
</tr>
<tr>
<td>  Na</td>
<td>248</td>
<td>±</td>
<td>14</td>
<td>645</td>
<td>±</td>
<td>37</td>
</tr>
<tr>
<td>  Fe</td>
<td>631</td>
<td>±</td>
<td>23</td>
<td>617</td>
<td>±</td>
<td>21</td>
</tr>
<tr>
<td>  Zn</td>
<td>13.15</td>
<td>±</td>
<td>0.52</td>
<td>18.2</td>
<td>±</td>
<td>0.71</td>
</tr>
<tr>
<td>  Co</td>
<td>0.30</td>
<td>±</td>
<td>0.04</td>
<td>0.27</td>
<td>±</td>
<td>0.03</td>
</tr>
<tr>
<td>  Cr</td>
<td>1.50</td>
<td>±</td>
<td>0.05</td>
<td>0.74</td>
<td>±</td>
<td>0.02</td>
</tr>
<tr>
<td colspan="7">Potential toxic chemical elements</td>
</tr>
<tr>
<td>  As</td>
<td>0.46</td>
<td>±</td>
<td>0.05</td>
<td>0.88</td>
<td>±</td>
<td>0.10</td>
</tr>
<tr>
<td>  Br</td>
<td>36.02</td>
<td>±</td>
<td>4.26</td>
<td>63.32</td>
<td>±</td>
<td>7.48</td>
</tr>
<tr>
<td>  Sb</td>
<td>0.03</td>
<td>±</td>
<td>0.01</td>
<td>0.040</td>
<td>±</td>
<td>0.01</td>
</tr>
<tr>
<td colspan="7">Other chemical elements</td>
</tr>
<tr>
<td>  Ba</td>
<td>16.58</td>
<td>±</td>
<td>1.50</td>
<td>13.16</td>
<td>±</td>
<td>1.26</td>
</tr>
<tr>
<td>  Ce</td>
<td>1.58</td>
<td>±</td>
<td>0.17</td>
<td>1.62</td>
<td>±</td>
<td>0.17</td>
</tr>
<tr>
<td>  Cs</td>
<td>0.09</td>
<td>±</td>
<td>0.012</td>
<td>0.08</td>
<td>±</td>
<td>0.010</td>
</tr>
<tr>
<td>  Eu</td>
<td>0.040</td>
<td>±</td>
<td>0.01</td>
<td>0.030</td>
<td>±</td>
<td>0.001</td>
</tr>
<tr>
<td>  Hf</td>
<td>0.08</td>
<td>±</td>
<td>0.01</td>
<td>0.09</td>
<td>±</td>
<td>0.01</td>
</tr>
<tr>
<td>  La</td>
<td>0.74</td>
<td>±</td>
<td>0.04</td>
<td>0.62</td>
<td>±</td>
<td>0.04</td>
</tr>
<tr>
<td>  Rb</td>
<td>2.76</td>
<td>±</td>
<td>0.19</td>
<td>3.61</td>
<td>±</td>
<td>0.24</td>
</tr>
<tr>
<td>  Sc</td>
<td>0.015</td>
<td>±</td>
<td>0.02</td>
<td>0.15</td>
<td>±</td>
<td>0.02</td>
</tr>
<tr>
<td>  Sm</td>
<td>0.11</td>
<td>±</td>
<td>0.04</td>
<td>0.10</td>
<td>±</td>
<td>0.04</td>
</tr>
<tr>
<td>  Sr</td>
<td>129.9</td>
<td>±</td>
<td>15.2</td>
<td>121.6</td>
<td>±</td>
<td>14.2</td>
</tr>
<tr>
<td>  Yb</td>
<td>0.07</td>
<td>±</td>
<td>0.02</td>
<td>0.04</td>
<td>±</td>
<td>0.01</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
<p id="Par11">The determined concentrations for the studied plants (
<italic>Artemisia campestris</italic>
L. and
<italic>Artemisia herba-alba</italic>
Asso.) are shown in Table
<xref rid="Tab3" ref-type="table">3</xref>
. From the illustrated results in Table
<xref rid="Tab3" ref-type="table">3</xref>
, twenty-one chemical elements were identified after using instrumental neutron activation analysis (INAA) technique, these elements could be divided into three main groups: essential chemical element group includes K, Ca, Fe, Na, Co, and Cr; non-essential chemical element group includes La, Sm, Ba, Ce, Cs, Eu, Hf, Rb, Sc, Sr, and Yb; and, last, the potential toxic elements group contained Br > As > Sb which presented in a descending content pattern.</p>
<p id="Par12">Human health needs several elements which considered essential for its growth; these elements are in fact necessary components and play a significant physiological role, where calcium is an essential mineral for human health, contributing in bones and teeth healthy, and plays an important role as a cofactor in enzyme reactions. The element potassium is the most common intracellular ion in both human and animal cells and is also abundant in dietary matter [
<xref ref-type="bibr" rid="CR16">16</xref>
,
<xref ref-type="bibr" rid="CR17">17</xref>
]; the concentration of calcium for both studied plants ranged from 8700 to 11,500 μg/g and the concentration of potassium started from 10,000 up to 17,000 μg/g, noticing maximum values in
<italic>A. herba-alba</italic>
Asso. samples; for sodium element, we noticed quite small values comparing with calcium and potassium, ranging between 248 and 645 μg/g. The essential element iron, which plays an important role in the transportation of oxygen through hemoglobin [
<xref ref-type="bibr" rid="CR18">18</xref>
], showed closed concentration values for both studied plants (617 μg/g and 631 μg/g). The essential element zinc plays an important role in the body immunity, by keeping it vital, healthy, and free from disease and common illnesses [
<xref ref-type="bibr" rid="CR19">19</xref>
]; zinc element showed an acceptable and almost similar concentration for both plants (13 to 18 μg/g). Cobalt is closely associated with the physiological role of vitamin B
<sub>12</sub>
in the production and maintenance of red blood cells. The concentration of cobalt for both samples was found almost comparable (0.27 to 0.30 μg/g) [
<xref ref-type="bibr" rid="CR20">20</xref>
]; this component is important and essential and considered as a cofactor for insulin and a constituent of the glucose tolerance factor (GTF) [
<xref ref-type="bibr" rid="CR20">20</xref>
,
<xref ref-type="bibr" rid="CR21">21</xref>
]. The concentration of chromium was found ranging between 0.74 and 1.50 μg/g, whereas,
<italic>A. campestris</italic>
L. samples contained much chromium amounts than
<italic>A. herba-alba</italic>
Asso. samples. The toxic element Br is comparable in both
<italic>Artemisia</italic>
kinds. The concentration of elements such as Ba, Cs, Eu, Hf, La, Sc, Sm, Sr, and Yb in
<italic>A. herba-alba</italic>
Asso. represented lower values than that in
<italic>A. campestris</italic>
L., whereas the concentrations of elements Ce, Hf, and Rb in
<italic>A. herba-alba</italic>
Asso. are higher than that those in
<italic>A. campestris</italic>
L.. These differences could probably be due to the plant’s nutrition, climate, water, and soil condition [
<xref ref-type="bibr" rid="CR22">22</xref>
].</p>
</sec>
<sec id="Sec8">
<title>Statistical Analysis and Inter-elemental Correlation</title>
<p id="Par13">Concentration data obtained for both kinds of
<italic>Artemisia</italic>
samples were subjected to statistical analysis, with one-way ANOVA followed by Tukey’s multiple comparisons. One-factor analysis of variance (ANOVA) showed statistically significant differences in mean concentrations of (Ba, Yb), (Br, Zn), (Ca, Eu), (Ce, Rb), (Co, Fe), (Sb,Zn), and (Eu, K). The level of significance was set at
<italic>P</italic>
 < 0.05.</p>
<p id="Par14">The Pearson correlation coefficients (
<italic>r</italic>
) of chemical elements in
<italic>A. herba-alba</italic>
Asso. are given in Table
<xref rid="Tab4" ref-type="table">4</xref>
. A high positive relationship was detected between some essential and toxic elements, e.g., Co–Fe (
<italic>r =</italic>
 0.983,
<italic>P</italic>
 < 0.01), Co–Zn (
<italic>r =</italic>
 0.97,
<italic>P</italic>
 < 0.05), Br–Zn (
<italic>r =</italic>
 0.991,
<italic>P</italic>
 < 0.01), Ce–Rb (
<italic>r</italic>
 = 0.951,
<italic>P</italic>
 < 0.05), Co–Sb (
<italic>r</italic>
 = 0.973,
<italic>P</italic>
 < 0.05), and Eu–K (
<italic>r</italic>
 = 0.976,
<italic>P</italic>
 < 0.05). However, negative correlations were also found, e.g., between Ca–Cr (
<italic>r =</italic>
 − 0.811,
<italic>P</italic>
 < 0.05). These differences in elemental relationships may be attributed to the plant physiological antagonism between some essential and toxic elements.
<table-wrap id="Tab4">
<label>Table 4</label>
<caption>
<p>Pearson’s correlation coefficient (
<italic>r</italic>
) of chemical elements in
<italic>A. herba-alba</italic>
Asso. This coefficient was applied to evaluate the degree of the relationship between chemical elements in
<italic>A. herba-alba</italic>
Asso. samples</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th></th>
<th>Ba</th>
<th>Br</th>
<th>Ca</th>
<th>Ce</th>
<th>Co</th>
<th>Cr</th>
<th>Cs</th>
<th>Eu</th>
<th>Fe</th>
<th>K</th>
<th>Na</th>
<th>Rb</th>
<th>Sb</th>
<th>Yb</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br</td>
<td>0.725</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>− 0.345</td>
<td>− 0.434</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce</td>
<td>0.035</td>
<td>0.707</td>
<td>− 0.145</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>0.457</td>
<td>0.944</td>
<td>− 0.383</td>
<td>0.897</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>− 0.270</td>
<td>− 0.019</td>
<td>− 0.811*</td>
<td>0.110</td>
<td>0.093</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs</td>
<td>0.350</td>
<td>0.574</td>
<td>0.487</td>
<td>0.590</td>
<td>0.584</td>
<td>− 0.730</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu</td>
<td>− 0.262</td>
<td>− 0.345</td>
<td>0.995**</td>
<td>− 0.096</td>
<td>− 0.308</td>
<td>− 0.858</td>
<td>0.567</td>
<td char="." align="char">1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>0.471</td>
<td>0.934</td>
<td>− 0.218</td>
<td>0.896</td>
<td>0.983*</td>
<td>− 0.086</td>
<td>0.722</td>
<td char="." align="char">− 0.135</td>
<td char="." align="char">1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>− 0.084</td>
<td>− 0.136</td>
<td>0.949</td>
<td>0.033</td>
<td>− 0.123</td>
<td>− 0.925</td>
<td>0.726</td>
<td char="." align="char">0.976*</td>
<td char="." align="char">0.058</td>
<td char="." align="char">1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>0.516</td>
<td>0.769</td>
<td>− 0.904</td>
<td>0.492</td>
<td>0.737</td>
<td>0.599</td>
<td>− 0.071</td>
<td char="." align="char">− 0.862</td>
<td char="." align="char">0.613</td>
<td char="." align="char">− 0.736</td>
<td char="." align="char">1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td>0.083</td>
<td>0.677</td>
<td>0.128</td>
<td>0.951*</td>
<td>0.839</td>
<td>− 0.200</td>
<td>0.802</td>
<td char="." align="char">0.189</td>
<td char="." align="char">0.894</td>
<td char="." align="char">0.330</td>
<td char="." align="char">0.276</td>
<td char="." align="char">1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sb</td>
<td>0.268</td>
<td>0.854</td>
<td>− 0.438</td>
<td>0.943</td>
<td>0.973*</td>
<td>0.266</td>
<td>0.458</td>
<td char="." align="char">− 0.379</td>
<td char="." align="char">0.932</td>
<td char="." align="char">− 0.226</td>
<td char="." align="char">0.751</td>
<td char="." align="char">0.836</td>
<td char="." align="char">1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td>0.961*</td>
<td>0.509</td>
<td>− 0.296</td>
<td>− 0.242</td>
<td>0.196</td>
<td>− 0.290</td>
<td>0.175</td>
<td char="." align="char">− 0.229</td>
<td char="." align="char">0.210</td>
<td char="." align="char">− 0.092</td>
<td char="." align="char">0.367</td>
<td char="." align="char">− 0.182</td>
<td char="." align="char">0.000</td>
<td char="." align="char">1</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>0.644</td>
<td>0.991**</td>
<td>− 0.493</td>
<td>0.764</td>
<td>0.970*</td>
<td>0.092</td>
<td>0.517</td>
<td char="." align="char">− 0.411</td>
<td char="." align="char">0.944</td>
<td char="." align="char">− 0.212</td>
<td char="." align="char">0.817</td>
<td char="." align="char">0.701</td>
<td char="." align="char">0.910</td>
<td char="." align="char">0.414</td>
<td char="." align="char">1</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>*Correlation is significant at the 0.05 level (2-tailed)</p>
<p>**Correlation is significant at the 0.01 level (2-tailed)</p>
</table-wrap-foot>
</table-wrap>
</p>
<p id="Par15">A high level of correlations was found between some essential and toxic elements in the analyzed sample. Table
<xref rid="Tab5" ref-type="table">5</xref>
presents the value of the correlation coefficients between the different elements in
<italic>A. campestris</italic>
L. samples. Ba element showed positive correlation with Hf (
<italic>r</italic>
 = 0.964,
<italic>P</italic>
 < 0.05), as well as Br element showed also high positive correlation with Zn (
<italic>r</italic>
 = 0.956,
<italic>P</italic>
 < 0.05). Element pairs Br–Co, Co–Sc, and Ce–Zn showed positive correlation with correlation coefficient values 0.90, 0.95, and 0.877 respectively. Fe showed strong positive correlation with Sc (
<italic>r</italic>
 = 0.994,
<italic>P</italic>
 < 0.005). Br was negatively correlated with Ca, Hf, K, Sm, and Sr. Element pairs Ba–Hf, Ce–Sm, Sb-Sr, and Sm-Zn showed high negative correlation values: − 0.964, − 0.956, 0.985, and − 0.954 respectively.
<table-wrap id="Tab5">
<label>Table 5</label>
<caption>
<p>Pearson correlation coefficient (
<italic>r</italic>
) of chemical elements in
<italic>A. campestris</italic>
L.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th></th>
<th>Ba</th>
<th>Br</th>
<th>Ca</th>
<th>Ce</th>
<th>Co</th>
<th>Cs</th>
<th>Fe</th>
<th>Hf</th>
<th>K</th>
<th>Sb</th>
<th>Sc</th>
<th>Sm</th>
<th>Sr</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br</td>
<td>0.554</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>− 0.563</td>
<td>− 0.761</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce</td>
<td>0.860</td>
<td>0.702</td>
<td>− 0.901</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>0.196</td>
<td>0.899</td>
<td>− 0.470</td>
<td>0.319</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs</td>
<td>0.969*</td>
<td>0.742</td>
<td>− 0.671</td>
<td>0.895</td>
<td>0.426</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>0.240</td>
<td>0.941</td>
<td>− 0.650</td>
<td>0.462</td>
<td>0.972*</td>
<td>0.471</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hf</td>
<td>− 0.964*</td>
<td>− 0.355</td>
<td>0.523</td>
<td>− 0.838</td>
<td>0.053</td>
<td>− 0.880</td>
<td>− 0.020</td>
<td char="." align="char">1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>0.393</td>
<td>− 0.237</td>
<td>0.536</td>
<td>− 0.130</td>
<td>− 0.260</td>
<td>0.255</td>
<td>− 0.426</td>
<td char="." align="char">− 0.383</td>
<td char="." align="char">1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sb</td>
<td>0.521</td>
<td>0.381</td>
<td>− 0.883</td>
<td>0.844</td>
<td>0.000</td>
<td>0.522</td>
<td>0.221</td>
<td char="." align="char">− 0.608</td>
<td char="." align="char">− 0.482</td>
<td char="." align="char">1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sc</td>
<td>0.169</td>
<td>0.912</td>
<td>− 0.671</td>
<td>0.442</td>
<td>0.95*</td>
<td>0.405</td>
<td>0.994**</td>
<td char="." align="char">0.038</td>
<td char="." align="char">− 0.524</td>
<td char="." align="char">0.258</td>
<td char="." align="char">1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sm</td>
<td>− 0.847</td>
<td>− 0.825</td>
<td>0.906</td>
<td>− 0.981*</td>
<td>− 0.494</td>
<td>− 0.922</td>
<td>− 0.613</td>
<td char="." align="char">0.773</td>
<td char="." align="char">0.135</td>
<td char="." align="char">− 0.757</td>
<td char="." align="char">− 0.586</td>
<td char="." align="char">1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr</td>
<td>− 0.498</td>
<td>− 0.224</td>
<td>0.788</td>
<td>− 0.786</td>
<td>0.173</td>
<td>− 0.457</td>
<td>− 0.047</td>
<td char="." align="char">0.626</td>
<td char="." align="char">0.410</td>
<td char="." align="char">− 0.985*</td>
<td char="." align="char">− 0.086</td>
<td char="." align="char">0.669</td>
<td char="." align="char">1</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>0.744</td>
<td>0.956*</td>
<td>− 0.859</td>
<td>0.877</td>
<td>0.732</td>
<td>0.880</td>
<td>0.810</td>
<td char="." align="char">− 0.599</td>
<td char="." align="char">− 0.167</td>
<td char="." align="char">0.578</td>
<td char="." align="char">0.778</td>
<td char="." align="char">− 0.954*</td>
<td char="." align="char">− 0.451</td>
<td char="." align="char">1</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Inter-elemental correlations of
<italic>Artemisia campestris</italic>
L
<bold>.</bold>
samples were evaluated for all combinations</p>
<p>*Correlation is significant at the 0.05 level (2-tailed)</p>
<p>**Correlation is significant at the 0.01 level (2-tailed)</p>
<p>Elements are expressed in terms of the correlation coefficient,
<italic>r</italic>
</p>
</table-wrap-foot>
</table-wrap>
</p>
</sec>
<sec id="Sec9">
<title>Estimation of the Dietary Intake of Trace Elements</title>
<p id="Par16">Medicinal and/or aromatic plants might be a worthy source of indispensable elements for human body. However, medicinal herbs in general are not completely inoffensive; sometimes allergic and toxic reactions happened as well as drug interactions. Hence, the consumption rate of herbs must be monitored and strictly control by an herb expert or a nutritionist. The present study attempts to provide an estimation of the dietary consumption of essential and toxic elements contained in both
<italic>Artemisia</italic>
plants (
<italic>A. campestris</italic>
L. and
<italic>A. herba-alba</italic>
Asso.). As well as delivers reliable information and facts to the scientific literature, the results’ values of the estimation of micronutrients and theoretically toxic elements in the studied samples are given in Table
<xref rid="Tab6" ref-type="table">6</xref>
with the suggested daily tolerance limits. The assessed data of the studied plants were compared with those provided by the World Health Organization (WHO)/FAO. The typical consumption values per day and per person for essential and toxic elements contained in those plants were determined assuming an intake of 10 g (dry weight) of the studied plant ration per person [
<xref ref-type="bibr" rid="CR24">24</xref>
]. The probable intake estimation of the plants indicated that the contents of toxic elements (As, Br, Sb) are well below toxicological reference values provided by the WHO/FAO and were found within nutritional recommendation values; thus, the studied plant toxic effects are considered negligible.
<table-wrap id="Tab6">
<label>Table 6</label>
<caption>
<p>Intake values (in mg/day, person) of some essential elements and tolerable daily intake of adult (TDI/70 kg) of some toxic elements (WHO/FAO [
<xref ref-type="bibr" rid="CR23">23</xref>
])</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th></th>
<th colspan="5">Essential chemical elements RDA/AI</th>
<th colspan="3">Potential toxic chemical elements TDI (adult with 70 kg (BW))</th>
</tr>
<tr>
<th>Elements</th>
<th>Ca (mg/day)</th>
<th>Fe (mg/day)</th>
<th>K
<sup>a</sup>
(mg/day)</th>
<th>Na
<sup>a</sup>
(mg/day)</th>
<th>Zn (mg/day)</th>
<th>As μg/day/person</th>
<th>Br mg/day/person</th>
<th>Sb μg/day/person</th>
</tr>
</thead>
<tbody>
<tr>
<td>
<italic>Artemisia campestris</italic>
</td>
<td>87</td>
<td>6.31</td>
<td>100</td>
<td>2.48</td>
<td>0.13</td>
<td>4.6</td>
<td>0.36</td>
<td>0.3</td>
</tr>
<tr>
<td>
<italic>Artemisia herba-alba</italic>
</td>
<td>115</td>
<td>6.17</td>
<td>170</td>
<td>6.45</td>
<td>0. 18</td>
<td>8.8</td>
<td>0.63</td>
<td>0.4</td>
</tr>
<tr>
<td>Males 19–50 years</td>
<td>1000</td>
<td>8</td>
<td>4700</td>
<td>1500</td>
<td>11</td>
<td>150</td>
<td>70</td>
<td>420</td>
</tr>
<tr>
<td>Females 19–50 years</td>
<td>1000</td>
<td>18</td>
<td>4700</td>
<td>1500</td>
<td>8</td>
<td>150</td>
<td>70</td>
<td>420</td>
</tr>
<tr>
<td>Pregnancy 19–50 years</td>
<td>1000</td>
<td>27</td>
<td>4700</td>
<td>1500</td>
<td>11</td>
<td>150</td>
<td>70</td>
<td>420</td>
</tr>
<tr>
<td>Lactation 19–50 years</td>
<td>1000</td>
<td>9</td>
<td>5100</td>
<td>1500</td>
<td>12</td>
<td>150</td>
<td>70</td>
<td>420</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>
<italic>RDA</italic>
, recommended daily allowance/
<sup>a</sup>
<italic>AI</italic>
, adequate intake, expressed in mg/day/person for adult men and women.</p>
</table-wrap-foot>
</table-wrap>
</p>
</sec>
</sec>
<sec id="Sec10">
<title>Conclusion</title>
<p id="Par17">The present investigation tried to determine and evaluate the chemical elements toxicity contained in two types of
<italic>Artemisia</italic>
plant,
<italic>A. campestris</italic>
L. and
<italic>A. herba-alba</italic>
Asso., which are used widely by the Algerian people, after using instrumental neutron activation analysis (INAA) method for the first time on those plants. Twenty-one chemical elements were determined, including seven micro-nutritional elements such as K, Ca, Fe, Na, Co, Cr, and Zn. Three possible toxic elements which were: As, Br and Sb, and finally, fourteen non-essential chemical elements. An inter-elemental correlation was assessed which represented a high correlation level exists between some element pairs rather than others. On the other side, it can be reasoned that the essential and toxic element concentrations in both plants were considerably below the estimated human consumption tolerable limits set by the WHO/FAO. Finally, the outcomes of the present investigation might be used for rich medicinal herb databases.</p>
</sec>
</body>
<back>
<fn-group>
<fn>
<p>
<bold>Publisher’s Note</bold>
</p>
<p>Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p>
</fn>
</fn-group>
<ack>
<p>This work has been carried out at Es-Salam Research reactor. The authors would like to thank Mr. Idir Abdellani, Director General of CRNB, for his help.</p>
</ack>
<notes>
<title>Compliance with Ethical Standards</title>
<notes id="FPar1" notes-type="COI-statement">
<title>Conflict of Interest</title>
<p id="Par18">The authors declare that they have no conflict of interest.</p>
</notes>
</notes>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1.</label>
<mixed-citation publication-type="other">Organization WH (1998) Quality control methods for medicinal plant materials</mixed-citation>
</ref>
<ref id="CR2">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Karunamoorthi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Jegajeevanram</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Vijayalakshmi</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Mengistie</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Traditional medicinal plants: a source of phytotherapeutic modality in resource-constrained health care settings</article-title>
<source>J Evid Based Complementary Altern Med</source>
<year>2013</year>
<volume>18</volume>
<fpage>67</fpage>
<lpage>74</lpage>
<pub-id pub-id-type="doi">10.1177/2156587212460241</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<label>3.</label>
<mixed-citation publication-type="other">Palhares RM, Drummond MG, Brasil BDSAF et al (2015) Medicinal plants recommended by the world health organization: DNA barcode identification associated with chemical analyses guarantees their quality. PLoS One 10:e0127866</mixed-citation>
</ref>
<ref id="CR4">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rashid</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Gbedomon</surname>
<given-names>RC</given-names>
</name>
<name>
<surname>Ahmad</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Salako</surname>
<given-names>VK</given-names>
</name>
<name>
<surname>Zafar</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Malik</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Traditional knowledge on herbal drinks among indigenous communities in Azad Jammu and Kashmir, Pakistan</article-title>
<source>J Ethnobiol Ethnomed</source>
<year>2018</year>
<volume>14</volume>
<fpage>16</fpage>
<pub-id pub-id-type="doi">10.1186/s13002-018-0217-8</pub-id>
<pub-id pub-id-type="pmid">29467005</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mehani</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Segni</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Terzi</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Morcia</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Ghizzoni</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Goudgil</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Benchikh</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Antifungal activity of Artemisia herba-alba on various fusarium</article-title>
<source>Phytothérapie</source>
<year>2018</year>
<volume>16</volume>
<fpage>87</fpage>
<lpage>90</lpage>
<pub-id pub-id-type="doi">10.3166/s10298-016-1071-2</pub-id>
</element-citation>
</ref>
<ref id="CR6">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boulanouar</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Abdelaziz</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Aazza</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Gago</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Miguel</surname>
<given-names>MG</given-names>
</name>
</person-group>
<article-title>Antioxidant activities of eight Algerian plant extracts and two essential oils</article-title>
<source>Ind Crop Prod</source>
<year>2013</year>
<volume>46</volume>
<fpage>85</fpage>
<lpage>96</lpage>
<pub-id pub-id-type="doi">10.1016/j.indcrop.2013.01.020</pub-id>
</element-citation>
</ref>
<ref id="CR7">
<label>7.</label>
<mixed-citation publication-type="other">Robinson MM, Zhang X (2011) Traditional medicines: global situation, issues and challenges. World Med Situat:1–14</mixed-citation>
</ref>
<ref id="CR8">
<label>8.</label>
<mixed-citation publication-type="other">Haq FU, Roman M, Ahmad K et al (2020) Artemisia annua: trials are needed for COVID-19. Phyther Res:1–3. 10.1002/ptr.6733</mixed-citation>
</ref>
<ref id="CR9">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dob</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Dahmane</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Berramdane</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Chelghoum</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Chemical composition of the essential oil of Artemisia campestris. L. from Algeria</article-title>
<source>Pharm Biol</source>
<year>2005</year>
<volume>43</volume>
<fpage>512</fpage>
<lpage>514</lpage>
<pub-id pub-id-type="doi">10.1080/13880200500220664</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bertella</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Benlahcen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Abouamama</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Pinto</surname>
<given-names>DCGA</given-names>
</name>
<name>
<surname>Maamar</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kihal</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Silva</surname>
<given-names>AMS</given-names>
</name>
</person-group>
<article-title>Artemisia herba-alba Asso. essential oil antibacterial activity and acute toxicity</article-title>
<source>Ind Crop Prod</source>
<year>2018</year>
<volume>116</volume>
<fpage>137</fpage>
<lpage>143</lpage>
<pub-id pub-id-type="doi">10.1016/j.indcrop.2018.02.064</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zaidi</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Fatima</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Qureshi</surname>
<given-names>IH</given-names>
</name>
<name>
<surname>Subhani</surname>
<given-names>MS</given-names>
</name>
</person-group>
<article-title>Trace elements evaluation of some medicinal herbs by instrumental neutron activation analysis</article-title>
<source>Radiochim Acta</source>
<year>2004</year>
<volume>92</volume>
<fpage>363</fpage>
<lpage>368</lpage>
</element-citation>
</ref>
<ref id="CR12">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Serfor-Armah</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Akaho</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Nyarko</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Application of instrumental neutron activation analysis to plant medicines in Ghana: a review</article-title>
<source>J Radioanal Nucl Chem</source>
<year>2003</year>
<volume>257</volume>
<fpage>125</fpage>
<lpage>128</lpage>
<pub-id pub-id-type="doi">10.1023/A:1024761713676</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Begaa</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Messaoudi</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Toxicological aspect of some selected medicinal plant samples collected from Djelfa, Algeria region</article-title>
<source>Biol Trace Elem Res</source>
<year>2019</year>
<volume>187</volume>
<fpage>301</fpage>
<lpage>306</lpage>
<pub-id pub-id-type="doi">10.1007/s12011-018-1365-3</pub-id>
<pub-id pub-id-type="pmid">29748929</pub-id>
</element-citation>
</ref>
<ref id="CR14">
<label>14.</label>
<mixed-citation publication-type="other">Begaa S, Messaoudi M (2018) Thermal neutron activation analysis of some toxic and trace chemical element contents in Mentha pulegium L. Radiochim Acta 0: 10.1515/ract-2018-2942</mixed-citation>
</ref>
<ref id="CR15">
<label>15.</label>
<mixed-citation publication-type="other">Messaoudi M, Begaa S (2018) Application of INAA technique for analysis of essential trace and toxic elements in medicinal seeds of
<italic>Carum carvi</italic>
L. & Foeniculum vul-gare Mill. used in Algeria. J Appl Res Med Aromat Plants</mixed-citation>
</ref>
<ref id="CR16">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Beto</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>The role of calcium in human aging</article-title>
<source>Clin Nutr Res</source>
<year>2015</year>
<volume>4</volume>
<fpage>1</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.7762/cnr.2015.4.1.1</pub-id>
<pub-id pub-id-type="pmid">25713787</pub-id>
</element-citation>
</ref>
<ref id="CR17">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Szentmihályi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kéry</surname>
<given-names>Á</given-names>
</name>
<name>
<surname>Then</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lakatos</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Sándor</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Vinkler</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Pottasium-sodium ratio for the characterization of medicinal plant extracts with diuretic activity</article-title>
<source>Phyther Res</source>
<year>1998</year>
<volume>12</volume>
<fpage>163</fpage>
<lpage>166</lpage>
<pub-id pub-id-type="doi">10.1002/(SICI)1099-1573(199805)12:3<163::AID-PTR217>3.0.CO;2-Y</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arzani</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Zeinali</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Razmjo</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Iron and magnesium concentrations of mint accessions (Mentha spp.)</article-title>
<source>Plant Physiol Biochem</source>
<year>2007</year>
<volume>45</volume>
<fpage>323</fpage>
<lpage>329</lpage>
<pub-id pub-id-type="doi">10.1016/j.plaphy.2007.03.023</pub-id>
<pub-id pub-id-type="pmid">17468000</pub-id>
</element-citation>
</ref>
<ref id="CR19">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Prasad</surname>
<given-names>AS</given-names>
</name>
</person-group>
<article-title>Discovery of human zinc deficiency: 50 years later</article-title>
<source>J Trace Elem Med Biol</source>
<year>2012</year>
<volume>26</volume>
<fpage>66</fpage>
<lpage>69</lpage>
<pub-id pub-id-type="doi">10.1016/j.jtemb.2012.04.004</pub-id>
<pub-id pub-id-type="pmid">22664333</pub-id>
</element-citation>
</ref>
<ref id="CR20">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mertz</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Chromium in human nutrition: a review</article-title>
<source>J Nutr</source>
<year>1993</year>
<volume>123</volume>
<fpage>626</fpage>
<lpage>633</lpage>
<pub-id pub-id-type="doi">10.1093/jn/123.4.626</pub-id>
<pub-id pub-id-type="pmid">8463863</pub-id>
</element-citation>
</ref>
<ref id="CR21">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kużelewska</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Polkowska-Motrenko</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Danko</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Determination of chromium in biological materials by radiochemical neutron activation analysis (RNAA) using manganese dioxide</article-title>
<source>J Radioanal Nucl Chem</source>
<year>2016</year>
<volume>310</volume>
<fpage>559</fpage>
<lpage>564</lpage>
<pub-id pub-id-type="doi">10.1007/s10967-016-4896-0</pub-id>
<pub-id pub-id-type="pmid">27746516</pub-id>
</element-citation>
</ref>
<ref id="CR22">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Benarfa</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gourine</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Mahfoudi</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Harrat</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Yousfi</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Effect of seasonal and regional variations on phenolic compounds of Deverra scoparia (flowers/seeds) methanolic extract and the evaluation of its in vitro antioxidant activity</article-title>
<source>Chem Biodivers</source>
<year>2019</year>
<volume>16</volume>
<fpage>1</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="doi">10.1002/cbdv.201900420</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<label>23.</label>
<mixed-citation publication-type="other">Joint FAO (1991) WHO (1999). Expert committee on food additives. Summary and conclusions. In: 53rd meeting, Rome</mixed-citation>
</ref>
<ref id="CR24">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Khaled</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Mouzai</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ararem</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hamidatou</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Zouranen</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Elemental analysis of traditional medicinal seeds by instrumental neutron activation analysis</article-title>
<source>J Radioanal Nucl Chem</source>
<year>2009</year>
<volume>281</volume>
<fpage>87</fpage>
<lpage>90</lpage>
<pub-id pub-id-type="doi">10.1007/s10967-009-0076-9</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/MaghrebDataLibMedV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000050  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000050  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    MaghrebDataLibMedV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Wed Jun 30 18:27:05 2021. Site generation: Wed Jun 30 18:34:21 2021