Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Monitoring malaria vector control interventions: effectiveness of five different adult mosquito sampling methods.

Identifieur interne : 001859 ( PubMed/Curation ); précédent : 001858; suivant : 001860

Monitoring malaria vector control interventions: effectiveness of five different adult mosquito sampling methods.

Auteurs : Shirley A. Onyango [Kenya] ; Uriel Kitron ; Peter Mungai ; Eric M. Muchiri ; Elizabeth Kokwaro ; Charles H. King ; Francis M. Mutuku

Source :

RBID : pubmed:24180120

Descripteurs français

English descriptors

Abstract

Long-term success of ongoing malaria control efforts based on mosquito bed nets (long-lasting insecticidal net) and indoor residual spraying is dependent on continuous monitoring of mosquito vectors, and thus on effective mosquito sampling tools. The objective of our study was to identify the most efficient mosquito sampling tool(s) for routine vector surveillance for malaria and lymphatic filariasis transmission in coastal Kenya. We evaluated relative efficacy of five collection methods--light traps associated with a person sleeping under a net, pyrethrum spray catches, Prokopack aspirator, clay pots, and urine-baited traps--in four villages representing three ecological settings along the south coast of Kenya. Of the five methods, light traps were the most efficient for collecting female Anopheles gambiae s.l. (Giles) (Diptera: Culicidae) and Anopheles funestus (Giles) (Diptera: Culicidae) mosquitoes, whereas the Prokopack aspirator was most efficient in collecting Culex quinquefasciatus (Say) (Diptera: Culicidae) and other culicines. With the low vector densities here, and across much of sub-Saharan Africa, wherever malaria interventions, long-lasting insecticidal nets, and/or indoor residual spraying are in place, the use of a single mosquito collection method will not be sufficient to achieve a representative sample of mosquito population structure. Light traps will remain a relevant tool for host-seeking mosquitoes, especially in the absence of human landing catches. For a fair representation of the indoor mosquito population, light traps will have to be supplemented with aspirator use, which has potential for routine monitoring of indoor resting mosquitoes, and can substitute the more labor-intensive and intrusive pyrethrum spray catches. There are still no sufficiently efficient mosquito collection methods for sampling outdoor mosquitoes, particularly those that are bloodfed.

PubMed: 24180120

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24180120

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Monitoring malaria vector control interventions: effectiveness of five different adult mosquito sampling methods.</title>
<author>
<name sortKey="Onyango, Shirley A" sort="Onyango, Shirley A" uniqKey="Onyango S" first="Shirley A" last="Onyango">Shirley A. Onyango</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Zoological Sciences, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya.</nlm:affiliation>
<country xml:lang="fr">Kenya</country>
<wicri:regionArea>Department of Zoological Sciences, Kenyatta University, P.O. Box 43844, Nairobi 00100</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kitron, Uriel" sort="Kitron, Uriel" uniqKey="Kitron U" first="Uriel" last="Kitron">Uriel Kitron</name>
</author>
<author>
<name sortKey="Mungai, Peter" sort="Mungai, Peter" uniqKey="Mungai P" first="Peter" last="Mungai">Peter Mungai</name>
</author>
<author>
<name sortKey="Muchiri, Eric M" sort="Muchiri, Eric M" uniqKey="Muchiri E" first="Eric M" last="Muchiri">Eric M. Muchiri</name>
</author>
<author>
<name sortKey="Kokwaro, Elizabeth" sort="Kokwaro, Elizabeth" uniqKey="Kokwaro E" first="Elizabeth" last="Kokwaro">Elizabeth Kokwaro</name>
</author>
<author>
<name sortKey="King, Charles H" sort="King, Charles H" uniqKey="King C" first="Charles H" last="King">Charles H. King</name>
</author>
<author>
<name sortKey="Mutuku, Francis M" sort="Mutuku, Francis M" uniqKey="Mutuku F" first="Francis M" last="Mutuku">Francis M. Mutuku</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24180120</idno>
<idno type="pmid">24180120</idno>
<idno type="wicri:Area/PubMed/Corpus">001859</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001859</idno>
<idno type="wicri:Area/PubMed/Curation">001859</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001859</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Monitoring malaria vector control interventions: effectiveness of five different adult mosquito sampling methods.</title>
<author>
<name sortKey="Onyango, Shirley A" sort="Onyango, Shirley A" uniqKey="Onyango S" first="Shirley A" last="Onyango">Shirley A. Onyango</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Zoological Sciences, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya.</nlm:affiliation>
<country xml:lang="fr">Kenya</country>
<wicri:regionArea>Department of Zoological Sciences, Kenyatta University, P.O. Box 43844, Nairobi 00100</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kitron, Uriel" sort="Kitron, Uriel" uniqKey="Kitron U" first="Uriel" last="Kitron">Uriel Kitron</name>
</author>
<author>
<name sortKey="Mungai, Peter" sort="Mungai, Peter" uniqKey="Mungai P" first="Peter" last="Mungai">Peter Mungai</name>
</author>
<author>
<name sortKey="Muchiri, Eric M" sort="Muchiri, Eric M" uniqKey="Muchiri E" first="Eric M" last="Muchiri">Eric M. Muchiri</name>
</author>
<author>
<name sortKey="Kokwaro, Elizabeth" sort="Kokwaro, Elizabeth" uniqKey="Kokwaro E" first="Elizabeth" last="Kokwaro">Elizabeth Kokwaro</name>
</author>
<author>
<name sortKey="King, Charles H" sort="King, Charles H" uniqKey="King C" first="Charles H" last="King">Charles H. King</name>
</author>
<author>
<name sortKey="Mutuku, Francis M" sort="Mutuku, Francis M" uniqKey="Mutuku F" first="Francis M" last="Mutuku">Francis M. Mutuku</name>
</author>
</analytic>
<series>
<title level="j">Journal of medical entomology</title>
<idno type="ISSN">0022-2585</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Culicidae (classification)</term>
<term>Culicidae (parasitology)</term>
<term>Elephantiasis, Filarial (parasitology)</term>
<term>Environment</term>
<term>Enzyme-Linked Immunosorbent Assay</term>
<term>Female</term>
<term>Insect Vectors (classification)</term>
<term>Insect Vectors (parasitology)</term>
<term>Kenya (epidemiology)</term>
<term>Malaria, Falciparum (epidemiology)</term>
<term>Malaria, Falciparum (parasitology)</term>
<term>Male</term>
<term>Mosquito Control (methods)</term>
<term>Plasmodium falciparum (physiology)</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Culicidae ()</term>
<term>Culicidae (parasitologie)</term>
<term>Environnement</term>
<term>Femelle</term>
<term>Filariose lymphatique (parasitologie)</term>
<term>Kenya (épidémiologie)</term>
<term>Lutte contre les moustiques ()</term>
<term>Mâle</term>
<term>Paludisme à Plasmodium falciparum (parasitologie)</term>
<term>Paludisme à Plasmodium falciparum (épidémiologie)</term>
<term>Plasmodium falciparum (physiologie)</term>
<term>Spécificité d'espèce</term>
<term>Test ELISA</term>
<term>Vecteurs insectes ()</term>
<term>Vecteurs insectes (parasitologie)</term>
</keywords>
<keywords scheme="MESH" type="geographic" qualifier="epidemiology" xml:lang="en">
<term>Kenya</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Culicidae</term>
<term>Insect Vectors</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Malaria, Falciparum</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Mosquito Control</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitologie" xml:lang="fr">
<term>Culicidae</term>
<term>Filariose lymphatique</term>
<term>Paludisme à Plasmodium falciparum</term>
<term>Vecteurs insectes</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitology" xml:lang="en">
<term>Culicidae</term>
<term>Elephantiasis, Filarial</term>
<term>Insect Vectors</term>
<term>Malaria, Falciparum</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Plasmodium falciparum</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plasmodium falciparum</term>
</keywords>
<keywords scheme="MESH" qualifier="épidémiologie" xml:lang="fr">
<term>Kenya</term>
<term>Paludisme à Plasmodium falciparum</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Environment</term>
<term>Enzyme-Linked Immunosorbent Assay</term>
<term>Female</term>
<term>Male</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Culicidae</term>
<term>Environnement</term>
<term>Femelle</term>
<term>Lutte contre les moustiques</term>
<term>Mâle</term>
<term>Spécificité d'espèce</term>
<term>Test ELISA</term>
<term>Vecteurs insectes</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>Kenya</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Long-term success of ongoing malaria control efforts based on mosquito bed nets (long-lasting insecticidal net) and indoor residual spraying is dependent on continuous monitoring of mosquito vectors, and thus on effective mosquito sampling tools. The objective of our study was to identify the most efficient mosquito sampling tool(s) for routine vector surveillance for malaria and lymphatic filariasis transmission in coastal Kenya. We evaluated relative efficacy of five collection methods--light traps associated with a person sleeping under a net, pyrethrum spray catches, Prokopack aspirator, clay pots, and urine-baited traps--in four villages representing three ecological settings along the south coast of Kenya. Of the five methods, light traps were the most efficient for collecting female Anopheles gambiae s.l. (Giles) (Diptera: Culicidae) and Anopheles funestus (Giles) (Diptera: Culicidae) mosquitoes, whereas the Prokopack aspirator was most efficient in collecting Culex quinquefasciatus (Say) (Diptera: Culicidae) and other culicines. With the low vector densities here, and across much of sub-Saharan Africa, wherever malaria interventions, long-lasting insecticidal nets, and/or indoor residual spraying are in place, the use of a single mosquito collection method will not be sufficient to achieve a representative sample of mosquito population structure. Light traps will remain a relevant tool for host-seeking mosquitoes, especially in the absence of human landing catches. For a fair representation of the indoor mosquito population, light traps will have to be supplemented with aspirator use, which has potential for routine monitoring of indoor resting mosquitoes, and can substitute the more labor-intensive and intrusive pyrethrum spray catches. There are still no sufficiently efficient mosquito collection methods for sampling outdoor mosquitoes, particularly those that are bloodfed.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24180120</PMID>
<DateCreated>
<Year>2013</Year>
<Month>11</Month>
<Day>04</Day>
</DateCreated>
<DateCompleted>
<Year>2013</Year>
<Month>11</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0022-2585</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>50</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2013</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Journal of medical entomology</Title>
<ISOAbbreviation>J. Med. Entomol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Monitoring malaria vector control interventions: effectiveness of five different adult mosquito sampling methods.</ArticleTitle>
<Pagination>
<MedlinePgn>1140-51</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Long-term success of ongoing malaria control efforts based on mosquito bed nets (long-lasting insecticidal net) and indoor residual spraying is dependent on continuous monitoring of mosquito vectors, and thus on effective mosquito sampling tools. The objective of our study was to identify the most efficient mosquito sampling tool(s) for routine vector surveillance for malaria and lymphatic filariasis transmission in coastal Kenya. We evaluated relative efficacy of five collection methods--light traps associated with a person sleeping under a net, pyrethrum spray catches, Prokopack aspirator, clay pots, and urine-baited traps--in four villages representing three ecological settings along the south coast of Kenya. Of the five methods, light traps were the most efficient for collecting female Anopheles gambiae s.l. (Giles) (Diptera: Culicidae) and Anopheles funestus (Giles) (Diptera: Culicidae) mosquitoes, whereas the Prokopack aspirator was most efficient in collecting Culex quinquefasciatus (Say) (Diptera: Culicidae) and other culicines. With the low vector densities here, and across much of sub-Saharan Africa, wherever malaria interventions, long-lasting insecticidal nets, and/or indoor residual spraying are in place, the use of a single mosquito collection method will not be sufficient to achieve a representative sample of mosquito population structure. Light traps will remain a relevant tool for host-seeking mosquitoes, especially in the absence of human landing catches. For a fair representation of the indoor mosquito population, light traps will have to be supplemented with aspirator use, which has potential for routine monitoring of indoor resting mosquitoes, and can substitute the more labor-intensive and intrusive pyrethrum spray catches. There are still no sufficiently efficient mosquito collection methods for sampling outdoor mosquitoes, particularly those that are bloodfed.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Onyango</LastName>
<ForeName>Shirley A</ForeName>
<Initials>SA</Initials>
<AffiliationInfo>
<Affiliation>Department of Zoological Sciences, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kitron</LastName>
<ForeName>Uriel</ForeName>
<Initials>U</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mungai</LastName>
<ForeName>Peter</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Muchiri</LastName>
<ForeName>Eric M</ForeName>
<Initials>EM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kokwaro</LastName>
<ForeName>Elizabeth</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>King</LastName>
<ForeName>Charles H</ForeName>
<Initials>CH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mutuku</LastName>
<ForeName>Francis M</ForeName>
<Initials>FM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 TW008067</GrantID>
<Acronym>TW</Acronym>
<Agency>FIC NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D023362">Evaluation Studies</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Med Entomol</MedlineTA>
<NlmUniqueID>0375400</NlmUniqueID>
<ISSNLinking>0022-2585</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Malar J. 2011;10:188</RefSource>
<PMID Version="1">21752273</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Malar J. 2010;9:26</RefSource>
<PMID Version="1">20089158</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>N Engl J Med. 2009 Jul 30;361(5):455-67</RefSource>
<PMID Version="1">19641202</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Med Entomol. 2007 Jan;44(1):14-22</RefSource>
<PMID Version="1">17294916</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Trop Med Hyg. 2004 Jan;70(1):33-7</RefSource>
<PMID Version="1">14971695</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Vet Entomol. 1998 Jan;12(1):52-9</RefSource>
<PMID Version="1">9513939</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Med. 2007 Nov 6;4(11):e309</RefSource>
<PMID Version="1">17988171</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Trop Med Parasitol. 2002 Dec;96 Suppl 2:S91-5</RefSource>
<PMID Version="1">12625922</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Parasitol. 2011 Feb;27(2):91-8</RefSource>
<PMID Version="1">20843745</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Filaria J. 2006 May 24;5:8</RefSource>
<PMID Version="1">16723020</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bull World Health Organ. 1987;65(1):39-45</RefSource>
<PMID Version="1">3555879</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lancet. 2010 Nov 6;376(9752):1579-91</RefSource>
<PMID Version="1">21035838</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Malar J. 2012;11:56</RefSource>
<PMID Version="1">22364588</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Trop Med Hyg. 2003 Jun;68(6):734-42</RefSource>
<PMID Version="1">12887036</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Med. 2011;8(1):e1000401</RefSource>
<PMID Version="1">21311587</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vector Borne Dis. 2006 Jun;43(2):77-83</RefSource>
<PMID Version="1">16967820</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Malar J. 2010;9:32</RefSource>
<PMID Version="1">20100352</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Trop Med Parasitol. 2005 Apr;99(3):253-65</RefSource>
<PMID Version="1">15829135</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Med Entomol. 2006 May;43(3):580-8</RefSource>
<PMID Version="1">16739419</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Malar J. 2009;8:82</RefSource>
<PMID Version="1">19393098</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Am Mosq Control Assoc. 1993 Sep;9(3):260-3</RefSource>
<PMID Version="1">8245934</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Malar J. 2011;10:270</RefSource>
<PMID Version="1">21929747</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bull Entomol Res. 2002 Feb;92(1):71-6</RefSource>
<PMID Version="1">12020364</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Trop. 2009 Aug;111(2):197-9</RefSource>
<PMID Version="1">19524083</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Parasit Vectors. 2011;4:40</RefSource>
<PMID Version="1">21418622</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Malar J. 2011;10:80</RefSource>
<PMID Version="1">21477321</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Entomol. 2009;54:469-87</RefSource>
<PMID Version="1">18798707</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lancet. 2005 Dec 3;366(9501):1960-3</RefSource>
<PMID Version="1">16325698</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Malar J. 2009;8:157</RefSource>
<PMID Version="1">19602253</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Vet Entomol. 2012 Mar;26(1):103-5</RefSource>
<PMID Version="1">21410494</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Malar J. 2005 Jan 25;4:7</RefSource>
<PMID Version="1">15667666</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lancet. 2008 Nov 1;372(9649):1555-62</RefSource>
<PMID Version="1">18984188</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Med Entomol. 2009 Nov;46(6):1256-9</RefSource>
<PMID Version="1">19960668</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Parasitol. 2009 Apr;25(4):189-96</RefSource>
<PMID Version="1">19269900</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Malar J. 2012;11:188</RefSource>
<PMID Version="1">22681999</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lancet. 2008 Nov 1;372(9649):1545-54</RefSource>
<PMID Version="1">18984187</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Med Entomol. 1988 Jan;25(1):9-16</RefSource>
<PMID Version="1">3357176</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Med Entomol. 2006 Mar;43(2):200-6</RefSource>
<PMID Version="1">16619599</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lancet Infect Dis. 2011 Dec;11(12):925-32</RefSource>
<PMID Version="1">21856232</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Med. 2011;8(1):e1000412</RefSource>
<PMID Version="1">21311585</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Malar J. 2009;8:197</RefSource>
<PMID Version="1">19674477</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Malar J. 2010;9:62</RefSource>
<PMID Version="1">20187956</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Trop Med Hyg. 2003 Apr;68(4 Suppl):16-22</RefSource>
<PMID Version="1">12749481</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Malar J. 2011;10:356</RefSource>
<PMID Version="1">22165904</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Vet Entomol. 1995 Jul;9(3):249-55</RefSource>
<PMID Version="1">7548941</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Parasit Vectors. 2011;4:124</RefSource>
<PMID Version="1">21718464</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tanzan Health Res Bull. 2005 Sep;7(3):117-24</RefSource>
<PMID Version="1">16941936</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2011;6(9):e24323</RefSource>
<PMID Version="1">21931682</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trans R Soc Trop Med Hyg. 1974;68(4):278-301</RefSource>
<PMID Version="1">4420769</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Malar J. 2007;6:126</RefSource>
<PMID Version="1">17880679</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Med Entomol. 2003 Sep;40(5):706-17</RefSource>
<PMID Version="1">14596287</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Trop Med Hyg. 2010 Oct;83(4):838-42</RefSource>
<PMID Version="1">20889876</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Malar J. 2011;10:10</RefSource>
<PMID Version="1">21235783</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009033" MajorTopicYN="N">Culicidae</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="Y">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004605" MajorTopicYN="N">Elephantiasis, Filarial</DescriptorName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004777" MajorTopicYN="N">Environment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004797" MajorTopicYN="N">Enzyme-Linked Immunosorbent Assay</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007303" MajorTopicYN="N">Insect Vectors</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="Y">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007630" MajorTopicYN="N" Type="Geographic">Kenya</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016778" MajorTopicYN="N">Malaria, Falciparum</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="Y">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009032" MajorTopicYN="N">Mosquito Control</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010963" MajorTopicYN="N">Plasmodium falciparum</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS551686</OtherID>
<OtherID Source="NLM">PMC3975164</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>11</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>11</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24180120</ArticleId>
<ArticleId IdType="pmc">PMC3975164</ArticleId>
<ArticleId IdType="mid">NIHMS551686</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001859 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001859 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:24180120
   |texte=   Monitoring malaria vector control interventions: effectiveness of five different adult mosquito sampling methods.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:24180120" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a LymphedemaV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024