Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Biomaterial guides for lymphatic endothelial cell alignment and migration.

Identifieur interne : 002862 ( PubMed/Corpus ); précédent : 002861; suivant : 002863

Biomaterial guides for lymphatic endothelial cell alignment and migration.

Auteurs : Echoe M. Bouta ; Connor W. Mccarthy ; Alexander Keim ; Han Bing Wang ; Ryan J. Gilbert ; Jeremy Goldman

Source :

RBID : pubmed:20974299

English descriptors

Abstract

Axillary dissection during breast cancer surgery produces extensive lymphatic vessel damage that often leads to lifelong secondary lymphedema of the arm. We have developed a biodegradable material conduit for lymphatic vessel reconstruction where fibers electrospun along the conduit lumen promote endothelial cell alignment and migration in vitro. The diameter and density of the electrospun fibers were optimized for cell migration and direction on two-dimensional substrates by seeding human lymphatic endothelial cells (LECs) onto aligned fibers of varying diameters and densities, randomly oriented fibers, and film substrates with no fibers. We found that LECs became aligned in the fiber direction, with cells seeded on the randomly oriented fibers becoming oriented in random directions, whereas cells seeded on the highly aligned fibers became highly aligned. Cell migration was dependent upon fiber alignment and density, with optimal migration found on 1300 nm diameter aligned fibers of low density. Blood endothelial cells seeded on the fibers exhibited similar behavior as the LECs. Fiber alignment was preserved upon rolling the two-dimensional substrate into the tubular geometry of a lymphatic vessel. The data suggest that aligned electrospun fibers may promote endothelial migration across the conduit in a manner that is independent of lymphatic growth factors.

DOI: 10.1016/j.actbio.2010.10.016
PubMed: 20974299

Links to Exploration step

pubmed:20974299

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Biomaterial guides for lymphatic endothelial cell alignment and migration.</title>
<author>
<name sortKey="Bouta, Echoe M" sort="Bouta, Echoe M" uniqKey="Bouta E" first="Echoe M" last="Bouta">Echoe M. Bouta</name>
<affiliation>
<nlm:affiliation>Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931-1295, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mccarthy, Connor W" sort="Mccarthy, Connor W" uniqKey="Mccarthy C" first="Connor W" last="Mccarthy">Connor W. Mccarthy</name>
</author>
<author>
<name sortKey="Keim, Alexander" sort="Keim, Alexander" uniqKey="Keim A" first="Alexander" last="Keim">Alexander Keim</name>
</author>
<author>
<name sortKey="Wang, Han Bing" sort="Wang, Han Bing" uniqKey="Wang H" first="Han Bing" last="Wang">Han Bing Wang</name>
</author>
<author>
<name sortKey="Gilbert, Ryan J" sort="Gilbert, Ryan J" uniqKey="Gilbert R" first="Ryan J" last="Gilbert">Ryan J. Gilbert</name>
</author>
<author>
<name sortKey="Goldman, Jeremy" sort="Goldman, Jeremy" uniqKey="Goldman J" first="Jeremy" last="Goldman">Jeremy Goldman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:20974299</idno>
<idno type="pmid">20974299</idno>
<idno type="doi">10.1016/j.actbio.2010.10.016</idno>
<idno type="wicri:Area/PubMed/Corpus">002862</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002862</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Biomaterial guides for lymphatic endothelial cell alignment and migration.</title>
<author>
<name sortKey="Bouta, Echoe M" sort="Bouta, Echoe M" uniqKey="Bouta E" first="Echoe M" last="Bouta">Echoe M. Bouta</name>
<affiliation>
<nlm:affiliation>Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931-1295, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mccarthy, Connor W" sort="Mccarthy, Connor W" uniqKey="Mccarthy C" first="Connor W" last="Mccarthy">Connor W. Mccarthy</name>
</author>
<author>
<name sortKey="Keim, Alexander" sort="Keim, Alexander" uniqKey="Keim A" first="Alexander" last="Keim">Alexander Keim</name>
</author>
<author>
<name sortKey="Wang, Han Bing" sort="Wang, Han Bing" uniqKey="Wang H" first="Han Bing" last="Wang">Han Bing Wang</name>
</author>
<author>
<name sortKey="Gilbert, Ryan J" sort="Gilbert, Ryan J" uniqKey="Gilbert R" first="Ryan J" last="Gilbert">Ryan J. Gilbert</name>
</author>
<author>
<name sortKey="Goldman, Jeremy" sort="Goldman, Jeremy" uniqKey="Goldman J" first="Jeremy" last="Goldman">Jeremy Goldman</name>
</author>
</analytic>
<series>
<title level="j">Acta biomaterialia</title>
<idno type="eISSN">1878-7568</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biocompatible Materials</term>
<term>Cell Movement</term>
<term>Endothelium (cytology)</term>
<term>Humans</term>
<term>Lymphatic Vessels (cytology)</term>
<term>Lymphatic Vessels (ultrastructure)</term>
<term>Microscopy, Electron, Scanning</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Biocompatible Materials</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Endothelium</term>
<term>Lymphatic Vessels</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Lymphatic Vessels</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Movement</term>
<term>Humans</term>
<term>Microscopy, Electron, Scanning</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Axillary dissection during breast cancer surgery produces extensive lymphatic vessel damage that often leads to lifelong secondary lymphedema of the arm. We have developed a biodegradable material conduit for lymphatic vessel reconstruction where fibers electrospun along the conduit lumen promote endothelial cell alignment and migration in vitro. The diameter and density of the electrospun fibers were optimized for cell migration and direction on two-dimensional substrates by seeding human lymphatic endothelial cells (LECs) onto aligned fibers of varying diameters and densities, randomly oriented fibers, and film substrates with no fibers. We found that LECs became aligned in the fiber direction, with cells seeded on the randomly oriented fibers becoming oriented in random directions, whereas cells seeded on the highly aligned fibers became highly aligned. Cell migration was dependent upon fiber alignment and density, with optimal migration found on 1300 nm diameter aligned fibers of low density. Blood endothelial cells seeded on the fibers exhibited similar behavior as the LECs. Fiber alignment was preserved upon rolling the two-dimensional substrate into the tubular geometry of a lymphatic vessel. The data suggest that aligned electrospun fibers may promote endothelial migration across the conduit in a manner that is independent of lymphatic growth factors.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20974299</PMID>
<DateCreated>
<Year>2011</Year>
<Month>01</Month>
<Day>31</Day>
</DateCreated>
<DateCompleted>
<Year>2011</Year>
<Month>05</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1878-7568</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2011</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Acta biomaterialia</Title>
<ISOAbbreviation>Acta Biomater</ISOAbbreviation>
</Journal>
<ArticleTitle>Biomaterial guides for lymphatic endothelial cell alignment and migration.</ArticleTitle>
<Pagination>
<MedlinePgn>1104-13</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.actbio.2010.10.016</ELocationID>
<Abstract>
<AbstractText>Axillary dissection during breast cancer surgery produces extensive lymphatic vessel damage that often leads to lifelong secondary lymphedema of the arm. We have developed a biodegradable material conduit for lymphatic vessel reconstruction where fibers electrospun along the conduit lumen promote endothelial cell alignment and migration in vitro. The diameter and density of the electrospun fibers were optimized for cell migration and direction on two-dimensional substrates by seeding human lymphatic endothelial cells (LECs) onto aligned fibers of varying diameters and densities, randomly oriented fibers, and film substrates with no fibers. We found that LECs became aligned in the fiber direction, with cells seeded on the randomly oriented fibers becoming oriented in random directions, whereas cells seeded on the highly aligned fibers became highly aligned. Cell migration was dependent upon fiber alignment and density, with optimal migration found on 1300 nm diameter aligned fibers of low density. Blood endothelial cells seeded on the fibers exhibited similar behavior as the LECs. Fiber alignment was preserved upon rolling the two-dimensional substrate into the tubular geometry of a lymphatic vessel. The data suggest that aligned electrospun fibers may promote endothelial migration across the conduit in a manner that is independent of lymphatic growth factors.</AbstractText>
<CopyrightInformation>Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bouta</LastName>
<ForeName>Echoe M</ForeName>
<Initials>EM</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931-1295, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McCarthy</LastName>
<ForeName>Connor W</ForeName>
<Initials>CW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Keim</LastName>
<ForeName>Alexander</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Han Bing</ForeName>
<Initials>HB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gilbert</LastName>
<ForeName>Ryan J</ForeName>
<Initials>RJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Goldman</LastName>
<ForeName>Jeremy</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R15 HL093705</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 HL093568-01A2</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21-HL-093568</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 NS062392</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R15 HL093705-01</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R15-HL-093705</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 HL093568</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 NS062392-02</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>10</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Acta Biomater</MedlineTA>
<NlmUniqueID>101233144</NlmUniqueID>
<ISSNLinking>1742-7061</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001672">Biocompatible Materials</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomed Mater Res A. 2009 Jul;90(1):186-95</RefSource>
<PMID Version="1">18491392</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Blood. 2010 May 13;115(19):3997-4005</RefSource>
<PMID Version="1">20110424</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lymphology. 2007 Sep;40(3):122-6</RefSource>
<PMID Version="1">18062613</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circ Res. 2001 Mar 30;88(6):623-9</RefSource>
<PMID Version="1">11282897</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biotechnol Prog. 1998 May-Jun;14(3):364-70</RefSource>
<PMID Version="1">9622516</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2008 Mar;294(3):H1326-34</RefSource>
<PMID Version="1">18203849</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Surg Oncol. 2007 Jun;14(6):1904-8</RefSource>
<PMID Version="1">17342565</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>ACS Nano. 2009 May 26;3(5):1151-9</RefSource>
<PMID Version="1">19397333</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Nanosci Nanotechnol. 2010 Feb;10(2):1255-60</RefSource>
<PMID Version="1">20352785</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer Cell. 2002 Apr;1(3):219-27</RefSource>
<PMID Version="1">12086857</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FASEB J. 2007 Apr;21(4):1003-12</RefSource>
<PMID Version="1">17210781</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circulation. 1996 Oct 1;94(7):1690-7</RefSource>
<PMID Version="1">8840862</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Natl Cancer Inst. 2005 Jan 5;97(1):14-21</RefSource>
<PMID Version="1">15632376</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2010 Jul;299(1):H46-54</RefSource>
<PMID Version="1">20207821</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer Res. 2010 Mar 15;70(6):2495-503</RefSource>
<PMID Version="1">20197464</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Pathophysiology. 2010 Sep;17(4):229-51</RefSource>
<PMID Version="1">20036110</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Knee Surg Sports Traumatol Arthrosc. 2010 Nov;18(11):1532-41</RefSource>
<PMID Version="1">20563561</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microvasc Res. 2006 Nov;72(3):161-71</RefSource>
<PMID Version="1">16876204</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Oncogene. 2000 Nov 20;19(49):5598-605</RefSource>
<PMID Version="1">11114740</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Cancer Care (Engl). 2011 Jan;20(1):77-86</RefSource>
<PMID Version="1">19708945</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plast Reconstr Surg. 2009 Aug;124(2):438-50</RefSource>
<PMID Version="1">19644258</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Exp Metastasis. 2008;25(7):717-25</RefSource>
<PMID Version="1">18512120</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vascul Pharmacol. 2002 Nov;39(4-5):225-37</RefSource>
<PMID Version="1">12747962</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tissue Eng Part A. 2009 Mar;15(3):525-33</RefSource>
<PMID Version="1">18759668</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>In Vivo. 2009 Nov-Dec;23(6):1017-20</RefSource>
<PMID Version="1">20023249</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Oncol. 2009;48(8):1111-8</RefSource>
<PMID Version="1">19863218</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1997 May 30;276(5317):1423-5</RefSource>
<PMID Version="1">9162011</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Biomater. 2010 Aug;6(8):2970-8</RefSource>
<PMID Version="1">20167292</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomaterials. 2010 May;31(15):4330-40</RefSource>
<PMID Version="1">20219244</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Cell Physiol. 2010 Sep;299(3):C589-605</RefSource>
<PMID Version="1">20519446</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomater Sci Polym Ed. 2008;19(5):653-64</RefSource>
<PMID Version="1">18419943</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomaterials. 2009 Apr;30(11):2038-47</RefSource>
<PMID Version="1">19147222</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circ Res. 2005 Jun 10;96(11):1193-9</RefSource>
<PMID Version="1">15890974</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer Res. 2004 Jul 1;64(13):4400-4</RefSource>
<PMID Version="1">15231646</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2008 Nov;295(5):H2113-27</RefSource>
<PMID Version="1">18849330</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>QJM. 2005 May;98(5):343-8</RefSource>
<PMID Version="1">15820971</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomaterials. 2006 Nov;27(33):5681-8</RefSource>
<PMID Version="1">16914196</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomaterials. 2009 Feb;30(4):583-8</RefSource>
<PMID Version="1">18990437</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Craniofac Surg. 2010 May;21(3):847-53</RefSource>
<PMID Version="1">20485067</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer. 2002 Dec 1;95(11):2260-7</RefSource>
<PMID Version="1">12436430</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Pathol. 2008 Dec;173(6):1891-901</RefSource>
<PMID Version="1">18988807</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Crit Rev Biomed Eng. 1999;27(1-2):75-148</RefSource>
<PMID Version="1">10638850</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001672" MajorTopicYN="Y">Biocompatible Materials</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002465" MajorTopicYN="Y">Cell Movement</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004727" MajorTopicYN="N">Endothelium</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042601" MajorTopicYN="N">Lymphatic Vessels</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008855" MajorTopicYN="N">Microscopy, Electron, Scanning</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS248768</OtherID>
<OtherID Source="NLM">PMC3031728</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>08</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2010</Year>
<Month>09</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>10</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>10</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>10</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>5</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20974299</ArticleId>
<ArticleId IdType="pii">S1742-7061(10)00491-5</ArticleId>
<ArticleId IdType="doi">10.1016/j.actbio.2010.10.016</ArticleId>
<ArticleId IdType="pmc">PMC3031728</ArticleId>
<ArticleId IdType="mid">NIHMS248768</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002862 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002862 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:20974299
   |texte=   Biomaterial guides for lymphatic endothelial cell alignment and migration.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:20974299" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a LymphedemaV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024