Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Reactive oxygen species production and Brugia pahangi survivorship in Aedes polynesiensis with artificial Wolbachia infection types.

Identifieur interne : 001E09 ( PubMed/Corpus ); précédent : 001E08; suivant : 001E10

Reactive oxygen species production and Brugia pahangi survivorship in Aedes polynesiensis with artificial Wolbachia infection types.

Auteurs : Elizabeth S. Andrews ; Philip R. Crain ; Yuqing Fu ; Daniel K. Howe ; Stephen L. Dobson

Source :

RBID : pubmed:23236284

English descriptors

Abstract

Heterologous transinfection with the endosymbiotic bacterium Wolbachia has been shown previously to induce pathogen interference phenotypes in mosquito hosts. Here we examine an artificially infected strain of Aedes polynesiensis, the primary vector of Wuchereria bancrofti, which is the causative agent of Lymphatic filariasis (LF) throughout much of the South Pacific. Embryonic microinjection was used to transfer the wAlbB infection from Aedes albopictus into an aposymbiotic strain of Ae. polynesiensis. The resulting strain (designated "MTB") experiences a stable artificial infection with high maternal inheritance. Reciprocal crosses of MTB with naturally infected wild-type Ae. polynesiensis demonstrate strong bidirectional incompatibility. Levels of reactive oxygen species (ROS) in the MTB strain differ significantly relative to that of the wild-type, indicating an impaired ability to regulate oxidative stress. Following a challenge with Brugia pahangi, the number of filarial worms achieving the infective stage is significantly reduced in MTB as compared to the naturally infected and aposymbiotic strains. Survivorship of MTB differed significantly from that of the wild-type, with an interactive effect between survivorship and blood feeding. The results demonstrate a direct correlation between decreased ROS levels and decreased survival of adult female Aedes polynesiensis. The results are discussed in relation to the interaction of Wolbachia with ROS production and antioxidant expression, iron homeostasis and the insect immune system. We discuss the potential applied use of the MTB strain for impacting Ae. polynesiensis populations and strategies for reducing LF incidence in the South Pacific.

DOI: 10.1371/journal.ppat.1003075
PubMed: 23236284

Links to Exploration step

pubmed:23236284

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Reactive oxygen species production and Brugia pahangi survivorship in Aedes polynesiensis with artificial Wolbachia infection types.</title>
<author>
<name sortKey="Andrews, Elizabeth S" sort="Andrews, Elizabeth S" uniqKey="Andrews E" first="Elizabeth S" last="Andrews">Elizabeth S. Andrews</name>
<affiliation>
<nlm:affiliation>Department of Entomology, College of Agriculture, University of Kentucky, Lexington, Kentucky, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Crain, Philip R" sort="Crain, Philip R" uniqKey="Crain P" first="Philip R" last="Crain">Philip R. Crain</name>
</author>
<author>
<name sortKey="Fu, Yuqing" sort="Fu, Yuqing" uniqKey="Fu Y" first="Yuqing" last="Fu">Yuqing Fu</name>
</author>
<author>
<name sortKey="Howe, Daniel K" sort="Howe, Daniel K" uniqKey="Howe D" first="Daniel K" last="Howe">Daniel K. Howe</name>
</author>
<author>
<name sortKey="Dobson, Stephen L" sort="Dobson, Stephen L" uniqKey="Dobson S" first="Stephen L" last="Dobson">Stephen L. Dobson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23236284</idno>
<idno type="pmid">23236284</idno>
<idno type="doi">10.1371/journal.ppat.1003075</idno>
<idno type="wicri:Area/PubMed/Corpus">001E09</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001E09</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Reactive oxygen species production and Brugia pahangi survivorship in Aedes polynesiensis with artificial Wolbachia infection types.</title>
<author>
<name sortKey="Andrews, Elizabeth S" sort="Andrews, Elizabeth S" uniqKey="Andrews E" first="Elizabeth S" last="Andrews">Elizabeth S. Andrews</name>
<affiliation>
<nlm:affiliation>Department of Entomology, College of Agriculture, University of Kentucky, Lexington, Kentucky, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Crain, Philip R" sort="Crain, Philip R" uniqKey="Crain P" first="Philip R" last="Crain">Philip R. Crain</name>
</author>
<author>
<name sortKey="Fu, Yuqing" sort="Fu, Yuqing" uniqKey="Fu Y" first="Yuqing" last="Fu">Yuqing Fu</name>
</author>
<author>
<name sortKey="Howe, Daniel K" sort="Howe, Daniel K" uniqKey="Howe D" first="Daniel K" last="Howe">Daniel K. Howe</name>
</author>
<author>
<name sortKey="Dobson, Stephen L" sort="Dobson, Stephen L" uniqKey="Dobson S" first="Stephen L" last="Dobson">Stephen L. Dobson</name>
</author>
</analytic>
<series>
<title level="j">PLoS pathogens</title>
<idno type="eISSN">1553-7374</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aedes (microbiology)</term>
<term>Aedes (parasitology)</term>
<term>Animals</term>
<term>Brugia pahangi (metabolism)</term>
<term>Elephantiasis, Filarial (metabolism)</term>
<term>Elephantiasis, Filarial (parasitology)</term>
<term>Elephantiasis, Filarial (prevention & control)</term>
<term>Female</term>
<term>Oxidative Stress</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Wolbachia (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Brugia pahangi</term>
<term>Elephantiasis, Filarial</term>
<term>Wolbachia</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Aedes</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitology" xml:lang="en">
<term>Aedes</term>
<term>Elephantiasis, Filarial</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Elephantiasis, Filarial</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Female</term>
<term>Oxidative Stress</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Heterologous transinfection with the endosymbiotic bacterium Wolbachia has been shown previously to induce pathogen interference phenotypes in mosquito hosts. Here we examine an artificially infected strain of Aedes polynesiensis, the primary vector of Wuchereria bancrofti, which is the causative agent of Lymphatic filariasis (LF) throughout much of the South Pacific. Embryonic microinjection was used to transfer the wAlbB infection from Aedes albopictus into an aposymbiotic strain of Ae. polynesiensis. The resulting strain (designated "MTB") experiences a stable artificial infection with high maternal inheritance. Reciprocal crosses of MTB with naturally infected wild-type Ae. polynesiensis demonstrate strong bidirectional incompatibility. Levels of reactive oxygen species (ROS) in the MTB strain differ significantly relative to that of the wild-type, indicating an impaired ability to regulate oxidative stress. Following a challenge with Brugia pahangi, the number of filarial worms achieving the infective stage is significantly reduced in MTB as compared to the naturally infected and aposymbiotic strains. Survivorship of MTB differed significantly from that of the wild-type, with an interactive effect between survivorship and blood feeding. The results demonstrate a direct correlation between decreased ROS levels and decreased survival of adult female Aedes polynesiensis. The results are discussed in relation to the interaction of Wolbachia with ROS production and antioxidant expression, iron homeostasis and the insect immune system. We discuss the potential applied use of the MTB strain for impacting Ae. polynesiensis populations and strategies for reducing LF incidence in the South Pacific.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23236284</PMID>
<DateCreated>
<Year>2012</Year>
<Month>12</Month>
<Day>13</Day>
</DateCreated>
<DateCompleted>
<Year>2013</Year>
<Month>05</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>10</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1553-7374</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>PLoS pathogens</Title>
<ISOAbbreviation>PLoS Pathog.</ISOAbbreviation>
</Journal>
<ArticleTitle>Reactive oxygen species production and Brugia pahangi survivorship in Aedes polynesiensis with artificial Wolbachia infection types.</ArticleTitle>
<Pagination>
<MedlinePgn>e1003075</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.ppat.1003075</ELocationID>
<Abstract>
<AbstractText>Heterologous transinfection with the endosymbiotic bacterium Wolbachia has been shown previously to induce pathogen interference phenotypes in mosquito hosts. Here we examine an artificially infected strain of Aedes polynesiensis, the primary vector of Wuchereria bancrofti, which is the causative agent of Lymphatic filariasis (LF) throughout much of the South Pacific. Embryonic microinjection was used to transfer the wAlbB infection from Aedes albopictus into an aposymbiotic strain of Ae. polynesiensis. The resulting strain (designated "MTB") experiences a stable artificial infection with high maternal inheritance. Reciprocal crosses of MTB with naturally infected wild-type Ae. polynesiensis demonstrate strong bidirectional incompatibility. Levels of reactive oxygen species (ROS) in the MTB strain differ significantly relative to that of the wild-type, indicating an impaired ability to regulate oxidative stress. Following a challenge with Brugia pahangi, the number of filarial worms achieving the infective stage is significantly reduced in MTB as compared to the naturally infected and aposymbiotic strains. Survivorship of MTB differed significantly from that of the wild-type, with an interactive effect between survivorship and blood feeding. The results demonstrate a direct correlation between decreased ROS levels and decreased survival of adult female Aedes polynesiensis. The results are discussed in relation to the interaction of Wolbachia with ROS production and antioxidant expression, iron homeostasis and the insect immune system. We discuss the potential applied use of the MTB strain for impacting Ae. polynesiensis populations and strategies for reducing LF incidence in the South Pacific.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Andrews</LastName>
<ForeName>Elizabeth S</ForeName>
<Initials>ES</Initials>
<AffiliationInfo>
<Affiliation>Department of Entomology, College of Agriculture, University of Kentucky, Lexington, Kentucky, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Crain</LastName>
<ForeName>Philip R</ForeName>
<Initials>PR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fu</LastName>
<ForeName>Yuqing</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Howe</LastName>
<ForeName>Daniel K</ForeName>
<Initials>DK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dobson</LastName>
<ForeName>Stephen L</ForeName>
<Initials>SL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>AI-067434</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>12</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Pathog</MedlineTA>
<NlmUniqueID>101238921</NlmUniqueID>
<ISSNLinking>1553-7366</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Biol. 2005 Apr;3(4):e121</RefSource>
<PMID Version="1">15780005</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Insect Mol Biol. 2005 Jun;14(3):223-36</RefSource>
<PMID Version="1">15926891</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Appl Environ Microbiol. 2005 Jun;71(6):3199-204</RefSource>
<PMID Version="1">15933022</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Insect Biochem Mol Biol. 2005 Aug;35(8):903-10</RefSource>
<PMID Version="1">15944085</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Trop Med Hyg. 2005 Aug;73(2):354-8</RefSource>
<PMID Version="1">16103603</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2005 Oct 14;310(5746):326-8</RefSource>
<PMID Version="1">16224027</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2005 Nov 4;310(5749):847-50</RefSource>
<PMID Version="1">16272120</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Insect Biochem Mol Biol. 2006 Apr;36(4):322-35</RefSource>
<PMID Version="1">16551546</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 2006 Jun 7;273(1592):1317-22</RefSource>
<PMID Version="1">16777718</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2121-6</RefSource>
<PMID Version="1">17284604</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vector Borne Zoonotic Dis. 2007 Spring;7(1):86-98</RefSource>
<PMID Version="1">17417961</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2007 Sep 21;317(5845):1756-60</RefSource>
<PMID Version="1">17885136</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Insect Physiol. 2007 Nov;53(11):1169-78</RefSource>
<PMID Version="1">17689557</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Negl Trop Dis. 2008;2(1):e129</RefSource>
<PMID Version="1">18235849</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2008 Feb 8;283(6):3217-23</RefSource>
<PMID Version="1">18065421</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEMS Microbiol Lett. 2008 Apr;281(2):215-20</RefSource>
<PMID Version="1">18312577</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2008;3(5):e2083</RefSource>
<PMID Version="1">18461124</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Pathog. 2009 Apr;5(4):e1000368</RefSource>
<PMID Version="1">19343208</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2009 Jul 10;284(28):18634-43</RefSource>
<PMID Version="1">19460756</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Negl Trop Dis. 2009;3(7):e475</RefSource>
<PMID Version="1">19597542</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Immunol. 2009 Sep;10(9):949-57</RefSource>
<PMID Version="1">19668222</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2009 Oct 2;326(5949):134-6</RefSource>
<PMID Version="1">19797660</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Pathog. 2009 Oct;5(10):e1000630</RefSource>
<PMID Version="1">19851452</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2009;4(11):e7854</RefSource>
<PMID Version="1">19924237</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Appl Environ Microbiol. 2009 Dec;75(24):7783-8</RefSource>
<PMID Version="1">19820149</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2009 Dec 24;139(7):1268-78</RefSource>
<PMID Version="1">20064373</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2010 Mar 26;327(5973):1644-8</RefSource>
<PMID Version="1">20223948</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Pathog. 2010 Apr;6(4):e1000833</RefSource>
<PMID Version="1">20368968</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2010 Aug;1800(8):824-33</RefSource>
<PMID Version="1">20230873</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2010;5(8):e11977</RefSource>
<PMID Version="1">20700535</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Appl Environ Microbiol. 2010 Sep;76(17):5887-91</RefSource>
<PMID Version="1">20601501</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Pathog. 2011 Mar;7(3):e1001320</RefSource>
<PMID Version="1">21445237</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Negl Trop Dis. 2011;5(4):e1024</RefSource>
<PMID Version="1">21541357</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2011 May 13;332(6031):855-8</RefSource>
<PMID Version="1">21566196</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Pathog. 2011 May;7(5):e1002043</RefSource>
<PMID Version="1">21625582</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2011 Aug 25;476(7361):450-3</RefSource>
<PMID Version="1">21866159</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2011 Aug 25;476(7361):454-7</RefSource>
<PMID Version="1">21866160</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Med Entomol. 2011 Sep;48(5):1008-15</RefSource>
<PMID Version="1">21936319</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):E23-31</RefSource>
<PMID Version="1">22123956</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Insect Biochem Physiol. 2008 Jul;68(3):134-43</RefSource>
<PMID Version="1">18454489</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Microbiol. 2008 Oct;6(10):741-51</RefSource>
<PMID Version="1">18794912</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2008 Oct 31;322(5902):702</RefSource>
<PMID Version="1">18974344</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2009 Jan 2;323(5910):141-4</RefSource>
<PMID Version="1">19119237</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Med Entomol. 2001 May;38(3):411-22</RefSource>
<PMID Version="1">11372967</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Entomol. 2002;47:535-59</RefSource>
<PMID Version="1">11729084</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Parasitol. 2002 Mar;18(3):109-15</RefSource>
<PMID Version="1">11854087</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 2002 Mar 7;269(1490):437-45</RefSource>
<PMID Version="1">11886634</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Blood. 2002 Aug 1;100(3):879-87</RefSource>
<PMID Version="1">12130498</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Biochem. 2003 Sep;270(18):3667-74</RefSource>
<PMID Version="1">12950250</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14139-44</RefSource>
<PMID Version="1">14623973</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Appl Environ Microbiol. 2004 Jan;70(1):273-9</RefSource>
<PMID Version="1">14711652</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Insect Mol Biol. 2004 Jun;13(3):317-22</RefSource>
<PMID Version="1">15157232</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1970 Apr 3;168(3927):143-4</RefSource>
<PMID Version="1">5417058</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Trop Med Hyg. 1973 Mar;22(2):174-8</RefSource>
<PMID Version="1">4688413</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Parasitol. 1975 Aug;38(1):1-5</RefSource>
<PMID Version="1">1149863</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Med Entomol. 1986 Jul 28;23(4):441-5</RefSource>
<PMID Version="1">3735352</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Parasitol. 1986 Oct;72(5):723-7</RefSource>
<PMID Version="1">3806321</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Trop Med Hyg. 1989 Oct;41(4):429-35</RefSource>
<PMID Version="1">2679171</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Vet Entomol. 1987 Oct;1(4):329-37</RefSource>
<PMID Version="1">2979549</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Am Mosq Control Assoc. 1991 Dec;7(4):660-2</RefSource>
<PMID Version="1">1787414</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 1995 Sep 22;261(1362):325-30</RefSource>
<PMID Version="1">8587875</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Insect Mol Biol. 1997 Feb;6(1):33-9</RefSource>
<PMID Version="1">9013253</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Physiol. 1997 Mar;82(2):291-5</RefSource>
<PMID Version="1">9129943</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Trop Med Hyg. 1997 Aug;57(2):235-9</RefSource>
<PMID Version="1">9288822</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 1998 Mar 22;265(1395):509-15</RefSource>
<PMID Version="1">9569669</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Insect Mol Biol. 1999 May;8(2):243-55</RefSource>
<PMID Version="1">10380108</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Med Entomol. 2004 Sep;41(5):894-900</RefSource>
<PMID Version="1">15535618</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Microbiol. 2004 Dec;2(12):946-53</RefSource>
<PMID Version="1">15550940</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Vet Entomol. 2005 Mar;19(1):60-5</RefSource>
<PMID Version="1">15752178</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4270-5</RefSource>
<PMID Version="1">15767563</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000330" MajorTopicYN="N">Aedes</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="Y">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017179" MajorTopicYN="N">Brugia pahangi</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004605" MajorTopicYN="N">Elephantiasis, Filarial</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020577" MajorTopicYN="N">Wolbachia</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3516568</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>04</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>10</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>12</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>12</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>5</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23236284</ArticleId>
<ArticleId IdType="doi">10.1371/journal.ppat.1003075</ArticleId>
<ArticleId IdType="pii">PPATHOGENS-D-12-01037</ArticleId>
<ArticleId IdType="pmc">PMC3516568</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E09 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001E09 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23236284
   |texte=   Reactive oxygen species production and Brugia pahangi survivorship in Aedes polynesiensis with artificial Wolbachia infection types.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:23236284" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a LymphedemaV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024