Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mechanical forces and lymphatic transport.

Identifieur interne : 001408 ( PubMed/Corpus ); précédent : 001407; suivant : 001409

Mechanical forces and lymphatic transport.

Auteurs : Jerome W. Breslin

Source :

RBID : pubmed:25107458

English descriptors

Abstract

This review examines the current understanding of how the lymphatic vessel network can optimize lymph flow in response to various mechanical forces. Lymphatics are organized as a vascular tree, with blind-ended initial lymphatics, precollectors, prenodal collecting lymphatics, lymph nodes, postnodal collecting lymphatics and the larger trunks (thoracic duct and right lymph duct) that connect to the subclavian veins. The formation of lymph from interstitial fluid depends heavily on oscillating pressure gradients to drive fluid into initial lymphatics. Collecting lymphatics are segmented vessels with unidirectional valves, with each segment, called a lymphangion, possessing an intrinsic pumping mechanism. The lymphangions propel lymph forward against a hydrostatic pressure gradient. Fluid is returned to the central circulation both at lymph nodes and via the larger lymphatic trunks. Several recent developments are discussed, including evidence for the active role of endothelial cells in lymph formation; recent developments on how inflow pressure, outflow pressure, and shear stress affect the pump function of the lymphangion; lymphatic valve gating mechanisms; collecting lymphatic permeability; and current interpretations of the molecular mechanisms within lymphatic endothelial cells and smooth muscle. An improved understanding of the physiological mechanisms by which lymphatic vessels sense mechanical stimuli, integrate the information, and generate the appropriate response is key for determining the pathogenesis of lymphatic insufficiency and developing treatments for lymphedema.

DOI: 10.1016/j.mvr.2014.07.013
PubMed: 25107458

Links to Exploration step

pubmed:25107458

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mechanical forces and lymphatic transport.</title>
<author>
<name sortKey="Breslin, Jerome W" sort="Breslin, Jerome W" uniqKey="Breslin J" first="Jerome W" last="Breslin">Jerome W. Breslin</name>
<affiliation>
<nlm:affiliation>Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA. Electronic address: jbreslin@health.usf.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25107458</idno>
<idno type="pmid">25107458</idno>
<idno type="doi">10.1016/j.mvr.2014.07.013</idno>
<idno type="wicri:Area/PubMed/Corpus">001408</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001408</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mechanical forces and lymphatic transport.</title>
<author>
<name sortKey="Breslin, Jerome W" sort="Breslin, Jerome W" uniqKey="Breslin J" first="Jerome W" last="Breslin">Jerome W. Breslin</name>
<affiliation>
<nlm:affiliation>Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA. Electronic address: jbreslin@health.usf.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Microvascular research</title>
<idno type="eISSN">1095-9319</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Biological Transport</term>
<term>Endothelial Cells</term>
<term>Extracellular Fluid</term>
<term>Humans</term>
<term>Lymph Nodes</term>
<term>Lymphatic System (physiology)</term>
<term>Lymphatic Vessels (physiology)</term>
<term>Lymphedema</term>
<term>Mice</term>
<term>Permeability</term>
<term>Pressure</term>
<term>Shear Strength</term>
<term>Stress, Mechanical</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Lymphatic System</term>
<term>Lymphatic Vessels</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Biological Transport</term>
<term>Endothelial Cells</term>
<term>Extracellular Fluid</term>
<term>Humans</term>
<term>Lymph Nodes</term>
<term>Lymphedema</term>
<term>Mice</term>
<term>Permeability</term>
<term>Pressure</term>
<term>Shear Strength</term>
<term>Stress, Mechanical</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This review examines the current understanding of how the lymphatic vessel network can optimize lymph flow in response to various mechanical forces. Lymphatics are organized as a vascular tree, with blind-ended initial lymphatics, precollectors, prenodal collecting lymphatics, lymph nodes, postnodal collecting lymphatics and the larger trunks (thoracic duct and right lymph duct) that connect to the subclavian veins. The formation of lymph from interstitial fluid depends heavily on oscillating pressure gradients to drive fluid into initial lymphatics. Collecting lymphatics are segmented vessels with unidirectional valves, with each segment, called a lymphangion, possessing an intrinsic pumping mechanism. The lymphangions propel lymph forward against a hydrostatic pressure gradient. Fluid is returned to the central circulation both at lymph nodes and via the larger lymphatic trunks. Several recent developments are discussed, including evidence for the active role of endothelial cells in lymph formation; recent developments on how inflow pressure, outflow pressure, and shear stress affect the pump function of the lymphangion; lymphatic valve gating mechanisms; collecting lymphatic permeability; and current interpretations of the molecular mechanisms within lymphatic endothelial cells and smooth muscle. An improved understanding of the physiological mechanisms by which lymphatic vessels sense mechanical stimuli, integrate the information, and generate the appropriate response is key for determining the pathogenesis of lymphatic insufficiency and developing treatments for lymphedema.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25107458</PMID>
<DateCreated>
<Year>2014</Year>
<Month>12</Month>
<Day>16</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>08</Month>
<Day>31</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1095-9319</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>96</Volume>
<PubDate>
<Year>2014</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Microvascular research</Title>
<ISOAbbreviation>Microvasc. Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>Mechanical forces and lymphatic transport.</ArticleTitle>
<Pagination>
<MedlinePgn>46-54</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.mvr.2014.07.013</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0026-2862(14)00117-4</ELocationID>
<Abstract>
<AbstractText>This review examines the current understanding of how the lymphatic vessel network can optimize lymph flow in response to various mechanical forces. Lymphatics are organized as a vascular tree, with blind-ended initial lymphatics, precollectors, prenodal collecting lymphatics, lymph nodes, postnodal collecting lymphatics and the larger trunks (thoracic duct and right lymph duct) that connect to the subclavian veins. The formation of lymph from interstitial fluid depends heavily on oscillating pressure gradients to drive fluid into initial lymphatics. Collecting lymphatics are segmented vessels with unidirectional valves, with each segment, called a lymphangion, possessing an intrinsic pumping mechanism. The lymphangions propel lymph forward against a hydrostatic pressure gradient. Fluid is returned to the central circulation both at lymph nodes and via the larger lymphatic trunks. Several recent developments are discussed, including evidence for the active role of endothelial cells in lymph formation; recent developments on how inflow pressure, outflow pressure, and shear stress affect the pump function of the lymphangion; lymphatic valve gating mechanisms; collecting lymphatic permeability; and current interpretations of the molecular mechanisms within lymphatic endothelial cells and smooth muscle. An improved understanding of the physiological mechanisms by which lymphatic vessels sense mechanical stimuli, integrate the information, and generate the appropriate response is key for determining the pathogenesis of lymphatic insufficiency and developing treatments for lymphedema.</AbstractText>
<CopyrightInformation>Copyright © 2014 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Breslin</LastName>
<ForeName>Jerome W</ForeName>
<Initials>JW</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA. Electronic address: jbreslin@health.usf.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 HL098215</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 AA020049</GrantID>
<Acronym>AA</Acronym>
<Agency>NIAAA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01HL098215</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21AA020049</GrantID>
<Acronym>AA</Acronym>
<Agency>NIAAA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>08</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Microvasc Res</MedlineTA>
<NlmUniqueID>0165035</NlmUniqueID>
<ISSNLinking>0026-2862</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Histol Cytol. 1990;53 Suppl:127-36</RefSource>
<PMID Version="1">2174682</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microcirculation. 2010 Oct;17(7):514-24</RefSource>
<PMID Version="1">21040117</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microvasc Res. 1976 Jan;11(1):89-101</RefSource>
<PMID Version="1">1263867</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lymphat Res Biol. 2003;1(1):25-9; discussion 29-31</RefSource>
<PMID Version="1">15624318</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lymphat Res Biol. 2012 Dec;10(4):152-63</RefSource>
<PMID Version="1">23145980</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2002 May 1;540(Pt 3):1023-37</RefSource>
<PMID Version="1">11986387</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lymphat Res Biol. 2003;1(1):55-66</RefSource>
<PMID Version="1">15624322</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2009 Jan 15;587(Pt 1):165-82</RefSource>
<PMID Version="1">19001046</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol. 1975 May;228(5):1326-35</RefSource>
<PMID Version="1">1130536</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Comput Methods Biomech Biomed Engin. 2014;17(14):1519-34</RefSource>
<PMID Version="1">23387996</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Endocrinol Metab. 2010 Aug;21(8):480-7</RefSource>
<PMID Version="1">20541951</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microvasc Res. 1975 Jan;9(1):43-8</RefSource>
<PMID Version="1">1117857</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microvasc Res. 1979 Sep;18(2):209-16</RefSource>
<PMID Version="1">386049</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Clin Nutr. 1971 Jan;24(1):77-90</RefSource>
<PMID Version="1">4099917</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 1976 Oct;261(2):255-69</RefSource>
<PMID Version="1">988184</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lymphat Res Biol. 2004;2(2):69-81</RefSource>
<PMID Version="1">15615488</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 1999 Nov 15;521 Pt 1:201-11</RefSource>
<PMID Version="1">10562345</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2009 Feb;296(2):H293-302</RefSource>
<PMID Version="1">19028793</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circ Res. 2010 Mar 19;106(5):920-31</RefSource>
<PMID Version="1">20133901</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FASEB J. 2001 Aug;15(10):1711-7</RefSource>
<PMID Version="1">11481218</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lymphat Res Biol. 2007;5(2):81-9</RefSource>
<PMID Version="1">17935476</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Biomed Eng. 2007 Mar;35(3):387-96</RefSource>
<PMID Version="1">17151922</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2013 Sep 15;591(Pt 18):4549-65</RefSource>
<PMID Version="1">23836689</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2011 Jul;301(1):H48-60</RefSource>
<PMID Version="1">21460194</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Physiol Scand. 1964 Mar;60:278-85</RefSource>
<PMID Version="1">14131841</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2005 Jul;289(1):H263-9</RefSource>
<PMID Version="1">15833809</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Regul Integr Comp Physiol. 2014 Mar 1;306(5):R281-90</RefSource>
<PMID Version="1">24430884</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microcirculation. 2004 Sep;11(6):477-92</RefSource>
<PMID Version="1">15371129</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2008 Nov;295(5):H1989-2000</RefSource>
<PMID Version="1">18790842</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 1996 Jun 1;493 ( Pt 2):563-75</RefSource>
<PMID Version="1">8782117</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol. 1999 Feb;276(2 Pt 2):H736-48</RefSource>
<PMID Version="1">9950877</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2007 Jul;293(1):H709-18</RefSource>
<PMID Version="1">17400713</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomech Model Mechanobiol. 2014 Apr;13(2):401-16</RefSource>
<PMID Version="1">23801424</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circ Res. 2004 Jul 23;95(2):204-9</RefSource>
<PMID Version="1">15192027</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Gastrointest Liver Physiol. 2000 Apr;278(4):G551-6</RefSource>
<PMID Version="1">10762608</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2006 Aug;291(2):H876-85</RefSource>
<PMID Version="1">16489104</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2007 Jun 1;92(11):3843-61</RefSource>
<PMID Version="1">17351003</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2012 Oct 1;303(7):H809-24</RefSource>
<PMID Version="1">22865389</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microcirculation. 2014 Oct;21(7):593-605</RefSource>
<PMID Version="1">24702851</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Angiogenesis. 2014 Apr;17(2):395-406</RefSource>
<PMID Version="1">24141404</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2013 Oct 15;591(Pt 20):5071-81</RefSource>
<PMID Version="1">23897233</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol. 1992 Apr;262(4 Pt 2):H1208-10</RefSource>
<PMID Version="1">1566901</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lymphat Res Biol. 2009;7(2):87-96</RefSource>
<PMID Version="1">19534632</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biorheology. 1995 Jan-Feb;32(1):17-27</RefSource>
<PMID Version="1">7548858</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech Eng. 2011 Jan;133(1):011008</RefSource>
<PMID Version="1">21186898</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol. 1977 Jul;233(1):H57-65</RefSource>
<PMID Version="1">879337</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol. 1996 Jan;270(1 Pt 2):H358-63</RefSource>
<PMID Version="1">8769772</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FASEB J. 2003 May;17(8):920-2</RefSource>
<PMID Version="1">12670880</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microcirculation. 2014 Oct;21(7):640-8</RefSource>
<PMID Version="1">24750494</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microvasc Res. 1995 Jan;49(1):97-110</RefSource>
<PMID Version="1">7746166</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microvasc Res. 1981 Mar;21(2):183-92</RefSource>
<PMID Version="1">7219200</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Mol Life Sci. 2013 Nov;70(22):4341-54</RefSource>
<PMID Version="1">23665871</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Biochem Cell Biol. 2004 Jul;36(7):1147-53</RefSource>
<PMID Version="1">15109561</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Med. 2004 Sep;10(9):974-81</RefSource>
<PMID Version="1">15322537</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Physiol. 2000 May;20(3):242-9</RefSource>
<PMID Version="1">10792418</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Physiol (Oxf). 2013 Feb;207(2):244-59</RefSource>
<PMID Version="1">23009260</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Transl Oncol. 2010 Dec 01;3(6):362-72</RefSource>
<PMID Version="1">21151475</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2013 Jan 15;591(Pt 2):443-59</RefSource>
<PMID Version="1">23045335</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lymphat Res Biol. 2011 Mar;9(1):3-11</RefSource>
<PMID Version="1">21417762</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol. 1998 Mar;274(3 Pt 2):R790-6</RefSource>
<PMID Version="1">9530247</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2013 Apr 15;591(Pt 8):2139-56</RefSource>
<PMID Version="1">23420659</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2009 Aug;297(2):H726-34</RefSource>
<PMID Version="1">19525378</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer. 2007 Jun 15;109(12):2607-14</RefSource>
<PMID Version="1">17474128</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lymphat Res Biol. 2009 Dec;7(4):229-37</RefSource>
<PMID Version="1">20143922</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Physiol Rev. 2012 Jul;92(3):1005-60</RefSource>
<PMID Version="1">22811424</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microvasc Res. 2008 May;76(1):46-51</RefSource>
<PMID Version="1">18440562</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microcirculation. 2014 Jul;21(5):359-67</RefSource>
<PMID Version="1">24397756</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Ultrastruct Res. 1970 Oct;33(1):29-59</RefSource>
<PMID Version="1">5487209</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Can J Physiol Pharmacol. 1998 May;76(5):490-6</RefSource>
<PMID Version="1">9839074</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol. 1996 Jan;270(1 Pt 2):H324-9</RefSource>
<PMID Version="1">8769768</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Front Physiol. 2013 Aug 15;4:215</RefSource>
<PMID Version="1">23966950</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Phys Med Rehabil. 2011 May;92(5):756-764.e1</RefSource>
<PMID Version="1">21530723</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Med Genet. 2005 Feb;42(2):98-102</RefSource>
<PMID Version="1">15689446</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2013 Nov 15;305(10):H1494-507</RefSource>
<PMID Version="1">23997104</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol. 1980 Jul;239(1):H88-95</RefSource>
<PMID Version="1">7396023</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Regul Integr Comp Physiol. 2008 May;294(5):R1524-32</RefSource>
<PMID Version="1">18305021</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Aliment Pharmacol Ther. 2001 Aug;15(8):1115-29</RefSource>
<PMID Version="1">11472314</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2003 Dec;285(6):H2573-7</RefSource>
<PMID Version="1">12946938</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microvasc Res. 1998 Sep;56(2):127-38</RefSource>
<PMID Version="1">9756735</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol. 1983 Oct;245(4):H616-22</RefSource>
<PMID Version="1">6624930</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2012 Oct 1;303(7):H795-808</RefSource>
<PMID Version="1">22886407</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circ Res. 1963 Apr;12:399-414</RefSource>
<PMID Version="1">13951514</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Head Neck. 2012 Mar;34(3):448-53</RefSource>
<PMID Version="1">22311465</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2003 Jun;284(6):H2015-25</RefSource>
<PMID Version="1">12742825</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol. 1979 Sep;237(3):E301-7</RefSource>
<PMID Version="1">474755</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2009 Oct;297(4):H1319-28</RefSource>
<PMID Version="1">19666850</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 1988 Mar;397:449-57</RefSource>
<PMID Version="1">3411513</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2014;9(4):e94082</RefSource>
<PMID Version="1">24710574</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech Eng. 2003 Jun;125(3):407-14</RefSource>
<PMID Version="1">12929246</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2014 Mar 1;306(5):H674-83</RefSource>
<PMID Version="1">24414065</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Cell Physiol. 2000 Nov;279(5):C1327-35</RefSource>
<PMID Version="1">11029279</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 1988 Nov;405:595-604</RefSource>
<PMID Version="1">3255801</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2006 Sep 15;575(Pt 3):821-32</RefSource>
<PMID Version="1">16809357</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol. 1980 Dec;239(6):H775-83</RefSource>
<PMID Version="1">7446752</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol. 1994 Sep;267(3 Pt 2):H938-43</RefSource>
<PMID Version="1">8092298</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18784-9</RefSource>
<PMID Version="1">22065738</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lymphat Res Biol. 2007;5(1):3-10</RefSource>
<PMID Version="1">17508898</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomed Opt. 2005 Nov-Dec;10(6):064016</RefSource>
<PMID Version="1">16409081</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2003 May 15;12(10):1179-85</RefSource>
<PMID Version="1">12719382</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol. 1982 Sep;243(3):H351-9</RefSource>
<PMID Version="1">7114267</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microcirculation. 2006 Oct-Nov;13(7):597-610</RefSource>
<PMID Version="1">16990218</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1981 Jan 30;211(4481):495-7</RefSource>
<PMID Version="1">6893872</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lymphology. 1981 Dec;14(4):173-8</RefSource>
<PMID Version="1">7334834</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann N Y Acad Sci. 2008;1131:89-99</RefSource>
<PMID Version="1">18519962</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microcirculation. 2011 Aug;18(6):463-73</RefSource>
<PMID Version="1">21466607</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer. 2001 Sep 15;92(6):1368-77</RefSource>
<PMID Version="1">11745212</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lymphat Res Biol. 2013 Sep;11(3):155-71</RefSource>
<PMID Version="1">24044756</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microcirculation. 2013 Jul;20(5):377-84</RefSource>
<PMID Version="1">23237297</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomed Opt. 2012 Jun;17(6):066019</RefSource>
<PMID Version="1">22734775</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2011 Jun 15;589(Pt 12):2935-43</RefSource>
<PMID Version="1">21521763</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circ Res. 1990 Nov;67(5):1097-106</RefSource>
<PMID Version="1">2225350</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microcirculation. 2007 Aug;14(6):613-25</RefSource>
<PMID Version="1">17710632</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Physiol Scand. 1977 Feb;99(2):149-55</RefSource>
<PMID Version="1">842371</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Blood. 2001 Mar 15;97(6):1679-84</RefSource>
<PMID Version="1">11238107</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Med. 2007 Oct 1;204(10):2349-62</RefSource>
<PMID Version="1">17846148</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 1971 Aug;50(2):300-23</RefSource>
<PMID Version="1">4329612</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bibl Anat. 1973;12:361-5</RefSource>
<PMID Version="1">4790372</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lymphat Res Biol. 2007;5(2):105-13</RefSource>
<PMID Version="1">17935478</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Blood Vessels. 1987;24(6):304-12</RefSource>
<PMID Version="1">3651619</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2010 Jan 1;588(Pt 1):243-54</RefSource>
<PMID Version="1">19917564</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 1999 Nov 1;520 Pt 3:761-9</RefSource>
<PMID Version="1">10545142</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circ Res. 1966 Aug;19(2):412-9</RefSource>
<PMID Version="1">5914853</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vasc Res. 2011;48(5):397-407</RefSource>
<PMID Version="1">21464574</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol. 1993 Apr;264(4 Pt 2):H1283-91</RefSource>
<PMID Version="1">8476104</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vis Exp. 2011;(58). pii: 3438. doi: 10.3791/3438</RefSource>
<PMID Version="1">22214883</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Pathol. 2008 Oct;173(4):1202-9</RefSource>
<PMID Version="1">18772332</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2001 Jun;280(6):H2707-16</RefSource>
<PMID Version="1">11356627</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Physiol Rev. 1990 Oct;70(4):987-1028</RefSource>
<PMID Version="1">2217560</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biotechnol Bioeng. 2009 Aug 15;103(6):1224-35</RefSource>
<PMID Version="1">19396808</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2007 Apr;292(4):H1943-52</RefSource>
<PMID Version="1">17172274</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomed Opt Express. 2012 Jun 1;3(6):1256-65</RefSource>
<PMID Version="1">22741072</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol. 1989 Dec;257(6 Pt 2):H2059-69</RefSource>
<PMID Version="1">2603989</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042783" MajorTopicYN="N">Endothelial Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045604" MajorTopicYN="N">Extracellular Fluid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008198" MajorTopicYN="N">Lymph Nodes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008208" MajorTopicYN="N">Lymphatic System</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042601" MajorTopicYN="N">Lymphatic Vessels</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008209" MajorTopicYN="N">Lymphedema</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010539" MajorTopicYN="N">Permeability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011312" MajorTopicYN="N">Pressure</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D033081" MajorTopicYN="N">Shear Strength</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013314" MajorTopicYN="N">Stress, Mechanical</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS624732</OtherID>
<OtherID Source="NLM">PMC4267889</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Lymphatic contractile cycle</Keyword>
<Keyword MajorTopicYN="N">Lymphatic endothelium</Keyword>
<Keyword MajorTopicYN="N">Lymphatic muscle</Keyword>
<Keyword MajorTopicYN="N">Lymphatic myogenic response</Keyword>
<Keyword MajorTopicYN="N">Lymphedema</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>04</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>07</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>8</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>8</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>9</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25107458</ArticleId>
<ArticleId IdType="pii">S0026-2862(14)00117-4</ArticleId>
<ArticleId IdType="doi">10.1016/j.mvr.2014.07.013</ArticleId>
<ArticleId IdType="pmc">PMC4267889</ArticleId>
<ArticleId IdType="mid">NIHMS624732</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001408 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001408 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25107458
   |texte=   Mechanical forces and lymphatic transport.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25107458" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a LymphedemaV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024