Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Angiopoietin-4 increases permeability of blood vessels and promotes lymphatic dilation.

Identifieur interne : 000E91 ( PubMed/Corpus ); précédent : 000E90; suivant : 000E92

Angiopoietin-4 increases permeability of blood vessels and promotes lymphatic dilation.

Auteurs : Cristina T. Kesler ; Ethel R. Pereira ; Cheryl H. Cui ; Gregory M. Nelson ; David J. Masuck ; James W. Baish ; Timothy P. Padera

Source :

RBID : pubmed:25977256

English descriptors

Abstract

The angiopoietin (Ang) ligands are potential therapeutic targets for lymphatic related diseases, which include lymphedema and cancer. Ang-1 and Ang-2 functions are established, but those of Ang-4 are poorly understood. We used intravital fluorescence microscopy to characterize Ang-4 actions on T241 murine fibrosarcoma-associated vessels in mice. The diameters of lymphatic vessels draining Ang-4- or VEGF-C (positive control)-expressing tumors increased to 123 and 135 μm, respectively, and parental, mock-transduced (negative controls) and tumors expressing Ang-1 or Ang-2 remained at baseline (∼60 μm). Ang-4 decreased human dermal lymphatic endothelial cell (LEC) monolayer permeability by 27% while increasing human dermal blood endothelial cell (BEC) monolayer permeability by 200%. In vivo, Ang-4 stimulated a 4.5-fold increase in tumor-associated blood vessel permeability compared with control when measured using intravital quantitative multiphoton microscopy. Ang-4 activated receptor signaling in both LECs and BECs, evidenced by tyrosine kinase with Ig and endothelial growth factor homology domains-2 (TIE2) receptor, protein kinase B, and Erk1,2 phosphorylation detectable by immunoblotting. These data suggest that Ang-4 actions are mediated through cell-type-specific networks and that lymphatic vessel dilation occurs secondarily to increased vascular leakage. Ang-4 also promoted survival of LECs. Thus, blocking Ang-4 may prune the draining lymphatic vasculature and decrease interstitial fluid pressure (IFP) by reducing vascular permeability.

DOI: 10.1096/fj.14-268920
PubMed: 25977256

Links to Exploration step

pubmed:25977256

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Angiopoietin-4 increases permeability of blood vessels and promotes lymphatic dilation.</title>
<author>
<name sortKey="Kesler, Cristina T" sort="Kesler, Cristina T" uniqKey="Kesler C" first="Cristina T" last="Kesler">Cristina T. Kesler</name>
<affiliation>
<nlm:affiliation>*Edwin Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; Harold B. Lee Library, Brigham Young University, Provo, Utah, USA; and Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pereira, Ethel R" sort="Pereira, Ethel R" uniqKey="Pereira E" first="Ethel R" last="Pereira">Ethel R. Pereira</name>
<affiliation>
<nlm:affiliation>*Edwin Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; Harold B. Lee Library, Brigham Young University, Provo, Utah, USA; and Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cui, Cheryl H" sort="Cui, Cheryl H" uniqKey="Cui C" first="Cheryl H" last="Cui">Cheryl H. Cui</name>
<affiliation>
<nlm:affiliation>*Edwin Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; Harold B. Lee Library, Brigham Young University, Provo, Utah, USA; and Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nelson, Gregory M" sort="Nelson, Gregory M" uniqKey="Nelson G" first="Gregory M" last="Nelson">Gregory M. Nelson</name>
<affiliation>
<nlm:affiliation>*Edwin Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; Harold B. Lee Library, Brigham Young University, Provo, Utah, USA; and Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Masuck, David J" sort="Masuck, David J" uniqKey="Masuck D" first="David J" last="Masuck">David J. Masuck</name>
<affiliation>
<nlm:affiliation>*Edwin Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; Harold B. Lee Library, Brigham Young University, Provo, Utah, USA; and Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Baish, James W" sort="Baish, James W" uniqKey="Baish J" first="James W" last="Baish">James W. Baish</name>
<affiliation>
<nlm:affiliation>*Edwin Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; Harold B. Lee Library, Brigham Young University, Provo, Utah, USA; and Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Padera, Timothy P" sort="Padera, Timothy P" uniqKey="Padera T" first="Timothy P" last="Padera">Timothy P. Padera</name>
<affiliation>
<nlm:affiliation>*Edwin Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; Harold B. Lee Library, Brigham Young University, Provo, Utah, USA; and Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania, USA tpadera@steele.mgh.harvard.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25977256</idno>
<idno type="pmid">25977256</idno>
<idno type="doi">10.1096/fj.14-268920</idno>
<idno type="wicri:Area/PubMed/Corpus">000E91</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000E91</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Angiopoietin-4 increases permeability of blood vessels and promotes lymphatic dilation.</title>
<author>
<name sortKey="Kesler, Cristina T" sort="Kesler, Cristina T" uniqKey="Kesler C" first="Cristina T" last="Kesler">Cristina T. Kesler</name>
<affiliation>
<nlm:affiliation>*Edwin Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; Harold B. Lee Library, Brigham Young University, Provo, Utah, USA; and Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pereira, Ethel R" sort="Pereira, Ethel R" uniqKey="Pereira E" first="Ethel R" last="Pereira">Ethel R. Pereira</name>
<affiliation>
<nlm:affiliation>*Edwin Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; Harold B. Lee Library, Brigham Young University, Provo, Utah, USA; and Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cui, Cheryl H" sort="Cui, Cheryl H" uniqKey="Cui C" first="Cheryl H" last="Cui">Cheryl H. Cui</name>
<affiliation>
<nlm:affiliation>*Edwin Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; Harold B. Lee Library, Brigham Young University, Provo, Utah, USA; and Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nelson, Gregory M" sort="Nelson, Gregory M" uniqKey="Nelson G" first="Gregory M" last="Nelson">Gregory M. Nelson</name>
<affiliation>
<nlm:affiliation>*Edwin Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; Harold B. Lee Library, Brigham Young University, Provo, Utah, USA; and Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Masuck, David J" sort="Masuck, David J" uniqKey="Masuck D" first="David J" last="Masuck">David J. Masuck</name>
<affiliation>
<nlm:affiliation>*Edwin Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; Harold B. Lee Library, Brigham Young University, Provo, Utah, USA; and Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Baish, James W" sort="Baish, James W" uniqKey="Baish J" first="James W" last="Baish">James W. Baish</name>
<affiliation>
<nlm:affiliation>*Edwin Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; Harold B. Lee Library, Brigham Young University, Provo, Utah, USA; and Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Padera, Timothy P" sort="Padera, Timothy P" uniqKey="Padera T" first="Timothy P" last="Padera">Timothy P. Padera</name>
<affiliation>
<nlm:affiliation>*Edwin Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; Harold B. Lee Library, Brigham Young University, Provo, Utah, USA; and Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania, USA tpadera@steele.mgh.harvard.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">FASEB journal : official publication of the Federation of American Societies for Experimental Biology</title>
<idno type="eISSN">1530-6860</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Angiopoietins (genetics)</term>
<term>Angiopoietins (metabolism)</term>
<term>Animals</term>
<term>Capillary Permeability</term>
<term>Endothelial Cells (metabolism)</term>
<term>Endothelial Cells (pathology)</term>
<term>Fibrosarcoma (genetics)</term>
<term>Fibrosarcoma (metabolism)</term>
<term>Fibrosarcoma (pathology)</term>
<term>Humans</term>
<term>Lymphatic Vessels (metabolism)</term>
<term>Lymphatic Vessels (pathology)</term>
<term>Mice</term>
<term>Mice, Nude</term>
<term>Mitogen-Activated Protein Kinase 1 (genetics)</term>
<term>Mitogen-Activated Protein Kinase 1 (metabolism)</term>
<term>Mitogen-Activated Protein Kinase 3 (genetics)</term>
<term>Mitogen-Activated Protein Kinase 3 (metabolism)</term>
<term>Neoplasms, Experimental (genetics)</term>
<term>Neoplasms, Experimental (metabolism)</term>
<term>Neoplasms, Experimental (pathology)</term>
<term>Neovascularization, Pathologic (genetics)</term>
<term>Neovascularization, Pathologic (metabolism)</term>
<term>Neovascularization, Pathologic (pathology)</term>
<term>Vascular Endothelial Growth Factor C (genetics)</term>
<term>Vascular Endothelial Growth Factor C (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Angiopoietins</term>
<term>Mitogen-Activated Protein Kinase 1</term>
<term>Mitogen-Activated Protein Kinase 3</term>
<term>Vascular Endothelial Growth Factor C</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Angiopoietins</term>
<term>Mitogen-Activated Protein Kinase 1</term>
<term>Mitogen-Activated Protein Kinase 3</term>
<term>Vascular Endothelial Growth Factor C</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Fibrosarcoma</term>
<term>Neoplasms, Experimental</term>
<term>Neovascularization, Pathologic</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Endothelial Cells</term>
<term>Fibrosarcoma</term>
<term>Lymphatic Vessels</term>
<term>Neoplasms, Experimental</term>
<term>Neovascularization, Pathologic</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Endothelial Cells</term>
<term>Fibrosarcoma</term>
<term>Lymphatic Vessels</term>
<term>Neoplasms, Experimental</term>
<term>Neovascularization, Pathologic</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Capillary Permeability</term>
<term>Humans</term>
<term>Mice</term>
<term>Mice, Nude</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The angiopoietin (Ang) ligands are potential therapeutic targets for lymphatic related diseases, which include lymphedema and cancer. Ang-1 and Ang-2 functions are established, but those of Ang-4 are poorly understood. We used intravital fluorescence microscopy to characterize Ang-4 actions on T241 murine fibrosarcoma-associated vessels in mice. The diameters of lymphatic vessels draining Ang-4- or VEGF-C (positive control)-expressing tumors increased to 123 and 135 μm, respectively, and parental, mock-transduced (negative controls) and tumors expressing Ang-1 or Ang-2 remained at baseline (∼60 μm). Ang-4 decreased human dermal lymphatic endothelial cell (LEC) monolayer permeability by 27% while increasing human dermal blood endothelial cell (BEC) monolayer permeability by 200%. In vivo, Ang-4 stimulated a 4.5-fold increase in tumor-associated blood vessel permeability compared with control when measured using intravital quantitative multiphoton microscopy. Ang-4 activated receptor signaling in both LECs and BECs, evidenced by tyrosine kinase with Ig and endothelial growth factor homology domains-2 (TIE2) receptor, protein kinase B, and Erk1,2 phosphorylation detectable by immunoblotting. These data suggest that Ang-4 actions are mediated through cell-type-specific networks and that lymphatic vessel dilation occurs secondarily to increased vascular leakage. Ang-4 also promoted survival of LECs. Thus, blocking Ang-4 may prune the draining lymphatic vasculature and decrease interstitial fluid pressure (IFP) by reducing vascular permeability.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25977256</PMID>
<DateCreated>
<Year>2015</Year>
<Month>09</Month>
<Day>02</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>11</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1530-6860</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>29</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2015</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>FASEB journal : official publication of the Federation of American Societies for Experimental Biology</Title>
<ISOAbbreviation>FASEB J.</ISOAbbreviation>
</Journal>
<ArticleTitle>Angiopoietin-4 increases permeability of blood vessels and promotes lymphatic dilation.</ArticleTitle>
<Pagination>
<MedlinePgn>3668-77</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1096/fj.14-268920</ELocationID>
<Abstract>
<AbstractText>The angiopoietin (Ang) ligands are potential therapeutic targets for lymphatic related diseases, which include lymphedema and cancer. Ang-1 and Ang-2 functions are established, but those of Ang-4 are poorly understood. We used intravital fluorescence microscopy to characterize Ang-4 actions on T241 murine fibrosarcoma-associated vessels in mice. The diameters of lymphatic vessels draining Ang-4- or VEGF-C (positive control)-expressing tumors increased to 123 and 135 μm, respectively, and parental, mock-transduced (negative controls) and tumors expressing Ang-1 or Ang-2 remained at baseline (∼60 μm). Ang-4 decreased human dermal lymphatic endothelial cell (LEC) monolayer permeability by 27% while increasing human dermal blood endothelial cell (BEC) monolayer permeability by 200%. In vivo, Ang-4 stimulated a 4.5-fold increase in tumor-associated blood vessel permeability compared with control when measured using intravital quantitative multiphoton microscopy. Ang-4 activated receptor signaling in both LECs and BECs, evidenced by tyrosine kinase with Ig and endothelial growth factor homology domains-2 (TIE2) receptor, protein kinase B, and Erk1,2 phosphorylation detectable by immunoblotting. These data suggest that Ang-4 actions are mediated through cell-type-specific networks and that lymphatic vessel dilation occurs secondarily to increased vascular leakage. Ang-4 also promoted survival of LECs. Thus, blocking Ang-4 may prune the draining lymphatic vasculature and decrease interstitial fluid pressure (IFP) by reducing vascular permeability.</AbstractText>
<CopyrightInformation>© FASEB.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kesler</LastName>
<ForeName>Cristina T</ForeName>
<Initials>CT</Initials>
<AffiliationInfo>
<Affiliation>*Edwin Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; Harold B. Lee Library, Brigham Young University, Provo, Utah, USA; and Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pereira</LastName>
<ForeName>Ethel R</ForeName>
<Initials>ER</Initials>
<AffiliationInfo>
<Affiliation>*Edwin Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; Harold B. Lee Library, Brigham Young University, Provo, Utah, USA; and Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cui</LastName>
<ForeName>Cheryl H</ForeName>
<Initials>CH</Initials>
<AffiliationInfo>
<Affiliation>*Edwin Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; Harold B. Lee Library, Brigham Young University, Provo, Utah, USA; and Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nelson</LastName>
<ForeName>Gregory M</ForeName>
<Initials>GM</Initials>
<AffiliationInfo>
<Affiliation>*Edwin Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; Harold B. Lee Library, Brigham Young University, Provo, Utah, USA; and Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Masuck</LastName>
<ForeName>David J</ForeName>
<Initials>DJ</Initials>
<AffiliationInfo>
<Affiliation>*Edwin Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; Harold B. Lee Library, Brigham Young University, Provo, Utah, USA; and Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Baish</LastName>
<ForeName>James W</ForeName>
<Initials>JW</Initials>
<AffiliationInfo>
<Affiliation>*Edwin Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; Harold B. Lee Library, Brigham Young University, Provo, Utah, USA; and Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Padera</LastName>
<ForeName>Timothy P</ForeName>
<Initials>TP</Initials>
<AffiliationInfo>
<Affiliation>*Edwin Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; Harold B. Lee Library, Brigham Young University, Provo, Utah, USA; and Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania, USA tpadera@steele.mgh.harvard.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R00CA137167</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R00 CA137167</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>C06 CA059267</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>DP2OD008780</GrantID>
<Acronym>OD</Acronym>
<Agency>NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>DP2 OD008780</GrantID>
<Acronym>OD</Acronym>
<Agency>NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>05</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>FASEB J</MedlineTA>
<NlmUniqueID>8804484</NlmUniqueID>
<ISSNLinking>0892-6638</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D042682">Angiopoietins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C495961">Angpt4 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C467486">VEGFC protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D042582">Vascular Endothelial Growth Factor C</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C467483">vascular endothelial growth factor C, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.24</RegistryNumber>
<NameOfSubstance UI="C535150">MAPK1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.24</RegistryNumber>
<NameOfSubstance UI="D019950">Mitogen-Activated Protein Kinase 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.24</RegistryNumber>
<NameOfSubstance UI="D048052">Mitogen-Activated Protein Kinase 3</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer Cell. 2012 Feb 14;21(2):181-95</RefSource>
<PMID Version="1">22340592</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Cell. 2002 Sep;3(3):411-23</RefSource>
<PMID Version="1">12361603</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Natl Cancer Inst. 2013 Aug 21;105(16):1188-201</RefSource>
<PMID Version="1">23899555</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO J. 2001 Feb 15;20(4):672-82</RefSource>
<PMID Version="1">11179212</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Pathol. 2001 Feb;193(2):147-54</RefSource>
<PMID Version="1">11180159</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Med. 2001 Feb;7(2):186-91</RefSource>
<PMID Version="1">11175849</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Virol. 2013 Dec;87(23):12999-3008</RefSource>
<PMID Version="1">24067973</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Epigenetics. 2013 Dec;8(12):1330-46</RefSource>
<PMID Version="1">24135786</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer Res. 2001 Mar 1;61(5):1786-90</RefSource>
<PMID Version="1">11280723</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Imaging. 2002 Jan-Mar;1(1):9-15</RefSource>
<PMID Version="1">12920856</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circ Res. 2003 Oct 3;93(7):664-73</RefSource>
<PMID Version="1">12958144</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Cancer. 2004 Mar 1;108(6):833-8</RefSource>
<PMID Version="1">14712484</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FASEB J. 2004 Aug;18(11):1200-8</RefSource>
<PMID Version="1">15284220</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer Res. 1992 Jan 15;52(2):487-90</RefSource>
<PMID Version="1">1728421</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1997 Jul 4;277(5322):55-60</RefSource>
<PMID Version="1">9204896</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):1904-9</RefSource>
<PMID Version="1">10051567</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2005 May 20;280(20):20126-31</RefSource>
<PMID Version="1">15769741</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer Res. 2005 Nov 1;65(21):9789-98</RefSource>
<PMID Version="1">16267000</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neoplasia. 2006 May;8(5):364-72</RefSource>
<PMID Version="1">16790085</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer Res. 2006 Aug 15;66(16):8065-75</RefSource>
<PMID Version="1">16912183</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Sci. 2006 Sep 1;119(Pt 17):3551-60</RefSource>
<PMID Version="1">16895971</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arterioscler Thromb Vasc Biol. 2007 Mar;27(3):564-70</RefSource>
<PMID Version="1">17194894</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cytokine. 2007 Nov;40(2):144-50</RefSource>
<PMID Version="1">17959386</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Cell. 2008 Jan;14(1):25-36</RefSource>
<PMID Version="1">18194650</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Cell Biol. 2008 May;10(5):527-37</RefSource>
<PMID Version="1">18425119</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Cell Biol. 2008 May;10(5):513-26</RefSource>
<PMID Version="1">18425120</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Mol Cell Biol. 2009 Mar;10(3):165-77</RefSource>
<PMID Version="1">19234476</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Cancer Res. 2010 Jul 15;16(14):3618-27</RefSource>
<PMID Version="1">20501615</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Cancer. 2010 Aug;10(8):575-85</RefSource>
<PMID Version="1">20651738</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer Res. 2010 Sep 15;70(18):7283-93</RefSource>
<PMID Version="1">20823154</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2011;6(5):e19773</RefSource>
<PMID Version="1">21603628</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Med. 2001 Feb;7(2):192-8</RefSource>
<PMID Version="1">11175850</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2010 Jul 30;285(31):23842-9</RefSource>
<PMID Version="1">20519501</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer Res. 2001 Mar 15;61(6):2404-8</RefSource>
<PMID Version="1">11289105</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Cancer Res. 2001 Apr;7(4):918-27</RefSource>
<PMID Version="1">11309342</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2001 Jul 13;276(28):26516-25</RefSource>
<PMID Version="1">11346644</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2002 Jun 7;296(5574):1883-6</RefSource>
<PMID Version="1">11976409</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11205-10</RefSource>
<PMID Version="1">12163646</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Pathol. 2012 Jun;180(6):2561-75</RefSource>
<PMID Version="1">22538088</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D042682" MajorTopicYN="N">Angiopoietins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002199" MajorTopicYN="Y">Capillary Permeability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042783" MajorTopicYN="N">Endothelial Cells</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005354" MajorTopicYN="N">Fibrosarcoma</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042601" MajorTopicYN="N">Lymphatic Vessels</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008819" MajorTopicYN="N">Mice, Nude</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019950" MajorTopicYN="N">Mitogen-Activated Protein Kinase 1</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048052" MajorTopicYN="N">Mitogen-Activated Protein Kinase 3</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009374" MajorTopicYN="N">Neoplasms, Experimental</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009389" MajorTopicYN="N">Neovascularization, Pathologic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042582" MajorTopicYN="N">Vascular Endothelial Growth Factor C</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4550378</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">2-photon microscopy</Keyword>
<Keyword MajorTopicYN="N">TIE2</Keyword>
<Keyword MajorTopicYN="N">endothelial</Keyword>
<Keyword MajorTopicYN="N">lymphangiography</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>12</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>05</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>5</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>5</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25977256</ArticleId>
<ArticleId IdType="pii">fj.14-268920</ArticleId>
<ArticleId IdType="doi">10.1096/fj.14-268920</ArticleId>
<ArticleId IdType="pmc">PMC4550378</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E91 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000E91 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25977256
   |texte=   Angiopoietin-4 increases permeability of blood vessels and promotes lymphatic dilation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25977256" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a LymphedemaV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024