Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quantification of the passive and active biaxial mechanical behaviour and microstructural organization of rat thoracic ducts.

Identifieur interne : 000E54 ( PubMed/Corpus ); précédent : 000E53; suivant : 000E55

Quantification of the passive and active biaxial mechanical behaviour and microstructural organization of rat thoracic ducts.

Auteurs : Alexander W. Caulk ; Zhanna V. Nepiyushchikh ; Ryan Shaw ; J Brandon Dixon ; Rudolph L. Gleason

Source :

RBID : pubmed:26040600

English descriptors

Abstract

Mechanical loading conditions are likely to play a key role in passive and active (contractile) behaviour of lymphatic vessels. The development of a microstructurally motivated model of lymphatic tissue is necessary for quantification of mechanically mediated maladaptive remodelling in the lymphatic vasculature. Towards this end, we performed cylindrical biaxial testing of Sprague-Dawley rat thoracic ducts (n = 6) and constitutive modelling to characterize their mechanical behaviour. Spontaneous contraction was quantified at transmural pressures of 3, 6 and 9 cmH2O. Cyclic inflation in calcium-free saline was performed at fixed axial stretches between 1.30 and 1.60, while recording pressure, outer diameter and axial force. A microstructurally motivated four-fibre family constitutive model originally proposed by Holzapfel et al. (Holzapfel et al. 2000 J. Elast. 61, 1-48. (doi:10.1023/A:1010835316564)) was used to quantify the passive mechanical response, and the model of Rachev and Hayashi was used to quantify the active (contractile) mechanical response. The average error between data and theory was 8.9 ± 0.8% for passive data and 6.6 ± 2.6% and 6.8 ± 3.4% for the systolic and basal conditions, respectively, for active data. Multi-photon microscopy was performed to quantify vessel wall thickness (32.2 ± 1.60 µm) and elastin and collagen organization for three loading conditions. Elastin exhibited structural 'fibre families' oriented nearly circumferentially and axially. Sample-to-sample variation was observed in collagen fibre distributions, which were often non-axisymmetric, suggesting material asymmetry. In closure, this paper presents a microstructurally motivated model that accurately captures the biaxial active and passive mechanical behaviour in lymphatics and offers potential for future research to identify parameters contributing to mechanically mediated disease development.

DOI: 10.1098/rsif.2015.0280
PubMed: 26040600

Links to Exploration step

pubmed:26040600

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Quantification of the passive and active biaxial mechanical behaviour and microstructural organization of rat thoracic ducts.</title>
<author>
<name sortKey="Caulk, Alexander W" sort="Caulk, Alexander W" uniqKey="Caulk A" first="Alexander W" last="Caulk">Alexander W. Caulk</name>
<affiliation>
<nlm:affiliation>The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nepiyushchikh, Zhanna V" sort="Nepiyushchikh, Zhanna V" uniqKey="Nepiyushchikh Z" first="Zhanna V" last="Nepiyushchikh">Zhanna V. Nepiyushchikh</name>
<affiliation>
<nlm:affiliation>The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shaw, Ryan" sort="Shaw, Ryan" uniqKey="Shaw R" first="Ryan" last="Shaw">Ryan Shaw</name>
<affiliation>
<nlm:affiliation>The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dixon, J Brandon" sort="Dixon, J Brandon" uniqKey="Dixon J" first="J Brandon" last="Dixon">J Brandon Dixon</name>
<affiliation>
<nlm:affiliation>The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gleason, Rudolph L" sort="Gleason, Rudolph L" uniqKey="Gleason R" first="Rudolph L" last="Gleason">Rudolph L. Gleason</name>
<affiliation>
<nlm:affiliation>The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA rudy.gleason@me.gatech.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26040600</idno>
<idno type="pmid">26040600</idno>
<idno type="doi">10.1098/rsif.2015.0280</idno>
<idno type="wicri:Area/PubMed/Corpus">000E54</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000E54</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Quantification of the passive and active biaxial mechanical behaviour and microstructural organization of rat thoracic ducts.</title>
<author>
<name sortKey="Caulk, Alexander W" sort="Caulk, Alexander W" uniqKey="Caulk A" first="Alexander W" last="Caulk">Alexander W. Caulk</name>
<affiliation>
<nlm:affiliation>The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nepiyushchikh, Zhanna V" sort="Nepiyushchikh, Zhanna V" uniqKey="Nepiyushchikh Z" first="Zhanna V" last="Nepiyushchikh">Zhanna V. Nepiyushchikh</name>
<affiliation>
<nlm:affiliation>The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shaw, Ryan" sort="Shaw, Ryan" uniqKey="Shaw R" first="Ryan" last="Shaw">Ryan Shaw</name>
<affiliation>
<nlm:affiliation>The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dixon, J Brandon" sort="Dixon, J Brandon" uniqKey="Dixon J" first="J Brandon" last="Dixon">J Brandon Dixon</name>
<affiliation>
<nlm:affiliation>The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gleason, Rudolph L" sort="Gleason, Rudolph L" uniqKey="Gleason R" first="Rudolph L" last="Gleason">Rudolph L. Gleason</name>
<affiliation>
<nlm:affiliation>The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA rudy.gleason@me.gatech.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of the Royal Society, Interface</title>
<idno type="eISSN">1742-5662</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Elastin (metabolism)</term>
<term>Male</term>
<term>Models, Biological</term>
<term>Pressure</term>
<term>Rats</term>
<term>Rats, Sprague-Dawley</term>
<term>Stress, Mechanical</term>
<term>Thoracic Duct (cytology)</term>
<term>Thoracic Duct (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Elastin</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Thoracic Duct</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Thoracic Duct</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Male</term>
<term>Models, Biological</term>
<term>Pressure</term>
<term>Rats</term>
<term>Rats, Sprague-Dawley</term>
<term>Stress, Mechanical</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mechanical loading conditions are likely to play a key role in passive and active (contractile) behaviour of lymphatic vessels. The development of a microstructurally motivated model of lymphatic tissue is necessary for quantification of mechanically mediated maladaptive remodelling in the lymphatic vasculature. Towards this end, we performed cylindrical biaxial testing of Sprague-Dawley rat thoracic ducts (n = 6) and constitutive modelling to characterize their mechanical behaviour. Spontaneous contraction was quantified at transmural pressures of 3, 6 and 9 cmH2O. Cyclic inflation in calcium-free saline was performed at fixed axial stretches between 1.30 and 1.60, while recording pressure, outer diameter and axial force. A microstructurally motivated four-fibre family constitutive model originally proposed by Holzapfel et al. (Holzapfel et al. 2000 J. Elast. 61, 1-48. (doi:10.1023/A:1010835316564)) was used to quantify the passive mechanical response, and the model of Rachev and Hayashi was used to quantify the active (contractile) mechanical response. The average error between data and theory was 8.9 ± 0.8% for passive data and 6.6 ± 2.6% and 6.8 ± 3.4% for the systolic and basal conditions, respectively, for active data. Multi-photon microscopy was performed to quantify vessel wall thickness (32.2 ± 1.60 µm) and elastin and collagen organization for three loading conditions. Elastin exhibited structural 'fibre families' oriented nearly circumferentially and axially. Sample-to-sample variation was observed in collagen fibre distributions, which were often non-axisymmetric, suggesting material asymmetry. In closure, this paper presents a microstructurally motivated model that accurately captures the biaxial active and passive mechanical behaviour in lymphatics and offers potential for future research to identify parameters contributing to mechanically mediated disease development.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26040600</PMID>
<DateCreated>
<Year>2015</Year>
<Month>06</Month>
<Day>04</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>03</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>10</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1742-5662</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>108</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jul</Month>
<Day>06</Day>
</PubDate>
</JournalIssue>
<Title>Journal of the Royal Society, Interface</Title>
<ISOAbbreviation>J R Soc Interface</ISOAbbreviation>
</Journal>
<ArticleTitle>Quantification of the passive and active biaxial mechanical behaviour and microstructural organization of rat thoracic ducts.</ArticleTitle>
<Pagination>
<MedlinePgn>20150280</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1098/rsif.2015.0280</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">20150280</ELocationID>
<Abstract>
<AbstractText>Mechanical loading conditions are likely to play a key role in passive and active (contractile) behaviour of lymphatic vessels. The development of a microstructurally motivated model of lymphatic tissue is necessary for quantification of mechanically mediated maladaptive remodelling in the lymphatic vasculature. Towards this end, we performed cylindrical biaxial testing of Sprague-Dawley rat thoracic ducts (n = 6) and constitutive modelling to characterize their mechanical behaviour. Spontaneous contraction was quantified at transmural pressures of 3, 6 and 9 cmH2O. Cyclic inflation in calcium-free saline was performed at fixed axial stretches between 1.30 and 1.60, while recording pressure, outer diameter and axial force. A microstructurally motivated four-fibre family constitutive model originally proposed by Holzapfel et al. (Holzapfel et al. 2000 J. Elast. 61, 1-48. (doi:10.1023/A:1010835316564)) was used to quantify the passive mechanical response, and the model of Rachev and Hayashi was used to quantify the active (contractile) mechanical response. The average error between data and theory was 8.9 ± 0.8% for passive data and 6.6 ± 2.6% and 6.8 ± 3.4% for the systolic and basal conditions, respectively, for active data. Multi-photon microscopy was performed to quantify vessel wall thickness (32.2 ± 1.60 µm) and elastin and collagen organization for three loading conditions. Elastin exhibited structural 'fibre families' oriented nearly circumferentially and axially. Sample-to-sample variation was observed in collagen fibre distributions, which were often non-axisymmetric, suggesting material asymmetry. In closure, this paper presents a microstructurally motivated model that accurately captures the biaxial active and passive mechanical behaviour in lymphatics and offers potential for future research to identify parameters contributing to mechanically mediated disease development.</AbstractText>
<CopyrightInformation>© 2015 The Author(s) Published by the Royal Society. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Caulk</LastName>
<ForeName>Alexander W</ForeName>
<Initials>AW</Initials>
<AffiliationInfo>
<Affiliation>The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nepiyushchikh</LastName>
<ForeName>Zhanna V</ForeName>
<Initials>ZV</Initials>
<AffiliationInfo>
<Affiliation>The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shaw</LastName>
<ForeName>Ryan</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dixon</LastName>
<ForeName>J Brandon</ForeName>
<Initials>JB</Initials>
<AffiliationInfo>
<Affiliation>The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gleason</LastName>
<ForeName>Rudolph L</ForeName>
<Initials>RL</Initials>
<Suffix>Jr</Suffix>
<AffiliationInfo>
<Affiliation>The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA rudy.gleason@me.gatech.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 HL113061</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01-HL113061</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J R Soc Interface</MedlineTA>
<NlmUniqueID>101217269</NlmUniqueID>
<ISSNLinking>1742-5662</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>9007-58-3</RegistryNumber>
<NameOfSubstance UI="D004549">Elastin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Comput Biol Med. 1977 Jul;7(3):181-97</RefSource>
<PMID Version="1">891141</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2008 Jul;295(1):H305-13</RefSource>
<PMID Version="1">18487438</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Biomed Eng. 1993;21(1):33-43</RefSource>
<PMID Version="1">8434818</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Biomed Eng. 1999 Jul-Aug;27(4):459-68</RefSource>
<PMID Version="1">10468230</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lymphat Res Biol. 2003;1(2):147-58</RefSource>
<PMID Version="1">15624422</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech Eng. 2004 Dec;126(6):787-95</RefSource>
<PMID Version="1">15796337</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Math Med Biol. 2005 Dec;22(4):347-69</RefSource>
<PMID Version="1">16319121</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur Spine J. 2006 Sep;15(9):1347-51</RefSource>
<PMID Version="1">16544156</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2006 Sep 15;575(Pt 3):821-32</RefSource>
<PMID Version="1">16809357</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Regul Integr Comp Physiol. 2007 Apr;292(4):R1510-8</RefSource>
<PMID Version="1">17122333</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microcirculation. 2007 Aug;14(6):613-25</RefSource>
<PMID Version="1">17710632</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2012;7(7):e41126</RefSource>
<PMID Version="1">22911751</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hypertension. 2008 Aug;52(2):195-200</RefSource>
<PMID Version="1">18541735</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J R Soc Interface. 2009 Mar 6;6(32):293-306</RefSource>
<PMID Version="1">18647735</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol. 1999 Dec;277(6 Pt 2):R1683-9</RefSource>
<PMID Version="1">10600914</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biorheology. 1999;36(5-6):391-9</RefSource>
<PMID Version="1">10818637</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2002 May 1;540(Pt 3):1023-37</RefSource>
<PMID Version="1">11986387</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FASEB J. 2003 May;17(8):920-2</RefSource>
<PMID Version="1">12670880</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech. 2004 Jul;37(7):989-1000</RefSource>
<PMID Version="1">15165869</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech Eng. 2004 Apr;126(2):264-75</RefSource>
<PMID Version="1">15179858</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech Eng. 2004 Jun;126(3):371-81</RefSource>
<PMID Version="1">15341175</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microcirculation. 2004 Sep;11(6):477-92</RefSource>
<PMID Version="1">15371129</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2004 Oct;87(4):2778-86</RefSource>
<PMID Version="1">15454469</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Blood Vessels. 1975;12(5):261-78</RefSource>
<PMID Version="1">1182313</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2007 Apr;292(4):H1943-52</RefSource>
<PMID Version="1">17172274</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2009 Feb;296(2):H293-302</RefSource>
<PMID Version="1">19028793</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Biomed Eng. 2009 Jun;37(6):1093-104</RefSource>
<PMID Version="1">19350391</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech Eng. 2009 Oct;131(10):101015</RefSource>
<PMID Version="1">19831485</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech Eng. 2009 Nov;131(11):111004</RefSource>
<PMID Version="1">20353255</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Anat. 2010 May;216(5):547-55</RefSource>
<PMID Version="1">20345855</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomech Model Mechanobiol. 2010 Aug;9(4):403-19</RefSource>
<PMID Version="1">20039091</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Endocrinol Metab. 2010 Aug;21(8):480-7</RefSource>
<PMID Version="1">20541951</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Biomed Eng. 2010 Dec;38(12):3605-17</RefSource>
<PMID Version="1">20614245</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J R Soc Interface. 2011 Mar 6;8(56):435-50</RefSource>
<PMID Version="1">20659928</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2011 Jul;301(1):H48-60</RefSource>
<PMID Version="1">21460194</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Med. 2011;17(11):1371-80</RefSource>
<PMID Version="1">22064427</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lymphat Res Biol. 2012 Mar;10(1):14-9</RefSource>
<PMID Version="1">22416912</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2012 Jun 20;102(12):2916-25</RefSource>
<PMID Version="1">22735542</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2012 Oct 1;303(7):H809-24</RefSource>
<PMID Version="1">22865389</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2012 Oct 1;303(7):H795-808</RefSource>
<PMID Version="1">22886407</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lymphat Res Biol. 2012 Dec;10(4):152-63</RefSource>
<PMID Version="1">23145980</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech. 2013 Jan 4;46(1):183-6</RefSource>
<PMID Version="1">23178036</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomech Model Mechanobiol. 2013 Jun;12(3):497-510</RefSource>
<PMID Version="1">22790326</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomech Model Mechanobiol. 2014 Apr;13(2):401-16</RefSource>
<PMID Version="1">23801424</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech. 1986;19(5):351-8</RefSource>
<PMID Version="1">3733760</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004549" MajorTopicYN="N">Elastin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="Y">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011312" MajorTopicYN="N">Pressure</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017207" MajorTopicYN="N">Rats, Sprague-Dawley</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013314" MajorTopicYN="Y">Stress, Mechanical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013897" MajorTopicYN="N">Thoracic Duct</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4528593</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">biomechanics</Keyword>
<Keyword MajorTopicYN="N">lumped parameter</Keyword>
<Keyword MajorTopicYN="N">lymph transport</Keyword>
<Keyword MajorTopicYN="N">lymphoedema</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>6</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>6</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>3</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26040600</ArticleId>
<ArticleId IdType="pii">rsif.2015.0280</ArticleId>
<ArticleId IdType="doi">10.1098/rsif.2015.0280</ArticleId>
<ArticleId IdType="pmc">PMC4528593</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E54 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000E54 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26040600
   |texte=   Quantification of the passive and active biaxial mechanical behaviour and microstructural organization of rat thoracic ducts.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26040600" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a LymphedemaV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024