Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Determining the combined effect of the lymphatic valve leaflets and sinus on resistance to forward flow.

Identifieur interne : 000C88 ( PubMed/Corpus ); précédent : 000C87; suivant : 000C89

Determining the combined effect of the lymphatic valve leaflets and sinus on resistance to forward flow.

Auteurs : John T. Wilson ; Raoul Van Loon ; Wei Wang ; David C. Zawieja ; James E. Moore

Source :

RBID : pubmed:26315921

English descriptors

Abstract

The lymphatic system is vital to a proper maintenance of fluid and solute homeostasis. Collecting lymphatics are composed of actively contracting tubular vessels segmented by bulbous sinus regions that encapsulate bi-leaflet check valves. Valve resistance to forward flow strongly influences pumping performance. However, because of the sub-millimeter size of the vessels with flow rates typically <1 ml/h and pressures of a few cmH2O, resistance is difficult to measure experimentally. Using a newly defined idealized geometry, we employed an uncoupled approach where the solid leaflet deflections of the open valve were computed and lymph flow calculations were subsequently performed. We sought to understand: 1) the effect of sinus and leaflet size on the resulting deflections experienced by the valve leaflets and 2) the effects on valve resistance to forward flow of the fully open valve. For geometries with sinus-to-root diameter ratios >1.39, the average resistance to forward flow was 0.95×10(6)[g/(cm4 s)]. Compared to the viscous pressure drop that would occur in a straight tube the same diameter as the upstream lymphangion, valve leaflets alone increase the pressure drop up to 35%. However, the presence of the sinus reduces viscous losses, with the net effect that when combined with leaflets the overall resistance is less than that of the equivalent continuing straight tube. Accurately quantifying resistance to forward flow will add to the knowledge used to develop therapeutics for treating lymphatic disorders and may eventually lead to understanding some forms of primary lymphedema.

DOI: 10.1016/j.jbiomech.2015.07.045
PubMed: 26315921

Links to Exploration step

pubmed:26315921

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Determining the combined effect of the lymphatic valve leaflets and sinus on resistance to forward flow.</title>
<author>
<name sortKey="Wilson, John T" sort="Wilson, John T" uniqKey="Wilson J" first="John T" last="Wilson">John T. Wilson</name>
<affiliation>
<nlm:affiliation>Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Van Loon, Raoul" sort="Van Loon, Raoul" uniqKey="Van Loon R" first="Raoul" last="Van Loon">Raoul Van Loon</name>
<affiliation>
<nlm:affiliation>College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Wei" sort="Wang, Wei" uniqKey="Wang W" first="Wei" last="Wang">Wei Wang</name>
<affiliation>
<nlm:affiliation>Department of Medical Physiology, Texas A&M Health Science Center, 702 Southwest H.K. Dodgen Loop, Temple, TX 76504, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zawieja, David C" sort="Zawieja, David C" uniqKey="Zawieja D" first="David C" last="Zawieja">David C. Zawieja</name>
<affiliation>
<nlm:affiliation>Department of Medical Physiology, Texas A&M Health Science Center, 702 Southwest H.K. Dodgen Loop, Temple, TX 76504, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Moore, James E" sort="Moore, James E" uniqKey="Moore J" first="James E" last="Moore">James E. Moore</name>
<affiliation>
<nlm:affiliation>Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Electronic address: james.moore.jr@imperial.ac.uk.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26315921</idno>
<idno type="pmid">26315921</idno>
<idno type="doi">10.1016/j.jbiomech.2015.07.045</idno>
<idno type="wicri:Area/PubMed/Corpus">000C88</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000C88</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Determining the combined effect of the lymphatic valve leaflets and sinus on resistance to forward flow.</title>
<author>
<name sortKey="Wilson, John T" sort="Wilson, John T" uniqKey="Wilson J" first="John T" last="Wilson">John T. Wilson</name>
<affiliation>
<nlm:affiliation>Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Van Loon, Raoul" sort="Van Loon, Raoul" uniqKey="Van Loon R" first="Raoul" last="Van Loon">Raoul Van Loon</name>
<affiliation>
<nlm:affiliation>College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Wei" sort="Wang, Wei" uniqKey="Wang W" first="Wei" last="Wang">Wei Wang</name>
<affiliation>
<nlm:affiliation>Department of Medical Physiology, Texas A&M Health Science Center, 702 Southwest H.K. Dodgen Loop, Temple, TX 76504, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zawieja, David C" sort="Zawieja, David C" uniqKey="Zawieja D" first="David C" last="Zawieja">David C. Zawieja</name>
<affiliation>
<nlm:affiliation>Department of Medical Physiology, Texas A&M Health Science Center, 702 Southwest H.K. Dodgen Loop, Temple, TX 76504, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Moore, James E" sort="Moore, James E" uniqKey="Moore J" first="James E" last="Moore">James E. Moore</name>
<affiliation>
<nlm:affiliation>Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Electronic address: james.moore.jr@imperial.ac.uk.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of biomechanics</title>
<idno type="eISSN">1873-2380</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computer Simulation</term>
<term>Humans</term>
<term>Hydrodynamics</term>
<term>Lymph (physiology)</term>
<term>Lymphatic Vessels (anatomy & histology)</term>
<term>Lymphatic Vessels (physiology)</term>
<term>Models, Biological</term>
<term>Pressure</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Lymphatic Vessels</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Lymph</term>
<term>Lymphatic Vessels</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computer Simulation</term>
<term>Humans</term>
<term>Hydrodynamics</term>
<term>Models, Biological</term>
<term>Pressure</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The lymphatic system is vital to a proper maintenance of fluid and solute homeostasis. Collecting lymphatics are composed of actively contracting tubular vessels segmented by bulbous sinus regions that encapsulate bi-leaflet check valves. Valve resistance to forward flow strongly influences pumping performance. However, because of the sub-millimeter size of the vessels with flow rates typically <1 ml/h and pressures of a few cmH2O, resistance is difficult to measure experimentally. Using a newly defined idealized geometry, we employed an uncoupled approach where the solid leaflet deflections of the open valve were computed and lymph flow calculations were subsequently performed. We sought to understand: 1) the effect of sinus and leaflet size on the resulting deflections experienced by the valve leaflets and 2) the effects on valve resistance to forward flow of the fully open valve. For geometries with sinus-to-root diameter ratios >1.39, the average resistance to forward flow was 0.95×10(6)[g/(cm4 s)]. Compared to the viscous pressure drop that would occur in a straight tube the same diameter as the upstream lymphangion, valve leaflets alone increase the pressure drop up to 35%. However, the presence of the sinus reduces viscous losses, with the net effect that when combined with leaflets the overall resistance is less than that of the equivalent continuing straight tube. Accurately quantifying resistance to forward flow will add to the knowledge used to develop therapeutics for treating lymphatic disorders and may eventually lead to understanding some forms of primary lymphedema.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26315921</PMID>
<DateCreated>
<Year>2015</Year>
<Month>10</Month>
<Day>11</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>07</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>10</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-2380</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>48</Volume>
<Issue>13</Issue>
<PubDate>
<Year>2015</Year>
<Month>Oct</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Journal of biomechanics</Title>
<ISOAbbreviation>J Biomech</ISOAbbreviation>
</Journal>
<ArticleTitle>Determining the combined effect of the lymphatic valve leaflets and sinus on resistance to forward flow.</ArticleTitle>
<Pagination>
<MedlinePgn>3584-90</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jbiomech.2015.07.045</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0021-9290(15)00442-X</ELocationID>
<Abstract>
<AbstractText>The lymphatic system is vital to a proper maintenance of fluid and solute homeostasis. Collecting lymphatics are composed of actively contracting tubular vessels segmented by bulbous sinus regions that encapsulate bi-leaflet check valves. Valve resistance to forward flow strongly influences pumping performance. However, because of the sub-millimeter size of the vessels with flow rates typically <1 ml/h and pressures of a few cmH2O, resistance is difficult to measure experimentally. Using a newly defined idealized geometry, we employed an uncoupled approach where the solid leaflet deflections of the open valve were computed and lymph flow calculations were subsequently performed. We sought to understand: 1) the effect of sinus and leaflet size on the resulting deflections experienced by the valve leaflets and 2) the effects on valve resistance to forward flow of the fully open valve. For geometries with sinus-to-root diameter ratios >1.39, the average resistance to forward flow was 0.95×10(6)[g/(cm4 s)]. Compared to the viscous pressure drop that would occur in a straight tube the same diameter as the upstream lymphangion, valve leaflets alone increase the pressure drop up to 35%. However, the presence of the sinus reduces viscous losses, with the net effect that when combined with leaflets the overall resistance is less than that of the equivalent continuing straight tube. Accurately quantifying resistance to forward flow will add to the knowledge used to develop therapeutics for treating lymphatic disorders and may eventually lead to understanding some forms of primary lymphedema.</AbstractText>
<CopyrightInformation>Copyright © 2015. Published by Elsevier Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wilson</LastName>
<ForeName>John T</ForeName>
<Initials>JT</Initials>
<AffiliationInfo>
<Affiliation>Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>van Loon</LastName>
<ForeName>Raoul</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Wei</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Department of Medical Physiology, Texas A&M Health Science Center, 702 Southwest H.K. Dodgen Loop, Temple, TX 76504, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zawieja</LastName>
<ForeName>David C</ForeName>
<Initials>DC</Initials>
<AffiliationInfo>
<Affiliation>Department of Medical Physiology, Texas A&M Health Science Center, 702 Southwest H.K. Dodgen Loop, Temple, TX 76504, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Moore</LastName>
<ForeName>James E</ForeName>
<Initials>JE</Initials>
<Suffix>Jr</Suffix>
<AffiliationInfo>
<Affiliation>Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Electronic address: james.moore.jr@imperial.ac.uk.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01HL096552</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U01 HL123420</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U01HL123420</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01HL094269</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL094269</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL096552</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>08</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biomech</MedlineTA>
<NlmUniqueID>0157375</NlmUniqueID>
<ISSNLinking>0021-9290</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech Eng. 2001 Apr;123(2):134-44</RefSource>
<PMID Version="1">11340874</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Med. 2004 Sep;10(9):974-81</RefSource>
<PMID Version="1">15322537</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lymphology. 1991 Dec;24(4):174-83</RefSource>
<PMID Version="1">1791728</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Protein Chem. 2005;70:437-61</RefSource>
<PMID Version="1">15837523</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microcirculation. 2006 Oct-Nov;13(7):597-610</RefSource>
<PMID Version="1">16990218</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech. 2007;40(3):586-94</RefSource>
<PMID Version="1">16643925</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circulation. 2007 Apr 10;115(14):1912-20</RefSource>
<PMID Version="1">17372167</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech. 2009 Jun 19;42(9):1320-5</RefSource>
<PMID Version="1">19394942</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Biomed Eng. 2009 Aug;37(8):1572-83</RefSource>
<PMID Version="1">19484387</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mech Behav Biomed Mater. 2009 Jul;2(3):288-96</RefSource>
<PMID Version="1">19627833</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2009 Oct;297(4):H1319-28</RefSource>
<PMID Version="1">19666850</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Parasite Immunol. 2009 Nov;31(11):664-72</RefSource>
<PMID Version="1">19825106</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2011 Jul;301(1):H48-60</RefSource>
<PMID Version="1">21460194</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2011 Nov;301(5):H1897-906</RefSource>
<PMID Version="1">21890688</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lymphat Res Biol. 2012 Dec;10(4):152-63</RefSource>
<PMID Version="1">23145980</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FASEB J. 2013 Mar;27(3):1114-26</RefSource>
<PMID Version="1">23193171</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech Eng. 2013 May;135(5):51005</RefSource>
<PMID Version="1">24231961</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2013 Dec;305(12):H1709-17</RefSource>
<PMID Version="1">24124185</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomech Model Mechanobiol. 2014 Apr;13(2):401-16</RefSource>
<PMID Version="1">23801424</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Comput Methods Biomech Biomed Engin. 2014;17(14):1519-34</RefSource>
<PMID Version="1">23387996</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057446" MajorTopicYN="N">Hydrodynamics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008196" MajorTopicYN="N">Lymph</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042601" MajorTopicYN="N">Lymphatic Vessels</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="Y">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011312" MajorTopicYN="N">Pressure</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS715309 [Available on 10/15/16]</OtherID>
<OtherID Source="NLM">PMC4600660 [Available on 10/15/16]</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Computational fluid dynamics</Keyword>
<Keyword MajorTopicYN="N">Finite element analysis</Keyword>
<Keyword MajorTopicYN="N">Flow resistance</Keyword>
<Keyword MajorTopicYN="N">Lymphatic valves</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>06</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2015</Year>
<Month>07</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>07</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>8</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>9</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>7</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26315921</ArticleId>
<ArticleId IdType="pii">S0021-9290(15)00442-X</ArticleId>
<ArticleId IdType="doi">10.1016/j.jbiomech.2015.07.045</ArticleId>
<ArticleId IdType="pmc">PMC4600660</ArticleId>
<ArticleId IdType="mid">NIHMS715309</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C88 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000C88 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26315921
   |texte=   Determining the combined effect of the lymphatic valve leaflets and sinus on resistance to forward flow.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26315921" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a LymphedemaV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024