Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Segregated Foxc2, NFATc1 and Connexin expression at normal developing venous valves, and Connexin-specific differences in the valve phenotypes of Cx37, Cx43, and Cx47 knockout mice.

Identifieur interne : 000955 ( PubMed/Corpus ); précédent : 000954; suivant : 000956

Segregated Foxc2, NFATc1 and Connexin expression at normal developing venous valves, and Connexin-specific differences in the valve phenotypes of Cx37, Cx43, and Cx47 knockout mice.

Auteurs : Stephanie J. Munger ; Xin Geng ; R Sathish Srinivasan ; Marlys H. Witte ; David L. Paul ; Alexander M. Simon

Source :

RBID : pubmed:26953188

English descriptors

Abstract

Venous valves (VVs) are critical for unidirectional blood flow from superficial and deep veins towards the heart. Congenital valve aplasia or agenesis may, in some cases, be a direct cause of vascular disease, motivating an understanding of the molecular mechanisms underlying the development and maintenance of VVs. Three gap junction proteins (Connexins), Cx37, Cx43, and Cx47, are specifically expressed at VVs in a highly polarized fashion. VVs are absent from adult mice lacking Cx37; however it is not known if Cx37 is required for the initial formation of valves. In addition, the requirement of Cx43 and Cx47 for VV development has not been studied. Here, we provide a detailed description of Cx37, Cx43, and Cx47 expression during mouse vein development and show by gene knockout that each Cx is necessary for normal valve development. The valve phenotypes in the knockout lines exhibit Cx-specific differences, however, including whether peripheral or central VVs are affected by gene inactivation. In addition, we show that a Cx47 null mutation impairs peripheral VV development but does not affect lymphatic valve formation, a finding of significance for understanding how some CX47 mutations cause inherited lymphedema in humans. Finally, we demonstrate a striking segregation of Foxc2 and NFATc1 transcription factor expression between the downstream and upstream faces, respectively, of developing VV leaflets and show that this segregation is closely associated with the highly polarized expression of Cx37, Cx43, and Cx47. The partition of Foxc2 and NFATc1 expression at VV leaflets makes it unlikely that these factors directly cooperate during the leaflet elongation stage of VV development.

DOI: 10.1016/j.ydbio.2016.02.033
PubMed: 26953188

Links to Exploration step

pubmed:26953188

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Segregated Foxc2, NFATc1 and Connexin expression at normal developing venous valves, and Connexin-specific differences in the valve phenotypes of Cx37, Cx43, and Cx47 knockout mice.</title>
<author>
<name sortKey="Munger, Stephanie J" sort="Munger, Stephanie J" uniqKey="Munger S" first="Stephanie J" last="Munger">Stephanie J. Munger</name>
<affiliation>
<nlm:affiliation>Department of Physiology, University of Arizona, Tucson, AZ 85724, USA. Electronic address: sjmunger@email.arizona.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Geng, Xin" sort="Geng, Xin" uniqKey="Geng X" first="Xin" last="Geng">Xin Geng</name>
<affiliation>
<nlm:affiliation>Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA. Electronic address: Xin-geng@omrf.org.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Srinivasan, R Sathish" sort="Srinivasan, R Sathish" uniqKey="Srinivasan R" first="R Sathish" last="Srinivasan">R Sathish Srinivasan</name>
<affiliation>
<nlm:affiliation>Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA. Electronic address: Sathish-Srinivasan@omrf.org.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Witte, Marlys H" sort="Witte, Marlys H" uniqKey="Witte M" first="Marlys H" last="Witte">Marlys H. Witte</name>
<affiliation>
<nlm:affiliation>Department of Surgery, University of Arizona, Tucson, AZ 85724, USA. Electronic address: grace@surgery.arizona.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Paul, David L" sort="Paul, David L" uniqKey="Paul D" first="David L" last="Paul">David L. Paul</name>
<affiliation>
<nlm:affiliation>Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA. Electronic address: dpaul@hms.harvard.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Simon, Alexander M" sort="Simon, Alexander M" uniqKey="Simon A" first="Alexander M" last="Simon">Alexander M. Simon</name>
<affiliation>
<nlm:affiliation>Department of Physiology, University of Arizona, Tucson, AZ 85724, USA. Electronic address: amsimon@email.arizona.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26953188</idno>
<idno type="pmid">26953188</idno>
<idno type="doi">10.1016/j.ydbio.2016.02.033</idno>
<idno type="wicri:Area/PubMed/Corpus">000955</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000955</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Segregated Foxc2, NFATc1 and Connexin expression at normal developing venous valves, and Connexin-specific differences in the valve phenotypes of Cx37, Cx43, and Cx47 knockout mice.</title>
<author>
<name sortKey="Munger, Stephanie J" sort="Munger, Stephanie J" uniqKey="Munger S" first="Stephanie J" last="Munger">Stephanie J. Munger</name>
<affiliation>
<nlm:affiliation>Department of Physiology, University of Arizona, Tucson, AZ 85724, USA. Electronic address: sjmunger@email.arizona.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Geng, Xin" sort="Geng, Xin" uniqKey="Geng X" first="Xin" last="Geng">Xin Geng</name>
<affiliation>
<nlm:affiliation>Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA. Electronic address: Xin-geng@omrf.org.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Srinivasan, R Sathish" sort="Srinivasan, R Sathish" uniqKey="Srinivasan R" first="R Sathish" last="Srinivasan">R Sathish Srinivasan</name>
<affiliation>
<nlm:affiliation>Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA. Electronic address: Sathish-Srinivasan@omrf.org.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Witte, Marlys H" sort="Witte, Marlys H" uniqKey="Witte M" first="Marlys H" last="Witte">Marlys H. Witte</name>
<affiliation>
<nlm:affiliation>Department of Surgery, University of Arizona, Tucson, AZ 85724, USA. Electronic address: grace@surgery.arizona.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Paul, David L" sort="Paul, David L" uniqKey="Paul D" first="David L" last="Paul">David L. Paul</name>
<affiliation>
<nlm:affiliation>Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA. Electronic address: dpaul@hms.harvard.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Simon, Alexander M" sort="Simon, Alexander M" uniqKey="Simon A" first="Alexander M" last="Simon">Alexander M. Simon</name>
<affiliation>
<nlm:affiliation>Department of Physiology, University of Arizona, Tucson, AZ 85724, USA. Electronic address: amsimon@email.arizona.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Developmental biology</title>
<idno type="eISSN">1095-564X</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Connexin 43 (genetics)</term>
<term>Connexin 43 (metabolism)</term>
<term>Connexins (genetics)</term>
<term>Connexins (metabolism)</term>
<term>Forkhead Transcription Factors (genetics)</term>
<term>Forkhead Transcription Factors (metabolism)</term>
<term>Immunohistochemistry</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Knockout</term>
<term>NFATC Transcription Factors (genetics)</term>
<term>NFATC Transcription Factors (metabolism)</term>
<term>Phenotype</term>
<term>Time Factors</term>
<term>Venous Valves (embryology)</term>
<term>Venous Valves (growth & development)</term>
<term>Venous Valves (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Connexin 43</term>
<term>Connexins</term>
<term>Forkhead Transcription Factors</term>
<term>NFATC Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Connexin 43</term>
<term>Connexins</term>
<term>Forkhead Transcription Factors</term>
<term>NFATC Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="embryology" xml:lang="en">
<term>Venous Valves</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Venous Valves</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Venous Valves</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Immunohistochemistry</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Knockout</term>
<term>Phenotype</term>
<term>Time Factors</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Venous valves (VVs) are critical for unidirectional blood flow from superficial and deep veins towards the heart. Congenital valve aplasia or agenesis may, in some cases, be a direct cause of vascular disease, motivating an understanding of the molecular mechanisms underlying the development and maintenance of VVs. Three gap junction proteins (Connexins), Cx37, Cx43, and Cx47, are specifically expressed at VVs in a highly polarized fashion. VVs are absent from adult mice lacking Cx37; however it is not known if Cx37 is required for the initial formation of valves. In addition, the requirement of Cx43 and Cx47 for VV development has not been studied. Here, we provide a detailed description of Cx37, Cx43, and Cx47 expression during mouse vein development and show by gene knockout that each Cx is necessary for normal valve development. The valve phenotypes in the knockout lines exhibit Cx-specific differences, however, including whether peripheral or central VVs are affected by gene inactivation. In addition, we show that a Cx47 null mutation impairs peripheral VV development but does not affect lymphatic valve formation, a finding of significance for understanding how some CX47 mutations cause inherited lymphedema in humans. Finally, we demonstrate a striking segregation of Foxc2 and NFATc1 transcription factor expression between the downstream and upstream faces, respectively, of developing VV leaflets and show that this segregation is closely associated with the highly polarized expression of Cx37, Cx43, and Cx47. The partition of Foxc2 and NFATc1 expression at VV leaflets makes it unlikely that these factors directly cooperate during the leaflet elongation stage of VV development.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26953188</PMID>
<DateCreated>
<Year>2016</Year>
<Month>04</Month>
<Day>09</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>09</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>04</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1095-564X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>412</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2016</Year>
<Month>Apr</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Developmental biology</Title>
<ISOAbbreviation>Dev. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Segregated Foxc2, NFATc1 and Connexin expression at normal developing venous valves, and Connexin-specific differences in the valve phenotypes of Cx37, Cx43, and Cx47 knockout mice.</ArticleTitle>
<Pagination>
<MedlinePgn>173-90</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.ydbio.2016.02.033</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0012-1606(15)30258-X</ELocationID>
<Abstract>
<AbstractText>Venous valves (VVs) are critical for unidirectional blood flow from superficial and deep veins towards the heart. Congenital valve aplasia or agenesis may, in some cases, be a direct cause of vascular disease, motivating an understanding of the molecular mechanisms underlying the development and maintenance of VVs. Three gap junction proteins (Connexins), Cx37, Cx43, and Cx47, are specifically expressed at VVs in a highly polarized fashion. VVs are absent from adult mice lacking Cx37; however it is not known if Cx37 is required for the initial formation of valves. In addition, the requirement of Cx43 and Cx47 for VV development has not been studied. Here, we provide a detailed description of Cx37, Cx43, and Cx47 expression during mouse vein development and show by gene knockout that each Cx is necessary for normal valve development. The valve phenotypes in the knockout lines exhibit Cx-specific differences, however, including whether peripheral or central VVs are affected by gene inactivation. In addition, we show that a Cx47 null mutation impairs peripheral VV development but does not affect lymphatic valve formation, a finding of significance for understanding how some CX47 mutations cause inherited lymphedema in humans. Finally, we demonstrate a striking segregation of Foxc2 and NFATc1 transcription factor expression between the downstream and upstream faces, respectively, of developing VV leaflets and show that this segregation is closely associated with the highly polarized expression of Cx37, Cx43, and Cx47. The partition of Foxc2 and NFATc1 expression at VV leaflets makes it unlikely that these factors directly cooperate during the leaflet elongation stage of VV development.</AbstractText>
<CopyrightInformation>Copyright © 2016 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Munger</LastName>
<ForeName>Stephanie J</ForeName>
<Initials>SJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Physiology, University of Arizona, Tucson, AZ 85724, USA. Electronic address: sjmunger@email.arizona.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Geng</LastName>
<ForeName>Xin</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA. Electronic address: Xin-geng@omrf.org.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Srinivasan</LastName>
<ForeName>R Sathish</ForeName>
<Initials>RS</Initials>
<AffiliationInfo>
<Affiliation>Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA. Electronic address: Sathish-Srinivasan@omrf.org.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Witte</LastName>
<ForeName>Marlys H</ForeName>
<Initials>MH</Initials>
<AffiliationInfo>
<Affiliation>Department of Surgery, University of Arizona, Tucson, AZ 85724, USA. Electronic address: grace@surgery.arizona.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Paul</LastName>
<ForeName>David L</ForeName>
<Initials>DL</Initials>
<AffiliationInfo>
<Affiliation>Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA. Electronic address: dpaul@hms.harvard.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Simon</LastName>
<ForeName>Alexander M</ForeName>
<Initials>AM</Initials>
<AffiliationInfo>
<Affiliation>Department of Physiology, University of Arizona, Tucson, AZ 85724, USA. Electronic address: amsimon@email.arizona.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 HL064232</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 HL122443</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01-HL64232</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21-HL122443</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>03</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Dev Biol</MedlineTA>
<NlmUniqueID>0372762</NlmUniqueID>
<ISSNLinking>0012-1606</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018031">Connexin 43</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017630">Connexins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051858">Forkhead Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050778">NFATC Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C080179">connexin 37</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C427305">connexin 47</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C082078">mesenchyme fork head 1 protein</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Neurosci. 2007 Apr;34(4):629-41</RefSource>
<PMID Version="1">17344063</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2013 Jan;1828(1):51-68</RefSource>
<PMID Version="1">22342665</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Sci. 2003 Jun 1;116(Pt 11):2223-36</RefSource>
<PMID Version="1">12697838</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cardiovasc Res. 2010 Jul 1;87(1):166-76</RefSource>
<PMID Version="1">20110337</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2003 Jul 2;23(13):5963-73</RefSource>
<PMID Version="1">12843301</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cardiovasc Res. 2005 Feb 15;65(3):711-8</RefSource>
<PMID Version="1">15664398</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Commun Adhes. 2006 Jan-Apr;13(1-2):61-77</RefSource>
<PMID Version="1">16613781</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2001 Jun 1;276(22):18878-87</RefSource>
<PMID Version="1">11278780</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Physiol. 2012 Sep;97(9):1074-82</RefSource>
<PMID Version="1">22542613</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genes Dev. 2003 Sep 15;17(18):2205-32</RefSource>
<PMID Version="1">12975316</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arterioscler Thromb Vasc Biol. 2011 Jul;31(7):1476-84</RefSource>
<PMID Version="1">21677290</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Cell Res. 1976 Mar 15;98(2):349-66</RefSource>
<PMID Version="1">943301</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Histochem Cell Biol. 1999 Dec;112(6):479-86</RefSource>
<PMID Version="1">10651100</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1995 Mar 24;267(5205):1831-4</RefSource>
<PMID Version="1">7892609</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Vasc Surg. 2015 Feb;29(2):377-84</RefSource>
<PMID Version="1">25449990</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cold Spring Harb Perspect Med. 2012 Jan;2(1):a006429</RefSource>
<PMID Version="1">22315715</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Anat Embryol Cell Biol. 2014;214:67-80</RefSource>
<PMID Version="1">24276887</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circulation. 2011 Mar 29;123(12):1335-51</RefSource>
<PMID Version="1">21444892</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 2015 Aug 3;125(8):2995-3007</RefSource>
<PMID Version="1">26214523</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genes Dev. 2011 Oct 15;25(20):2187-97</RefSource>
<PMID Version="1">22012621</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2009 May 4;185(3):439-57</RefSource>
<PMID Version="1">19398761</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1997 Feb 6;385(6616):525-9</RefSource>
<PMID Version="1">9020357</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10623-8</RefSource>
<PMID Version="1">12963823</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Hum Genet. 2000 Dec;67(6):1382-8</RefSource>
<PMID Version="1">11078474</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circulation. 2014 Jul 22;130(4):333-46</RefSource>
<PMID Version="1">25047584</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Med. 2004 Sep;10(9):974-81</RefSource>
<PMID Version="1">15322537</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circ Res. 1999 Jun 11;84(11):1277-84</RefSource>
<PMID Version="1">10364565</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Cell. 2012 Feb 14;22(2):430-45</RefSource>
<PMID Version="1">22306086</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS Lett. 2014 Apr 17;588(8):1186-92</RefSource>
<PMID Version="1">24434539</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):10167-72</RefSource>
<PMID Version="1">18621714</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Commun. 2015;6:7274</RefSource>
<PMID Version="1">26027726</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Cell Biol. 2010 Feb;20(2):92-101</RefSource>
<PMID Version="1">19944606</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Biochem Biophys. 2012 Aug 1;524(1):2-15</RefSource>
<PMID Version="1">22430362</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Biol. 2013 Jan 15;373(2):338-48</RefSource>
<PMID Version="1">23142761</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cold Spring Harb Perspect Biol. 2009 Jul;1(1):a002576</RefSource>
<PMID Version="1">20066080</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Biol. 2011 Jun 15;354(2):253-66</RefSource>
<PMID Version="1">21515254</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Development. 2000 Aug;127(16):3501-12</RefSource>
<PMID Version="1">10903175</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Commun Signal. 2009 Mar 12;7:4</RefSource>
<PMID Version="1">19284610</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microvasc Res. 2014 Nov;96:38-45</RefSource>
<PMID Version="1">25086182</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2012;7(7):e42287</RefSource>
<PMID Version="1">22848755</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Membr Biol. 1992 Apr;127(1):69-76</RefSource>
<PMID Version="1">1328644</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lymphology. 2011 Sep;44(3):95-102</RefSource>
<PMID Version="1">22165579</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Biol. 2016 Jan 1;409(1):218-33</RefSource>
<PMID Version="1">26542011</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2003 May 15;12(10):1179-85</RefSource>
<PMID Version="1">12719382</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS Lett. 2014 Apr 17;588(8):1205-11</RefSource>
<PMID Version="1">24631534</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol. 1995 Feb;268(2 Pt 2):H729-39</RefSource>
<PMID Version="1">7864199</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Cell Biol. 2004 Oct;16(5):507-12</RefSource>
<PMID Version="1">15363800</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2008 Mar 4;70(10):748-54</RefSource>
<PMID Version="1">18094336</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Med Genet. 2005 Mar;42(3):235-9</RefSource>
<PMID Version="1">15744037</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 2015 Aug 3;125(8):2979-94</RefSource>
<PMID Version="1">26214525</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS Lett. 2014 Apr 17;588(8):1423-9</RefSource>
<PMID Version="1">24508467</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Hum Genet. 2010 Jun 11;86(6):943-8</RefSource>
<PMID Version="1">20537300</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circulation. 2007 Apr 10;115(14):1912-20</RefSource>
<PMID Version="1">17372167</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circ Res. 1998 Sep 21;83(6):636-43</RefSource>
<PMID Version="1">9742059</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2013;8(12):e84047</RefSource>
<PMID Version="1">24386328</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Development. 1997 Nov;124(22):4627-38</RefSource>
<PMID Version="1">9409679</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cardiovasc Res. 2013 Jul 15;99(2):304-14</RefSource>
<PMID Version="1">23612582</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Invest Ophthalmol Vis Sci. 2010 Jul;51(7):3758-63</RefSource>
<PMID Version="1">20130277</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 2011 Aug;121(8):2984-92</RefSource>
<PMID Version="1">21765212</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Biol. 2015 Sep 1;405(1):33-46</RefSource>
<PMID Version="1">26079578</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018031" MajorTopicYN="N">Connexin 43</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017630" MajorTopicYN="N">Connexins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051858" MajorTopicYN="N">Forkhead Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007150" MajorTopicYN="N">Immunohistochemistry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018345" MajorTopicYN="N">Mice, Knockout</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050778" MajorTopicYN="N">NFATC Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055422" MajorTopicYN="N">Venous Valves</DescriptorName>
<QualifierName UI="Q000196" MajorTopicYN="N">embryology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS766122 [Available on 04/15/17]</OtherID>
<OtherID Source="NLM">PMC4826804 [Available on 04/15/17]</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Chronic venous disease</Keyword>
<Keyword MajorTopicYN="N">Connexin</Keyword>
<Keyword MajorTopicYN="N">Foxc2</Keyword>
<Keyword MajorTopicYN="N">Lymphedema</Keyword>
<Keyword MajorTopicYN="N">NFATc1</Keyword>
<Keyword MajorTopicYN="N">Valve development</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>10</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>02</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>02</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>3</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>9</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26953188</ArticleId>
<ArticleId IdType="pii">S0012-1606(15)30258-X</ArticleId>
<ArticleId IdType="doi">10.1016/j.ydbio.2016.02.033</ArticleId>
<ArticleId IdType="pmc">PMC4826804</ArticleId>
<ArticleId IdType="mid">NIHMS766122</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000955 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000955 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26953188
   |texte=   Segregated Foxc2, NFATc1 and Connexin expression at normal developing venous valves, and Connexin-specific differences in the valve phenotypes of Cx37, Cx43, and Cx47 knockout mice.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26953188" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a LymphedemaV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024