Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A lumped parameter model of mechanically mediated acute and long-term adaptations of contractility and geometry in lymphatics for characterization of lymphedema.

Identifieur interne : 000900 ( PubMed/Corpus ); précédent : 000899; suivant : 000901

A lumped parameter model of mechanically mediated acute and long-term adaptations of contractility and geometry in lymphatics for characterization of lymphedema.

Auteurs : Alexander W. Caulk ; J Brandon Dixon ; Rudolph L. Gleason

Source :

RBID : pubmed:27043026

Abstract

A primary purpose of the lymphatic system is to transport fluid from peripheral tissues to the central venous system in order to maintain tissue-fluid balance. Failure to perform this task results in lymphedema marked by swelling of the affected limb as well as geometric remodeling and reduced contractility of the affected lymphatic vessels. The mechanical environment has been implicated in the regulation of lymphatic contractility, but it is unknown how changes in the mechanical environment are related to loss of contractile function and remodeling of the tissue. The purpose of this paper was to introduce a new theoretical framework for acute and long-term adaptations of lymphatic vessels to changes in mechanical loading. This theoretical framework combines a simplified version of a published lumped parameter model for lymphangion function and lymph transport, a published microstructurally motivated constitutive model for the active and passive mechanical behavior of isolated rat thoracic ducts, and novel models for acute mechanically mediated vasoreactive adaptations and long-term volumetric growth to simulate changes in muscle contractility and geometry of a single isolated rat thoracic duct in response to a sustained elevation in afterload. The illustrative examples highlight the potential role of the mechanical environment in the acute maintenance of contractility and long-term geometric remodeling, presumably aimed at meeting fluid flow demands while also maintaining mechanical homeostasis. Results demonstrate that contractility may adapt in response to shear stress to meet fluid flow demands and show that pressure-induced long-term geometric remodeling may attenuate these adaptations and reduce fluid flow. The modeling framework and illustrative simulations help suggest relevant experiments that are necessary to accurately quantify and predict the acute and long-term adaptations of lymphangions to altered mechanical loading.

DOI: 10.1007/s10237-016-0785-2
PubMed: 27043026

Links to Exploration step

pubmed:27043026

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A lumped parameter model of mechanically mediated acute and long-term adaptations of contractility and geometry in lymphatics for characterization of lymphedema.</title>
<author>
<name sortKey="Caulk, Alexander W" sort="Caulk, Alexander W" uniqKey="Caulk A" first="Alexander W" last="Caulk">Alexander W. Caulk</name>
<affiliation>
<nlm:affiliation>The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA, 30332, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dixon, J Brandon" sort="Dixon, J Brandon" uniqKey="Dixon J" first="J Brandon" last="Dixon">J Brandon Dixon</name>
<affiliation>
<nlm:affiliation>The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA, 30332, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gleason, Rudolph L" sort="Gleason, Rudolph L" uniqKey="Gleason R" first="Rudolph L" last="Gleason">Rudolph L. Gleason</name>
<affiliation>
<nlm:affiliation>The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA, 30332, USA. rudy.gleason@me.gatech.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27043026</idno>
<idno type="pmid">27043026</idno>
<idno type="doi">10.1007/s10237-016-0785-2</idno>
<idno type="wicri:Area/PubMed/Corpus">000900</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000900</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A lumped parameter model of mechanically mediated acute and long-term adaptations of contractility and geometry in lymphatics for characterization of lymphedema.</title>
<author>
<name sortKey="Caulk, Alexander W" sort="Caulk, Alexander W" uniqKey="Caulk A" first="Alexander W" last="Caulk">Alexander W. Caulk</name>
<affiliation>
<nlm:affiliation>The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA, 30332, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dixon, J Brandon" sort="Dixon, J Brandon" uniqKey="Dixon J" first="J Brandon" last="Dixon">J Brandon Dixon</name>
<affiliation>
<nlm:affiliation>The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA, 30332, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gleason, Rudolph L" sort="Gleason, Rudolph L" uniqKey="Gleason R" first="Rudolph L" last="Gleason">Rudolph L. Gleason</name>
<affiliation>
<nlm:affiliation>The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA, 30332, USA. rudy.gleason@me.gatech.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biomechanics and modeling in mechanobiology</title>
<idno type="eISSN">1617-7940</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A primary purpose of the lymphatic system is to transport fluid from peripheral tissues to the central venous system in order to maintain tissue-fluid balance. Failure to perform this task results in lymphedema marked by swelling of the affected limb as well as geometric remodeling and reduced contractility of the affected lymphatic vessels. The mechanical environment has been implicated in the regulation of lymphatic contractility, but it is unknown how changes in the mechanical environment are related to loss of contractile function and remodeling of the tissue. The purpose of this paper was to introduce a new theoretical framework for acute and long-term adaptations of lymphatic vessels to changes in mechanical loading. This theoretical framework combines a simplified version of a published lumped parameter model for lymphangion function and lymph transport, a published microstructurally motivated constitutive model for the active and passive mechanical behavior of isolated rat thoracic ducts, and novel models for acute mechanically mediated vasoreactive adaptations and long-term volumetric growth to simulate changes in muscle contractility and geometry of a single isolated rat thoracic duct in response to a sustained elevation in afterload. The illustrative examples highlight the potential role of the mechanical environment in the acute maintenance of contractility and long-term geometric remodeling, presumably aimed at meeting fluid flow demands while also maintaining mechanical homeostasis. Results demonstrate that contractility may adapt in response to shear stress to meet fluid flow demands and show that pressure-induced long-term geometric remodeling may attenuate these adaptations and reduce fluid flow. The modeling framework and illustrative simulations help suggest relevant experiments that are necessary to accurately quantify and predict the acute and long-term adaptations of lymphangions to altered mechanical loading.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">27043026</PMID>
<DateCreated>
<Year>2016</Year>
<Month>04</Month>
<Day>04</Day>
</DateCreated>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1617-7940</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2016</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Biomechanics and modeling in mechanobiology</Title>
<ISOAbbreviation>Biomech Model Mechanobiol</ISOAbbreviation>
</Journal>
<ArticleTitle>A lumped parameter model of mechanically mediated acute and long-term adaptations of contractility and geometry in lymphatics for characterization of lymphedema.</ArticleTitle>
<Pagination>
<MedlinePgn>1601-1618</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>A primary purpose of the lymphatic system is to transport fluid from peripheral tissues to the central venous system in order to maintain tissue-fluid balance. Failure to perform this task results in lymphedema marked by swelling of the affected limb as well as geometric remodeling and reduced contractility of the affected lymphatic vessels. The mechanical environment has been implicated in the regulation of lymphatic contractility, but it is unknown how changes in the mechanical environment are related to loss of contractile function and remodeling of the tissue. The purpose of this paper was to introduce a new theoretical framework for acute and long-term adaptations of lymphatic vessels to changes in mechanical loading. This theoretical framework combines a simplified version of a published lumped parameter model for lymphangion function and lymph transport, a published microstructurally motivated constitutive model for the active and passive mechanical behavior of isolated rat thoracic ducts, and novel models for acute mechanically mediated vasoreactive adaptations and long-term volumetric growth to simulate changes in muscle contractility and geometry of a single isolated rat thoracic duct in response to a sustained elevation in afterload. The illustrative examples highlight the potential role of the mechanical environment in the acute maintenance of contractility and long-term geometric remodeling, presumably aimed at meeting fluid flow demands while also maintaining mechanical homeostasis. Results demonstrate that contractility may adapt in response to shear stress to meet fluid flow demands and show that pressure-induced long-term geometric remodeling may attenuate these adaptations and reduce fluid flow. The modeling framework and illustrative simulations help suggest relevant experiments that are necessary to accurately quantify and predict the acute and long-term adaptations of lymphangions to altered mechanical loading.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Caulk</LastName>
<ForeName>Alexander W</ForeName>
<Initials>AW</Initials>
<AffiliationInfo>
<Affiliation>The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA, 30332, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dixon</LastName>
<ForeName>J Brandon</ForeName>
<Initials>JB</Initials>
<AffiliationInfo>
<Affiliation>The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA, 30332, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gleason</LastName>
<ForeName>Rudolph L</ForeName>
<Initials>RL</Initials>
<Suffix>Jr</Suffix>
<AffiliationInfo>
<Affiliation>The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA, 30332, USA. rudy.gleason@me.gatech.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA. rudy.gleason@me.gatech.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>The Wallace H. Coulter Georgia Tech/Emory Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA, 30332, USA. rudy.gleason@me.gatech.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 HL113061</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>04</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Biomech Model Mechanobiol</MedlineTA>
<NlmUniqueID>101135325</NlmUniqueID>
<ISSNLinking>1617-7940</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2002 May 1;540(Pt 3):1023-37</RefSource>
<PMID Version="1">11986387</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Comput Methods Biomech Biomed Engin. 2014;17(14):1519-34</RefSource>
<PMID Version="1">23387996</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Endocrinol Metab. 2010 Aug;21(8):480-7</RefSource>
<PMID Version="1">20541951</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 1976 Oct;261(2):255-69</RefSource>
<PMID Version="1">988184</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech. 1994 Apr;27(4):455-67</RefSource>
<PMID Version="1">8188726</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2011 Jul;301(1):H48-60</RefSource>
<PMID Version="1">21460194</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomech Model Mechanobiol. 2014 Apr;13(2):401-16</RefSource>
<PMID Version="1">23801424</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Regul Integr Comp Physiol. 2007 Apr;292(4):R1510-8</RefSource>
<PMID Version="1">17122333</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2012 Oct 1;303(7):H809-24</RefSource>
<PMID Version="1">22865389</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Comput Biol Med. 1977 Jul;7(3):181-97</RefSource>
<PMID Version="1">891141</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech Eng. 2004 Jun;126(3):371-81</RefSource>
<PMID Version="1">15341175</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hypertension. 2008 Aug;52(2):195-200</RefSource>
<PMID Version="1">18541735</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech. 2011 Apr 7;44(6):1001-7</RefSource>
<PMID Version="1">21377158</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2012;7(7):e41126</RefSource>
<PMID Version="1">22911751</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann N Y Acad Sci. 2008;1131:110-8</RefSource>
<PMID Version="1">18519964</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lymphology. 2002 Sep;35(3):114-20</RefSource>
<PMID Version="1">12363221</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microcirculation. 2014 Jul;21(5):359-67</RefSource>
<PMID Version="1">24397756</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J R Soc Interface. 2015 Jul 6;12(108):20150280</RefSource>
<PMID Version="1">26040600</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomech Model Mechanobiol. 2010 Aug;9(4):403-19</RefSource>
<PMID Version="1">20039091</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microvasc Res. 1998 Sep;56(2):127-38</RefSource>
<PMID Version="1">9756735</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circ Res. 1970 Apr;26(4):507-22</RefSource>
<PMID Version="1">5435712</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2012 Oct 1;303(7):H795-808</RefSource>
<PMID Version="1">22886407</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circ Res. 1989 Nov;65(5):1340-9</RefSource>
<PMID Version="1">2805247</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech Eng. 1989 Nov;111(4):325-35</RefSource>
<PMID Version="1">2486372</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microcirculation. 2009 Oct;16(7):615-28</RefSource>
<PMID Version="1">19626551</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Elife. 2015 Feb 02;4:null</RefSource>
<PMID Version="1">25643397</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2006 Sep 15;575(Pt 3):821-32</RefSource>
<PMID Version="1">16809357</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2009 Jan 15;587(1):165-82</RefSource>
<PMID Version="1">19001046</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Biomed Eng. 2014 Aug;42(8):1691-704</RefSource>
<PMID Version="1">24809724</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cardiovasc Pharmacol. 1993;21 Suppl 1:S11-7</RefSource>
<PMID Version="1">7681126</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J R Soc Interface. 2009 Mar 6;6(32):293-306</RefSource>
<PMID Version="1">18647735</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomed Opt. 2005 Nov-Dec;10(6):064016</RefSource>
<PMID Version="1">16409081</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Regul Integr Comp Physiol. 2015 Nov 1;309(9):R1122-34</RefSource>
<PMID Version="1">26333787</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol. 1999 Dec;277(6 Pt 2):R1683-9</RefSource>
<PMID Version="1">10600914</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microcirculation. 2006 Oct-Nov;13(7):597-610</RefSource>
<PMID Version="1">16990218</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech Eng. 1994 Aug;116(3):278-83</RefSource>
<PMID Version="1">7799628</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech Eng. 1998 Jun;120(3):348-54</RefSource>
<PMID Version="1">10412402</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2013 Jul 15;305(2):H203-10</RefSource>
<PMID Version="1">23666672</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Biomed Eng. 1999 Jul-Aug;27(4):459-68</RefSource>
<PMID Version="1">10468230</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol. 1993 Apr;264(4 Pt 2):H1283-91</RefSource>
<PMID Version="1">8476104</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2013 Jan 15;591(2):443-59</RefSource>
<PMID Version="1">23045335</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomech Model Mechanobiol. 2003 Nov;2(2):109-26</RefSource>
<PMID Version="1">14586812</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2007 Apr;292(4):H1943-52</RefSource>
<PMID Version="1">17172274</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Math Med Biol. 2005 Dec;22(4):347-69</RefSource>
<PMID Version="1">16319121</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Contractility</Keyword>
<Keyword MajorTopicYN="N">Fluid transport</Keyword>
<Keyword MajorTopicYN="N">Growth and remodeling</Keyword>
<Keyword MajorTopicYN="N">Lumped parameter model</Keyword>
<Keyword MajorTopicYN="N">Lymphatics</Keyword>
<Keyword MajorTopicYN="N">Lymphedema</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>09</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>03</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pmc-release">
<Year>2017</Year>
<Month>12</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>4</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>4</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>4</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27043026</ArticleId>
<ArticleId IdType="pmc">PMC5050061</ArticleId>
<ArticleId IdType="doi">10.1007/s10237-016-0785-2</ArticleId>
<ArticleId IdType="pii">10.1007/s10237-016-0785-2</ArticleId>
<ArticleId IdType="mid">NIHMS778625</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000900 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000900 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27043026
   |texte=   A lumped parameter model of mechanically mediated acute and long-term adaptations of contractility and geometry in lymphatics for characterization of lymphedema.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:27043026" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a LymphedemaV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024