Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Vegfc acts through ERK to induce sprouting and differentiation of trunk lymphatic progenitors.

Identifieur interne : 000535 ( PubMed/Corpus ); précédent : 000534; suivant : 000536

Vegfc acts through ERK to induce sprouting and differentiation of trunk lymphatic progenitors.

Auteurs : Masahiro Shin ; Ira Male ; Timothy J. Beane ; Jacques A. Villefranc ; Fatma O. Kok ; Lihua J. Zhu ; Nathan D. Lawson

Source :

RBID : pubmed:27621059

English descriptors

Abstract

Vascular endothelial growth factor C (Vegfc) activates its receptor, Flt4, to induce lymphatic development. However, the signals that act downstream of Flt4 in this context in vivo remain unclear. To understand Flt4 signaling better, we generated zebrafish bearing a deletion in the Flt4 cytoplasmic domain that eliminates tyrosines Y1226 and 1227. Embryos bearing this deletion failed to initiate sprouting or differentiation of trunk lymphatic vessels and did not form a thoracic duct. Deletion of Y1226/7 prevented ERK phosphorylation in lymphatic progenitors, and ERK inhibition blocked trunk lymphatic sprouting and differentiation. Conversely, endothelial autonomous ERK activation rescued lymphatic sprouting and differentiation in flt4 mutants. Interestingly, embryos bearing the Y1226/7 deletion formed a functional facial lymphatic network enabling them to develop normally to adulthood. By contrast, flt4 null larvae displayed hypoplastic facial lymphatics and severe lymphedema. Thus, facial lymphatic vessels appear to be the first functional lymphatic network in the zebrafish, whereas the thoracic duct is initially dispensable for lymphatic function. Moreover, distinct signaling pathways downstream of Flt4 govern lymphatic morphogenesis and differentiation in different anatomical locations.

DOI: 10.1242/dev.137901
PubMed: 27621059

Links to Exploration step

pubmed:27621059

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Vegfc acts through ERK to induce sprouting and differentiation of trunk lymphatic progenitors.</title>
<author>
<name sortKey="Shin, Masahiro" sort="Shin, Masahiro" uniqKey="Shin M" first="Masahiro" last="Shin">Masahiro Shin</name>
<affiliation>
<nlm:affiliation>Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Male, Ira" sort="Male, Ira" uniqKey="Male I" first="Ira" last="Male">Ira Male</name>
<affiliation>
<nlm:affiliation>Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Beane, Timothy J" sort="Beane, Timothy J" uniqKey="Beane T" first="Timothy J" last="Beane">Timothy J. Beane</name>
<affiliation>
<nlm:affiliation>Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Villefranc, Jacques A" sort="Villefranc, Jacques A" uniqKey="Villefranc J" first="Jacques A" last="Villefranc">Jacques A. Villefranc</name>
<affiliation>
<nlm:affiliation>Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kok, Fatma O" sort="Kok, Fatma O" uniqKey="Kok F" first="Fatma O" last="Kok">Fatma O. Kok</name>
<affiliation>
<nlm:affiliation>Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Lihua J" sort="Zhu, Lihua J" uniqKey="Zhu L" first="Lihua J" last="Zhu">Lihua J. Zhu</name>
<affiliation>
<nlm:affiliation>Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lawson, Nathan D" sort="Lawson, Nathan D" uniqKey="Lawson N" first="Nathan D" last="Lawson">Nathan D. Lawson</name>
<affiliation>
<nlm:affiliation>Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA nathan.lawson@umassmed.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27621059</idno>
<idno type="pmid">27621059</idno>
<idno type="doi">10.1242/dev.137901</idno>
<idno type="wicri:Area/PubMed/Corpus">000535</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000535</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Vegfc acts through ERK to induce sprouting and differentiation of trunk lymphatic progenitors.</title>
<author>
<name sortKey="Shin, Masahiro" sort="Shin, Masahiro" uniqKey="Shin M" first="Masahiro" last="Shin">Masahiro Shin</name>
<affiliation>
<nlm:affiliation>Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Male, Ira" sort="Male, Ira" uniqKey="Male I" first="Ira" last="Male">Ira Male</name>
<affiliation>
<nlm:affiliation>Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Beane, Timothy J" sort="Beane, Timothy J" uniqKey="Beane T" first="Timothy J" last="Beane">Timothy J. Beane</name>
<affiliation>
<nlm:affiliation>Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Villefranc, Jacques A" sort="Villefranc, Jacques A" uniqKey="Villefranc J" first="Jacques A" last="Villefranc">Jacques A. Villefranc</name>
<affiliation>
<nlm:affiliation>Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kok, Fatma O" sort="Kok, Fatma O" uniqKey="Kok F" first="Fatma O" last="Kok">Fatma O. Kok</name>
<affiliation>
<nlm:affiliation>Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Lihua J" sort="Zhu, Lihua J" uniqKey="Zhu L" first="Lihua J" last="Zhu">Lihua J. Zhu</name>
<affiliation>
<nlm:affiliation>Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lawson, Nathan D" sort="Lawson, Nathan D" uniqKey="Lawson N" first="Nathan D" last="Lawson">Nathan D. Lawson</name>
<affiliation>
<nlm:affiliation>Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA nathan.lawson@umassmed.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Development (Cambridge, England)</title>
<idno type="eISSN">1477-9129</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Animals, Genetically Modified</term>
<term>Cells, Cultured</term>
<term>Extracellular Signal-Regulated MAP Kinases (genetics)</term>
<term>Extracellular Signal-Regulated MAP Kinases (metabolism)</term>
<term>Gene Expression Regulation, Developmental (genetics)</term>
<term>Gene Expression Regulation, Developmental (physiology)</term>
<term>Genotype</term>
<term>In Situ Hybridization</term>
<term>Lymphatic Vessels (cytology)</term>
<term>Lymphatic Vessels (embryology)</term>
<term>Lymphatic Vessels (metabolism)</term>
<term>Mutation (genetics)</term>
<term>Phosphorylation (genetics)</term>
<term>Phosphorylation (physiology)</term>
<term>Signal Transduction (genetics)</term>
<term>Signal Transduction (physiology)</term>
<term>Vascular Endothelial Growth Factor C (genetics)</term>
<term>Vascular Endothelial Growth Factor C (metabolism)</term>
<term>Vascular Endothelial Growth Factor Receptor-3 (genetics)</term>
<term>Vascular Endothelial Growth Factor Receptor-3 (metabolism)</term>
<term>Zebrafish (embryology)</term>
<term>Zebrafish (metabolism)</term>
<term>Zebrafish Proteins (genetics)</term>
<term>Zebrafish Proteins (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Extracellular Signal-Regulated MAP Kinases</term>
<term>Vascular Endothelial Growth Factor C</term>
<term>Vascular Endothelial Growth Factor Receptor-3</term>
<term>Zebrafish Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Extracellular Signal-Regulated MAP Kinases</term>
<term>Vascular Endothelial Growth Factor C</term>
<term>Vascular Endothelial Growth Factor Receptor-3</term>
<term>Zebrafish Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Lymphatic Vessels</term>
</keywords>
<keywords scheme="MESH" qualifier="embryology" xml:lang="en">
<term>Lymphatic Vessels</term>
<term>Zebrafish</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Gene Expression Regulation, Developmental</term>
<term>Mutation</term>
<term>Phosphorylation</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Lymphatic Vessels</term>
<term>Zebrafish</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Gene Expression Regulation, Developmental</term>
<term>Phosphorylation</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Animals, Genetically Modified</term>
<term>Cells, Cultured</term>
<term>Genotype</term>
<term>In Situ Hybridization</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Vascular endothelial growth factor C (Vegfc) activates its receptor, Flt4, to induce lymphatic development. However, the signals that act downstream of Flt4 in this context in vivo remain unclear. To understand Flt4 signaling better, we generated zebrafish bearing a deletion in the Flt4 cytoplasmic domain that eliminates tyrosines Y1226 and 1227. Embryos bearing this deletion failed to initiate sprouting or differentiation of trunk lymphatic vessels and did not form a thoracic duct. Deletion of Y1226/7 prevented ERK phosphorylation in lymphatic progenitors, and ERK inhibition blocked trunk lymphatic sprouting and differentiation. Conversely, endothelial autonomous ERK activation rescued lymphatic sprouting and differentiation in flt4 mutants. Interestingly, embryos bearing the Y1226/7 deletion formed a functional facial lymphatic network enabling them to develop normally to adulthood. By contrast, flt4 null larvae displayed hypoplastic facial lymphatics and severe lymphedema. Thus, facial lymphatic vessels appear to be the first functional lymphatic network in the zebrafish, whereas the thoracic duct is initially dispensable for lymphatic function. Moreover, distinct signaling pathways downstream of Flt4 govern lymphatic morphogenesis and differentiation in different anatomical locations.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27621059</PMID>
<DateCreated>
<Year>2016</Year>
<Month>09</Month>
<Day>13</Day>
</DateCreated>
<DateCompleted>
<Year>2017</Year>
<Month>09</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>09</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1477-9129</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>143</Volume>
<Issue>20</Issue>
<PubDate>
<Year>2016</Year>
<Month>Oct</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Development (Cambridge, England)</Title>
<ISOAbbreviation>Development</ISOAbbreviation>
</Journal>
<ArticleTitle>Vegfc acts through ERK to induce sprouting and differentiation of trunk lymphatic progenitors.</ArticleTitle>
<Pagination>
<MedlinePgn>3785-3795</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Vascular endothelial growth factor C (Vegfc) activates its receptor, Flt4, to induce lymphatic development. However, the signals that act downstream of Flt4 in this context in vivo remain unclear. To understand Flt4 signaling better, we generated zebrafish bearing a deletion in the Flt4 cytoplasmic domain that eliminates tyrosines Y1226 and 1227. Embryos bearing this deletion failed to initiate sprouting or differentiation of trunk lymphatic vessels and did not form a thoracic duct. Deletion of Y1226/7 prevented ERK phosphorylation in lymphatic progenitors, and ERK inhibition blocked trunk lymphatic sprouting and differentiation. Conversely, endothelial autonomous ERK activation rescued lymphatic sprouting and differentiation in flt4 mutants. Interestingly, embryos bearing the Y1226/7 deletion formed a functional facial lymphatic network enabling them to develop normally to adulthood. By contrast, flt4 null larvae displayed hypoplastic facial lymphatics and severe lymphedema. Thus, facial lymphatic vessels appear to be the first functional lymphatic network in the zebrafish, whereas the thoracic duct is initially dispensable for lymphatic function. Moreover, distinct signaling pathways downstream of Flt4 govern lymphatic morphogenesis and differentiation in different anatomical locations.</AbstractText>
<CopyrightInformation>© 2016. Published by The Company of Biologists Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shin</LastName>
<ForeName>Masahiro</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Male</LastName>
<ForeName>Ira</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Beane</LastName>
<ForeName>Timothy J</ForeName>
<Initials>TJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Villefranc</LastName>
<ForeName>Jacques A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kok</LastName>
<ForeName>Fatma O</ForeName>
<Initials>FO</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Lihua J</ForeName>
<Initials>LJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lawson</LastName>
<ForeName>Nathan D</ForeName>
<Initials>ND</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-7788-9619</Identifier>
<AffiliationInfo>
<Affiliation>Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA nathan.lawson@umassmed.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 HL079266</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL093766</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL122599</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>09</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Development</MedlineTA>
<NlmUniqueID>8701744</NlmUniqueID>
<ISSNLinking>0950-1991</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D042582">Vascular Endothelial Growth Factor C</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029961">Zebrafish Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.10.1</RegistryNumber>
<NameOfSubstance UI="D040321">Vascular Endothelial Growth Factor Receptor-3</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.24</RegistryNumber>
<NameOfSubstance UI="D048049">Extracellular Signal-Regulated MAP Kinases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>Development. 2017 Feb 1;144(3):531</RefSource>
<PMID Version="1">28143848</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Med. 2011 Nov 07;17(11):1371-80</RefSource>
<PMID Version="1">22064427</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microvasc Res. 2014 Nov;96:23-30</RefSource>
<PMID Version="1">24928500</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 2013 Mar;123(3):1202-15</RefSource>
<PMID Version="1">23391722</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO J. 2001 Sep 3;20(17):4762-73</RefSource>
<PMID Version="1">11532940</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Rep. 2015 Dec 1;13(9):1828-41</RefSource>
<PMID Version="1">26655899</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Development. 2014 Jul;141(13):2680-90</RefSource>
<PMID Version="1">24903752</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Methods Mol Biol. 2014;1101:267-303</RefSource>
<PMID Version="1">24233786</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Immunol. 2003 Dec;4(12):1238-46</RefSource>
<PMID Version="1">14608381</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Dyn. 2009 Oct;238(10):2670-9</RefSource>
<PMID Version="1">19705443</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2008 Jul 31;454(7204):656-60</RefSource>
<PMID Version="1">18594512</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genes Dev. 2009 Oct 1;23(19):2272-7</RefSource>
<PMID Version="1">19797767</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Blood. 2005 Nov 15;106(10):3423-31</RefSource>
<PMID Version="1">16076871</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 2010 Oct;186(2):757-61</RefSource>
<PMID Version="1">20660643</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genes Dev. 2000 Dec 15;14(24):3179-90</RefSource>
<PMID Version="1">11124809</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2010 May 27;465(7297):483-6</RefSource>
<PMID Version="1">20445537</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Dyn. 2007 Nov;236(11):3077-87</RefSource>
<PMID Version="1">17948311</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Zebrafish. 2013 Mar;10(1):116-8</RefSource>
<PMID Version="1">23536990</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Cell. 2015 Jan 12;32(1):97-108</RefSource>
<PMID Version="1">25533206</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Angiogenesis. 2015 Apr;18(2):151-62</RefSource>
<PMID Version="1">25424831</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 2012 Feb;122(2):733-47</RefSource>
<PMID Version="1">22232212</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genes Dev. 2003 Jun 1;17(11):1346-51</RefSource>
<PMID Version="1">12782653</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6554-9</RefSource>
<PMID Version="1">16617120</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Development. 2009 Dec;136(23):4001-9</RefSource>
<PMID Version="1">19906867</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Development. 2011 May;138(9):1717-26</RefSource>
<PMID Version="1">21429983</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Oncogene. 1994 Dec;9(12):3545-55</RefSource>
<PMID Version="1">7970715</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Biol. 1998 May 15;197(2):248-69</RefSource>
<PMID Version="1">9630750</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1997 Apr 25;272(17):11426-33</RefSource>
<PMID Version="1">9111053</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2015 Jun 4;522(7554):56-61</RefSource>
<PMID Version="1">25992545</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Pathophysiology. 2010 Sep;17(4):253-61</RefSource>
<PMID Version="1">20006475</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Biol. 2002 Aug 15;248(2):307-18</RefSource>
<PMID Version="1">12167406</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2000 Jun;25(2):153-9</RefSource>
<PMID Version="1">10835628</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Biotechnol. 2008 Jun;26(6):695-701</RefSource>
<PMID Version="1">18500337</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer Cell. 2010 Dec 14;18(6):630-40</RefSource>
<PMID Version="1">21130043</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2006 Jun 20;16(12):1244-8</RefSource>
<PMID Version="1">16782017</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circ Res. 2013 Mar 15;112(6):956-60</RefSource>
<PMID Version="1">23410910</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Cell. 2002 Jan;2(1):103-13</RefSource>
<PMID Version="1">11782318</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Biol. 2007 Jun;27(12):4541-50</RefSource>
<PMID Version="1">17438136</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Development. 2012 Jul;139(13):2381-91</RefSource>
<PMID Version="1">22627281</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cells. 2014 Jul;37(7):503-10</RefSource>
<PMID Version="1">24854860</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3566-70</RefSource>
<PMID Version="1">7724599</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Immunol. 2004 Jan;5(1):74-80</RefSource>
<PMID Version="1">14634646</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Development. 2013 Apr;140(7):1497-506</RefSource>
<PMID Version="1">23462469</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Med. 2006 Jun;12(6):711-6</RefSource>
<PMID Version="1">16732279</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Biol. 2007 Apr 15;304(2):735-44</RefSource>
<PMID Version="1">17306248</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Development. 2003 Nov;130(21):5281-90</RefSource>
<PMID Version="1">12954720</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO J. 2001 Jun 1;20(11):2768-78</RefSource>
<PMID Version="1">11387210</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2007 Feb 15;445(7129):781-4</RefSource>
<PMID Version="1">17259972</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Biol. 2009 May 15;329(2):212-26</RefSource>
<PMID Version="1">19269286</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2009 Apr;41(4):396-8</RefSource>
<PMID Version="1">19287381</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Dyn. 2007 Nov;236(11):3088-99</RefSource>
<PMID Version="1">17937395</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2005 Jan 25;102(4):1076-81</RefSource>
<PMID Version="1">15644447</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem J. 2011 Jul 15;437(2):169-83</RefSource>
<PMID Version="1">21711246</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Dyn. 2008 Sep;237(9):2466-74</RefSource>
<PMID Version="1">18729212</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030801" MajorTopicYN="N">Animals, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048049" MajorTopicYN="N">Extracellular Signal-Regulated MAP Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018507" MajorTopicYN="N">Gene Expression Regulation, Developmental</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017403" MajorTopicYN="N">In Situ Hybridization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042601" MajorTopicYN="N">Lymphatic Vessels</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
<QualifierName UI="Q000196" MajorTopicYN="N">embryology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042582" MajorTopicYN="N">Vascular Endothelial Growth Factor C</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040321" MajorTopicYN="N">Vascular Endothelial Growth Factor Receptor-3</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015027" MajorTopicYN="N">Zebrafish</DescriptorName>
<QualifierName UI="Q000196" MajorTopicYN="Y">embryology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029961" MajorTopicYN="N">Zebrafish Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Flt4</Keyword>
<Keyword MajorTopicYN="N">Lymphatic</Keyword>
<Keyword MajorTopicYN="N">TALEN</Keyword>
<Keyword MajorTopicYN="N">Vegfc</Keyword>
<Keyword MajorTopicYN="N">Zebrafish</Keyword>
</KeywordList>
<CoiStatement>The authors declare no competing or financial interests.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>03</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>08</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pmc-release">
<Year>2017</Year>
<Month>10</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>11</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>9</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>9</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27621059</ArticleId>
<ArticleId IdType="pii">dev.137901</ArticleId>
<ArticleId IdType="doi">10.1242/dev.137901</ArticleId>
<ArticleId IdType="pmc">PMC5087638</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000535 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000535 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27621059
   |texte=   Vegfc acts through ERK to induce sprouting and differentiation of trunk lymphatic progenitors.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:27621059" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a LymphedemaV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024