Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A new method for generating poroelastograms in noisy environments.

Identifieur interne : 003955 ( PubMed/Checkpoint ); précédent : 003954; suivant : 003956

A new method for generating poroelastograms in noisy environments.

Auteurs : Raffaella Righetti [États-Unis] ; Jonathan Ophir ; Brian S. Garra ; Rajah M. Chandrasekhar ; Thomas A. Krouskop

Source :

RBID : pubmed:16761783

Descripteurs français

English descriptors

Abstract

Poroelastography has been recently introduced as a new elastographic technique that may be used to describe the spatial and temporal behavior of poroelastic materials. The experimental methodology proposed thus far for phantoms and tissues in vitro requires the acquisition of a precompression rf frame, the application of a unit step strain compression to the sample and the acquisition of subsequent post-compression frames from the material. Elastograms and poroelastograms are generated by cross-correlating the sequentially-acquired postcompression frames with the reference precompression frame. The application of poroelastography to tissues in vivo must address the echo decorrelation problems that are encountered due to uncontrolled tissue motion, which may become significant shortly after the acquisition of the precompression frame. In this paper, we investigate the feasibility of performing poroelastography experiments using an alternative experimental scheme. In the proposed experimental methodology, the reference precompression frame is continuously moved while the time interval between the frames that are correlated is kept short. This allows long data acquisition times with simultaneous minimization of the decorrelation due to undesired tissue motion in vivo. We validated this new method using both a step and a ramp compression functions. We performed poroelastographic simulations and experiments in phantoms and in tissues in vivo. The results were compared to those obtained using the traditional acquisition methodology. This study shows that the two methods yield similar results in vitro and suggests that the new method may be more robust to decorrelation noise in applications in vivo.

DOI: 10.1177/016173460502700401
PubMed: 16761783


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:16761783

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A new method for generating poroelastograms in noisy environments.</title>
<author>
<name sortKey="Righetti, Raffaella" sort="Righetti, Raffaella" uniqKey="Righetti R" first="Raffaella" last="Righetti">Raffaella Righetti</name>
<affiliation wicri:level="2">
<nlm:affiliation>The University of Texas Medical School, Department of Diagnostic and Interventional Imaging, Ultrasonics Laboratory, 6431 Fannin St. Houston, TX 77030, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The University of Texas Medical School, Department of Diagnostic and Interventional Imaging, Ultrasonics Laboratory, 6431 Fannin St. Houston, TX 77030</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ophir, Jonathan" sort="Ophir, Jonathan" uniqKey="Ophir J" first="Jonathan" last="Ophir">Jonathan Ophir</name>
</author>
<author>
<name sortKey="Garra, Brian S" sort="Garra, Brian S" uniqKey="Garra B" first="Brian S" last="Garra">Brian S. Garra</name>
</author>
<author>
<name sortKey="Chandrasekhar, Rajah M" sort="Chandrasekhar, Rajah M" uniqKey="Chandrasekhar R" first="Rajah M" last="Chandrasekhar">Rajah M. Chandrasekhar</name>
</author>
<author>
<name sortKey="Krouskop, Thomas A" sort="Krouskop, Thomas A" uniqKey="Krouskop T" first="Thomas A" last="Krouskop">Thomas A. Krouskop</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:16761783</idno>
<idno type="pmid">16761783</idno>
<idno type="doi">10.1177/016173460502700401</idno>
<idno type="wicri:Area/PubMed/Corpus">003968</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">003968</idno>
<idno type="wicri:Area/PubMed/Curation">003968</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">003968</idno>
<idno type="wicri:Area/PubMed/Checkpoint">003968</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">003968</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A new method for generating poroelastograms in noisy environments.</title>
<author>
<name sortKey="Righetti, Raffaella" sort="Righetti, Raffaella" uniqKey="Righetti R" first="Raffaella" last="Righetti">Raffaella Righetti</name>
<affiliation wicri:level="2">
<nlm:affiliation>The University of Texas Medical School, Department of Diagnostic and Interventional Imaging, Ultrasonics Laboratory, 6431 Fannin St. Houston, TX 77030, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The University of Texas Medical School, Department of Diagnostic and Interventional Imaging, Ultrasonics Laboratory, 6431 Fannin St. Houston, TX 77030</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ophir, Jonathan" sort="Ophir, Jonathan" uniqKey="Ophir J" first="Jonathan" last="Ophir">Jonathan Ophir</name>
</author>
<author>
<name sortKey="Garra, Brian S" sort="Garra, Brian S" uniqKey="Garra B" first="Brian S" last="Garra">Brian S. Garra</name>
</author>
<author>
<name sortKey="Chandrasekhar, Rajah M" sort="Chandrasekhar, Rajah M" uniqKey="Chandrasekhar R" first="Rajah M" last="Chandrasekhar">Rajah M. Chandrasekhar</name>
</author>
<author>
<name sortKey="Krouskop, Thomas A" sort="Krouskop, Thomas A" uniqKey="Krouskop T" first="Thomas A" last="Krouskop">Thomas A. Krouskop</name>
</author>
</analytic>
<series>
<title level="j">Ultrasonic imaging</title>
<idno type="ISSN">0161-7346</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arm (diagnostic imaging)</term>
<term>Artifacts</term>
<term>Computer Simulation</term>
<term>Elasticity</term>
<term>Feasibility Studies</term>
<term>Humans</term>
<term>Lymphedema (diagnostic imaging)</term>
<term>Models, Biological</term>
<term>Models, Theoretical</term>
<term>Phantoms, Imaging</term>
<term>Porosity</term>
<term>Pressure</term>
<term>Stress, Mechanical</term>
<term>Ultrasonics</term>
<term>Ultrasonography (methods)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Artéfacts</term>
<term>Bras (imagerie diagnostique)</term>
<term>Contrainte mécanique</term>
<term>Fantômes en imagerie</term>
<term>Humains</term>
<term>Lymphoedème (imagerie diagnostique)</term>
<term>Modèles biologiques</term>
<term>Modèles théoriques</term>
<term>Porosité</term>
<term>Pression</term>
<term>Science des ultrasons</term>
<term>Simulation numérique</term>
<term>Échographie ()</term>
<term>Élasticité</term>
<term>Études de faisabilité</term>
</keywords>
<keywords scheme="MESH" qualifier="diagnostic imaging" xml:lang="en">
<term>Arm</term>
<term>Lymphedema</term>
</keywords>
<keywords scheme="MESH" qualifier="imagerie diagnostique" xml:lang="fr">
<term>Bras</term>
<term>Lymphoedème</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Ultrasonography</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Artifacts</term>
<term>Computer Simulation</term>
<term>Elasticity</term>
<term>Feasibility Studies</term>
<term>Humans</term>
<term>Models, Biological</term>
<term>Models, Theoretical</term>
<term>Phantoms, Imaging</term>
<term>Porosity</term>
<term>Pressure</term>
<term>Stress, Mechanical</term>
<term>Ultrasonics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Artéfacts</term>
<term>Contrainte mécanique</term>
<term>Fantômes en imagerie</term>
<term>Humains</term>
<term>Modèles biologiques</term>
<term>Modèles théoriques</term>
<term>Porosité</term>
<term>Pression</term>
<term>Science des ultrasons</term>
<term>Simulation numérique</term>
<term>Échographie</term>
<term>Élasticité</term>
<term>Études de faisabilité</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Poroelastography has been recently introduced as a new elastographic technique that may be used to describe the spatial and temporal behavior of poroelastic materials. The experimental methodology proposed thus far for phantoms and tissues in vitro requires the acquisition of a precompression rf frame, the application of a unit step strain compression to the sample and the acquisition of subsequent post-compression frames from the material. Elastograms and poroelastograms are generated by cross-correlating the sequentially-acquired postcompression frames with the reference precompression frame. The application of poroelastography to tissues in vivo must address the echo decorrelation problems that are encountered due to uncontrolled tissue motion, which may become significant shortly after the acquisition of the precompression frame. In this paper, we investigate the feasibility of performing poroelastography experiments using an alternative experimental scheme. In the proposed experimental methodology, the reference precompression frame is continuously moved while the time interval between the frames that are correlated is kept short. This allows long data acquisition times with simultaneous minimization of the decorrelation due to undesired tissue motion in vivo. We validated this new method using both a step and a ramp compression functions. We performed poroelastographic simulations and experiments in phantoms and in tissues in vivo. The results were compared to those obtained using the traditional acquisition methodology. This study shows that the two methods yield similar results in vitro and suggests that the new method may be more robust to decorrelation noise in applications in vivo.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16761783</PMID>
<DateCreated>
<Year>2006</Year>
<Month>06</Month>
<Day>09</Day>
</DateCreated>
<DateCompleted>
<Year>2006</Year>
<Month>10</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0161-7346</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>27</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2005</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Ultrasonic imaging</Title>
<ISOAbbreviation>Ultrason Imaging</ISOAbbreviation>
</Journal>
<ArticleTitle>A new method for generating poroelastograms in noisy environments.</ArticleTitle>
<Pagination>
<MedlinePgn>201-20</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Poroelastography has been recently introduced as a new elastographic technique that may be used to describe the spatial and temporal behavior of poroelastic materials. The experimental methodology proposed thus far for phantoms and tissues in vitro requires the acquisition of a precompression rf frame, the application of a unit step strain compression to the sample and the acquisition of subsequent post-compression frames from the material. Elastograms and poroelastograms are generated by cross-correlating the sequentially-acquired postcompression frames with the reference precompression frame. The application of poroelastography to tissues in vivo must address the echo decorrelation problems that are encountered due to uncontrolled tissue motion, which may become significant shortly after the acquisition of the precompression frame. In this paper, we investigate the feasibility of performing poroelastography experiments using an alternative experimental scheme. In the proposed experimental methodology, the reference precompression frame is continuously moved while the time interval between the frames that are correlated is kept short. This allows long data acquisition times with simultaneous minimization of the decorrelation due to undesired tissue motion in vivo. We validated this new method using both a step and a ramp compression functions. We performed poroelastographic simulations and experiments in phantoms and in tissues in vivo. The results were compared to those obtained using the traditional acquisition methodology. This study shows that the two methods yield similar results in vitro and suggests that the new method may be more robust to decorrelation noise in applications in vivo.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Righetti</LastName>
<ForeName>Raffaella</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>The University of Texas Medical School, Department of Diagnostic and Interventional Imaging, Ultrasonics Laboratory, 6431 Fannin St. Houston, TX 77030, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ophir</LastName>
<ForeName>Jonathan</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Garra</LastName>
<ForeName>Brian S</ForeName>
<Initials>BS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chandrasekhar</LastName>
<ForeName>Rajah M</ForeName>
<Initials>RM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Krouskop</LastName>
<ForeName>Thomas A</ForeName>
<Initials>TA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P01-CA64597-12</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ultrason Imaging</MedlineTA>
<NlmUniqueID>7909167</NlmUniqueID>
<ISSNLinking>0161-7346</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001132" MajorTopicYN="N">Arm</DescriptorName>
<QualifierName UI="Q000000981" MajorTopicYN="N">diagnostic imaging</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016477" MajorTopicYN="N">Artifacts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004548" MajorTopicYN="N">Elasticity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005240" MajorTopicYN="N">Feasibility Studies</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008209" MajorTopicYN="N">Lymphedema</DescriptorName>
<QualifierName UI="Q000000981" MajorTopicYN="N">diagnostic imaging</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008962" MajorTopicYN="N">Models, Theoretical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019047" MajorTopicYN="N">Phantoms, Imaging</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016062" MajorTopicYN="N">Porosity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011312" MajorTopicYN="N">Pressure</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013314" MajorTopicYN="N">Stress, Mechanical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014465" MajorTopicYN="Y">Ultrasonics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014463" MajorTopicYN="N">Ultrasonography</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>6</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>10</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>6</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16761783</ArticleId>
<ArticleId IdType="doi">10.1177/016173460502700401</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Texas</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Chandrasekhar, Rajah M" sort="Chandrasekhar, Rajah M" uniqKey="Chandrasekhar R" first="Rajah M" last="Chandrasekhar">Rajah M. Chandrasekhar</name>
<name sortKey="Garra, Brian S" sort="Garra, Brian S" uniqKey="Garra B" first="Brian S" last="Garra">Brian S. Garra</name>
<name sortKey="Krouskop, Thomas A" sort="Krouskop, Thomas A" uniqKey="Krouskop T" first="Thomas A" last="Krouskop">Thomas A. Krouskop</name>
<name sortKey="Ophir, Jonathan" sort="Ophir, Jonathan" uniqKey="Ophir J" first="Jonathan" last="Ophir">Jonathan Ophir</name>
</noCountry>
<country name="États-Unis">
<region name="Texas">
<name sortKey="Righetti, Raffaella" sort="Righetti, Raffaella" uniqKey="Righetti R" first="Raffaella" last="Righetti">Raffaella Righetti</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003955 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 003955 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:16761783
   |texte=   A new method for generating poroelastograms in noisy environments.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:16761783" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a LymphedemaV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024