Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Secondary lymphedema in the mouse tail: Lymphatic hyperplasia, VEGF-C upregulation, and the protective role of MMP-9.

Identifieur interne : 003511 ( PubMed/Checkpoint ); précédent : 003510; suivant : 003512

Secondary lymphedema in the mouse tail: Lymphatic hyperplasia, VEGF-C upregulation, and the protective role of MMP-9.

Auteurs : Joseph M. Rutkowski [Suisse] ; Monica Moya ; Jimmy Johannes ; Jeremy Goldman ; Melody A. Swartz

Source :

RBID : pubmed:16876204

Descripteurs français

English descriptors

Abstract

Disturbances in the microcirculation can lead to secondary lymphedema, a common pathological condition that, despite its frequency, still lacks a cure. Lymphedema is clinically well described, but while the genetic underpinnings that cause lymphatic malformations and primary lymphedema are being discovered, the pathophysiology and pathobiology of secondary lymphedema remain poorly understood, partly due to the lack of well-described experimental models. Here, we provide a detailed characterization of secondary lymphedema in the mouse tail and correlate the evolution of tissue swelling to changes in tissue architecture, infiltration of immune cells, deposition of lipids, and proliferation and morphology of the lymphatic vessels. We show that sustained swelling leads to lymphatic hyperplasia and upregulation of vascular endothelial growth factor (VEGF)-C, which may exacerbate the edema because the hyperplastic vessels are poorly functional. The onset of lymphatic hyperplasia occurred prior to the onset of lipid accumulation and peak VEGF-C expression. Langerhans dendritic cells were seen in the dermis migrating from the epidermis to the lymphatic capillaries in edematous tissue. Furthermore, these results were consistent between two different normal mouse strains, but swelling was significantly greater in a matrix metalloproteinase (MMP)-9 null strain. Thus, by characterizing this highly reproducible model of secondary lymphedema, we conclude that VEGF-C upregulation and lymphatic hyperplasia resulting from dermal lymphatic ligation and lymphedema leads to decreased drainage function and that MMP-9 may be important in counteracting tissue swelling.

DOI: 10.1016/j.mvr.2006.05.009
PubMed: 16876204


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:16876204

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Secondary lymphedema in the mouse tail: Lymphatic hyperplasia, VEGF-C upregulation, and the protective role of MMP-9.</title>
<author>
<name sortKey="Rutkowski, Joseph M" sort="Rutkowski, Joseph M" uniqKey="Rutkowski J" first="Joseph M" last="Rutkowski">Joseph M. Rutkowski</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne</wicri:regionArea>
<placeName>
<settlement type="city">Lausanne</settlement>
<region nuts="3" type="region">Canton de Vaud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Moya, Monica" sort="Moya, Monica" uniqKey="Moya M" first="Monica" last="Moya">Monica Moya</name>
</author>
<author>
<name sortKey="Johannes, Jimmy" sort="Johannes, Jimmy" uniqKey="Johannes J" first="Jimmy" last="Johannes">Jimmy Johannes</name>
</author>
<author>
<name sortKey="Goldman, Jeremy" sort="Goldman, Jeremy" uniqKey="Goldman J" first="Jeremy" last="Goldman">Jeremy Goldman</name>
</author>
<author>
<name sortKey="Swartz, Melody A" sort="Swartz, Melody A" uniqKey="Swartz M" first="Melody A" last="Swartz">Melody A. Swartz</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16876204</idno>
<idno type="pmid">16876204</idno>
<idno type="doi">10.1016/j.mvr.2006.05.009</idno>
<idno type="wicri:Area/PubMed/Corpus">003926</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">003926</idno>
<idno type="wicri:Area/PubMed/Curation">003926</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">003926</idno>
<idno type="wicri:Area/PubMed/Checkpoint">003926</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">003926</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Secondary lymphedema in the mouse tail: Lymphatic hyperplasia, VEGF-C upregulation, and the protective role of MMP-9.</title>
<author>
<name sortKey="Rutkowski, Joseph M" sort="Rutkowski, Joseph M" uniqKey="Rutkowski J" first="Joseph M" last="Rutkowski">Joseph M. Rutkowski</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne</wicri:regionArea>
<placeName>
<settlement type="city">Lausanne</settlement>
<region nuts="3" type="region">Canton de Vaud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Moya, Monica" sort="Moya, Monica" uniqKey="Moya M" first="Monica" last="Moya">Monica Moya</name>
</author>
<author>
<name sortKey="Johannes, Jimmy" sort="Johannes, Jimmy" uniqKey="Johannes J" first="Jimmy" last="Johannes">Jimmy Johannes</name>
</author>
<author>
<name sortKey="Goldman, Jeremy" sort="Goldman, Jeremy" uniqKey="Goldman J" first="Jeremy" last="Goldman">Jeremy Goldman</name>
</author>
<author>
<name sortKey="Swartz, Melody A" sort="Swartz, Melody A" uniqKey="Swartz M" first="Melody A" last="Swartz">Melody A. Swartz</name>
</author>
</analytic>
<series>
<title level="j">Microvascular research</title>
<idno type="ISSN">0026-2862</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Cell Movement</term>
<term>Collagen (metabolism)</term>
<term>Dendritic Cells (metabolism)</term>
<term>Dendritic Cells (pathology)</term>
<term>Dermis (metabolism)</term>
<term>Dermis (pathology)</term>
<term>Disease Models, Animal</term>
<term>Endothelial Cells (metabolism)</term>
<term>Endothelial Cells (pathology)</term>
<term>Female</term>
<term>Hyperplasia</term>
<term>Lipid Metabolism</term>
<term>Lymphatic Vessels (metabolism)</term>
<term>Lymphatic Vessels (pathology)</term>
<term>Lymphatic Vessels (surgery)</term>
<term>Lymphedema (genetics)</term>
<term>Lymphedema (metabolism)</term>
<term>Lymphedema (pathology)</term>
<term>Lymphography</term>
<term>Macrophages (metabolism)</term>
<term>Macrophages (pathology)</term>
<term>Matrix Metalloproteinase 9 (genetics)</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Mice, Inbred Strains</term>
<term>Mice, Knockout</term>
<term>Subcutaneous Tissue (metabolism)</term>
<term>Subcutaneous Tissue (pathology)</term>
<term>Tail (metabolism)</term>
<term>Tail (pathology)</term>
<term>Tail (surgery)</term>
<term>Time Factors</term>
<term>Vascular Endothelial Growth Factor C (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Cellules dendritiques (anatomopathologie)</term>
<term>Cellules dendritiques (métabolisme)</term>
<term>Cellules endothéliales (anatomopathologie)</term>
<term>Cellules endothéliales (métabolisme)</term>
<term>Collagène (métabolisme)</term>
<term>Derme (anatomopathologie)</term>
<term>Derme (métabolisme)</term>
<term>Facteur de croissance endothéliale vasculaire de type C (métabolisme)</term>
<term>Facteurs temps</term>
<term>Femelle</term>
<term>Hyperplasie</term>
<term>Lignées consanguines de souris</term>
<term>Lymphoedème (anatomopathologie)</term>
<term>Lymphoedème (génétique)</term>
<term>Lymphoedème (métabolisme)</term>
<term>Lymphographie</term>
<term>Macrophages (anatomopathologie)</term>
<term>Macrophages (métabolisme)</term>
<term>Matrix metalloproteinase 9 (génétique)</term>
<term>Modèles animaux de maladie humaine</term>
<term>Mouvement cellulaire</term>
<term>Métabolisme des lipides</term>
<term>Queue ()</term>
<term>Queue (anatomopathologie)</term>
<term>Queue (métabolisme)</term>
<term>Souris</term>
<term>Souris de lignée BALB C</term>
<term>Souris knockout</term>
<term>Tissu sous-cutané (anatomopathologie)</term>
<term>Tissu sous-cutané (métabolisme)</term>
<term>Vaisseaux lymphatiques ()</term>
<term>Vaisseaux lymphatiques (anatomopathologie)</term>
<term>Vaisseaux lymphatiques (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Matrix Metalloproteinase 9</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Collagen</term>
<term>Vascular Endothelial Growth Factor C</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Cellules dendritiques</term>
<term>Cellules endothéliales</term>
<term>Derme</term>
<term>Lymphoedème</term>
<term>Macrophages</term>
<term>Queue</term>
<term>Tissu sous-cutané</term>
<term>Vaisseaux lymphatiques</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Lymphedema</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Lymphoedème</term>
<term>Matrix metalloproteinase 9</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Dendritic Cells</term>
<term>Dermis</term>
<term>Endothelial Cells</term>
<term>Lymphatic Vessels</term>
<term>Lymphedema</term>
<term>Macrophages</term>
<term>Subcutaneous Tissue</term>
<term>Tail</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellules dendritiques</term>
<term>Cellules endothéliales</term>
<term>Collagène</term>
<term>Derme</term>
<term>Facteur de croissance endothéliale vasculaire de type C</term>
<term>Lymphoedème</term>
<term>Macrophages</term>
<term>Queue</term>
<term>Tissu sous-cutané</term>
<term>Vaisseaux lymphatiques</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Dendritic Cells</term>
<term>Dermis</term>
<term>Endothelial Cells</term>
<term>Lymphatic Vessels</term>
<term>Lymphedema</term>
<term>Macrophages</term>
<term>Subcutaneous Tissue</term>
<term>Tail</term>
</keywords>
<keywords scheme="MESH" qualifier="surgery" xml:lang="en">
<term>Lymphatic Vessels</term>
<term>Tail</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Movement</term>
<term>Disease Models, Animal</term>
<term>Female</term>
<term>Hyperplasia</term>
<term>Lipid Metabolism</term>
<term>Lymphography</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Mice, Inbred Strains</term>
<term>Mice, Knockout</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Facteurs temps</term>
<term>Femelle</term>
<term>Hyperplasie</term>
<term>Lignées consanguines de souris</term>
<term>Lymphographie</term>
<term>Modèles animaux de maladie humaine</term>
<term>Mouvement cellulaire</term>
<term>Métabolisme des lipides</term>
<term>Queue</term>
<term>Souris</term>
<term>Souris de lignée BALB C</term>
<term>Souris knockout</term>
<term>Vaisseaux lymphatiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Disturbances in the microcirculation can lead to secondary lymphedema, a common pathological condition that, despite its frequency, still lacks a cure. Lymphedema is clinically well described, but while the genetic underpinnings that cause lymphatic malformations and primary lymphedema are being discovered, the pathophysiology and pathobiology of secondary lymphedema remain poorly understood, partly due to the lack of well-described experimental models. Here, we provide a detailed characterization of secondary lymphedema in the mouse tail and correlate the evolution of tissue swelling to changes in tissue architecture, infiltration of immune cells, deposition of lipids, and proliferation and morphology of the lymphatic vessels. We show that sustained swelling leads to lymphatic hyperplasia and upregulation of vascular endothelial growth factor (VEGF)-C, which may exacerbate the edema because the hyperplastic vessels are poorly functional. The onset of lymphatic hyperplasia occurred prior to the onset of lipid accumulation and peak VEGF-C expression. Langerhans dendritic cells were seen in the dermis migrating from the epidermis to the lymphatic capillaries in edematous tissue. Furthermore, these results were consistent between two different normal mouse strains, but swelling was significantly greater in a matrix metalloproteinase (MMP)-9 null strain. Thus, by characterizing this highly reproducible model of secondary lymphedema, we conclude that VEGF-C upregulation and lymphatic hyperplasia resulting from dermal lymphatic ligation and lymphedema leads to decreased drainage function and that MMP-9 may be important in counteracting tissue swelling.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16876204</PMID>
<DateCreated>
<Year>2006</Year>
<Month>11</Month>
<Day>13</Day>
</DateCreated>
<DateCompleted>
<Year>2007</Year>
<Month>02</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>11</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0026-2862</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>72</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2006</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Microvascular research</Title>
<ISOAbbreviation>Microvasc. Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>Secondary lymphedema in the mouse tail: Lymphatic hyperplasia, VEGF-C upregulation, and the protective role of MMP-9.</ArticleTitle>
<Pagination>
<MedlinePgn>161-71</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Disturbances in the microcirculation can lead to secondary lymphedema, a common pathological condition that, despite its frequency, still lacks a cure. Lymphedema is clinically well described, but while the genetic underpinnings that cause lymphatic malformations and primary lymphedema are being discovered, the pathophysiology and pathobiology of secondary lymphedema remain poorly understood, partly due to the lack of well-described experimental models. Here, we provide a detailed characterization of secondary lymphedema in the mouse tail and correlate the evolution of tissue swelling to changes in tissue architecture, infiltration of immune cells, deposition of lipids, and proliferation and morphology of the lymphatic vessels. We show that sustained swelling leads to lymphatic hyperplasia and upregulation of vascular endothelial growth factor (VEGF)-C, which may exacerbate the edema because the hyperplastic vessels are poorly functional. The onset of lymphatic hyperplasia occurred prior to the onset of lipid accumulation and peak VEGF-C expression. Langerhans dendritic cells were seen in the dermis migrating from the epidermis to the lymphatic capillaries in edematous tissue. Furthermore, these results were consistent between two different normal mouse strains, but swelling was significantly greater in a matrix metalloproteinase (MMP)-9 null strain. Thus, by characterizing this highly reproducible model of secondary lymphedema, we conclude that VEGF-C upregulation and lymphatic hyperplasia resulting from dermal lymphatic ligation and lymphedema leads to decreased drainage function and that MMP-9 may be important in counteracting tissue swelling.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rutkowski</LastName>
<ForeName>Joseph M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Moya</LastName>
<ForeName>Monica</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Johannes</LastName>
<ForeName>Jimmy</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Goldman</LastName>
<ForeName>Jeremy</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Swartz</LastName>
<ForeName>Melody A</ForeName>
<Initials>MA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 HL075217</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL075217-01</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01-HL075217-01</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2006</Year>
<Month>07</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Microvasc Res</MedlineTA>
<NlmUniqueID>0165035</NlmUniqueID>
<ISSNLinking>0026-2862</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D042582">Vascular Endothelial Growth Factor C</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C467483">vascular endothelial growth factor C, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-34-5</RegistryNumber>
<NameOfSubstance UI="D003094">Collagen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.24.35</RegistryNumber>
<NameOfSubstance UI="D020780">Matrix Metalloproteinase 9</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech. 1999 Dec;32(12):1297-307</RefSource>
<PMID Version="1">10569708</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circ Res. 2005 Jun 10;96(11):1193-9</RefSource>
<PMID Version="1">15890974</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microsc Res Tech. 2001 Oct 15;55(2):122-45</RefSource>
<PMID Version="1">11596157</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12677-82</RefSource>
<PMID Version="1">11592985</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Med Genet. 2002 Jul;39(7):478-83</RefSource>
<PMID Version="1">12114478</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Cell. 2002 Sep;3(3):411-23</RefSource>
<PMID Version="1">12361603</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FASEB J. 2002 Dec;16(14):1985-7</RefSource>
<PMID Version="1">12397087</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 2003 Mar;111(5):717-25</RefSource>
<PMID Version="1">12618526</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circ Res. 2003 Apr 18;92(7):801-8</RefSource>
<PMID Version="1">12623882</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2003 May 15;12(10):1179-85</RefSource>
<PMID Version="1">12719382</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Pathol. 2003 Jul;200(4):448-64</RefSource>
<PMID Version="1">12845612</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circ Res. 2004 Jul 23;95(2):204-9</RefSource>
<PMID Version="1">15192027</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Med. 2004 Sep;10(9):974-81</RefSource>
<PMID Version="1">15322537</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gene Expr Patterns. 2004 Oct;4(6):611-9</RefSource>
<PMID Version="1">15465483</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lymphology. 1973 Mar;6(1):35-51</RefSource>
<PMID Version="1">4691971</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Plast Surg. 1985 Oct;15(4):303-12</RefSource>
<PMID Version="1">4083729</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microsurgery. 1985;6(4):204-10</RefSource>
<PMID Version="1">4088029</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plast Reconstr Surg. 1990 Apr;85(4):573-80</RefSource>
<PMID Version="1">2315397</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lymphology. 1990 Mar;23(1):23-33</RefSource>
<PMID Version="1">2352440</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Histol Cytol. 1990;53 Suppl:209-18</RefSource>
<PMID Version="1">2252630</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Physiol Scand. 1991 Apr;141(4):489-95</RefSource>
<PMID Version="1">1877349</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biorheology. 1995 Jan-Feb;32(1):17-27</RefSource>
<PMID Version="1">7548858</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Dermatol. 1995 Sep-Oct;13(5):433-44</RefSource>
<PMID Version="1">8665454</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol. 1996 Jan;270(1 Pt 2):H324-9</RefSource>
<PMID Version="1">8769768</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Angiology. 1997 Jan;48(1):87-91</RefSource>
<PMID Version="1">8995349</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Development. 1996 Dec;122(12):3829-37</RefSource>
<PMID Version="1">9012504</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1997 May 30;276(5317):1423-5</RefSource>
<PMID Version="1">9162011</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Biol. 1997 Aug 1;188(1):96-109</RefSource>
<PMID Version="1">9245515</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Immunol. 2005 Aug;5(8):617-28</RefSource>
<PMID Version="1">16056255</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2005 Oct;37(10):1072-81</RefSource>
<PMID Version="1">16170315</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Cell Dev Biol. 2005;21:457-83</RefSource>
<PMID Version="1">16212503</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2006 Sep;291(3):H1402-10</RefSource>
<PMID Version="1">16648194</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Appl Physiol (1985). 2006 Oct;101(4):1162-9</RefSource>
<PMID Version="1">16763103</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer. 1998 Dec 15;83(12 Suppl American):2833-4</RefSource>
<PMID Version="1">9874407</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Surg. 1999 Mar;229(3):421-7</RefSource>
<PMID Version="1">10077056</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 1999 Sep 17;98(6):769-78</RefSource>
<PMID Version="1">10499794</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>JAMA. 1962 Oct 6;182:14-22</RefSource>
<PMID Version="1">14498461</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Natl Cancer Inst. 2005 Jan 5;97(1):14-21</RefSource>
<PMID Version="1">15632376</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Med. 2001 Mar;110(4):288-95</RefSource>
<PMID Version="1">11239847</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002465" MajorTopicYN="N">Cell Movement</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003094" MajorTopicYN="N">Collagen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003713" MajorTopicYN="N">Dendritic Cells</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020405" MajorTopicYN="N">Dermis</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004195" MajorTopicYN="N">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042783" MajorTopicYN="N">Endothelial Cells</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006965" MajorTopicYN="N">Hyperplasia</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050356" MajorTopicYN="N">Lipid Metabolism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042601" MajorTopicYN="N">Lymphatic Vessels</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
<QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008209" MajorTopicYN="N">Lymphedema</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008220" MajorTopicYN="N">Lymphography</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008264" MajorTopicYN="N">Macrophages</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020780" MajorTopicYN="N">Matrix Metalloproteinase 9</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008807" MajorTopicYN="N">Mice, Inbred BALB C</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008815" MajorTopicYN="N">Mice, Inbred Strains</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018345" MajorTopicYN="N">Mice, Knockout</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040521" MajorTopicYN="N">Subcutaneous Tissue</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013623" MajorTopicYN="N">Tail</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
<QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042582" MajorTopicYN="N">Vascular Endothelial Growth Factor C</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS104038</OtherID>
<OtherID Source="NLM">PMC2676671</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2006</Year>
<Month>02</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2006</Year>
<Month>04</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2006</Year>
<Month>05</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>8</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>2</Month>
<Day>16</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>8</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16876204</ArticleId>
<ArticleId IdType="pii">S0026-2862(06)00072-0</ArticleId>
<ArticleId IdType="doi">10.1016/j.mvr.2006.05.009</ArticleId>
<ArticleId IdType="pmc">PMC2676671</ArticleId>
<ArticleId IdType="mid">NIHMS104038</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suisse</li>
</country>
<region>
<li>Canton de Vaud</li>
</region>
<settlement>
<li>Lausanne</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Goldman, Jeremy" sort="Goldman, Jeremy" uniqKey="Goldman J" first="Jeremy" last="Goldman">Jeremy Goldman</name>
<name sortKey="Johannes, Jimmy" sort="Johannes, Jimmy" uniqKey="Johannes J" first="Jimmy" last="Johannes">Jimmy Johannes</name>
<name sortKey="Moya, Monica" sort="Moya, Monica" uniqKey="Moya M" first="Monica" last="Moya">Monica Moya</name>
<name sortKey="Swartz, Melody A" sort="Swartz, Melody A" uniqKey="Swartz M" first="Melody A" last="Swartz">Melody A. Swartz</name>
</noCountry>
<country name="Suisse">
<region name="Canton de Vaud">
<name sortKey="Rutkowski, Joseph M" sort="Rutkowski, Joseph M" uniqKey="Rutkowski J" first="Joseph M" last="Rutkowski">Joseph M. Rutkowski</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003511 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 003511 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:16876204
   |texte=   Secondary lymphedema in the mouse tail: Lymphatic hyperplasia, VEGF-C upregulation, and the protective role of MMP-9.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:16876204" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a LymphedemaV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024