Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Imaging and estimation of tissue elasticity by ultrasound.

Identifieur interne : 003319 ( PubMed/Checkpoint ); précédent : 003318; suivant : 003320

Imaging and estimation of tissue elasticity by ultrasound.

Auteurs : Brian Stephen Garra [États-Unis]

Source :

RBID : pubmed:18090836

Descripteurs français

English descriptors

Abstract

Ultrasound (US) elasticity imaging is an extension of the ancient art of palpation and of earlier US methods for viewing tissue stiffness such as echopalpation. Elasticity images consist of either an image of strain in response to force or an image of estimated elastic modulus. There are 3 main types of US elasticity imaging: elastography that tracks tissue movement during compression to obtain an estimate of strain, sonoelastography that uses color Doppler to generate an image of tissue movement in response to external vibrations, and tracking of shear wave propagation through tissue to obtain the elastic modulus. Other modalities may be used for elasticity imaging, the most powerful being magnetic resonance elastography. With 4 commercial US scanners already offering elastography and more to follow, US-based methods may be the most widely used for the near future. Elasticity imaging is possible for nearly every tissue. Breast mass elastography has potential for enhancing the specificity of US and mammography for cancer detection. Lesions in the thyroid, prostate gland, pancreas, and lymph nodes have been successfully imaged using elastography. Evaluation of diffuse disease including cirrhosis and transplant rejection is also possible using both imaging and nonimaging methods. Vascular imaging including myocardium, blood vessel wall, plaque, and venous thrombi has also shown great potential. Elasticity imaging may also be important in assessing the progress of ablation therapy. Recent work in assessing porous materials using elastography suggests that the technique may be useful in monitoring the severity of lymphedema.

DOI: 10.1097/ruq.0b013e31815b7ed6
PubMed: 18090836


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:18090836

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Imaging and estimation of tissue elasticity by ultrasound.</title>
<author>
<name sortKey="Garra, Brian Stephen" sort="Garra, Brian Stephen" uniqKey="Garra B" first="Brian Stephen" last="Garra">Brian Stephen Garra</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Radiology, University of Vermont College of Medicine, Fletcher Allen Health Care, Burlington, VT 05401, USA. bgarra@uvm.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Radiology, University of Vermont College of Medicine, Fletcher Allen Health Care, Burlington, VT 05401</wicri:regionArea>
<placeName>
<region type="state">Vermont</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:18090836</idno>
<idno type="pmid">18090836</idno>
<idno type="doi">10.1097/ruq.0b013e31815b7ed6</idno>
<idno type="wicri:Area/PubMed/Corpus">003441</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">003441</idno>
<idno type="wicri:Area/PubMed/Curation">003441</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">003441</idno>
<idno type="wicri:Area/PubMed/Checkpoint">003441</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">003441</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Imaging and estimation of tissue elasticity by ultrasound.</title>
<author>
<name sortKey="Garra, Brian Stephen" sort="Garra, Brian Stephen" uniqKey="Garra B" first="Brian Stephen" last="Garra">Brian Stephen Garra</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Radiology, University of Vermont College of Medicine, Fletcher Allen Health Care, Burlington, VT 05401, USA. bgarra@uvm.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Radiology, University of Vermont College of Medicine, Fletcher Allen Health Care, Burlington, VT 05401</wicri:regionArea>
<placeName>
<region type="state">Vermont</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Ultrasound quarterly</title>
<idno type="ISSN">0894-8771</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomechanical Phenomena</term>
<term>Echocardiography (methods)</term>
<term>Elasticity</term>
<term>Elasticity Imaging Techniques (classification)</term>
<term>Elasticity Imaging Techniques (methods)</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Prostate (diagnostic imaging)</term>
<term>Stress, Mechanical</term>
<term>Ultrasonography, Doppler (methods)</term>
<term>Ultrasonography, Mammary (methods)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Contrainte mécanique</term>
<term>Femelle</term>
<term>Humains</term>
<term>Imagerie d'élasticité tissulaire ()</term>
<term>Mâle</term>
<term>Phénomènes biomécaniques</term>
<term>Prostate (imagerie diagnostique)</term>
<term>Échocardiographie ()</term>
<term>Échographie mammaire ()</term>
<term>Échographie-doppler ()</term>
<term>Élasticité</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Elasticity Imaging Techniques</term>
</keywords>
<keywords scheme="MESH" qualifier="diagnostic imaging" xml:lang="en">
<term>Prostate</term>
</keywords>
<keywords scheme="MESH" qualifier="imagerie diagnostique" xml:lang="fr">
<term>Prostate</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Echocardiography</term>
<term>Elasticity Imaging Techniques</term>
<term>Ultrasonography, Doppler</term>
<term>Ultrasonography, Mammary</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomechanical Phenomena</term>
<term>Elasticity</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Stress, Mechanical</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Contrainte mécanique</term>
<term>Femelle</term>
<term>Humains</term>
<term>Imagerie d'élasticité tissulaire</term>
<term>Mâle</term>
<term>Phénomènes biomécaniques</term>
<term>Échocardiographie</term>
<term>Échographie mammaire</term>
<term>Échographie-doppler</term>
<term>Élasticité</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ultrasound (US) elasticity imaging is an extension of the ancient art of palpation and of earlier US methods for viewing tissue stiffness such as echopalpation. Elasticity images consist of either an image of strain in response to force or an image of estimated elastic modulus. There are 3 main types of US elasticity imaging: elastography that tracks tissue movement during compression to obtain an estimate of strain, sonoelastography that uses color Doppler to generate an image of tissue movement in response to external vibrations, and tracking of shear wave propagation through tissue to obtain the elastic modulus. Other modalities may be used for elasticity imaging, the most powerful being magnetic resonance elastography. With 4 commercial US scanners already offering elastography and more to follow, US-based methods may be the most widely used for the near future. Elasticity imaging is possible for nearly every tissue. Breast mass elastography has potential for enhancing the specificity of US and mammography for cancer detection. Lesions in the thyroid, prostate gland, pancreas, and lymph nodes have been successfully imaged using elastography. Evaluation of diffuse disease including cirrhosis and transplant rejection is also possible using both imaging and nonimaging methods. Vascular imaging including myocardium, blood vessel wall, plaque, and venous thrombi has also shown great potential. Elasticity imaging may also be important in assessing the progress of ablation therapy. Recent work in assessing porous materials using elastography suggests that the technique may be useful in monitoring the severity of lymphedema.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18090836</PMID>
<DateCreated>
<Year>2007</Year>
<Month>12</Month>
<Day>19</Day>
</DateCreated>
<DateCompleted>
<Year>2008</Year>
<Month>02</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>11</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0894-8771</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>23</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2007</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Ultrasound quarterly</Title>
<ISOAbbreviation>Ultrasound Q</ISOAbbreviation>
</Journal>
<ArticleTitle>Imaging and estimation of tissue elasticity by ultrasound.</ArticleTitle>
<Pagination>
<MedlinePgn>255-68</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Ultrasound (US) elasticity imaging is an extension of the ancient art of palpation and of earlier US methods for viewing tissue stiffness such as echopalpation. Elasticity images consist of either an image of strain in response to force or an image of estimated elastic modulus. There are 3 main types of US elasticity imaging: elastography that tracks tissue movement during compression to obtain an estimate of strain, sonoelastography that uses color Doppler to generate an image of tissue movement in response to external vibrations, and tracking of shear wave propagation through tissue to obtain the elastic modulus. Other modalities may be used for elasticity imaging, the most powerful being magnetic resonance elastography. With 4 commercial US scanners already offering elastography and more to follow, US-based methods may be the most widely used for the near future. Elasticity imaging is possible for nearly every tissue. Breast mass elastography has potential for enhancing the specificity of US and mammography for cancer detection. Lesions in the thyroid, prostate gland, pancreas, and lymph nodes have been successfully imaged using elastography. Evaluation of diffuse disease including cirrhosis and transplant rejection is also possible using both imaging and nonimaging methods. Vascular imaging including myocardium, blood vessel wall, plaque, and venous thrombi has also shown great potential. Elasticity imaging may also be important in assessing the progress of ablation therapy. Recent work in assessing porous materials using elastography suggests that the technique may be useful in monitoring the severity of lymphedema.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Garra</LastName>
<ForeName>Brian Stephen</ForeName>
<Initials>BS</Initials>
<AffiliationInfo>
<Affiliation>Department of Radiology, University of Vermont College of Medicine, Fletcher Allen Health Care, Burlington, VT 05401, USA. bgarra@uvm.edu</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P01-CA64597-13</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Ultrasound Q</MedlineTA>
<NlmUniqueID>8809459</NlmUniqueID>
<ISSNLinking>0894-8771</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001696" MajorTopicYN="N">Biomechanical Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004452" MajorTopicYN="N">Echocardiography</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004548" MajorTopicYN="N">Elasticity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054459" MajorTopicYN="N">Elasticity Imaging Techniques</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011467" MajorTopicYN="N">Prostate</DescriptorName>
<QualifierName UI="Q000000981" MajorTopicYN="N">diagnostic imaging</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013314" MajorTopicYN="N">Stress, Mechanical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018608" MajorTopicYN="N">Ultrasonography, Doppler</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016217" MajorTopicYN="N">Ultrasonography, Mammary</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
</MeshHeadingList>
<NumberOfReferences>51</NumberOfReferences>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>12</Month>
<Day>20</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>2</Month>
<Day>26</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>12</Month>
<Day>20</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18090836</ArticleId>
<ArticleId IdType="doi">10.1097/ruq.0b013e31815b7ed6</ArticleId>
<ArticleId IdType="pii">00013644-200712000-00004</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Vermont</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Vermont">
<name sortKey="Garra, Brian Stephen" sort="Garra, Brian Stephen" uniqKey="Garra B" first="Brian Stephen" last="Garra">Brian Stephen Garra</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003319 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 003319 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:18090836
   |texte=   Imaging and estimation of tissue elasticity by ultrasound.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:18090836" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a LymphedemaV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024