Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Adipose-derived stem cells promote lymphangiogenesis in response to VEGF-C stimulation or TGF-β1 inhibition.

Identifieur interne : 002593 ( PubMed/Checkpoint ); précédent : 002592; suivant : 002594

Adipose-derived stem cells promote lymphangiogenesis in response to VEGF-C stimulation or TGF-β1 inhibition.

Auteurs : Alan Yan [États-Unis] ; Tomer Avraham ; Jamie C. Zampell ; Yosef S. Haviv ; Evan Weitman ; Babak J. Mehrara

Source :

RBID : pubmed:22112321

Descripteurs français

English descriptors

Abstract

Recent studies have demonstrated that augmentation of lymphangiogenesis and tissue engineering hold promise as a treatment for lymphedema. The purpose of this study was to determine whether adipose-derived stem cells (ASCs) can be used in lymphatic tissue-engineering by altering the balance between pro- and anti-lymphangiogenic cytokines.

DOI: 10.2217/fon.11.121
PubMed: 22112321


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:22112321

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Adipose-derived stem cells promote lymphangiogenesis in response to VEGF-C stimulation or TGF-β1 inhibition.</title>
<author>
<name sortKey="Yan, Alan" sort="Yan, Alan" uniqKey="Yan A" first="Alan" last="Yan">Alan Yan</name>
<affiliation wicri:level="2">
<nlm:affiliation>The Division of Plastic & Reconstructive Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Division of Plastic & Reconstructive Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Avraham, Tomer" sort="Avraham, Tomer" uniqKey="Avraham T" first="Tomer" last="Avraham">Tomer Avraham</name>
</author>
<author>
<name sortKey="Zampell, Jamie C" sort="Zampell, Jamie C" uniqKey="Zampell J" first="Jamie C" last="Zampell">Jamie C. Zampell</name>
</author>
<author>
<name sortKey="Haviv, Yosef S" sort="Haviv, Yosef S" uniqKey="Haviv Y" first="Yosef S" last="Haviv">Yosef S. Haviv</name>
</author>
<author>
<name sortKey="Weitman, Evan" sort="Weitman, Evan" uniqKey="Weitman E" first="Evan" last="Weitman">Evan Weitman</name>
</author>
<author>
<name sortKey="Mehrara, Babak J" sort="Mehrara, Babak J" uniqKey="Mehrara B" first="Babak J" last="Mehrara">Babak J. Mehrara</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:22112321</idno>
<idno type="pmid">22112321</idno>
<idno type="doi">10.2217/fon.11.121</idno>
<idno type="wicri:Area/PubMed/Corpus">002373</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002373</idno>
<idno type="wicri:Area/PubMed/Curation">002373</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002373</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002373</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002373</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Adipose-derived stem cells promote lymphangiogenesis in response to VEGF-C stimulation or TGF-β1 inhibition.</title>
<author>
<name sortKey="Yan, Alan" sort="Yan, Alan" uniqKey="Yan A" first="Alan" last="Yan">Alan Yan</name>
<affiliation wicri:level="2">
<nlm:affiliation>The Division of Plastic & Reconstructive Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Division of Plastic & Reconstructive Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Avraham, Tomer" sort="Avraham, Tomer" uniqKey="Avraham T" first="Tomer" last="Avraham">Tomer Avraham</name>
</author>
<author>
<name sortKey="Zampell, Jamie C" sort="Zampell, Jamie C" uniqKey="Zampell J" first="Jamie C" last="Zampell">Jamie C. Zampell</name>
</author>
<author>
<name sortKey="Haviv, Yosef S" sort="Haviv, Yosef S" uniqKey="Haviv Y" first="Yosef S" last="Haviv">Yosef S. Haviv</name>
</author>
<author>
<name sortKey="Weitman, Evan" sort="Weitman, Evan" uniqKey="Weitman E" first="Evan" last="Weitman">Evan Weitman</name>
</author>
<author>
<name sortKey="Mehrara, Babak J" sort="Mehrara, Babak J" uniqKey="Mehrara B" first="Babak J" last="Mehrara">Babak J. Mehrara</name>
</author>
</analytic>
<series>
<title level="j">Future oncology (London, England)</title>
<idno type="eISSN">1744-8301</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adipocytes (cytology)</term>
<term>Animals</term>
<term>Cell Proliferation (drug effects)</term>
<term>Cells, Cultured</term>
<term>Female</term>
<term>Genes, Reporter (genetics)</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Lymphangiogenesis (drug effects)</term>
<term>Lymphangiogenesis (physiology)</term>
<term>Membrane Glycoproteins (metabolism)</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Transgenic</term>
<term>Signal Transduction (drug effects)</term>
<term>Stem Cells (drug effects)</term>
<term>Stem Cells (metabolism)</term>
<term>Transforming Growth Factor beta1 (antagonists & inhibitors)</term>
<term>Vascular Endothelial Growth Factor C (pharmacology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adipocytes (cytologie)</term>
<term>Animaux</term>
<term>Cellules HEK293</term>
<term>Cellules cultivées</term>
<term>Cellules souches ()</term>
<term>Cellules souches (métabolisme)</term>
<term>Facteur de croissance endothéliale vasculaire de type C (pharmacologie)</term>
<term>Facteur de croissance transformant bêta-1 (antagonistes et inhibiteurs)</term>
<term>Femelle</term>
<term>Glycoprotéines membranaires (métabolisme)</term>
<term>Gènes rapporteurs (génétique)</term>
<term>Humains</term>
<term>Lymphangiogenèse ()</term>
<term>Lymphangiogenèse (physiologie)</term>
<term>Prolifération cellulaire ()</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
<term>Souris transgéniques</term>
<term>Transduction du signal ()</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Transforming Growth Factor beta1</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Membrane Glycoproteins</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Facteur de croissance transformant bêta-1</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Adipocytes</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Adipocytes</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cell Proliferation</term>
<term>Lymphangiogenesis</term>
<term>Signal Transduction</term>
<term>Stem Cells</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Genes, Reporter</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Gènes rapporteurs</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Stem Cells</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellules souches</term>
<term>Glycoprotéines membranaires</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Facteur de croissance endothéliale vasculaire de type C</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Vascular Endothelial Growth Factor C</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Lymphangiogenèse</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Lymphangiogenesis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cells, Cultured</term>
<term>Female</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Transgenic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cellules HEK293</term>
<term>Cellules cultivées</term>
<term>Cellules souches</term>
<term>Femelle</term>
<term>Humains</term>
<term>Lymphangiogenèse</term>
<term>Prolifération cellulaire</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
<term>Souris transgéniques</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Recent studies have demonstrated that augmentation of lymphangiogenesis and tissue engineering hold promise as a treatment for lymphedema. The purpose of this study was to determine whether adipose-derived stem cells (ASCs) can be used in lymphatic tissue-engineering by altering the balance between pro- and anti-lymphangiogenic cytokines.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22112321</PMID>
<DateCreated>
<Year>2011</Year>
<Month>11</Month>
<Day>24</Day>
</DateCreated>
<DateCompleted>
<Year>2012</Year>
<Month>04</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>10</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1744-8301</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2011</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Future oncology (London, England)</Title>
<ISOAbbreviation>Future Oncol</ISOAbbreviation>
</Journal>
<ArticleTitle>Adipose-derived stem cells promote lymphangiogenesis in response to VEGF-C stimulation or TGF-β1 inhibition.</ArticleTitle>
<Pagination>
<MedlinePgn>1457-73</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.2217/fon.11.121</ELocationID>
<Abstract>
<AbstractText Label="AIMS" NlmCategory="OBJECTIVE">Recent studies have demonstrated that augmentation of lymphangiogenesis and tissue engineering hold promise as a treatment for lymphedema. The purpose of this study was to determine whether adipose-derived stem cells (ASCs) can be used in lymphatic tissue-engineering by altering the balance between pro- and anti-lymphangiogenic cytokines.</AbstractText>
<AbstractText Label="MATERIALS & METHODS" NlmCategory="METHODS">ASCs were harvested and cultured in media with or without recombinant VEGF-C for 48 h. ASCs were then implanted in mice using Matrigel plugs. Additional groups of animals were implanted with ASCs transfected with a dominant-negative TGF-β1 receptor-II adenovirus with or without VEGF-C stimulation, since TGF-β1 has been shown to have potent antilymphangiogenic effects. Lymphangiogenesis, lymphatic differentiation and cellular proliferation were assessed.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Stimulation of ASCs with VEGF-C in vitro significantly increased expression of VEGF-A, VEGF-C and Prox-1. ASCs stimulated with VEGF-C prior to implantation induced a significant (threefold increase) lymphangiogenic response as compared with control groups (unstimulated ASCs or empty Matrigel plugs; p < 0.01). This effect was significantly potentiated when TGF-β1 signaling was inhibited using the dominant-negative TGF-β1 receptor-II virus (4.5-fold increase; p < 0.01). Stimulation of ASCs with VEGF-C resulted in a marked increase in the number of donor ASCs (twofold; p < 0.01) and increased the number of proliferating cells (sevenfold; p < 0.01) surrounding the Matrigel. ASCs stimulated with VEGF-C expressed podoplanin, a lymphangiogenic cell marker, whereas unstimulated cells did not.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Short-term stimulation of ASCs with VEGF-C results in increased expression of VEGF-A, VEGF-C and Prox-1 in vitro and is associated with a marked increase lymphangiogenic response after in vivo implantation. This lymphangiogenic response is significantly potentiated by blocking TGF-β1 function. Furthermore, stimulation of ASCs with VEGF-C markedly increases cellular proliferation and cellular survival after in vivo implantation and stimulated cells express podoplanin, a lymphangiogenic cell marker.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yan</LastName>
<ForeName>Alan</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>The Division of Plastic & Reconstructive Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Avraham</LastName>
<ForeName>Tomer</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zampell</LastName>
<ForeName>Jamie C</ForeName>
<Initials>JC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Haviv</LastName>
<ForeName>Yosef S</ForeName>
<Initials>YS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Weitman</LastName>
<ForeName>Evan</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mehrara</LastName>
<ForeName>Babak J</ForeName>
<Initials>BJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>T32 CA009501</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 CA009501-23</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 CA009501-24</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 CA009501-25</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Future Oncol</MedlineTA>
<NlmUniqueID>101256629</NlmUniqueID>
<ISSNLinking>1479-6694</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C490441">Gp38 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D053773">Transforming Growth Factor beta1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D042582">Vascular Endothelial Growth Factor C</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Bone Miner Res. 1999 Aug;14(8):1290-301</RefSource>
<PMID Version="1">10457261</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circulation. 2009 Jan 20;119(2):281-9</RefSource>
<PMID Version="1">19118255</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circ Res. 2005 Jun 10;96(11):1193-9</RefSource>
<PMID Version="1">15890974</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microvasc Res. 2006 Nov;72(3):161-71</RefSource>
<PMID Version="1">16876204</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Pharm Bull. 2007 Apr;30(4):633-7</RefSource>
<PMID Version="1">17409493</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tissue Eng. 2007 Jun;13(6):1299-312</RefSource>
<PMID Version="1">17518741</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer Res. 2009 Mar 15;69(6):2669-76</RefSource>
<PMID Version="1">19276384</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tissue Eng Part A. 2009 Jul;15(7):1833-41</RefSource>
<PMID Version="1">19125645</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plast Reconstr Surg. 2009 Aug;124(2):438-50</RefSource>
<PMID Version="1">19644258</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tissue Eng Part A. 2010 Feb;16(2):653-62</RefSource>
<PMID Version="1">19754224</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circulation. 2010 Oct 5;122(14):1413-25</RefSource>
<PMID Version="1">20855662</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer. 2010 Nov 15;116(22):5138-49</RefSource>
<PMID Version="1">20665892</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Stem Cell. 2010 Dec 3;7(6):718-29</RefSource>
<PMID Version="1">21112566</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Pathol. 2010 Dec;177(6):3202-14</RefSource>
<PMID Version="1">21056998</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FASEB J. 2010 Dec;24(12):4877-88</RefSource>
<PMID Version="1">20720160</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circulation. 2011 Feb 15;123(6):613-20</RefSource>
<PMID Version="1">21282502</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2011;6(2):e17201</RefSource>
<PMID Version="1">21359148</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Nucl Med. 2011 Apr;36(4):277-82</RefSource>
<PMID Version="1">21368600</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomaterials. 2011 Jul;32(19):4415-23</RefSource>
<PMID Version="1">21421266</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Breast Cancer Res. 2010;12(5):R70</RefSource>
<PMID Version="1">20825671</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Oncol. 2009 Mar;34(3):673-80</RefSource>
<PMID Version="1">19212672</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer Res. 2001 Mar 1;61(5):1786-90</RefSource>
<PMID Version="1">11280723</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer. 2001 Sep 15;92(6):1368-77</RefSource>
<PMID Version="1">11745212</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Gene Med. 2003 Oct;5(10):839-51</RefSource>
<PMID Version="1">14533192</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2004 Jun 25;279(26):27088-97</RefSource>
<PMID Version="1">15102829</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Oncol. 2004 Aug 1;22(15):3070-9</RefSource>
<PMID Version="1">15284257</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stem Cells. 2007 Oct;25(10):2648-59</RefSource>
<PMID Version="1">17615264</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Physiol. 2008 Feb;214(2):413-21</RefSource>
<PMID Version="1">17654479</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Med. 2007 Dec;13(12):1458-66</RefSource>
<PMID Version="1">18059280</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Immunol. 2008 Feb 15;180(4):2581-7</RefSource>
<PMID Version="1">18250469</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Transplant. 2007;16(9):963-70</RefSource>
<PMID Version="1">18293895</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plast Reconstr Surg. 2008 Apr;121(4):1144-52</RefSource>
<PMID Version="1">18349631</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Blood. 2008 May 1;111(9):4571-9</RefSource>
<PMID Version="1">18310502</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Oncol. 2008 Jul 20;26(21):3536-42</RefSource>
<PMID Version="1">18640935</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Blood. 2008 Aug 15;112(4):1129-38</RefSource>
<PMID Version="1">18541717</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plast Reconstr Surg. 2008 Sep;122(3):739-48</RefSource>
<PMID Version="1">18766036</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Biophys Res Commun. 2008 Nov 14;376(2):419-22</RefSource>
<PMID Version="1">18789891</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Oncol. 2008 Nov 10;26(32):5213-9</RefSource>
<PMID Version="1">18838709</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2008 Nov;295(5):H2113-27</RefSource>
<PMID Version="1">18849330</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Oncol. 2008 Dec 10;26(35):5689-96</RefSource>
<PMID Version="1">19001331</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Biol Med (Maywood). 2009 Jan;234(1):1-9</RefSource>
<PMID Version="1">19109553</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Biophys Res Commun. 2005 Jul 1;332(2):370-9</RefSource>
<PMID Version="1">15896706</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017667" MajorTopicYN="N">Adipocytes</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049109" MajorTopicYN="N">Cell Proliferation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017930" MajorTopicYN="N">Genes, Reporter</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057809" MajorTopicYN="N">HEK293 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042583" MajorTopicYN="N">Lymphangiogenesis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008822" MajorTopicYN="N">Mice, Transgenic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013234" MajorTopicYN="N">Stem Cells</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053773" MajorTopicYN="N">Transforming Growth Factor beta1</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042582" MajorTopicYN="N">Vascular Endothelial Growth Factor C</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS347916</OtherID>
<OtherID Source="NLM">PMC3263831</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>11</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>11</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>5</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22112321</ArticleId>
<ArticleId IdType="doi">10.2217/fon.11.121</ArticleId>
<ArticleId IdType="pmc">PMC3263831</ArticleId>
<ArticleId IdType="mid">NIHMS347916</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Avraham, Tomer" sort="Avraham, Tomer" uniqKey="Avraham T" first="Tomer" last="Avraham">Tomer Avraham</name>
<name sortKey="Haviv, Yosef S" sort="Haviv, Yosef S" uniqKey="Haviv Y" first="Yosef S" last="Haviv">Yosef S. Haviv</name>
<name sortKey="Mehrara, Babak J" sort="Mehrara, Babak J" uniqKey="Mehrara B" first="Babak J" last="Mehrara">Babak J. Mehrara</name>
<name sortKey="Weitman, Evan" sort="Weitman, Evan" uniqKey="Weitman E" first="Evan" last="Weitman">Evan Weitman</name>
<name sortKey="Zampell, Jamie C" sort="Zampell, Jamie C" uniqKey="Zampell J" first="Jamie C" last="Zampell">Jamie C. Zampell</name>
</noCountry>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Yan, Alan" sort="Yan, Alan" uniqKey="Yan A" first="Alan" last="Yan">Alan Yan</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002593 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 002593 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:22112321
   |texte=   Adipose-derived stem cells promote lymphangiogenesis in response to VEGF-C stimulation or TGF-β1 inhibition.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:22112321" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a LymphedemaV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024