Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

EMILIN1/α9β1 integrin interaction is crucial in lymphatic valve formation and maintenance.

Identifieur interne : 001B60 ( PubMed/Checkpoint ); précédent : 001B59; suivant : 001B61

EMILIN1/α9β1 integrin interaction is crucial in lymphatic valve formation and maintenance.

Auteurs : Carla Danussi [Italie] ; Lisa Del Bel Belluz ; Eliana Pivetta ; Teresa Maria Elisa Modica ; Andres Muro ; Bruna Wassermann ; Roberto Doliana ; Patrizia Sabatelli ; Alfonso Colombatti ; Paola Spessotto

Source :

RBID : pubmed:24019067

Descripteurs français

English descriptors

Abstract

Lymphatic vasculature plays a crucial role in the maintenance of tissue interstitial fluid balance. The role of functional collecting lymphatic vessels in lymph transport has been recently highlighted in pathologies leading to lymphedema, for which treatments are currently unavailable. Intraluminal valves are of paramount importance in this process. However, valve formation and maturation have not been entirely elucidated yet, in particular, the role played by the extracellular matrix (ECM). We hypothesized that EMILIN1, an ECM multidomain glycoprotein, regulates lymphatic valve formation and maintenance. Using a mouse knockout model, we show that in the absence of EMILIN1, mice exhibit defects in lymphatic valve structure and in lymph flow. By applying morphometric in vitro and in vivo functional assays, we conclude that this impaired phenotype depends on the lack of α9β1 integrin engagement, the specific lymphatic endothelial cell receptor for EMILIN1, and the ensuing derangement of cell proliferation and migration. Our data demonstrate a fundamental role for EMILIN1-integrin α9 interaction in lymphatic vasculature, especially in lymphatic valve formation and maintenance, and underline the importance of this ECM component in displaying a regulatory function in proliferation and acting as a "guiding" molecule in migration of lymphatic endothelial cells.

DOI: 10.1128/MCB.00872-13
PubMed: 24019067


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24019067

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">EMILIN1/α9β1 integrin interaction is crucial in lymphatic valve formation and maintenance.</title>
<author>
<name sortKey="Danussi, Carla" sort="Danussi, Carla" uniqKey="Danussi C" first="Carla" last="Danussi">Carla Danussi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Experimental Oncology 2, CRO, IRCCS, National Cancer Institute, Aviano (PN), Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Experimental Oncology 2, CRO, IRCCS, National Cancer Institute, Aviano (PN)</wicri:regionArea>
<wicri:noRegion>Aviano (PN)</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Del Bel Belluz, Lisa" sort="Del Bel Belluz, Lisa" uniqKey="Del Bel Belluz L" first="Lisa" last="Del Bel Belluz">Lisa Del Bel Belluz</name>
</author>
<author>
<name sortKey="Pivetta, Eliana" sort="Pivetta, Eliana" uniqKey="Pivetta E" first="Eliana" last="Pivetta">Eliana Pivetta</name>
</author>
<author>
<name sortKey="Modica, Teresa Maria Elisa" sort="Modica, Teresa Maria Elisa" uniqKey="Modica T" first="Teresa Maria Elisa" last="Modica">Teresa Maria Elisa Modica</name>
</author>
<author>
<name sortKey="Muro, Andres" sort="Muro, Andres" uniqKey="Muro A" first="Andres" last="Muro">Andres Muro</name>
</author>
<author>
<name sortKey="Wassermann, Bruna" sort="Wassermann, Bruna" uniqKey="Wassermann B" first="Bruna" last="Wassermann">Bruna Wassermann</name>
</author>
<author>
<name sortKey="Doliana, Roberto" sort="Doliana, Roberto" uniqKey="Doliana R" first="Roberto" last="Doliana">Roberto Doliana</name>
</author>
<author>
<name sortKey="Sabatelli, Patrizia" sort="Sabatelli, Patrizia" uniqKey="Sabatelli P" first="Patrizia" last="Sabatelli">Patrizia Sabatelli</name>
</author>
<author>
<name sortKey="Colombatti, Alfonso" sort="Colombatti, Alfonso" uniqKey="Colombatti A" first="Alfonso" last="Colombatti">Alfonso Colombatti</name>
</author>
<author>
<name sortKey="Spessotto, Paola" sort="Spessotto, Paola" uniqKey="Spessotto P" first="Paola" last="Spessotto">Paola Spessotto</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24019067</idno>
<idno type="pmid">24019067</idno>
<idno type="doi">10.1128/MCB.00872-13</idno>
<idno type="wicri:Area/PubMed/Corpus">001935</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001935</idno>
<idno type="wicri:Area/PubMed/Curation">001935</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001935</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001935</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001935</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">EMILIN1/α9β1 integrin interaction is crucial in lymphatic valve formation and maintenance.</title>
<author>
<name sortKey="Danussi, Carla" sort="Danussi, Carla" uniqKey="Danussi C" first="Carla" last="Danussi">Carla Danussi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Experimental Oncology 2, CRO, IRCCS, National Cancer Institute, Aviano (PN), Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Experimental Oncology 2, CRO, IRCCS, National Cancer Institute, Aviano (PN)</wicri:regionArea>
<wicri:noRegion>Aviano (PN)</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Del Bel Belluz, Lisa" sort="Del Bel Belluz, Lisa" uniqKey="Del Bel Belluz L" first="Lisa" last="Del Bel Belluz">Lisa Del Bel Belluz</name>
</author>
<author>
<name sortKey="Pivetta, Eliana" sort="Pivetta, Eliana" uniqKey="Pivetta E" first="Eliana" last="Pivetta">Eliana Pivetta</name>
</author>
<author>
<name sortKey="Modica, Teresa Maria Elisa" sort="Modica, Teresa Maria Elisa" uniqKey="Modica T" first="Teresa Maria Elisa" last="Modica">Teresa Maria Elisa Modica</name>
</author>
<author>
<name sortKey="Muro, Andres" sort="Muro, Andres" uniqKey="Muro A" first="Andres" last="Muro">Andres Muro</name>
</author>
<author>
<name sortKey="Wassermann, Bruna" sort="Wassermann, Bruna" uniqKey="Wassermann B" first="Bruna" last="Wassermann">Bruna Wassermann</name>
</author>
<author>
<name sortKey="Doliana, Roberto" sort="Doliana, Roberto" uniqKey="Doliana R" first="Roberto" last="Doliana">Roberto Doliana</name>
</author>
<author>
<name sortKey="Sabatelli, Patrizia" sort="Sabatelli, Patrizia" uniqKey="Sabatelli P" first="Patrizia" last="Sabatelli">Patrizia Sabatelli</name>
</author>
<author>
<name sortKey="Colombatti, Alfonso" sort="Colombatti, Alfonso" uniqKey="Colombatti A" first="Alfonso" last="Colombatti">Alfonso Colombatti</name>
</author>
<author>
<name sortKey="Spessotto, Paola" sort="Spessotto, Paola" uniqKey="Spessotto P" first="Paola" last="Spessotto">Paola Spessotto</name>
</author>
</analytic>
<series>
<title level="j">Molecular and cellular biology</title>
<idno type="eISSN">1098-5549</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Cell Movement</term>
<term>Cell Proliferation</term>
<term>Cells, Cultured</term>
<term>Endothelial Cells (cytology)</term>
<term>Endothelial Cells (metabolism)</term>
<term>Integrins (analysis)</term>
<term>Integrins (metabolism)</term>
<term>Lymphangiogenesis</term>
<term>Lymphatic Vessels (abnormalities)</term>
<term>Lymphatic Vessels (metabolism)</term>
<term>Lymphatic Vessels (ultrastructure)</term>
<term>Membrane Glycoproteins (analysis)</term>
<term>Membrane Glycoproteins (genetics)</term>
<term>Membrane Glycoproteins (metabolism)</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Knockout</term>
<term>Protein Interaction Maps</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Cartes d'interactions protéiques</term>
<term>Cellules cultivées</term>
<term>Cellules endothéliales (cytologie)</term>
<term>Cellules endothéliales (métabolisme)</term>
<term>Glycoprotéines membranaires (analyse)</term>
<term>Glycoprotéines membranaires (génétique)</term>
<term>Glycoprotéines membranaires (métabolisme)</term>
<term>Intégrines (analyse)</term>
<term>Intégrines (métabolisme)</term>
<term>Lymphangiogenèse</term>
<term>Mouvement cellulaire</term>
<term>Prolifération cellulaire</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
<term>Souris knockout</term>
<term>Vaisseaux lymphatiques (malformations)</term>
<term>Vaisseaux lymphatiques (métabolisme)</term>
<term>Vaisseaux lymphatiques (ultrastructure)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Integrins</term>
<term>Membrane Glycoproteins</term>
</keywords>
<keywords scheme="MESH" qualifier="abnormalities" xml:lang="en">
<term>Lymphatic Vessels</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Glycoprotéines membranaires</term>
<term>Intégrines</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Cellules endothéliales</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Endothelial Cells</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Membrane Glycoproteins</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glycoprotéines membranaires</term>
</keywords>
<keywords scheme="MESH" qualifier="malformations" xml:lang="fr">
<term>Vaisseaux lymphatiques</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Endothelial Cells</term>
<term>Integrins</term>
<term>Lymphatic Vessels</term>
<term>Membrane Glycoproteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellules endothéliales</term>
<term>Glycoprotéines membranaires</term>
<term>Intégrines</term>
<term>Vaisseaux lymphatiques</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Lymphatic Vessels</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Movement</term>
<term>Cell Proliferation</term>
<term>Cells, Cultured</term>
<term>Lymphangiogenesis</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Knockout</term>
<term>Protein Interaction Maps</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="fr">
<term>Animaux</term>
<term>Cartes d'interactions protéiques</term>
<term>Cellules cultivées</term>
<term>Lymphangiogenèse</term>
<term>Mouvement cellulaire</term>
<term>Prolifération cellulaire</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
<term>Souris knockout</term>
<term>Vaisseaux lymphatiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Lymphatic vasculature plays a crucial role in the maintenance of tissue interstitial fluid balance. The role of functional collecting lymphatic vessels in lymph transport has been recently highlighted in pathologies leading to lymphedema, for which treatments are currently unavailable. Intraluminal valves are of paramount importance in this process. However, valve formation and maturation have not been entirely elucidated yet, in particular, the role played by the extracellular matrix (ECM). We hypothesized that EMILIN1, an ECM multidomain glycoprotein, regulates lymphatic valve formation and maintenance. Using a mouse knockout model, we show that in the absence of EMILIN1, mice exhibit defects in lymphatic valve structure and in lymph flow. By applying morphometric in vitro and in vivo functional assays, we conclude that this impaired phenotype depends on the lack of α9β1 integrin engagement, the specific lymphatic endothelial cell receptor for EMILIN1, and the ensuing derangement of cell proliferation and migration. Our data demonstrate a fundamental role for EMILIN1-integrin α9 interaction in lymphatic vasculature, especially in lymphatic valve formation and maintenance, and underline the importance of this ECM component in displaying a regulatory function in proliferation and acting as a "guiding" molecule in migration of lymphatic endothelial cells.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24019067</PMID>
<DateCreated>
<Year>2013</Year>
<Month>10</Month>
<Day>25</Day>
</DateCreated>
<DateCompleted>
<Year>2013</Year>
<Month>12</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>04</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5549</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>33</Volume>
<Issue>22</Issue>
<PubDate>
<Year>2013</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Molecular and cellular biology</Title>
<ISOAbbreviation>Mol. Cell. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>EMILIN1/α9β1 integrin interaction is crucial in lymphatic valve formation and maintenance.</ArticleTitle>
<Pagination>
<MedlinePgn>4381-94</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/MCB.00872-13</ELocationID>
<Abstract>
<AbstractText>Lymphatic vasculature plays a crucial role in the maintenance of tissue interstitial fluid balance. The role of functional collecting lymphatic vessels in lymph transport has been recently highlighted in pathologies leading to lymphedema, for which treatments are currently unavailable. Intraluminal valves are of paramount importance in this process. However, valve formation and maturation have not been entirely elucidated yet, in particular, the role played by the extracellular matrix (ECM). We hypothesized that EMILIN1, an ECM multidomain glycoprotein, regulates lymphatic valve formation and maintenance. Using a mouse knockout model, we show that in the absence of EMILIN1, mice exhibit defects in lymphatic valve structure and in lymph flow. By applying morphometric in vitro and in vivo functional assays, we conclude that this impaired phenotype depends on the lack of α9β1 integrin engagement, the specific lymphatic endothelial cell receptor for EMILIN1, and the ensuing derangement of cell proliferation and migration. Our data demonstrate a fundamental role for EMILIN1-integrin α9 interaction in lymphatic vasculature, especially in lymphatic valve formation and maintenance, and underline the importance of this ECM component in displaying a regulatory function in proliferation and acting as a "guiding" molecule in migration of lymphatic endothelial cells.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Danussi</LastName>
<ForeName>Carla</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Experimental Oncology 2, CRO, IRCCS, National Cancer Institute, Aviano (PN), Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Del Bel Belluz</LastName>
<ForeName>Lisa</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pivetta</LastName>
<ForeName>Eliana</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Modica</LastName>
<ForeName>Teresa Maria Elisa</ForeName>
<Initials>TM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Muro</LastName>
<ForeName>Andres</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wassermann</LastName>
<ForeName>Bruna</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Doliana</LastName>
<ForeName>Roberto</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sabatelli</LastName>
<ForeName>Patrizia</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Colombatti</LastName>
<ForeName>Alfonso</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Spessotto</LastName>
<ForeName>Paola</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>09</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Cell Biol</MedlineTA>
<NlmUniqueID>8109087</NlmUniqueID>
<ISSNLinking>0270-7306</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016023">Integrins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C030340">elastin microfibril interface located protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C113256">integrin alpha 9 beta 1</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2000 Nov 10;275(45):34922-30</RefSource>
<PMID Version="1">10944520</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer Prev Res (Phila). 2012 Sep;5(9):1131-43</RefSource>
<PMID Version="1">22827975</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2003 Feb 21;278(8):6160-7</RefSource>
<PMID Version="1">12456677</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2003 Jul 7;162(1):149-60</RefSource>
<PMID Version="1">12847088</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Biol. 2004 Jan;24(2):638-50</RefSource>
<PMID Version="1">14701737</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circ Res. 2004 Mar 5;94(4):462-70</RefSource>
<PMID Version="1">14699013</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2004 Sep 3;279(36):37528-34</RefSource>
<PMID Version="1">15247268</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Med. 2004 Sep;10(9):974-81</RefSource>
<PMID Version="1">15322537</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Z Zellforsch Mikrosk Anat. 1973;143(2):149-68</RefSource>
<PMID Version="1">4761509</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 1985 Jan;100(1):18-26</RefSource>
<PMID Version="1">3880750</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lymphology. 1991 Dec;24(4):146-54</RefSource>
<PMID Version="1">1791725</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 1993 Apr;121(1):201-12</RefSource>
<PMID Version="1">8458869</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 1993 Dec;123(5):1289-97</RefSource>
<PMID Version="1">8245132</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1994 Oct 28;269(43):26691-6</RefSource>
<PMID Version="1">7523411</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genes Dev. 1995 Jan 1;9(1):1-14</RefSource>
<PMID Version="1">7530222</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Biophys Res Commun. 1996 Apr 5;221(1):151-6</RefSource>
<PMID Version="1">8660327</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6594-9</RefSource>
<PMID Version="1">8692862</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 1998 Apr 1;101(7):1468-78</RefSource>
<PMID Version="1">9525990</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 1999 Apr 19;145(2):413-20</RefSource>
<PMID Version="1">10209034</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 1999 Sep 17;98(6):769-78</RefSource>
<PMID Version="1">10499794</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genes Dev. 2005 Feb 1;19(3):397-410</RefSource>
<PMID Version="1">15687262</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2005 Feb 11;280(6):4544-52</RefSource>
<PMID Version="1">15590642</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO J. 2005 Aug 17;24(16):2885-95</RefSource>
<PMID Version="1">16052207</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2006 Mar 10;124(5):929-42</RefSource>
<PMID Version="1">16530041</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Sci. 2006 Nov 1;119(Pt 21):4574-84</RefSource>
<PMID Version="1">17074837</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biol Cell. 2007 Apr;18(4):1421-9</RefSource>
<PMID Version="1">17287396</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Biol. 2008 Jun;28(12):4026-39</RefSource>
<PMID Version="1">18411305</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1999 Dec 17;274(51):36328-34</RefSource>
<PMID Version="1">10593924</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Biol. 2000 Jul;20(14):5208-15</RefSource>
<PMID Version="1">10866676</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2008 Jul 4;283(27):18947-56</RefSource>
<PMID Version="1">18463100</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lymphat Res Biol. 2008;6(3-4):109-22</RefSource>
<PMID Version="1">19093783</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Methods Mol Biol. 2009;522:221-50</RefSource>
<PMID Version="1">19247614</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2009 May 4;185(3):439-57</RefSource>
<PMID Version="1">19398761</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Cell. 2009 Aug;17(2):175-86</RefSource>
<PMID Version="1">19686679</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2010 Feb 19;140(4):460-76</RefSource>
<PMID Version="1">20178740</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Biol. 2011 Jun 15;354(2):253-66</RefSource>
<PMID Version="1">21515254</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2011 Oct 3;195(1):131-45</RefSource>
<PMID Version="1">21949412</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Cell. 2012 Feb 14;22(2):430-45</RefSource>
<PMID Version="1">22306086</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circ Res. 2012 Aug 3;111(4):426-36</RefSource>
<PMID Version="1">22723300</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Cell Res. 2003 Jan 15;282(2):90-100</RefSource>
<PMID Version="1">12531695</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002465" MajorTopicYN="N">Cell Movement</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049109" MajorTopicYN="N">Cell Proliferation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042783" MajorTopicYN="N">Endothelial Cells</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016023" MajorTopicYN="N">Integrins</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042583" MajorTopicYN="Y">Lymphangiogenesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042601" MajorTopicYN="N">Lymphatic Vessels</DescriptorName>
<QualifierName UI="Q000002" MajorTopicYN="N">abnormalities</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018345" MajorTopicYN="N">Mice, Knockout</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060066" MajorTopicYN="N">Protein Interaction Maps</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3838180</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>9</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>9</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24019067</ArticleId>
<ArticleId IdType="pii">MCB.00872-13</ArticleId>
<ArticleId IdType="doi">10.1128/MCB.00872-13</ArticleId>
<ArticleId IdType="pmc">PMC3838180</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Colombatti, Alfonso" sort="Colombatti, Alfonso" uniqKey="Colombatti A" first="Alfonso" last="Colombatti">Alfonso Colombatti</name>
<name sortKey="Del Bel Belluz, Lisa" sort="Del Bel Belluz, Lisa" uniqKey="Del Bel Belluz L" first="Lisa" last="Del Bel Belluz">Lisa Del Bel Belluz</name>
<name sortKey="Doliana, Roberto" sort="Doliana, Roberto" uniqKey="Doliana R" first="Roberto" last="Doliana">Roberto Doliana</name>
<name sortKey="Modica, Teresa Maria Elisa" sort="Modica, Teresa Maria Elisa" uniqKey="Modica T" first="Teresa Maria Elisa" last="Modica">Teresa Maria Elisa Modica</name>
<name sortKey="Muro, Andres" sort="Muro, Andres" uniqKey="Muro A" first="Andres" last="Muro">Andres Muro</name>
<name sortKey="Pivetta, Eliana" sort="Pivetta, Eliana" uniqKey="Pivetta E" first="Eliana" last="Pivetta">Eliana Pivetta</name>
<name sortKey="Sabatelli, Patrizia" sort="Sabatelli, Patrizia" uniqKey="Sabatelli P" first="Patrizia" last="Sabatelli">Patrizia Sabatelli</name>
<name sortKey="Spessotto, Paola" sort="Spessotto, Paola" uniqKey="Spessotto P" first="Paola" last="Spessotto">Paola Spessotto</name>
<name sortKey="Wassermann, Bruna" sort="Wassermann, Bruna" uniqKey="Wassermann B" first="Bruna" last="Wassermann">Bruna Wassermann</name>
</noCountry>
<country name="Italie">
<noRegion>
<name sortKey="Danussi, Carla" sort="Danussi, Carla" uniqKey="Danussi C" first="Carla" last="Danussi">Carla Danussi</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B60 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001B60 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:24019067
   |texte=   EMILIN1/α9β1 integrin interaction is crucial in lymphatic valve formation and maintenance.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:24019067" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a LymphedemaV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024