Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Th2 differentiation is necessary for soft tissue fibrosis and lymphatic dysfunction resulting from lymphedema.

Identifieur interne : 001849 ( PubMed/Checkpoint ); précédent : 001848; suivant : 001850

Th2 differentiation is necessary for soft tissue fibrosis and lymphatic dysfunction resulting from lymphedema.

Auteurs : Tomer Avraham [États-Unis] ; Jamie C. Zampell ; Alan Yan ; Sonia Elhadad ; Evan S. Weitman ; Stanley G. Rockson ; Jacqueline Bromberg ; Babak J. Mehrara

Source :

RBID : pubmed:23193171

Descripteurs français

English descriptors

Abstract

Lymphedema is a dreaded complication of cancer treatment. However, despite the fact that >5 million Americans are affected by this disorder, the development of effective treatments is limited by the fact that the pathology of lymphedema remains unknown. The purpose of these studies was to determine the role of inflammatory responses in lymphedema pathology. Using mouse models of lymphedema, as well as clinical lymphedema specimens, we show that lymphatic stasis results in a CD4 T-cell inflammation and T-helper 2 (Th2) differentiation. Using mice deficient in T cells or CD4 cells, we show that this inflammatory response is necessary for the pathological changes of lymphedema, including fibrosis, adipose deposition, and lymphatic dysfunction. Further, we show that inhibition of Th2 differentiation using interleukin-4 (IL-4) or IL-13 blockade prevents initiation and progression of lymphedema by decreasing tissue fibrosis and significantly improving lymphatic function, independent of lymphangiogenic growth factors. We show that CD4 inflammation is a critical regulator of tissue fibrosis and lymphatic dysfunction in lymphedema and that inhibition of Th2 differentiation markedly improves lymphatic function independent of lymphangiogenic cytokine expression. Notably, preventing and/or reversing the development of pathological tissue changes that occur in lymphedema may be a viable treatment strategy for this disorder.

DOI: 10.1096/fj.12-222695
PubMed: 23193171


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:23193171

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Th2 differentiation is necessary for soft tissue fibrosis and lymphatic dysfunction resulting from lymphedema.</title>
<author>
<name sortKey="Avraham, Tomer" sort="Avraham, Tomer" uniqKey="Avraham T" first="Tomer" last="Avraham">Tomer Avraham</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zampell, Jamie C" sort="Zampell, Jamie C" uniqKey="Zampell J" first="Jamie C" last="Zampell">Jamie C. Zampell</name>
</author>
<author>
<name sortKey="Yan, Alan" sort="Yan, Alan" uniqKey="Yan A" first="Alan" last="Yan">Alan Yan</name>
</author>
<author>
<name sortKey="Elhadad, Sonia" sort="Elhadad, Sonia" uniqKey="Elhadad S" first="Sonia" last="Elhadad">Sonia Elhadad</name>
</author>
<author>
<name sortKey="Weitman, Evan S" sort="Weitman, Evan S" uniqKey="Weitman E" first="Evan S" last="Weitman">Evan S. Weitman</name>
</author>
<author>
<name sortKey="Rockson, Stanley G" sort="Rockson, Stanley G" uniqKey="Rockson S" first="Stanley G" last="Rockson">Stanley G. Rockson</name>
</author>
<author>
<name sortKey="Bromberg, Jacqueline" sort="Bromberg, Jacqueline" uniqKey="Bromberg J" first="Jacqueline" last="Bromberg">Jacqueline Bromberg</name>
</author>
<author>
<name sortKey="Mehrara, Babak J" sort="Mehrara, Babak J" uniqKey="Mehrara B" first="Babak J" last="Mehrara">Babak J. Mehrara</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23193171</idno>
<idno type="pmid">23193171</idno>
<idno type="doi">10.1096/fj.12-222695</idno>
<idno type="wicri:Area/PubMed/Corpus">001E39</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001E39</idno>
<idno type="wicri:Area/PubMed/Curation">001E39</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001E39</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001E39</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001E39</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Th2 differentiation is necessary for soft tissue fibrosis and lymphatic dysfunction resulting from lymphedema.</title>
<author>
<name sortKey="Avraham, Tomer" sort="Avraham, Tomer" uniqKey="Avraham T" first="Tomer" last="Avraham">Tomer Avraham</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zampell, Jamie C" sort="Zampell, Jamie C" uniqKey="Zampell J" first="Jamie C" last="Zampell">Jamie C. Zampell</name>
</author>
<author>
<name sortKey="Yan, Alan" sort="Yan, Alan" uniqKey="Yan A" first="Alan" last="Yan">Alan Yan</name>
</author>
<author>
<name sortKey="Elhadad, Sonia" sort="Elhadad, Sonia" uniqKey="Elhadad S" first="Sonia" last="Elhadad">Sonia Elhadad</name>
</author>
<author>
<name sortKey="Weitman, Evan S" sort="Weitman, Evan S" uniqKey="Weitman E" first="Evan S" last="Weitman">Evan S. Weitman</name>
</author>
<author>
<name sortKey="Rockson, Stanley G" sort="Rockson, Stanley G" uniqKey="Rockson S" first="Stanley G" last="Rockson">Stanley G. Rockson</name>
</author>
<author>
<name sortKey="Bromberg, Jacqueline" sort="Bromberg, Jacqueline" uniqKey="Bromberg J" first="Jacqueline" last="Bromberg">Jacqueline Bromberg</name>
</author>
<author>
<name sortKey="Mehrara, Babak J" sort="Mehrara, Babak J" uniqKey="Mehrara B" first="Babak J" last="Mehrara">Babak J. Mehrara</name>
</author>
</analytic>
<series>
<title level="j">FASEB journal : official publication of the Federation of American Societies for Experimental Biology</title>
<idno type="eISSN">1530-6860</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Cell Differentiation (immunology)</term>
<term>Disease Models, Animal</term>
<term>Fibrosis (genetics)</term>
<term>Fibrosis (immunology)</term>
<term>Fibrosis (pathology)</term>
<term>Inflammation (genetics)</term>
<term>Inflammation (immunology)</term>
<term>Inflammation (pathology)</term>
<term>Interleukin-13 (genetics)</term>
<term>Interleukin-13 (immunology)</term>
<term>Interleukin-4 (genetics)</term>
<term>Interleukin-4 (immunology)</term>
<term>Lymphedema (etiology)</term>
<term>Lymphedema (genetics)</term>
<term>Lymphedema (immunology)</term>
<term>Lymphedema (pathology)</term>
<term>Mice</term>
<term>Mice, Knockout</term>
<term>Mice, Nude</term>
<term>Th2 Cells (immunology)</term>
<term>Th2 Cells (pathology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Différenciation cellulaire (immunologie)</term>
<term>Fibrose (anatomopathologie)</term>
<term>Fibrose (génétique)</term>
<term>Fibrose (immunologie)</term>
<term>Inflammation (anatomopathologie)</term>
<term>Inflammation (génétique)</term>
<term>Inflammation (immunologie)</term>
<term>Interleukine-13 (génétique)</term>
<term>Interleukine-13 (immunologie)</term>
<term>Interleukine-4 (génétique)</term>
<term>Interleukine-4 (immunologie)</term>
<term>Lymphocytes auxiliaires Th2 (anatomopathologie)</term>
<term>Lymphocytes auxiliaires Th2 (immunologie)</term>
<term>Lymphoedème (anatomopathologie)</term>
<term>Lymphoedème (génétique)</term>
<term>Lymphoedème (immunologie)</term>
<term>Lymphoedème (étiologie)</term>
<term>Modèles animaux de maladie humaine</term>
<term>Souris</term>
<term>Souris knockout</term>
<term>Souris nude</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Interleukin-13</term>
<term>Interleukin-4</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Fibrose</term>
<term>Inflammation</term>
<term>Lymphocytes auxiliaires Th2</term>
<term>Lymphoedème</term>
</keywords>
<keywords scheme="MESH" qualifier="etiology" xml:lang="en">
<term>Lymphedema</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Fibrosis</term>
<term>Inflammation</term>
<term>Lymphedema</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Fibrose</term>
<term>Inflammation</term>
<term>Interleukine-13</term>
<term>Interleukine-4</term>
<term>Lymphoedème</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Différenciation cellulaire</term>
<term>Fibrose</term>
<term>Inflammation</term>
<term>Interleukine-13</term>
<term>Interleukine-4</term>
<term>Lymphocytes auxiliaires Th2</term>
<term>Lymphoedème</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Cell Differentiation</term>
<term>Fibrosis</term>
<term>Inflammation</term>
<term>Interleukin-13</term>
<term>Interleukin-4</term>
<term>Lymphedema</term>
<term>Th2 Cells</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Fibrosis</term>
<term>Inflammation</term>
<term>Lymphedema</term>
<term>Th2 Cells</term>
</keywords>
<keywords scheme="MESH" qualifier="étiologie" xml:lang="fr">
<term>Lymphoedème</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Disease Models, Animal</term>
<term>Mice</term>
<term>Mice, Knockout</term>
<term>Mice, Nude</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Modèles animaux de maladie humaine</term>
<term>Souris</term>
<term>Souris knockout</term>
<term>Souris nude</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Lymphedema is a dreaded complication of cancer treatment. However, despite the fact that >5 million Americans are affected by this disorder, the development of effective treatments is limited by the fact that the pathology of lymphedema remains unknown. The purpose of these studies was to determine the role of inflammatory responses in lymphedema pathology. Using mouse models of lymphedema, as well as clinical lymphedema specimens, we show that lymphatic stasis results in a CD4 T-cell inflammation and T-helper 2 (Th2) differentiation. Using mice deficient in T cells or CD4 cells, we show that this inflammatory response is necessary for the pathological changes of lymphedema, including fibrosis, adipose deposition, and lymphatic dysfunction. Further, we show that inhibition of Th2 differentiation using interleukin-4 (IL-4) or IL-13 blockade prevents initiation and progression of lymphedema by decreasing tissue fibrosis and significantly improving lymphatic function, independent of lymphangiogenic growth factors. We show that CD4 inflammation is a critical regulator of tissue fibrosis and lymphatic dysfunction in lymphedema and that inhibition of Th2 differentiation markedly improves lymphatic function independent of lymphangiogenic cytokine expression. Notably, preventing and/or reversing the development of pathological tissue changes that occur in lymphedema may be a viable treatment strategy for this disorder.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23193171</PMID>
<DateCreated>
<Year>2013</Year>
<Month>03</Month>
<Day>01</Day>
</DateCreated>
<DateCompleted>
<Year>2013</Year>
<Month>04</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>10</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1530-6860</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>27</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2013</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>FASEB journal : official publication of the Federation of American Societies for Experimental Biology</Title>
<ISOAbbreviation>FASEB J.</ISOAbbreviation>
</Journal>
<ArticleTitle>Th2 differentiation is necessary for soft tissue fibrosis and lymphatic dysfunction resulting from lymphedema.</ArticleTitle>
<Pagination>
<MedlinePgn>1114-26</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1096/fj.12-222695</ELocationID>
<Abstract>
<AbstractText>Lymphedema is a dreaded complication of cancer treatment. However, despite the fact that >5 million Americans are affected by this disorder, the development of effective treatments is limited by the fact that the pathology of lymphedema remains unknown. The purpose of these studies was to determine the role of inflammatory responses in lymphedema pathology. Using mouse models of lymphedema, as well as clinical lymphedema specimens, we show that lymphatic stasis results in a CD4 T-cell inflammation and T-helper 2 (Th2) differentiation. Using mice deficient in T cells or CD4 cells, we show that this inflammatory response is necessary for the pathological changes of lymphedema, including fibrosis, adipose deposition, and lymphatic dysfunction. Further, we show that inhibition of Th2 differentiation using interleukin-4 (IL-4) or IL-13 blockade prevents initiation and progression of lymphedema by decreasing tissue fibrosis and significantly improving lymphatic function, independent of lymphangiogenic growth factors. We show that CD4 inflammation is a critical regulator of tissue fibrosis and lymphatic dysfunction in lymphedema and that inhibition of Th2 differentiation markedly improves lymphatic function independent of lymphangiogenic cytokine expression. Notably, preventing and/or reversing the development of pathological tissue changes that occur in lymphedema may be a viable treatment strategy for this disorder.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Avraham</LastName>
<ForeName>Tomer</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zampell</LastName>
<ForeName>Jamie C</ForeName>
<Initials>JC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yan</LastName>
<ForeName>Alan</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Elhadad</LastName>
<ForeName>Sonia</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Weitman</LastName>
<ForeName>Evan S</ForeName>
<Initials>ES</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rockson</LastName>
<ForeName>Stanley G</ForeName>
<Initials>SG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bromberg</LastName>
<ForeName>Jacqueline</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mehrara</LastName>
<ForeName>Babak J</ForeName>
<Initials>BJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>T32 CA009501</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01HL111130</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 CA08748</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 CA008748</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R24 CA83084</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL111130</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 CA 009501</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R24 CA083084</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>11</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>FASEB J</MedlineTA>
<NlmUniqueID>8804484</NlmUniqueID>
<ISSNLinking>0892-6638</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018793">Interleukin-13</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>207137-56-2</RegistryNumber>
<NameOfSubstance UI="D015847">Interleukin-4</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Cell Physiol. 2011 May;300(5):C1107-21</RefSource>
<PMID Version="1">21248077</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Immunity. 2011 Jan 28;34(1):96-107</RefSource>
<PMID Version="1">21256057</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cytokine Growth Factor Rev. 2011 Apr;22(2):83-9</RefSource>
<PMID Version="1">21377916</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Expert Opin Investig Drugs. 2011 Sep;20(9):1263-75</RefSource>
<PMID Version="1">21751940</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Cell Physiol. 2012 Jan 15;302(2):C392-404</RefSource>
<PMID Version="1">21940662</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Cell Physiol. 2012 Feb 15;302(4):C709-19</RefSource>
<PMID Version="1">22049214</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FASEB J. 2012 Mar;26(3):1027-39</RefSource>
<PMID Version="1">22067482</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lymphology. 2006 Dec;39(4):185-92</RefSource>
<PMID Version="1">17319631</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lymphology. 2000 Mar;33(1):19-23</RefSource>
<PMID Version="1">10769812</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Surg Oncol. 2004 Jun;11(6):573-80</RefSource>
<PMID Version="1">15172932</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am Rev Respir Dis. 1983 May;127(5):614-7</RefSource>
<PMID Version="1">6189434</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Surgery. 1984 May;95(5):562-6</RefSource>
<PMID Version="1">6710353</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lymphology. 1986 Dec;19(4):139-45</RefSource>
<PMID Version="1">2951567</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Med. 1992 Jul 1;176(1):19-25</RefSource>
<PMID Version="1">1535368</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lymphology. 1992 Dec;25(4):166-71</RefSource>
<PMID Version="1">1284085</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trop Med Parasitol. 1993 Mar;44(1):40-4</RefSource>
<PMID Version="1">8516632</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer. 1998 Dec 15;83(12 Suppl American):2776-81</RefSource>
<PMID Version="1">9874397</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cytokine. 2004 Dec 21;28(6):224-32</RefSource>
<PMID Version="1">15566951</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circ Res. 2005 Jun 10;96(11):1193-9</RefSource>
<PMID Version="1">15890974</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2006 Jul 15;574(Pt 2):583-96</RefSource>
<PMID Version="1">16675495</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Lung Cell Mol Physiol. 2006 Oct;291(4):L658-67</RefSource>
<PMID Version="1">16648243</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microvasc Res. 2006 Nov;72(3):161-71</RefSource>
<PMID Version="1">16876204</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Med. 2006 Jul;3(7):e254</RefSource>
<PMID Version="1">16834456</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FASEB J. 2007 Apr;21(4):1003-12</RefSource>
<PMID Version="1">17210781</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer. 2007 Jun 15;109(12):2607-14</RefSource>
<PMID Version="1">17474128</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plast Reconstr Surg. 2007 Sep 15;120(4):982-91</RefSource>
<PMID Version="1">17805128</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Med. 2007;39(6):440-56</RefSource>
<PMID Version="1">17852040</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lymphology. 2007 Sep;40(3):102-13</RefSource>
<PMID Version="1">18062611</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Med. 2007 Dec;13(12):1458-66</RefSource>
<PMID Version="1">18059280</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Pathol. 2008 Jan;214(2):199-210</RefSource>
<PMID Version="1">18161745</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Blood. 2008 May 1;111(9):4571-9</RefSource>
<PMID Version="1">18310502</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Pathol. 2008 Jun;172(6):1650-63</RefSource>
<PMID Version="1">18467694</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann N Y Acad Sci. 2008;1131:147-54</RefSource>
<PMID Version="1">18519968</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Exp Metastasis. 2008;25(7):717-25</RefSource>
<PMID Version="1">18512120</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2008 Nov;295(5):H2113-27</RefSource>
<PMID Version="1">18849330</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plast Reconstr Surg. 2009 Aug;124(2):438-50</RefSource>
<PMID Version="1">19644258</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2009;4(12):e8380</RefSource>
<PMID Version="1">20027220</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Pathol. 2010 Mar;176(3):1122-9</RefSource>
<PMID Version="1">20110415</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Cell Physiol. 2010 Sep;299(3):C589-605</RefSource>
<PMID Version="1">20519446</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Trop Med Hyg. 2010 Oct;83(4):884-90</RefSource>
<PMID Version="1">20889885</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Pathol. 2010 Dec;177(6):3202-14</RefSource>
<PMID Version="1">21056998</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arthritis Rheum. 2011 May;63(5):1405-15</RefSource>
<PMID Version="1">21305523</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002454" MajorTopicYN="N">Cell Differentiation</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004195" MajorTopicYN="N">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005355" MajorTopicYN="N">Fibrosis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007249" MajorTopicYN="N">Inflammation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018793" MajorTopicYN="N">Interleukin-13</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015847" MajorTopicYN="N">Interleukin-4</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008209" MajorTopicYN="N">Lymphedema</DescriptorName>
<QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018345" MajorTopicYN="N">Mice, Knockout</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008819" MajorTopicYN="N">Mice, Nude</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018418" MajorTopicYN="N">Th2 Cells</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3574290</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>11</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>11</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>4</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23193171</ArticleId>
<ArticleId IdType="pii">fj.12-222695</ArticleId>
<ArticleId IdType="doi">10.1096/fj.12-222695</ArticleId>
<ArticleId IdType="pmc">PMC3574290</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Bromberg, Jacqueline" sort="Bromberg, Jacqueline" uniqKey="Bromberg J" first="Jacqueline" last="Bromberg">Jacqueline Bromberg</name>
<name sortKey="Elhadad, Sonia" sort="Elhadad, Sonia" uniqKey="Elhadad S" first="Sonia" last="Elhadad">Sonia Elhadad</name>
<name sortKey="Mehrara, Babak J" sort="Mehrara, Babak J" uniqKey="Mehrara B" first="Babak J" last="Mehrara">Babak J. Mehrara</name>
<name sortKey="Rockson, Stanley G" sort="Rockson, Stanley G" uniqKey="Rockson S" first="Stanley G" last="Rockson">Stanley G. Rockson</name>
<name sortKey="Weitman, Evan S" sort="Weitman, Evan S" uniqKey="Weitman E" first="Evan S" last="Weitman">Evan S. Weitman</name>
<name sortKey="Yan, Alan" sort="Yan, Alan" uniqKey="Yan A" first="Alan" last="Yan">Alan Yan</name>
<name sortKey="Zampell, Jamie C" sort="Zampell, Jamie C" uniqKey="Zampell J" first="Jamie C" last="Zampell">Jamie C. Zampell</name>
</noCountry>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Avraham, Tomer" sort="Avraham, Tomer" uniqKey="Avraham T" first="Tomer" last="Avraham">Tomer Avraham</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001849 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001849 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:23193171
   |texte=   Th2 differentiation is necessary for soft tissue fibrosis and lymphatic dysfunction resulting from lymphedema.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:23193171" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a LymphedemaV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024