Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Lymphatic fate specification: an ERK-controlled transcriptional program.

Identifieur interne : 001456 ( PubMed/Checkpoint ); précédent : 001455; suivant : 001457

Lymphatic fate specification: an ERK-controlled transcriptional program.

Auteurs : Pengchun Yu [États-Unis] ; Joe K. Tung [États-Unis] ; Michael Simons [États-Unis]

Source :

RBID : pubmed:25132472

Descripteurs français

English descriptors

Abstract

Lymphatic vessels are intimately involved in the regulation of water and solute homeostasis by returning interstitial fluid back to the venous circulation and play an equally important role in immune responses by providing avenues for immune cell transport. Defects in the lymphatic vasculature result in a number of pathological conditions, including lymphedema and lymphangiectasia. Knowledge of molecular mechanisms underlying lymphatic development and maintenance is therefore critical for understanding, prevention and treatment of lymphatic circulation-related diseases. Research in the past two decades has uncovered several key transcriptional factors (Prox1, Sox18 and Coup-TFII) controlling lymphatic fate specification. Most recently, ERK signaling has emerged as a critical regulator of this transcriptional program. This review summarizes our current understanding of lymphatic fate determination and its transcriptional controls.

DOI: 10.1016/j.mvr.2014.07.016
PubMed: 25132472


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:25132472

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Lymphatic fate specification: an ERK-controlled transcriptional program.</title>
<author>
<name sortKey="Yu, Pengchun" sort="Yu, Pengchun" uniqKey="Yu P" first="Pengchun" last="Yu">Pengchun Yu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, New Haven, CT 06520, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, New Haven, CT 06520</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tung, Joe K" sort="Tung, Joe K" uniqKey="Tung J" first="Joe K" last="Tung">Joe K. Tung</name>
<affiliation wicri:level="2">
<nlm:affiliation>Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, New Haven, CT 06520, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, New Haven, CT 06520</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Simons, Michael" sort="Simons, Michael" uniqKey="Simons M" first="Michael" last="Simons">Michael Simons</name>
<affiliation wicri:level="2">
<nlm:affiliation>Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, New Haven, CT 06520, United States; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, United States. Electronic address: michael.simons@yale.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, New Haven, CT 06520, United States; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25132472</idno>
<idno type="pmid">25132472</idno>
<idno type="doi">10.1016/j.mvr.2014.07.016</idno>
<idno type="wicri:Area/PubMed/Corpus">001382</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001382</idno>
<idno type="wicri:Area/PubMed/Curation">001382</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001382</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001382</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001382</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Lymphatic fate specification: an ERK-controlled transcriptional program.</title>
<author>
<name sortKey="Yu, Pengchun" sort="Yu, Pengchun" uniqKey="Yu P" first="Pengchun" last="Yu">Pengchun Yu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, New Haven, CT 06520, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, New Haven, CT 06520</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tung, Joe K" sort="Tung, Joe K" uniqKey="Tung J" first="Joe K" last="Tung">Joe K. Tung</name>
<affiliation wicri:level="2">
<nlm:affiliation>Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, New Haven, CT 06520, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, New Haven, CT 06520</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Simons, Michael" sort="Simons, Michael" uniqKey="Simons M" first="Michael" last="Simons">Michael Simons</name>
<affiliation wicri:level="2">
<nlm:affiliation>Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, New Haven, CT 06520, United States; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, United States. Electronic address: michael.simons@yale.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, New Haven, CT 06520, United States; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Microvascular research</title>
<idno type="eISSN">1095-9319</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Cell Lineage</term>
<term>Extracellular Signal-Regulated MAP Kinases (metabolism)</term>
<term>Homeodomain Proteins (metabolism)</term>
<term>Humans</term>
<term>Lymphangiogenesis (physiology)</term>
<term>Lymphatic Vessels (physiology)</term>
<term>Mice</term>
<term>Models, Biological</term>
<term>Receptors, Notch (metabolism)</term>
<term>SOXF Transcription Factors (metabolism)</term>
<term>Signal Transduction</term>
<term>Transcription, Genetic</term>
<term>Tumor Suppressor Proteins (metabolism)</term>
<term>Vascular Endothelial Growth Factor A (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Extracellular Signal-Regulated MAP Kinases (métabolisme)</term>
<term>Facteur de croissance endothéliale vasculaire de type A (métabolisme)</term>
<term>Facteurs de transcription SOX-F (métabolisme)</term>
<term>Humains</term>
<term>Lignage cellulaire</term>
<term>Lymphangiogenèse (physiologie)</term>
<term>Modèles biologiques</term>
<term>Protéines suppresseurs de tumeurs (métabolisme)</term>
<term>Protéines à homéodomaine (métabolisme)</term>
<term>Récepteurs Notch (métabolisme)</term>
<term>Souris</term>
<term>Transcription génétique</term>
<term>Transduction du signal</term>
<term>Vaisseaux lymphatiques (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Extracellular Signal-Regulated MAP Kinases</term>
<term>Homeodomain Proteins</term>
<term>Receptors, Notch</term>
<term>SOXF Transcription Factors</term>
<term>Tumor Suppressor Proteins</term>
<term>Vascular Endothelial Growth Factor A</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Extracellular Signal-Regulated MAP Kinases</term>
<term>Facteur de croissance endothéliale vasculaire de type A</term>
<term>Facteurs de transcription SOX-F</term>
<term>Protéines suppresseurs de tumeurs</term>
<term>Protéines à homéodomaine</term>
<term>Récepteurs Notch</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Lymphangiogenèse</term>
<term>Vaisseaux lymphatiques</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Lymphangiogenesis</term>
<term>Lymphatic Vessels</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Lineage</term>
<term>Humans</term>
<term>Mice</term>
<term>Models, Biological</term>
<term>Signal Transduction</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Humains</term>
<term>Lignage cellulaire</term>
<term>Modèles biologiques</term>
<term>Souris</term>
<term>Transcription génétique</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Lymphatic vessels are intimately involved in the regulation of water and solute homeostasis by returning interstitial fluid back to the venous circulation and play an equally important role in immune responses by providing avenues for immune cell transport. Defects in the lymphatic vasculature result in a number of pathological conditions, including lymphedema and lymphangiectasia. Knowledge of molecular mechanisms underlying lymphatic development and maintenance is therefore critical for understanding, prevention and treatment of lymphatic circulation-related diseases. Research in the past two decades has uncovered several key transcriptional factors (Prox1, Sox18 and Coup-TFII) controlling lymphatic fate specification. Most recently, ERK signaling has emerged as a critical regulator of this transcriptional program. This review summarizes our current understanding of lymphatic fate determination and its transcriptional controls.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25132472</PMID>
<DateCreated>
<Year>2014</Year>
<Month>12</Month>
<Day>16</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>08</Month>
<Day>31</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1095-9319</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>96</Volume>
<PubDate>
<Year>2014</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Microvascular research</Title>
<ISOAbbreviation>Microvasc. Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>Lymphatic fate specification: an ERK-controlled transcriptional program.</ArticleTitle>
<Pagination>
<MedlinePgn>10-5</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.mvr.2014.07.016</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0026-2862(14)00123-X</ELocationID>
<Abstract>
<AbstractText>Lymphatic vessels are intimately involved in the regulation of water and solute homeostasis by returning interstitial fluid back to the venous circulation and play an equally important role in immune responses by providing avenues for immune cell transport. Defects in the lymphatic vasculature result in a number of pathological conditions, including lymphedema and lymphangiectasia. Knowledge of molecular mechanisms underlying lymphatic development and maintenance is therefore critical for understanding, prevention and treatment of lymphatic circulation-related diseases. Research in the past two decades has uncovered several key transcriptional factors (Prox1, Sox18 and Coup-TFII) controlling lymphatic fate specification. Most recently, ERK signaling has emerged as a critical regulator of this transcriptional program. This review summarizes our current understanding of lymphatic fate determination and its transcriptional controls.</AbstractText>
<CopyrightInformation>Copyright © 2014 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Pengchun</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, New Haven, CT 06520, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tung</LastName>
<ForeName>Joe K</ForeName>
<Initials>JK</Initials>
<AffiliationInfo>
<Affiliation>Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, New Haven, CT 06520, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Simons</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, New Haven, CT 06520, United States; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, United States. Electronic address: michael.simons@yale.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 HL053793</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL084619</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HL084619</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>08</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Microvasc Res</MedlineTA>
<NlmUniqueID>0165035</NlmUniqueID>
<ISSNLinking>0026-2862</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018398">Homeodomain Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051880">Receptors, Notch</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D055760">SOXF Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C490653">Sox18 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D025521">Tumor Suppressor Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D042461">Vascular Endothelial Growth Factor A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C102225">prospero-related homeobox 1 protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.24</RegistryNumber>
<NameOfSubstance UI="D048049">Extracellular Signal-Regulated MAP Kinases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Blood. 2011 Aug 18;118(7):1989-97</RefSource>
<PMID Version="1">21700774</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Blood. 2011 Jul 28;118(4):1154-62</RefSource>
<PMID Version="1">21566091</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO J. 2013 Mar 6;32(5):629-44</RefSource>
<PMID Version="1">23299940</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Sci. 2011 Aug 15;124(Pt 16):2753-62</RefSource>
<PMID Version="1">21807940</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Genomics Hum Genet. 2005;6:45-68</RefSource>
<PMID Version="1">16124853</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Immunol. 2004 Jan;4(1):35-45</RefSource>
<PMID Version="1">14704766</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Sci. 2013 Mar 1;126(Pt 5):1164-75</RefSource>
<PMID Version="1">23345397</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genes Dev. 2010 Oct 1;24(19):2115-26</RefSource>
<PMID Version="1">20889712</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1999 Nov 26;286(5445):1741-4</RefSource>
<PMID Version="1">10576742</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Med. 2011;17(11):1371-80</RefSource>
<PMID Version="1">22064427</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO J. 2002 Sep 2;21(17):4593-9</RefSource>
<PMID Version="1">12198161</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 2013 Mar;123(3):1202-15</RefSource>
<PMID Version="1">23391722</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genes Dev. 2010 Apr 1;24(7):696-707</RefSource>
<PMID Version="1">20360386</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Sci. 2009 Nov 1;122(Pt 21):3923-30</RefSource>
<PMID Version="1">19825936</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer Res. 2010 Nov 1;70(21):8812-21</RefSource>
<PMID Version="1">20978203</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genes Dev. 1999 Apr 15;13(8):1037-49</RefSource>
<PMID Version="1">10215630</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Blood. 2010 Jan 14;115(2):418-29</RefSource>
<PMID Version="1">19901262</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1916 Aug 4;44(1127):145-58</RefSource>
<PMID Version="1">17733342</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2005 Oct;37(10):1072-81</RefSource>
<PMID Version="1">16170315</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1993 Jul 15;364(6434):249-52</RefSource>
<PMID Version="1">8321321</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 2014 Mar;124(3):888-97</RefSource>
<PMID Version="1">24590273</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Biol. 2010 Jul;30(14):3620-34</RefSource>
<PMID Version="1">20479124</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Development. 2013 Mar;140(6):1272-81</RefSource>
<PMID Version="1">23406903</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mech Dev. 1993 Nov;44(1):3-16</RefSource>
<PMID Version="1">7908825</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2005 Dec 15;438(7070):946-53</RefSource>
<PMID Version="1">16355212</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Med. 2009 May;15(5):545-52</RefSource>
<PMID Version="1">19412173</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Blood. 2010 Sep 30;116(13):2395-401</RefSource>
<PMID Version="1">20558617</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Mol Life Sci. 2010 Sep;67(17):2957-68</RefSource>
<PMID Version="1">20458516</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann N Y Acad Sci. 2002 Dec;979:159-65; discussion 188-96</RefSource>
<PMID Version="1">12543725</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2001 Jun 1;276(22):19420-30</RefSource>
<PMID Version="1">11278811</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genes Dev. 2007 Oct 1;21(19):2422-32</RefSource>
<PMID Version="1">17908929</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2003 Aug 8;278(32):29819-23</RefSource>
<PMID Version="1">12801936</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Biophys Res Commun. 2001 Sep 21;287(2):493-500</RefSource>
<PMID Version="1">11554755</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2009 Apr 17;137(2):216-33</RefSource>
<PMID Version="1">19379690</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 1999 Sep 17;98(6):769-78</RefSource>
<PMID Version="1">10499794</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Top Dev Biol. 2010;92:73-129</RefSource>
<PMID Version="1">20816393</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Physiology (Bethesda). 2011 Jun;26(3):146-55</RefSource>
<PMID Version="1">21670161</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Biol. 2000 Nov 15;227(2):239-55</RefSource>
<PMID Version="1">11071752</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Cardiovasc Med. 2014 Apr;24(3):121-7</RefSource>
<PMID Version="1">24183794</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 2008 Jan;118(1):40-50</RefSource>
<PMID Version="1">18097475</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2000 Apr;24(4):434-7</RefSource>
<PMID Version="1">10742113</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Mol Cell Biol. 2004 Nov;5(11):875-85</RefSource>
<PMID Version="1">15520807</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 1991 May 3;65(3):451-64</RefSource>
<PMID Version="1">1673362</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Blood. 2009 Feb 19;113(8):1856-9</RefSource>
<PMID Version="1">18815287</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Mol Cell Biol. 2006 May;7(5):359-71</RefSource>
<PMID Version="1">16633338</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Dyn. 2014 Jul;243(7):957-64</RefSource>
<PMID Version="1">24659232</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Development. 2013 Jun;140(11):2365-76</RefSource>
<PMID Version="1">23615281</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Biol. 2007 Jan;27(2):595-604</RefSource>
<PMID Version="1">17101772</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Hum Genet. 2003 Jun;72(6):1470-8</RefSource>
<PMID Version="1">12740761</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lancet. 2013 Jan 26;381(9863):333-42</RefSource>
<PMID Version="1">23312968</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 2010 May;120(5):1694-707</RefSource>
<PMID Version="1">20364082</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Med. 2005 Sep;11(9):998-1004</RefSource>
<PMID Version="1">16116431</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arterioscler Thromb Vasc Biol. 2010 Sep;30(9):1695-702</RefSource>
<PMID Version="1">20466977</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Genet Dev. 2009 Jun;19(3):230-6</RefSource>
<PMID Version="1">19467855</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Blood. 2010 Jul 8;116(1):140-50</RefSource>
<PMID Version="1">20351309</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Blood. 2012 Sep 13;120(11):2340-8</RefSource>
<PMID Version="1">22859612</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Pathol. 2008;3:367-97</RefSource>
<PMID Version="1">18039141</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Sci. 2009 Sep 15;122(Pt 18):3358-64</RefSource>
<PMID Version="1">19706680</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Syndromol. 2010 Feb;1(1):2-26</RefSource>
<PMID Version="1">20648242</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Dev Biol. 2010;10:72</RefSource>
<PMID Version="1">20584329</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2006 Jun 20;16(12):1244-8</RefSource>
<PMID Version="1">16782017</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2008 Dec 4;456(7222):643-7</RefSource>
<PMID Version="1">18931657</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO J. 2002 Apr 2;21(7):1505-13</RefSource>
<PMID Version="1">11927535</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Birth Defects Orig Artic Ser. 1971 Mar;07(4):110-5</RefSource>
<PMID Version="1">5173334</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genes Dev. 2008 Dec 1;22(23):3282-91</RefSource>
<PMID Version="1">19056883</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2007 Aug;39(8):1007-12</RefSource>
<PMID Version="1">17603483</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Cycle. 2013 Apr 15;12(8):1157-8</RefSource>
<PMID Version="1">23549166</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3687-92</RefSource>
<PMID Version="1">20133706</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann N Y Acad Sci. 2008;1131:75-81</RefSource>
<PMID Version="1">18519960</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Mol Cell Biol. 2007 Jun;8(6):464-78</RefSource>
<PMID Version="1">17522591</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Development. 2009 Jul;136(14):2385-91</RefSource>
<PMID Version="1">19515696</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2005 May 5;435(7038):98-104</RefSource>
<PMID Version="1">15875024</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Immunol. 2004 Jan;5(1):74-80</RefSource>
<PMID Version="1">14634646</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Med. 2006 Jun;12(6):711-6</RefSource>
<PMID Version="1">16732279</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biol Cell. 2007 Apr;18(4):1421-9</RefSource>
<PMID Version="1">17287396</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Dermatol. 1984 Dec;23(10):656-7</RefSource>
<PMID Version="1">6396246</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Commun. 2013;4:2609</RefSource>
<PMID Version="1">24153254</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2010 Feb 19;140(4):460-76</RefSource>
<PMID Version="1">20178740</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Mol Life Sci. 2000 Sep;57(10):1388-98</RefSource>
<PMID Version="1">11078018</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Biophys Res Commun. 2007 Aug 31;360(3):539-44</RefSource>
<PMID Version="1">17610846</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Dyn. 2002 Nov;225(3):351-7</RefSource>
<PMID Version="1">12412020</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019070" MajorTopicYN="N">Cell Lineage</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048049" MajorTopicYN="N">Extracellular Signal-Regulated MAP Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018398" MajorTopicYN="N">Homeodomain Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042583" MajorTopicYN="N">Lymphangiogenesis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042601" MajorTopicYN="N">Lymphatic Vessels</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051880" MajorTopicYN="N">Receptors, Notch</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055760" MajorTopicYN="N">SOXF Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025521" MajorTopicYN="N">Tumor Suppressor Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042461" MajorTopicYN="N">Vascular Endothelial Growth Factor A</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS623119</OtherID>
<OtherID Source="NLM">PMC4268409</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">ERK</Keyword>
<Keyword MajorTopicYN="N">Lymphangiogenesis</Keyword>
<Keyword MajorTopicYN="N">Lymphatic fate</Keyword>
<Keyword MajorTopicYN="N">Prox1</Keyword>
<Keyword MajorTopicYN="N">Sox18</Keyword>
<Keyword MajorTopicYN="N">VEGF-C</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>05</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>07</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>07</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>8</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>8</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>9</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25132472</ArticleId>
<ArticleId IdType="pii">S0026-2862(14)00123-X</ArticleId>
<ArticleId IdType="doi">10.1016/j.mvr.2014.07.016</ArticleId>
<ArticleId IdType="pmc">PMC4268409</ArticleId>
<ArticleId IdType="mid">NIHMS623119</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Connecticut</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Connecticut">
<name sortKey="Yu, Pengchun" sort="Yu, Pengchun" uniqKey="Yu P" first="Pengchun" last="Yu">Pengchun Yu</name>
</region>
<name sortKey="Simons, Michael" sort="Simons, Michael" uniqKey="Simons M" first="Michael" last="Simons">Michael Simons</name>
<name sortKey="Tung, Joe K" sort="Tung, Joe K" uniqKey="Tung J" first="Joe K" last="Tung">Joe K. Tung</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001456 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001456 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:25132472
   |texte=   Lymphatic fate specification: an ERK-controlled transcriptional program.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:25132472" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a LymphedemaV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024