Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mechanosensing in developing lymphatic vessels.

Identifieur interne : 001405 ( PubMed/Checkpoint ); précédent : 001404; suivant : 001406

Mechanosensing in developing lymphatic vessels.

Auteurs : Lara Planas-Paz [Allemagne] ; Eckhard Lammert

Source :

RBID : pubmed:24276884

Descripteurs français

English descriptors

Abstract

The lymphatic vasculature is responsible for fluid homeostasis, transport of immune cells, inflammatory molecules, and dietary lipids. It is composed of a network of lymphatic capillaries that drain into collecting lymphatic vessels and ultimately bring fluid back to the blood circulation. Lymphatic endothelial cells (LECs) that line lymphatic capillaries present loose overlapping intercellular junctions and anchoring filaments that support fluid drainage. When interstitial fluid accumulates within tissues, the extracellular matrix (ECM) swells and pulls the anchoring filaments. This results in opening of the LEC junctions and permits interstitial fluid uptake. The absorbed fluid is then transported within collecting lymphatic vessels, which exhibit intraluminal valves that prevent lymph backflow and smooth muscle cells that sequentially contract to propel lymph.Mechanotransduction involves translation of mechanical stimuli into biological responses. LECs have been shown to sense and respond to changes in ECM stiffness, fluid pressure-induced cell stretch, and fluid flow-induced shear stress. How these signals influence LEC function and lymphatic vessel growth can be investigated by using different mechanotransduction assays in vitro and to some extent in vivo.In this chapter, we will focus on the mechanical forces that regulate lymphatic vessel expansion during embryonic development and possibly secondary lymphedema. In mouse embryos, it has been recently shown that the amount of interstitial fluid determines the extent of lymphatic vessel expansion via a mechanosensory complex formed by β1 integrin and vascular endothelial growth factor receptor-3 (VEGFR3). This model might as well apply to secondary lymphedema.

DOI: 10.1007/978-3-7091-1646-3_3
PubMed: 24276884


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24276884

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mechanosensing in developing lymphatic vessels.</title>
<author>
<name sortKey="Planas Paz, Lara" sort="Planas Paz, Lara" uniqKey="Planas Paz L" first="Lara" last="Planas-Paz">Lara Planas-Paz</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Metabolic Physiology, Heinrich-Heine University, Universitätsstrasse 1, 40225, Düsseldorf, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Metabolic Physiology, Heinrich-Heine University, Universitätsstrasse 1, 40225, Düsseldorf</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Düsseldorf</region>
<settlement type="city">Düsseldorf</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lammert, Eckhard" sort="Lammert, Eckhard" uniqKey="Lammert E" first="Eckhard" last="Lammert">Eckhard Lammert</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24276884</idno>
<idno type="pmid">24276884</idno>
<idno type="doi">10.1007/978-3-7091-1646-3_3</idno>
<idno type="wicri:Area/PubMed/Corpus">001814</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001814</idno>
<idno type="wicri:Area/PubMed/Curation">001814</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001814</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001814</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001814</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mechanosensing in developing lymphatic vessels.</title>
<author>
<name sortKey="Planas Paz, Lara" sort="Planas Paz, Lara" uniqKey="Planas Paz L" first="Lara" last="Planas-Paz">Lara Planas-Paz</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Metabolic Physiology, Heinrich-Heine University, Universitätsstrasse 1, 40225, Düsseldorf, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Metabolic Physiology, Heinrich-Heine University, Universitätsstrasse 1, 40225, Düsseldorf</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Düsseldorf</region>
<settlement type="city">Düsseldorf</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lammert, Eckhard" sort="Lammert, Eckhard" uniqKey="Lammert E" first="Eckhard" last="Lammert">Eckhard Lammert</name>
</author>
</analytic>
<series>
<title level="j">Advances in anatomy, embryology, and cell biology</title>
<idno type="ISSN">0301-5556</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Embryonic Development</term>
<term>Extracellular Fluid (physiology)</term>
<term>Humans</term>
<term>Lymphangiogenesis</term>
<term>Lymphatic Vessels (embryology)</term>
<term>Lymphatic Vessels (physiology)</term>
<term>Lymphedema (etiology)</term>
<term>Mechanotransduction, Cellular</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Développement embryonnaire</term>
<term>Humains</term>
<term>Liquide extracellulaire (physiologie)</term>
<term>Lymphangiogenèse</term>
<term>Lymphoedème (étiologie)</term>
<term>Mécanotransduction cellulaire</term>
<term>Vaisseaux lymphatiques (embryologie)</term>
<term>Vaisseaux lymphatiques (physiologie)</term>
</keywords>
<keywords scheme="MESH" qualifier="embryologie" xml:lang="fr">
<term>Vaisseaux lymphatiques</term>
</keywords>
<keywords scheme="MESH" qualifier="embryology" xml:lang="en">
<term>Lymphatic Vessels</term>
</keywords>
<keywords scheme="MESH" qualifier="etiology" xml:lang="en">
<term>Lymphedema</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Liquide extracellulaire</term>
<term>Vaisseaux lymphatiques</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Extracellular Fluid</term>
<term>Lymphatic Vessels</term>
</keywords>
<keywords scheme="MESH" qualifier="étiologie" xml:lang="fr">
<term>Lymphoedème</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Embryonic Development</term>
<term>Humans</term>
<term>Lymphangiogenesis</term>
<term>Mechanotransduction, Cellular</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Développement embryonnaire</term>
<term>Humains</term>
<term>Lymphangiogenèse</term>
<term>Mécanotransduction cellulaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The lymphatic vasculature is responsible for fluid homeostasis, transport of immune cells, inflammatory molecules, and dietary lipids. It is composed of a network of lymphatic capillaries that drain into collecting lymphatic vessels and ultimately bring fluid back to the blood circulation. Lymphatic endothelial cells (LECs) that line lymphatic capillaries present loose overlapping intercellular junctions and anchoring filaments that support fluid drainage. When interstitial fluid accumulates within tissues, the extracellular matrix (ECM) swells and pulls the anchoring filaments. This results in opening of the LEC junctions and permits interstitial fluid uptake. The absorbed fluid is then transported within collecting lymphatic vessels, which exhibit intraluminal valves that prevent lymph backflow and smooth muscle cells that sequentially contract to propel lymph.Mechanotransduction involves translation of mechanical stimuli into biological responses. LECs have been shown to sense and respond to changes in ECM stiffness, fluid pressure-induced cell stretch, and fluid flow-induced shear stress. How these signals influence LEC function and lymphatic vessel growth can be investigated by using different mechanotransduction assays in vitro and to some extent in vivo.In this chapter, we will focus on the mechanical forces that regulate lymphatic vessel expansion during embryonic development and possibly secondary lymphedema. In mouse embryos, it has been recently shown that the amount of interstitial fluid determines the extent of lymphatic vessel expansion via a mechanosensory complex formed by β1 integrin and vascular endothelial growth factor receptor-3 (VEGFR3). This model might as well apply to secondary lymphedema.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24276884</PMID>
<DateCreated>
<Year>2013</Year>
<Month>11</Month>
<Day>26</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>04</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>26</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0301-5556</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>214</Volume>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>Advances in anatomy, embryology, and cell biology</Title>
<ISOAbbreviation>Adv Anat Embryol Cell Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Mechanosensing in developing lymphatic vessels.</ArticleTitle>
<Pagination>
<MedlinePgn>23-40</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/978-3-7091-1646-3_3</ELocationID>
<Abstract>
<AbstractText>The lymphatic vasculature is responsible for fluid homeostasis, transport of immune cells, inflammatory molecules, and dietary lipids. It is composed of a network of lymphatic capillaries that drain into collecting lymphatic vessels and ultimately bring fluid back to the blood circulation. Lymphatic endothelial cells (LECs) that line lymphatic capillaries present loose overlapping intercellular junctions and anchoring filaments that support fluid drainage. When interstitial fluid accumulates within tissues, the extracellular matrix (ECM) swells and pulls the anchoring filaments. This results in opening of the LEC junctions and permits interstitial fluid uptake. The absorbed fluid is then transported within collecting lymphatic vessels, which exhibit intraluminal valves that prevent lymph backflow and smooth muscle cells that sequentially contract to propel lymph.Mechanotransduction involves translation of mechanical stimuli into biological responses. LECs have been shown to sense and respond to changes in ECM stiffness, fluid pressure-induced cell stretch, and fluid flow-induced shear stress. How these signals influence LEC function and lymphatic vessel growth can be investigated by using different mechanotransduction assays in vitro and to some extent in vivo.In this chapter, we will focus on the mechanical forces that regulate lymphatic vessel expansion during embryonic development and possibly secondary lymphedema. In mouse embryos, it has been recently shown that the amount of interstitial fluid determines the extent of lymphatic vessel expansion via a mechanosensory complex formed by β1 integrin and vascular endothelial growth factor receptor-3 (VEGFR3). This model might as well apply to secondary lymphedema.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Planas-Paz</LastName>
<ForeName>Lara</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Institute of Metabolic Physiology, Heinrich-Heine University, Universitätsstrasse 1, 40225, Düsseldorf, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lammert</LastName>
<ForeName>Eckhard</ForeName>
<Initials>E</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Adv Anat Embryol Cell Biol</MedlineTA>
<NlmUniqueID>0407712</NlmUniqueID>
<ISSNLinking>0301-5556</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047108" MajorTopicYN="N">Embryonic Development</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045604" MajorTopicYN="N">Extracellular Fluid</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042583" MajorTopicYN="N">Lymphangiogenesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042601" MajorTopicYN="N">Lymphatic Vessels</DescriptorName>
<QualifierName UI="Q000196" MajorTopicYN="Y">embryology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008209" MajorTopicYN="N">Lymphedema</DescriptorName>
<QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040542" MajorTopicYN="Y">Mechanotransduction, Cellular</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>11</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>11</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>4</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24276884</ArticleId>
<ArticleId IdType="doi">10.1007/978-3-7091-1646-3_3</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>District de Düsseldorf</li>
<li>Rhénanie-du-Nord-Westphalie</li>
</region>
<settlement>
<li>Düsseldorf</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Lammert, Eckhard" sort="Lammert, Eckhard" uniqKey="Lammert E" first="Eckhard" last="Lammert">Eckhard Lammert</name>
</noCountry>
<country name="Allemagne">
<region name="Rhénanie-du-Nord-Westphalie">
<name sortKey="Planas Paz, Lara" sort="Planas Paz, Lara" uniqKey="Planas Paz L" first="Lara" last="Planas-Paz">Lara Planas-Paz</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001405 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001405 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:24276884
   |texte=   Mechanosensing in developing lymphatic vessels.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:24276884" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a LymphedemaV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024