Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Foxc1 and Foxc2 deletion causes abnormal lymphangiogenesis and correlates with ERK hyperactivation.

Identifieur interne : 000901 ( PubMed/Checkpoint ); précédent : 000900; suivant : 000902

Foxc1 and Foxc2 deletion causes abnormal lymphangiogenesis and correlates with ERK hyperactivation.

Auteurs : Anees Fatima ; Ying Wang ; Yutaka Uchida ; Pieter Norden ; Ting Liu ; Austin Culver ; William H. Dietz ; Ford Culver ; Meredith Millay ; Yoh-Suke Mukouyama ; Tsutomu Kume

Source :

RBID : pubmed:27214551

Abstract

The lymphatic vasculature is essential for maintaining interstitial fluid homeostasis, and dysfunctional lymphangiogenesis contributes to various pathological processes, including inflammatory disease and tumor metastasis. Mutations in FOXC2 are dominantly associated with late-onset lymphedema; however, the precise role of FOXC2 and a closely related factor, FOXC1, in the lymphatic system remains largely unknown. Here we identified a molecular cascade by which FOXC1 and FOXC2 regulate ERK signaling in lymphatic vessel growth. In mice, lymphatic endothelial cell-specific (LEC-specific) deletion of Foxc1, Foxc2, or both resulted in increased LEC proliferation, enlarged lymphatic vessels, and abnormal lymphatic vessel morphogenesis. Compared with LECs from control animals, LECs from mice lacking both Foxc1 and Foxc2 exhibited aberrant expression of Ras regulators, and embryos with LEC-specific deletion of Foxc1 and Foxc2, alone or in combination, exhibited ERK hyperactivation. Pharmacological ERK inhibition in utero abolished the abnormally enlarged lymphatic vessels in FOXC-deficient embryos. Together, these results identify FOXC1 and FOXC2 as essential regulators of lymphangiogenesis and indicate a new potential mechanistic basis for lymphatic-associated diseases.

DOI: 10.1172/JCI80465
PubMed: 27214551


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:27214551

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Foxc1 and Foxc2 deletion causes abnormal lymphangiogenesis and correlates with ERK hyperactivation.</title>
<author>
<name sortKey="Fatima, Anees" sort="Fatima, Anees" uniqKey="Fatima A" first="Anees" last="Fatima">Anees Fatima</name>
</author>
<author>
<name sortKey="Wang, Ying" sort="Wang, Ying" uniqKey="Wang Y" first="Ying" last="Wang">Ying Wang</name>
</author>
<author>
<name sortKey="Uchida, Yutaka" sort="Uchida, Yutaka" uniqKey="Uchida Y" first="Yutaka" last="Uchida">Yutaka Uchida</name>
</author>
<author>
<name sortKey="Norden, Pieter" sort="Norden, Pieter" uniqKey="Norden P" first="Pieter" last="Norden">Pieter Norden</name>
</author>
<author>
<name sortKey="Liu, Ting" sort="Liu, Ting" uniqKey="Liu T" first="Ting" last="Liu">Ting Liu</name>
</author>
<author>
<name sortKey="Culver, Austin" sort="Culver, Austin" uniqKey="Culver A" first="Austin" last="Culver">Austin Culver</name>
</author>
<author>
<name sortKey="Dietz, William H" sort="Dietz, William H" uniqKey="Dietz W" first="William H" last="Dietz">William H. Dietz</name>
</author>
<author>
<name sortKey="Culver, Ford" sort="Culver, Ford" uniqKey="Culver F" first="Ford" last="Culver">Ford Culver</name>
</author>
<author>
<name sortKey="Millay, Meredith" sort="Millay, Meredith" uniqKey="Millay M" first="Meredith" last="Millay">Meredith Millay</name>
</author>
<author>
<name sortKey="Mukouyama, Yoh Suke" sort="Mukouyama, Yoh Suke" uniqKey="Mukouyama Y" first="Yoh-Suke" last="Mukouyama">Yoh-Suke Mukouyama</name>
</author>
<author>
<name sortKey="Kume, Tsutomu" sort="Kume, Tsutomu" uniqKey="Kume T" first="Tsutomu" last="Kume">Tsutomu Kume</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27214551</idno>
<idno type="pmid">27214551</idno>
<idno type="doi">10.1172/JCI80465</idno>
<idno type="wicri:Area/PubMed/Corpus">000812</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000812</idno>
<idno type="wicri:Area/PubMed/Curation">000812</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000812</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000812</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000812</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Foxc1 and Foxc2 deletion causes abnormal lymphangiogenesis and correlates with ERK hyperactivation.</title>
<author>
<name sortKey="Fatima, Anees" sort="Fatima, Anees" uniqKey="Fatima A" first="Anees" last="Fatima">Anees Fatima</name>
</author>
<author>
<name sortKey="Wang, Ying" sort="Wang, Ying" uniqKey="Wang Y" first="Ying" last="Wang">Ying Wang</name>
</author>
<author>
<name sortKey="Uchida, Yutaka" sort="Uchida, Yutaka" uniqKey="Uchida Y" first="Yutaka" last="Uchida">Yutaka Uchida</name>
</author>
<author>
<name sortKey="Norden, Pieter" sort="Norden, Pieter" uniqKey="Norden P" first="Pieter" last="Norden">Pieter Norden</name>
</author>
<author>
<name sortKey="Liu, Ting" sort="Liu, Ting" uniqKey="Liu T" first="Ting" last="Liu">Ting Liu</name>
</author>
<author>
<name sortKey="Culver, Austin" sort="Culver, Austin" uniqKey="Culver A" first="Austin" last="Culver">Austin Culver</name>
</author>
<author>
<name sortKey="Dietz, William H" sort="Dietz, William H" uniqKey="Dietz W" first="William H" last="Dietz">William H. Dietz</name>
</author>
<author>
<name sortKey="Culver, Ford" sort="Culver, Ford" uniqKey="Culver F" first="Ford" last="Culver">Ford Culver</name>
</author>
<author>
<name sortKey="Millay, Meredith" sort="Millay, Meredith" uniqKey="Millay M" first="Meredith" last="Millay">Meredith Millay</name>
</author>
<author>
<name sortKey="Mukouyama, Yoh Suke" sort="Mukouyama, Yoh Suke" uniqKey="Mukouyama Y" first="Yoh-Suke" last="Mukouyama">Yoh-Suke Mukouyama</name>
</author>
<author>
<name sortKey="Kume, Tsutomu" sort="Kume, Tsutomu" uniqKey="Kume T" first="Tsutomu" last="Kume">Tsutomu Kume</name>
</author>
</analytic>
<series>
<title level="j">The Journal of clinical investigation</title>
<idno type="eISSN">1558-8238</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The lymphatic vasculature is essential for maintaining interstitial fluid homeostasis, and dysfunctional lymphangiogenesis contributes to various pathological processes, including inflammatory disease and tumor metastasis. Mutations in FOXC2 are dominantly associated with late-onset lymphedema; however, the precise role of FOXC2 and a closely related factor, FOXC1, in the lymphatic system remains largely unknown. Here we identified a molecular cascade by which FOXC1 and FOXC2 regulate ERK signaling in lymphatic vessel growth. In mice, lymphatic endothelial cell-specific (LEC-specific) deletion of Foxc1, Foxc2, or both resulted in increased LEC proliferation, enlarged lymphatic vessels, and abnormal lymphatic vessel morphogenesis. Compared with LECs from control animals, LECs from mice lacking both Foxc1 and Foxc2 exhibited aberrant expression of Ras regulators, and embryos with LEC-specific deletion of Foxc1 and Foxc2, alone or in combination, exhibited ERK hyperactivation. Pharmacological ERK inhibition in utero abolished the abnormally enlarged lymphatic vessels in FOXC-deficient embryos. Together, these results identify FOXC1 and FOXC2 as essential regulators of lymphangiogenesis and indicate a new potential mechanistic basis for lymphatic-associated diseases.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">27214551</PMID>
<DateCreated>
<Year>2016</Year>
<Month>07</Month>
<Day>02</Day>
</DateCreated>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1558-8238</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>126</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2016</Year>
<Month>Jul</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of clinical investigation</Title>
<ISOAbbreviation>J. Clin. Invest.</ISOAbbreviation>
</Journal>
<ArticleTitle>Foxc1 and Foxc2 deletion causes abnormal lymphangiogenesis and correlates with ERK hyperactivation.</ArticleTitle>
<Pagination>
<MedlinePgn>2437-51</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1172/JCI80465</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">80465</ELocationID>
<Abstract>
<AbstractText>The lymphatic vasculature is essential for maintaining interstitial fluid homeostasis, and dysfunctional lymphangiogenesis contributes to various pathological processes, including inflammatory disease and tumor metastasis. Mutations in FOXC2 are dominantly associated with late-onset lymphedema; however, the precise role of FOXC2 and a closely related factor, FOXC1, in the lymphatic system remains largely unknown. Here we identified a molecular cascade by which FOXC1 and FOXC2 regulate ERK signaling in lymphatic vessel growth. In mice, lymphatic endothelial cell-specific (LEC-specific) deletion of Foxc1, Foxc2, or both resulted in increased LEC proliferation, enlarged lymphatic vessels, and abnormal lymphatic vessel morphogenesis. Compared with LECs from control animals, LECs from mice lacking both Foxc1 and Foxc2 exhibited aberrant expression of Ras regulators, and embryos with LEC-specific deletion of Foxc1 and Foxc2, alone or in combination, exhibited ERK hyperactivation. Pharmacological ERK inhibition in utero abolished the abnormally enlarged lymphatic vessels in FOXC-deficient embryos. Together, these results identify FOXC1 and FOXC2 as essential regulators of lymphangiogenesis and indicate a new potential mechanistic basis for lymphatic-associated diseases.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fatima</LastName>
<ForeName>Anees</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Ying</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Uchida</LastName>
<ForeName>Yutaka</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Norden</LastName>
<ForeName>Pieter</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Ting</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Culver</LastName>
<ForeName>Austin</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dietz</LastName>
<ForeName>William H</ForeName>
<Initials>WH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Culver</LastName>
<ForeName>Ford</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Millay</LastName>
<ForeName>Meredith</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mukouyama</LastName>
<ForeName>Yoh-Suke</ForeName>
<Initials>YS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kume</LastName>
<ForeName>Tsutomu</ForeName>
<Initials>T</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>AHA_14POST20390029</GrantID>
<Acronym>AHA</Acronym>
<Agency>None</Agency>
<Country>None</Country>
</Grant>
<Grant>
<GrantID>P30 CA060553</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EY019484</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL126920</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>05</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Clin Invest</MedlineTA>
<NlmUniqueID>7802877</NlmUniqueID>
<ISSNLinking>0021-9738</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>AIM</CitationSubset>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 2015 Oct 1;125(10):3861-77</RefSource>
<PMID Version="1">26389677</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Biol. 2013 Oct;33(19):3749-61</RefSource>
<PMID Version="1">23878394</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 2014 Mar;124(3):898-904</RefSource>
<PMID Version="1">24590274</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circ Res. 2012 Aug 3;111(4):426-36</RefSource>
<PMID Version="1">22723300</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 1998 Jun;19(2):140-7</RefSource>
<PMID Version="1">9620769</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2012 May 25;287(22):18318-29</RefSource>
<PMID Version="1">22493429</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 2013 Mar;123(3):1202-15</RefSource>
<PMID Version="1">23391722</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genes Dev. 2010 Apr 1;24(7):696-707</RefSource>
<PMID Version="1">20360386</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W280-6</RefSource>
<PMID Version="1">15215395</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Med. 2001 Mar 19;193(6):741-54</RefSource>
<PMID Version="1">11257140</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Hum Genet. 1998 Nov;63(5):1316-28</RefSource>
<PMID Version="1">9792859</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Cell. 2009 Aug;17(2):175-86</RefSource>
<PMID Version="1">19686679</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Anat Embryol Cell Biol. 2014;214:67-80</RefSource>
<PMID Version="1">24276887</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 2014 Mar;124(3):888-97</RefSource>
<PMID Version="1">24590273</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Development. 2014 Jun;141(12):2446-51</RefSource>
<PMID Version="1">24917500</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 2011 Mar;121(3):1009-25</RefSource>
<PMID Version="1">21339642</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Invest Ophthalmol Vis Sci. 2003 Jun;44(6):2627-33</RefSource>
<PMID Version="1">12766066</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 1998 Jun 12;93(6):985-96</RefSource>
<PMID Version="1">9635428</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Med Genet. 2002 Jul;39(7):478-83</RefSource>
<PMID Version="1">12114478</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Cancer. 2013 Jul;13(7):482-95</RefSource>
<PMID Version="1">23792361</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Biol. 2006 Jun 15;294(2):458-70</RefSource>
<PMID Version="1">16678147</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2002 Jun;12(6):996-1006</RefSource>
<PMID Version="1">12045153</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genesis. 2012 Oct;50(10):766-74</RefSource>
<PMID Version="1">22522965</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 2014 Nov;124(11):4877-81</RefSource>
<PMID Version="1">25250569</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2009 May 4;185(3):439-57</RefSource>
<PMID Version="1">19398761</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cancer Res. 2010 May;8(5):762-74</RefSource>
<PMID Version="1">20460685</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Hum Genet. 2000 Dec;67(6):1382-8</RefSource>
<PMID Version="1">11078474</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Immunol. 2005 Sep;6(9):911-9</RefSource>
<PMID Version="1">16041389</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circulation. 2007 Apr 10;115(14 ):1912-20</RefSource>
<PMID Version="1">17372167</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Med. 2004 Sep;10(9):974-81</RefSource>
<PMID Version="1">15322537</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genes Dev. 2007 Oct 1;21(19):2422-32</RefSource>
<PMID Version="1">17908929</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Cell. 2012 Feb 14;22(2):430-45</RefSource>
<PMID Version="1">22306086</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 2014 Mar;124(3):922-8</RefSource>
<PMID Version="1">24590277</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 1999 Sep 17;98(6):769-78</RefSource>
<PMID Version="1">10499794</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 2012 Feb;122(2):733-47</RefSource>
<PMID Version="1">22232212</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Cardiovasc Med. 2014 Apr;24(3):121-7</RefSource>
<PMID Version="1">24183794</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gene Expr Patterns. 2004 Oct;4(6):611-9</RefSource>
<PMID Version="1">15465483</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circ Res. 2012 Aug 3;111(4):437-45</RefSource>
<PMID Version="1">22723296</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Blood. 2011 Jan 6;117(1):362-5</RefSource>
<PMID Version="1">20962325</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Cancer. 2014 Mar;14(3):159-72</RefSource>
<PMID Version="1">24561443</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Cell Res. 2014 Apr 1;322(2):381-8</RefSource>
<PMID Version="1">24472616</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Development. 2010 Mar;137(6):1003-13</RefSource>
<PMID Version="1">20179099</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Cell. 2009 Feb;16(2):180-95</RefSource>
<PMID Version="1">19217421</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2014 Apr;24(4):697-707</RefSource>
<PMID Version="1">24501022</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Dyn. 2014 Jul;243(7):957-64</RefSource>
<PMID Version="1">24659232</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Development. 2013 Jun;140(11):2365-76</RefSource>
<PMID Version="1">23615281</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Blood. 2013 Jul 25;122(4):598-607</RefSource>
<PMID Version="1">23741013</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Exp Ophthalmol. 2014 Jan-Feb;42(1):13-24</RefSource>
<PMID Version="1">24433355</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W362-5</RefSource>
<PMID Version="1">16845026</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 2014 Mar;124(3):878-87</RefSource>
<PMID Version="1">24590272</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Blood. 2012 Sep 13;120(11):2340-8</RefSource>
<PMID Version="1">22859612</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2006 Jan 2;172(1):151-62</RefSource>
<PMID Version="1">16391003</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Mol Life Sci. 2013 Mar;70(6):1055-66</RefSource>
<PMID Version="1">22922986</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Syndromol. 2013 Sep;4(6):257-66</RefSource>
<PMID Version="1">24167460</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Genet. 2013 Oct;84(4):303-14</RefSource>
<PMID Version="1">23621851</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2008 Dec 4;456(7222):643-7</RefSource>
<PMID Version="1">18931657</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Med. 2007 Oct 1;204(10):2349-62</RefSource>
<PMID Version="1">17846148</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Blood. 2007 Jun 1;109(11):4777-85</RefSource>
<PMID Version="1">17289814</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genes Dev. 2001 Sep 15;15(18):2470-82</RefSource>
<PMID Version="1">11562355</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Biophys Res Commun. 2008 Mar 14;367(3):584-9</RefSource>
<PMID Version="1">18187037</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2011 May 16;193(4):607-18</RefSource>
<PMID Version="1">21576390</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Immunol. 2004 Jan;5(1):74-80</RefSource>
<PMID Version="1">14634646</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2000 Apr 12;9(7):1021-32</RefSource>
<PMID Version="1">10767326</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Gastroenterol Hepatol. 2008 Jul;23(7 Pt 2):e88-95</RefSource>
<PMID Version="1">18005011</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):2015-20</RefSource>
<PMID Version="1">22171010</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genes Dev. 2005 Feb 1;19(3):397-410</RefSource>
<PMID Version="1">15687262</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Pediatr. 2012 Mar;171(3):447-50</RefSource>
<PMID Version="1">21918810</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO J. 1994 Oct 17;13(20):5002-12</RefSource>
<PMID Version="1">7957066</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Biol. 1999 Sep 15;213(2):418-31</RefSource>
<PMID Version="1">10479458</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<OtherID Source="NLM">PMC4922698 [Available on 10/01/16]</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>12</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>04</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>5</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>5</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>5</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27214551</ArticleId>
<ArticleId IdType="pii">80465</ArticleId>
<ArticleId IdType="doi">10.1172/JCI80465</ArticleId>
<ArticleId IdType="pmc">PMC4922698</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Culver, Austin" sort="Culver, Austin" uniqKey="Culver A" first="Austin" last="Culver">Austin Culver</name>
<name sortKey="Culver, Ford" sort="Culver, Ford" uniqKey="Culver F" first="Ford" last="Culver">Ford Culver</name>
<name sortKey="Dietz, William H" sort="Dietz, William H" uniqKey="Dietz W" first="William H" last="Dietz">William H. Dietz</name>
<name sortKey="Fatima, Anees" sort="Fatima, Anees" uniqKey="Fatima A" first="Anees" last="Fatima">Anees Fatima</name>
<name sortKey="Kume, Tsutomu" sort="Kume, Tsutomu" uniqKey="Kume T" first="Tsutomu" last="Kume">Tsutomu Kume</name>
<name sortKey="Liu, Ting" sort="Liu, Ting" uniqKey="Liu T" first="Ting" last="Liu">Ting Liu</name>
<name sortKey="Millay, Meredith" sort="Millay, Meredith" uniqKey="Millay M" first="Meredith" last="Millay">Meredith Millay</name>
<name sortKey="Mukouyama, Yoh Suke" sort="Mukouyama, Yoh Suke" uniqKey="Mukouyama Y" first="Yoh-Suke" last="Mukouyama">Yoh-Suke Mukouyama</name>
<name sortKey="Norden, Pieter" sort="Norden, Pieter" uniqKey="Norden P" first="Pieter" last="Norden">Pieter Norden</name>
<name sortKey="Uchida, Yutaka" sort="Uchida, Yutaka" uniqKey="Uchida Y" first="Yutaka" last="Uchida">Yutaka Uchida</name>
<name sortKey="Wang, Ying" sort="Wang, Ying" uniqKey="Wang Y" first="Ying" last="Wang">Ying Wang</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000901 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000901 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:27214551
   |texte=   Foxc1 and Foxc2 deletion causes abnormal lymphangiogenesis and correlates with ERK hyperactivation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:27214551" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a LymphedemaV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024