Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Wearable Multi-Frequency and Multi-Segment Bioelectrical Impedance Spectroscopy for Unobtrusively Tracking Body Fluid Shifts during Physical Activity in Real-Field Applications: A Preliminary Study

Identifieur interne : 000856 ( Pmc/Curation ); précédent : 000855; suivant : 000857

Wearable Multi-Frequency and Multi-Segment Bioelectrical Impedance Spectroscopy for Unobtrusively Tracking Body Fluid Shifts during Physical Activity in Real-Field Applications: A Preliminary Study

Auteurs : Federica Villa ; Alessandro Magnani ; Martina A. Maggioni ; Alexander Stahn ; Susanna Rampichini ; Giampiero Merati [Italie] ; Paolo Castiglioni [Italie]

Source :

RBID : PMC:4883364

Abstract

Bioelectrical Impedance Spectroscopy (BIS) allows assessing the composition of body districts noninvasively and quickly, potentially providing important physiological/clinical information. However, neither portable commercial instruments nor more advanced wearable prototypes simultaneously satisfy the demanding needs of unobtrusively tracking body fluid shifts in different segments simultaneously, over a broad frequency range, for long periods and with high measurements rate. These needs are often required to evaluate exercise tests in sports or rehabilitation medicine, or to assess gravitational stresses in aerospace medicine. Therefore, the aim of this work is to present a new wearable prototype for monitoring multi-segment and multi-frequency BIS unobtrusively over long periods. Our prototype guarantees low weight, small size and low power consumption. An analog board with current-injecting and voltage-sensing electrodes across three body segments interfaces a digital board that generates square-wave current stimuli and computes impedance at 10 frequencies from 1 to 796 kHz. To evaluate the information derivable from our device, we monitored the BIS of three body segments in a volunteer before, during and after physical exercise and postural shift. We show that it can describe the dynamics of exercise-induced changes and the effect of a sit-to-stand maneuver in active and inactive muscular districts separately and simultaneously.


Url:
DOI: 10.3390/s16050673
PubMed: 27187389
PubMed Central: 4883364

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4883364

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Wearable Multi-Frequency and Multi-Segment Bioelectrical Impedance Spectroscopy for Unobtrusively Tracking Body Fluid Shifts during Physical Activity in Real-Field Applications: A Preliminary Study</title>
<author>
<name sortKey="Villa, Federica" sort="Villa, Federica" uniqKey="Villa F" first="Federica" last="Villa">Federica Villa</name>
<affiliation>
<nlm:aff id="af1-sensors-16-00673">Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan 20133, Italy;
<email>federica.villa@polimi.it</email>
(F.V.);
<email>alessandro.magnani@polimi.it</email>
(A.M.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Magnani, Alessandro" sort="Magnani, Alessandro" uniqKey="Magnani A" first="Alessandro" last="Magnani">Alessandro Magnani</name>
<affiliation>
<nlm:aff id="af1-sensors-16-00673">Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan 20133, Italy;
<email>federica.villa@polimi.it</email>
(F.V.);
<email>alessandro.magnani@polimi.it</email>
(A.M.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Maggioni, Martina A" sort="Maggioni, Martina A" uniqKey="Maggioni M" first="Martina A." last="Maggioni">Martina A. Maggioni</name>
<affiliation>
<nlm:aff id="af2-sensors-16-00673">Center for Space Medicine and Extreme Environments, Charité-University Medicine Berlin, Berlin 10117, Germany;
<email>martina.maggioni@charite.de</email>
or
<email>martina.maggioni@unimi.it</email>
(M.A.M.);
<email>Alexander.Stahn@charite.de</email>
(A.S.)</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-sensors-16-00673">Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan 20133, Italy;
<email>susanna.rampichini@unimi.it</email>
(S.R.);
<email>giampiero.merati@unimi.it</email>
(G.M.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Stahn, Alexander" sort="Stahn, Alexander" uniqKey="Stahn A" first="Alexander" last="Stahn">Alexander Stahn</name>
<affiliation>
<nlm:aff id="af2-sensors-16-00673">Center for Space Medicine and Extreme Environments, Charité-University Medicine Berlin, Berlin 10117, Germany;
<email>martina.maggioni@charite.de</email>
or
<email>martina.maggioni@unimi.it</email>
(M.A.M.);
<email>Alexander.Stahn@charite.de</email>
(A.S.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rampichini, Susanna" sort="Rampichini, Susanna" uniqKey="Rampichini S" first="Susanna" last="Rampichini">Susanna Rampichini</name>
<affiliation>
<nlm:aff id="af3-sensors-16-00673">Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan 20133, Italy;
<email>susanna.rampichini@unimi.it</email>
(S.R.);
<email>giampiero.merati@unimi.it</email>
(G.M.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Merati, Giampiero" sort="Merati, Giampiero" uniqKey="Merati G" first="Giampiero" last="Merati">Giampiero Merati</name>
<affiliation>
<nlm:aff id="af3-sensors-16-00673">Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan 20133, Italy;
<email>susanna.rampichini@unimi.it</email>
(S.R.);
<email>giampiero.merati@unimi.it</email>
(G.M.)</nlm:aff>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="af4-sensors-16-00673">IRCCS Fondazione Don C. Gnocchi, Milan 20148, Italy</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>IRCCS Fondazione Don C. Gnocchi, Milan 20148</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Castiglioni, Paolo" sort="Castiglioni, Paolo" uniqKey="Castiglioni P" first="Paolo" last="Castiglioni">Paolo Castiglioni</name>
<affiliation wicri:level="1">
<nlm:aff id="af4-sensors-16-00673">IRCCS Fondazione Don C. Gnocchi, Milan 20148, Italy</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>IRCCS Fondazione Don C. Gnocchi, Milan 20148</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">27187389</idno>
<idno type="pmc">4883364</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883364</idno>
<idno type="RBID">PMC:4883364</idno>
<idno type="doi">10.3390/s16050673</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000856</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000856</idno>
<idno type="wicri:Area/Pmc/Curation">000856</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000856</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Wearable Multi-Frequency and Multi-Segment Bioelectrical Impedance Spectroscopy for Unobtrusively Tracking Body Fluid Shifts during Physical Activity in Real-Field Applications: A Preliminary Study</title>
<author>
<name sortKey="Villa, Federica" sort="Villa, Federica" uniqKey="Villa F" first="Federica" last="Villa">Federica Villa</name>
<affiliation>
<nlm:aff id="af1-sensors-16-00673">Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan 20133, Italy;
<email>federica.villa@polimi.it</email>
(F.V.);
<email>alessandro.magnani@polimi.it</email>
(A.M.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Magnani, Alessandro" sort="Magnani, Alessandro" uniqKey="Magnani A" first="Alessandro" last="Magnani">Alessandro Magnani</name>
<affiliation>
<nlm:aff id="af1-sensors-16-00673">Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan 20133, Italy;
<email>federica.villa@polimi.it</email>
(F.V.);
<email>alessandro.magnani@polimi.it</email>
(A.M.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Maggioni, Martina A" sort="Maggioni, Martina A" uniqKey="Maggioni M" first="Martina A." last="Maggioni">Martina A. Maggioni</name>
<affiliation>
<nlm:aff id="af2-sensors-16-00673">Center for Space Medicine and Extreme Environments, Charité-University Medicine Berlin, Berlin 10117, Germany;
<email>martina.maggioni@charite.de</email>
or
<email>martina.maggioni@unimi.it</email>
(M.A.M.);
<email>Alexander.Stahn@charite.de</email>
(A.S.)</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-sensors-16-00673">Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan 20133, Italy;
<email>susanna.rampichini@unimi.it</email>
(S.R.);
<email>giampiero.merati@unimi.it</email>
(G.M.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Stahn, Alexander" sort="Stahn, Alexander" uniqKey="Stahn A" first="Alexander" last="Stahn">Alexander Stahn</name>
<affiliation>
<nlm:aff id="af2-sensors-16-00673">Center for Space Medicine and Extreme Environments, Charité-University Medicine Berlin, Berlin 10117, Germany;
<email>martina.maggioni@charite.de</email>
or
<email>martina.maggioni@unimi.it</email>
(M.A.M.);
<email>Alexander.Stahn@charite.de</email>
(A.S.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rampichini, Susanna" sort="Rampichini, Susanna" uniqKey="Rampichini S" first="Susanna" last="Rampichini">Susanna Rampichini</name>
<affiliation>
<nlm:aff id="af3-sensors-16-00673">Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan 20133, Italy;
<email>susanna.rampichini@unimi.it</email>
(S.R.);
<email>giampiero.merati@unimi.it</email>
(G.M.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Merati, Giampiero" sort="Merati, Giampiero" uniqKey="Merati G" first="Giampiero" last="Merati">Giampiero Merati</name>
<affiliation>
<nlm:aff id="af3-sensors-16-00673">Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan 20133, Italy;
<email>susanna.rampichini@unimi.it</email>
(S.R.);
<email>giampiero.merati@unimi.it</email>
(G.M.)</nlm:aff>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="af4-sensors-16-00673">IRCCS Fondazione Don C. Gnocchi, Milan 20148, Italy</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>IRCCS Fondazione Don C. Gnocchi, Milan 20148</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Castiglioni, Paolo" sort="Castiglioni, Paolo" uniqKey="Castiglioni P" first="Paolo" last="Castiglioni">Paolo Castiglioni</name>
<affiliation wicri:level="1">
<nlm:aff id="af4-sensors-16-00673">IRCCS Fondazione Don C. Gnocchi, Milan 20148, Italy</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>IRCCS Fondazione Don C. Gnocchi, Milan 20148</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Sensors (Basel, Switzerland)</title>
<idno type="eISSN">1424-8220</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Bioelectrical Impedance Spectroscopy (BIS) allows assessing the composition of body districts noninvasively and quickly, potentially providing important physiological/clinical information. However, neither portable commercial instruments nor more advanced wearable prototypes simultaneously satisfy the demanding needs of unobtrusively tracking body fluid shifts in different segments simultaneously, over a broad frequency range, for long periods and with high measurements rate. These needs are often required to evaluate exercise tests in sports or rehabilitation medicine, or to assess gravitational stresses in aerospace medicine. Therefore, the aim of this work is to present a new wearable prototype for monitoring multi-segment and multi-frequency BIS unobtrusively over long periods. Our prototype guarantees low weight, small size and low power consumption. An analog board with current-injecting and voltage-sensing electrodes across three body segments interfaces a digital board that generates square-wave current stimuli and computes impedance at 10 frequencies from 1 to 796 kHz. To evaluate the information derivable from our device, we monitored the BIS of three body segments in a volunteer before, during and after physical exercise and postural shift. We show that it can describe the dynamics of exercise-induced changes and the effect of a sit-to-stand maneuver in active and inactive muscular districts separately and simultaneously.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Stahn, A" uniqKey="Stahn A">A. Stahn</name>
</author>
<author>
<name sortKey="Terblanche, E" uniqKey="Terblanche E">E. Terblanche</name>
</author>
<author>
<name sortKey="Gunga, H C" uniqKey="Gunga H">H.C. Gunga</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sverre, G" uniqKey="Sverre G">G. Sverre</name>
</author>
<author>
<name sortKey=" Rjan, G M" uniqKey=" Rjan G">G.M. Ørjan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jaffrin, M Y" uniqKey="Jaffrin M">M.Y. Jaffrin</name>
</author>
<author>
<name sortKey="Morel, H" uniqKey="Morel H">H. Morel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stahn, A" uniqKey="Stahn A">A. Stahn</name>
</author>
<author>
<name sortKey="Terblanche, E" uniqKey="Terblanche E">E. Terblanche</name>
</author>
<author>
<name sortKey="Strobel, G" uniqKey="Strobel G">G. Strobel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fenech, M" uniqKey="Fenech M">M. Fenech</name>
</author>
<author>
<name sortKey="Jaffrin, M Y" uniqKey="Jaffrin M">M.Y. Jaffrin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raaijmakers, E" uniqKey="Raaijmakers E">E. Raaijmakers</name>
</author>
<author>
<name sortKey="Faes, T J" uniqKey="Faes T">T.J. Faes</name>
</author>
<author>
<name sortKey="Meijer, J M" uniqKey="Meijer J">J.M. Meijer</name>
</author>
<author>
<name sortKey="Kunst, P W" uniqKey="Kunst P">P.W. Kunst</name>
</author>
<author>
<name sortKey="Bakker, J" uniqKey="Bakker J">J. Bakker</name>
</author>
<author>
<name sortKey="Goovaerts, H G" uniqKey="Goovaerts H">H.G. Goovaerts</name>
</author>
<author>
<name sortKey="Heethaar, R M" uniqKey="Heethaar R">R.M. Heethaar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ward, L C" uniqKey="Ward L">L.C. Ward</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Organ, L W" uniqKey="Organ L">L.W. Organ</name>
</author>
<author>
<name sortKey="Bradham, G B" uniqKey="Bradham G">G.B. Bradham</name>
</author>
<author>
<name sortKey="Gore, D T" uniqKey="Gore D">D.T. Gore</name>
</author>
<author>
<name sortKey="Lozier, S L" uniqKey="Lozier S">S.L. Lozier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stahn, A" uniqKey="Stahn A">A. Stahn</name>
</author>
<author>
<name sortKey="Terblanche, E" uniqKey="Terblanche E">E. Terblanche</name>
</author>
<author>
<name sortKey="Strobel, G" uniqKey="Strobel G">G. Strobel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Elleby, B" uniqKey="Elleby B">B. Elleby</name>
</author>
<author>
<name sortKey="Knudsen, L F" uniqKey="Knudsen L">L.F. Knudsen</name>
</author>
<author>
<name sortKey="Brown, B H" uniqKey="Brown B">B.H. Brown</name>
</author>
<author>
<name sortKey="Crofts, C E" uniqKey="Crofts C">C.E. Crofts</name>
</author>
<author>
<name sortKey="Woods, M J" uniqKey="Woods M">M.J. Woods</name>
</author>
<author>
<name sortKey="Trowbridge, E A" uniqKey="Trowbridge E">E.A. Trowbridge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rutkove, S B" uniqKey="Rutkove S">S.B. Rutkove</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stahn, A" uniqKey="Stahn A">A. Stahn</name>
</author>
<author>
<name sortKey="Terblanche, E" uniqKey="Terblanche E">E. Terblanche</name>
</author>
<author>
<name sortKey="Grunert, S" uniqKey="Grunert S">S. Grunert</name>
</author>
<author>
<name sortKey="Strobel, G" uniqKey="Strobel G">G. Strobel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stahn, A" uniqKey="Stahn A">A. Stahn</name>
</author>
<author>
<name sortKey="Strobel, G" uniqKey="Strobel G">G. Strobel</name>
</author>
<author>
<name sortKey="Terblanche, E" uniqKey="Terblanche E">E. Terblanche</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Medrano, G" uniqKey="Medrano G">G. Medrano</name>
</author>
<author>
<name sortKey="Beckmann, L" uniqKey="Beckmann L">L. Beckmann</name>
</author>
<author>
<name sortKey="Zimmermann, N" uniqKey="Zimmermann N">N. Zimmermann</name>
</author>
<author>
<name sortKey="Grundmann, T" uniqKey="Grundmann T">T. Grundmann</name>
</author>
<author>
<name sortKey="Gries, T" uniqKey="Gries T">T. Gries</name>
</author>
<author>
<name sortKey="Leonhardt, S" uniqKey="Leonhardt S">S. Leonhardt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seoane, F" uniqKey="Seoane F">F. Seoane</name>
</author>
<author>
<name sortKey="Ferreira, J" uniqKey="Ferreira J">J. Ferreira</name>
</author>
<author>
<name sortKey="Sanchez, J J" uniqKey="Sanchez J">J.J. Sanchez</name>
</author>
<author>
<name sortKey="Bragos, R" uniqKey="Bragos R">R. Bragos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Villa, F" uniqKey="Villa F">F. Villa</name>
</author>
<author>
<name sortKey="Magnani, A" uniqKey="Magnani A">A. Magnani</name>
</author>
<author>
<name sortKey="Merati, G" uniqKey="Merati G">G. Merati</name>
</author>
<author>
<name sortKey="Castiglioni, P" uniqKey="Castiglioni P">P. Castiglioni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Villa, F" uniqKey="Villa F">F. Villa</name>
</author>
<author>
<name sortKey="Magnani, A" uniqKey="Magnani A">A. Magnani</name>
</author>
<author>
<name sortKey="Castiglioni, P" uniqKey="Castiglioni P">P. Castiglioni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gabriel, C" uniqKey="Gabriel C">C. Gabriel</name>
</author>
<author>
<name sortKey="Gabriel, S" uniqKey="Gabriel S">S. Gabriel</name>
</author>
<author>
<name sortKey="Corthout, E" uniqKey="Corthout E">E. Corthout</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schwan, H P" uniqKey="Schwan H">H.P. Schwan</name>
</author>
<author>
<name sortKey="Kay, C F" uniqKey="Kay C">C.F. Kay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grimnes, S" uniqKey="Grimnes S">S. Grimnes</name>
</author>
<author>
<name sortKey="Martinsen, G" uniqKey="Martinsen ">Ø.G. Martinsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Lorenzo, A" uniqKey="De Lorenzo A">A. De Lorenzo</name>
</author>
<author>
<name sortKey="Andreoli, A" uniqKey="Andreoli A">A. Andreoli</name>
</author>
<author>
<name sortKey="Matthie, J" uniqKey="Matthie J">J. Matthie</name>
</author>
<author>
<name sortKey="Withers, P" uniqKey="Withers P">P. Withers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Andersen, P" uniqKey="Andersen P">P. Andersen</name>
</author>
<author>
<name sortKey="Saltin, B" uniqKey="Saltin B">B. Saltin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nakamura, T" uniqKey="Nakamura T">T. Nakamura</name>
</author>
<author>
<name sortKey="Yamamoto, Y" uniqKey="Yamamoto Y">Y. Yamamoto</name>
</author>
<author>
<name sortKey="Yamamoto, T" uniqKey="Yamamoto T">T. Yamamoto</name>
</author>
<author>
<name sortKey="Tsuji, H" uniqKey="Tsuji H">H. Tsuji</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boushel, R" uniqKey="Boushel R">R. Boushel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yoshizawa, M" uniqKey="Yoshizawa M">M. Yoshizawa</name>
</author>
<author>
<name sortKey="Shimizu Okuyama, S" uniqKey="Shimizu Okuyama S">S. Shimizu-Okuyama</name>
</author>
<author>
<name sortKey="Kagaya, A" uniqKey="Kagaya A">A. Kagaya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Caton, J R" uniqKey="Caton J">J.R. Caton</name>
</author>
<author>
<name sortKey="Mole, P A" uniqKey="Mole P">P.A. Mole</name>
</author>
<author>
<name sortKey="Adams, W C" uniqKey="Adams W">W.C. Adams</name>
</author>
<author>
<name sortKey="Heustis, D S" uniqKey="Heustis D">D.S. Heustis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gudivaka, R" uniqKey="Gudivaka R">R. Gudivaka</name>
</author>
<author>
<name sortKey="Schoeller, D" uniqKey="Schoeller D">D. Schoeller</name>
</author>
<author>
<name sortKey="Kushner, R F" uniqKey="Kushner R">R.F. Kushner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cornish, B H" uniqKey="Cornish B">B.H. Cornish</name>
</author>
<author>
<name sortKey="Thomas, B J" uniqKey="Thomas B">B.J. Thomas</name>
</author>
<author>
<name sortKey="Ward, L C" uniqKey="Ward L">L.C. Ward</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liang, M T" uniqKey="Liang M">M.T. Liang</name>
</author>
<author>
<name sortKey="Norris, S" uniqKey="Norris S">S. Norris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Buono, M J" uniqKey="Buono M">M.J. Buono</name>
</author>
<author>
<name sortKey="Burke, S" uniqKey="Burke S">S. Burke</name>
</author>
<author>
<name sortKey="Endemann, S" uniqKey="Endemann S">S. Endemann</name>
</author>
<author>
<name sortKey="Graham, H" uniqKey="Graham H">H. Graham</name>
</author>
<author>
<name sortKey="Gressard, C" uniqKey="Gressard C">C. Gressard</name>
</author>
<author>
<name sortKey="Griswold, L" uniqKey="Griswold L">L. Griswold</name>
</author>
<author>
<name sortKey="Michalewicz, B" uniqKey="Michalewicz B">B. Michalewicz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kanai, H" uniqKey="Kanai H">H. Kanai</name>
</author>
<author>
<name sortKey="Haeno, M" uniqKey="Haeno M">M. Haeno</name>
</author>
<author>
<name sortKey="Sakamoto, K" uniqKey="Sakamoto K">K. Sakamoto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Loan, M D" uniqKey="Van Loan M">M.D. Van Loan</name>
</author>
<author>
<name sortKey="Withers, P O" uniqKey="Withers P">P.O. Withers</name>
</author>
<author>
<name sortKey="Matthie, J R" uniqKey="Matthie J">J.R. Matthie</name>
</author>
<author>
<name sortKey="Mayclin, P L" uniqKey="Mayclin P">P.L. Mayclin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ellis, K J" uniqKey="Ellis K">K.J. Ellis</name>
</author>
<author>
<name sortKey="Wong, W W" uniqKey="Wong W">W.W. Wong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhu, F" uniqKey="Zhu F">F. Zhu</name>
</author>
<author>
<name sortKey="Leonard, E F" uniqKey="Leonard E">E.F. Leonard</name>
</author>
<author>
<name sortKey="Levin, N W" uniqKey="Levin N">N.W. Levin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Kreel, B K" uniqKey="Van Kreel B">B.K. Van Kreel</name>
</author>
<author>
<name sortKey="Cox Reyven, N" uniqKey="Cox Reyven N">N. Cox-Reyven</name>
</author>
<author>
<name sortKey="Soeters, P" uniqKey="Soeters P">P. Soeters</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Sensors (Basel)</journal-id>
<journal-id journal-id-type="iso-abbrev">Sensors (Basel)</journal-id>
<journal-id journal-id-type="publisher-id">sensors</journal-id>
<journal-title-group>
<journal-title>Sensors (Basel, Switzerland)</journal-title>
</journal-title-group>
<issn pub-type="epub">1424-8220</issn>
<publisher>
<publisher-name>MDPI</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">27187389</article-id>
<article-id pub-id-type="pmc">4883364</article-id>
<article-id pub-id-type="doi">10.3390/s16050673</article-id>
<article-id pub-id-type="publisher-id">sensors-16-00673</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Wearable Multi-Frequency and Multi-Segment Bioelectrical Impedance Spectroscopy for Unobtrusively Tracking Body Fluid Shifts during Physical Activity in Real-Field Applications: A Preliminary Study</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Villa</surname>
<given-names>Federica</given-names>
</name>
<xref ref-type="aff" rid="af1-sensors-16-00673">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Magnani</surname>
<given-names>Alessandro</given-names>
</name>
<xref ref-type="aff" rid="af1-sensors-16-00673">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Maggioni</surname>
<given-names>Martina A.</given-names>
</name>
<xref ref-type="aff" rid="af2-sensors-16-00673">2</xref>
<xref ref-type="aff" rid="af3-sensors-16-00673">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Stahn</surname>
<given-names>Alexander</given-names>
</name>
<xref ref-type="aff" rid="af2-sensors-16-00673">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Rampichini</surname>
<given-names>Susanna</given-names>
</name>
<xref ref-type="aff" rid="af3-sensors-16-00673">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Merati</surname>
<given-names>Giampiero</given-names>
</name>
<xref ref-type="aff" rid="af3-sensors-16-00673">3</xref>
<xref ref-type="aff" rid="af4-sensors-16-00673">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Castiglioni</surname>
<given-names>Paolo</given-names>
</name>
<xref ref-type="aff" rid="af4-sensors-16-00673">4</xref>
<xref rid="c1-sensors-16-00673" ref-type="corresp">*</xref>
</contrib>
</contrib-group>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Mariani</surname>
<given-names>Stefano</given-names>
</name>
<role>Academic Editor</role>
</contrib>
</contrib-group>
<aff id="af1-sensors-16-00673">
<label>1</label>
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan 20133, Italy;
<email>federica.villa@polimi.it</email>
(F.V.);
<email>alessandro.magnani@polimi.it</email>
(A.M.)</aff>
<aff id="af2-sensors-16-00673">
<label>2</label>
Center for Space Medicine and Extreme Environments, Charité-University Medicine Berlin, Berlin 10117, Germany;
<email>martina.maggioni@charite.de</email>
or
<email>martina.maggioni@unimi.it</email>
(M.A.M.);
<email>Alexander.Stahn@charite.de</email>
(A.S.)</aff>
<aff id="af3-sensors-16-00673">
<label>3</label>
Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan 20133, Italy;
<email>susanna.rampichini@unimi.it</email>
(S.R.);
<email>giampiero.merati@unimi.it</email>
(G.M.)</aff>
<aff id="af4-sensors-16-00673">
<label>4</label>
IRCCS Fondazione Don C. Gnocchi, Milan 20148, Italy</aff>
<author-notes>
<corresp id="c1-sensors-16-00673">
<label>*</label>
Correspondence:
<email>pcastiglioni@dongnocchi.it</email>
; Tel.: +39-02-4030-8305</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>11</day>
<month>5</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="collection">
<month>5</month>
<year>2016</year>
</pub-date>
<volume>16</volume>
<issue>5</issue>
<elocation-id>673</elocation-id>
<history>
<date date-type="received">
<day>29</day>
<month>2</month>
<year>2016</year>
</date>
<date date-type="accepted">
<day>04</day>
<month>5</month>
<year>2016</year>
</date>
</history>
<permissions>
<copyright-statement>© 2016 by the authors; licensee MDPI, Basel, Switzerland.</copyright-statement>
<copyright-year>2016</copyright-year>
<license>
<license-p>
<pmc-comment>CREATIVE COMMONS</pmc-comment>
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
).</license-p>
</license>
</permissions>
<abstract>
<p>Bioelectrical Impedance Spectroscopy (BIS) allows assessing the composition of body districts noninvasively and quickly, potentially providing important physiological/clinical information. However, neither portable commercial instruments nor more advanced wearable prototypes simultaneously satisfy the demanding needs of unobtrusively tracking body fluid shifts in different segments simultaneously, over a broad frequency range, for long periods and with high measurements rate. These needs are often required to evaluate exercise tests in sports or rehabilitation medicine, or to assess gravitational stresses in aerospace medicine. Therefore, the aim of this work is to present a new wearable prototype for monitoring multi-segment and multi-frequency BIS unobtrusively over long periods. Our prototype guarantees low weight, small size and low power consumption. An analog board with current-injecting and voltage-sensing electrodes across three body segments interfaces a digital board that generates square-wave current stimuli and computes impedance at 10 frequencies from 1 to 796 kHz. To evaluate the information derivable from our device, we monitored the BIS of three body segments in a volunteer before, during and after physical exercise and postural shift. We show that it can describe the dynamics of exercise-induced changes and the effect of a sit-to-stand maneuver in active and inactive muscular districts separately and simultaneously.</p>
</abstract>
<kwd-group>
<kwd>exercise</kwd>
<kwd>blood shift</kwd>
<kwd>body composition</kwd>
<kwd>electrical impedance</kwd>
</kwd-group>
</article-meta>
</front>
<floats-group>
<fig id="sensors-16-00673-f001" position="float">
<label>Figure 1</label>
<caption>
<p>Scheme of our BIS system consisting of a digital board (
<bold>left</bold>
) with a DSP that generates the periodic stimulation waveforms and receives three sensed voltages for Fourier analysis; an analog board (
<bold>middle</bold>
) with a transconductance amplifier to produce the stimulation current and three instrumentation amplifiers for reading voltage drops across body segments; and an electrode set-up (
<bold>right</bold>
) consisting of two injecting electrodes (I1, I2) and four sensing electrodes (S1–S4).</p>
</caption>
<graphic xlink:href="sensors-16-00673-g001"></graphic>
</fig>
<fig id="sensors-16-00673-f002" position="float">
<label>Figure 2</label>
<caption>
<p>(
<bold>a</bold>
) Example of stimulation current at
<italic>f</italic>
<sub>0</sub>
= 48 kHz (for clarity, only a segment of the original 5-ms-long train of square waves is shown); (
<bold>b</bold>
) Modulus of the corresponding FFT spectrum; the Fourier spectrum shows a main peak at the fundamental frequency
<italic>f</italic>
<sub>0</sub>
, and minor peaks at higher harmonics (note that the amplitude of even harmonics is zero for the square wave). Only the Fourier component at
<italic>f</italic>
<sub>0</sub>
is considered for the estimation of Z
<italic>(f)</italic>
.</p>
</caption>
<graphic xlink:href="sensors-16-00673-g002"></graphic>
</fig>
<fig id="sensors-16-00673-f003" position="float">
<label>Figure 3</label>
<caption>
<p>The realized prototype, with connectors for four sensing electrodes (yellow), two injecting electrodes (blue) and a USB port for data input/output with a personal computer; the tetrapolar electrode set-up allows using standard electrocardiographic disk electrodes.</p>
</caption>
<graphic xlink:href="sensors-16-00673-g003"></graphic>
</fig>
<fig id="sensors-16-00673-f004" position="float">
<label>Figure 4</label>
<caption>
<p>Example of subject instrumentation for BIS in the right thigh (S1,S2), in the pelvis (S2,S3) and in the left thigh (S3,S4).</p>
</caption>
<graphic xlink:href="sensors-16-00673-g004"></graphic>
</fig>
<fig id="sensors-16-00673-f005" position="float">
<label>Figure 5</label>
<caption>
<p>Profiles of |Z
<italic>(f)</italic>
| at
<italic>f</italic>
= 48 kHz in the pelvis area (
<bold>upper panel</bold>
) and in the active (red) and inactive (blue) thighs (
<bold>lower panel</bold>
) during the whole experimental session. Please note that the selected subperiods corresponding to “exercise”, “recovery” and “standing” conditions are spaced by a few minutes to exclude transitions phases from the analysis.</p>
</caption>
<graphic xlink:href="sensors-16-00673-g005"></graphic>
</fig>
<fig id="sensors-16-00673-f006" position="float">
<label>Figure 6</label>
<caption>
<p>Changes of |Z
<italic>(f)</italic>
| at
<italic>f</italic>
= 48 kHz associated with the start of 25 W exercise after warm-up in three body districts (same experimental session of
<xref ref-type="fig" rid="sensors-16-00673-f005">Figure 5</xref>
): (
<bold>a</bold>
) active thigh; (
<bold>b</bold>
) pelvis area; (
<bold>c</bold>
) inactive thigh. The vertical lines at time zero indicate the start of 25 W exercise after warm-up. Please note the transient increase of impedance magnitude in the active thigh 100 s after the start of exercise, a simultaneous impedance decrease in the pelvis area, and a decrease of impedance in the inactive thigh that follows the impedance decrease in the pelvis. The green box highlights the time period corresponding to the transient impedance increase in the active thigh.</p>
</caption>
<graphic xlink:href="sensors-16-00673-g006"></graphic>
</fig>
<fig id="sensors-16-00673-f007" position="float">
<label>Figure 7</label>
<caption>
<p>Z
<italic>(f)</italic>
during the leg-extension test in “baseline”, “exercise” and “recovery” periods in sitting position: (
<bold>a</bold>
) active thigh; (
<bold>b</bold>
) inactive thigh.</p>
</caption>
<graphic xlink:href="sensors-16-00673-g007"></graphic>
</fig>
<fig id="sensors-16-00673-f008" position="float">
<label>Figure 8</label>
<caption>
<p>Modulus and phase of Z
<italic>(f)</italic>
in sitting and standing positions during recovery from exercise: (
<bold>a</bold>
) active thigh; (
<bold>b</bold>
) inactive thigh; (
<bold>c</bold>
) pelvis.</p>
</caption>
<graphic xlink:href="sensors-16-00673-g008"></graphic>
</fig>
<fig id="sensors-16-00673-f009" position="float">
<label>Figure A1</label>
<caption>
<p>Resistance and reactance of
<italic>Z(f)</italic>
values in the β-dispersion range (solid circles) fitting the simplified equivalent electric circuit represented by the resistance R
<sub>E</sub>
of extra-cellular fluids in parallel with the membrane capacitance C
<sub>I</sub>
and the resistance R
<sub>I</sub>
of intra-cellular fluids (see inset); the mathematical curve that interpolates the measured values crosses the resistance axis at R
<sub>0</sub>
(corresponding to the model resistance when a DC current is injected) and at R
<sub></sub>
(corresponding to the equivalent resistance of the model at infinite frequency). The example shows
<italic>Z(f)</italic>
data measured in the inactive thigh during recovery in sitting position.</p>
</caption>
<graphic xlink:href="sensors-16-00673-g009"></graphic>
</fig>
<table-wrap id="sensors-16-00673-t001" position="float">
<object-id pub-id-type="pii">sensors-16-00673-t001_Table 1</object-id>
<label>Table 1</label>
<caption>
<p>Skin temperature in active and inactive thighs during the whole experimental protocol.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Time</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Condition</th>
<th colspan="2" align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1">Thigh Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">Active</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Inactive</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">400 s</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Baseline</td>
<td align="center" valign="middle" rowspan="1" colspan="1">32.5</td>
<td align="center" valign="middle" rowspan="1" colspan="1">32.5</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">750 s</td>
<td align="center" valign="middle" rowspan="1" colspan="1">warm-up (10W)</td>
<td align="center" valign="middle" rowspan="1" colspan="1">32.5</td>
<td align="center" valign="middle" rowspan="1" colspan="1">31.5</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">1250 s</td>
<td align="center" valign="middle" rowspan="1" colspan="1">exercise (25W)</td>
<td align="center" valign="middle" rowspan="1" colspan="1">31.0</td>
<td align="center" valign="middle" rowspan="1" colspan="1">29.0</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">1500 s</td>
<td align="center" valign="middle" rowspan="1" colspan="1">exercise (25W)</td>
<td align="center" valign="middle" rowspan="1" colspan="1">32.0</td>
<td align="center" valign="middle" rowspan="1" colspan="1">29.0</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">1800 s</td>
<td align="center" valign="middle" rowspan="1" colspan="1">exercise (25W)</td>
<td align="center" valign="middle" rowspan="1" colspan="1">32.5</td>
<td align="center" valign="middle" rowspan="1" colspan="1">29.5</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">1950 s</td>
<td align="center" valign="middle" rowspan="1" colspan="1">exercise (50W)</td>
<td align="center" valign="middle" rowspan="1" colspan="1">33.0</td>
<td align="center" valign="middle" rowspan="1" colspan="1">30.5</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">2550 s</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Recovery</td>
<td align="center" valign="middle" rowspan="1" colspan="1">33.0</td>
<td align="center" valign="middle" rowspan="1" colspan="1">31.0</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">3900 s</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Standing</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">33.0</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">30.5</td>
</tr>
</tbody>
</table>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000856 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 000856 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:4883364
   |texte=   Wearable Multi-Frequency and Multi-Segment Bioelectrical Impedance Spectroscopy for Unobtrusively Tracking Body Fluid Shifts during Physical Activity in Real-Field Applications: A Preliminary Study
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:27187389" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a LymphedemaV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024