Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Flow-regulated lymphatic vasculature development and signaling

Identifieur interne : 004734 ( Pmc/Corpus ); précédent : 004733; suivant : 004735

Flow-regulated lymphatic vasculature development and signaling

Auteurs : Yingdi Wang ; Michael Simons

Source :

RBID : PMC:4105398

Abstract

The role of blood flow in regulating signaling pathways and gene expression in the blood vasculature is well known. Recent studies have identified equally important roles of flow-mediated signaling in the lymphatic circulation including control of lymphatic vascular growth, remodeling, regeneration and maintenance of the lymphatic fate. In this review, we summarize these advances focusing on the role of fluid dynamics in control of lymphatic vasculature formation.


Url:
DOI: 10.1186/2045-824X-6-14
PubMed: 25053993
PubMed Central: 4105398

Links to Exploration step

PMC:4105398

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Flow-regulated lymphatic vasculature development and signaling</title>
<author>
<name sortKey="Wang, Yingdi" sort="Wang, Yingdi" uniqKey="Wang Y" first="Yingdi" last="Wang">Yingdi Wang</name>
<affiliation>
<nlm:aff id="I1">Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, 300 George St, New Haven, CT 06520, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Simons, Michael" sort="Simons, Michael" uniqKey="Simons M" first="Michael" last="Simons">Michael Simons</name>
<affiliation>
<nlm:aff id="I1">Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, 300 George St, New Haven, CT 06520, USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I2">Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25053993</idno>
<idno type="pmc">4105398</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4105398</idno>
<idno type="RBID">PMC:4105398</idno>
<idno type="doi">10.1186/2045-824X-6-14</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">004734</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">004734</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Flow-regulated lymphatic vasculature development and signaling</title>
<author>
<name sortKey="Wang, Yingdi" sort="Wang, Yingdi" uniqKey="Wang Y" first="Yingdi" last="Wang">Yingdi Wang</name>
<affiliation>
<nlm:aff id="I1">Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, 300 George St, New Haven, CT 06520, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Simons, Michael" sort="Simons, Michael" uniqKey="Simons M" first="Michael" last="Simons">Michael Simons</name>
<affiliation>
<nlm:aff id="I1">Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, 300 George St, New Haven, CT 06520, USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I2">Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Vascular Cell</title>
<idno type="eISSN">2045-824X</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The role of blood flow in regulating signaling pathways and gene expression in the blood vasculature is well known. Recent studies have identified equally important roles of flow-mediated signaling in the lymphatic circulation including control of lymphatic vascular growth, remodeling, regeneration and maintenance of the lymphatic fate. In this review, we summarize these advances focusing on the role of fluid dynamics in control of lymphatic vasculature formation.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Brown, Jd" uniqKey="Brown J">JD Brown</name>
</author>
<author>
<name sortKey="Dichiara, Mr" uniqKey="Dichiara M">MR DiChiara</name>
</author>
<author>
<name sortKey="Anderson, Kr" uniqKey="Anderson K">KR Anderson</name>
</author>
<author>
<name sortKey="Gimbrone, Ma" uniqKey="Gimbrone M">MA Gimbrone</name>
</author>
<author>
<name sortKey="Topper, Jn" uniqKey="Topper J">JN Topper</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chien, S" uniqKey="Chien S">S Chien</name>
</author>
<author>
<name sortKey="Li, S" uniqKey="Li S">S Li</name>
</author>
<author>
<name sortKey="Shyy, Jy" uniqKey="Shyy J">JY Shyy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Topper, Jn" uniqKey="Topper J">JN Topper</name>
</author>
<author>
<name sortKey="Gimbrone, Ma" uniqKey="Gimbrone M">MA Gimbrone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wasserman, Sm" uniqKey="Wasserman S">SM Wasserman</name>
</author>
<author>
<name sortKey="Topper, Jn" uniqKey="Topper J">JN Topper</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chiu, J J" uniqKey="Chiu J">J-J Chiu</name>
</author>
<author>
<name sortKey="Usami, S" uniqKey="Usami S">S Usami</name>
</author>
<author>
<name sortKey="Chien, S" uniqKey="Chien S">S Chien</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gimbrone, Ma" uniqKey="Gimbrone M">MA Gimbrone</name>
</author>
<author>
<name sortKey="Topper, Jn" uniqKey="Topper J">JN Topper</name>
</author>
<author>
<name sortKey="Nagel, T" uniqKey="Nagel T">T Nagel</name>
</author>
<author>
<name sortKey="Anderson, Kr" uniqKey="Anderson K">KR Anderson</name>
</author>
<author>
<name sortKey="Garcia Carde A, G" uniqKey="Garcia Carde A G">G Garcia-Cardeña</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Malek, Am" uniqKey="Malek A">AM Malek</name>
</author>
<author>
<name sortKey="Alper, Sl" uniqKey="Alper S">SL Alper</name>
</author>
<author>
<name sortKey="Izumo, S" uniqKey="Izumo S">S Izumo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, J" uniqKey="Zhou J">J Zhou</name>
</author>
<author>
<name sortKey="Li, Y S" uniqKey="Li Y">Y-S Li</name>
</author>
<author>
<name sortKey="Nguyen, P" uniqKey="Nguyen P">P Nguyen</name>
</author>
<author>
<name sortKey="Wang, K C" uniqKey="Wang K">K-C Wang</name>
</author>
<author>
<name sortKey="Weiss, A" uniqKey="Weiss A">A Weiss</name>
</author>
<author>
<name sortKey="Kuo, Y C" uniqKey="Kuo Y">Y-C Kuo</name>
</author>
<author>
<name sortKey="Chiu, J J" uniqKey="Chiu J">J-J Chiu</name>
</author>
<author>
<name sortKey="Shyy, Jy" uniqKey="Shyy J">JY Shyy</name>
</author>
<author>
<name sortKey="Chien, S" uniqKey="Chien S">S Chien</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Oliver, G" uniqKey="Oliver G">G Oliver</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harvey, Nl" uniqKey="Harvey N">NL Harvey</name>
</author>
<author>
<name sortKey="Srinivasan, Rs" uniqKey="Srinivasan R">RS Srinivasan</name>
</author>
<author>
<name sortKey="Dillard, Me" uniqKey="Dillard M">ME Dillard</name>
</author>
<author>
<name sortKey="Johnson, Nc" uniqKey="Johnson N">NC Johnson</name>
</author>
<author>
<name sortKey="Witte, Mh" uniqKey="Witte M">MH Witte</name>
</author>
<author>
<name sortKey="Boyd, K" uniqKey="Boyd K">K Boyd</name>
</author>
<author>
<name sortKey="Sleeman, Mw" uniqKey="Sleeman M">MW Sleeman</name>
</author>
<author>
<name sortKey="Oliver, G" uniqKey="Oliver G">G Oliver</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karkkainen, Mj" uniqKey="Karkkainen M">MJ Karkkainen</name>
</author>
<author>
<name sortKey="Ferrell, Re" uniqKey="Ferrell R">RE Ferrell</name>
</author>
<author>
<name sortKey="Lawrence, Ec" uniqKey="Lawrence E">EC Lawrence</name>
</author>
<author>
<name sortKey="Kimak, Ma" uniqKey="Kimak M">MA Kimak</name>
</author>
<author>
<name sortKey="Levinson, Kl" uniqKey="Levinson K">KL Levinson</name>
</author>
<author>
<name sortKey="Mctigue, Ma" uniqKey="Mctigue M">MA McTigue</name>
</author>
<author>
<name sortKey="Alitalo, K" uniqKey="Alitalo K">K Alitalo</name>
</author>
<author>
<name sortKey="Finegold, Dn" uniqKey="Finegold D">DN Finegold</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karkkainen, Mj" uniqKey="Karkkainen M">MJ Karkkainen</name>
</author>
<author>
<name sortKey="Haiko, P" uniqKey="Haiko P">P Haiko</name>
</author>
<author>
<name sortKey="Sainio, K" uniqKey="Sainio K">K Sainio</name>
</author>
<author>
<name sortKey="Partanen, J" uniqKey="Partanen J">J Partanen</name>
</author>
<author>
<name sortKey="Taipale, J" uniqKey="Taipale J">J Taipale</name>
</author>
<author>
<name sortKey="Petrova, Tv" uniqKey="Petrova T">TV Petrova</name>
</author>
<author>
<name sortKey="Jeltsch, M" uniqKey="Jeltsch M">M Jeltsch</name>
</author>
<author>
<name sortKey="Jackson, Dg" uniqKey="Jackson D">DG Jackson</name>
</author>
<author>
<name sortKey="Talikka, M" uniqKey="Talikka M">M Talikka</name>
</author>
<author>
<name sortKey="Rauvala, H" uniqKey="Rauvala H">H Rauvala</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Machnik, A" uniqKey="Machnik A">A Machnik</name>
</author>
<author>
<name sortKey="Neuhofer, W" uniqKey="Neuhofer W">W Neuhofer</name>
</author>
<author>
<name sortKey="Jantsch, J" uniqKey="Jantsch J">J Jantsch</name>
</author>
<author>
<name sortKey="Dahlmann, A" uniqKey="Dahlmann A">A Dahlmann</name>
</author>
<author>
<name sortKey="Tammela, T" uniqKey="Tammela T">T Tammela</name>
</author>
<author>
<name sortKey="Machura, K" uniqKey="Machura K">K Machura</name>
</author>
<author>
<name sortKey="Park, J K" uniqKey="Park J">J-K Park</name>
</author>
<author>
<name sortKey="Beck, F X" uniqKey="Beck F">F-X Beck</name>
</author>
<author>
<name sortKey="Muller, Dn" uniqKey="Muller D">DN Müller</name>
</author>
<author>
<name sortKey="Derer, W" uniqKey="Derer W">W Derer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martel, C" uniqKey="Martel C">C Martel</name>
</author>
<author>
<name sortKey="Li, W" uniqKey="Li W">W Li</name>
</author>
<author>
<name sortKey="Fulp, B" uniqKey="Fulp B">B Fulp</name>
</author>
<author>
<name sortKey="Platt, Am" uniqKey="Platt A">AM Platt</name>
</author>
<author>
<name sortKey="Gautier, El" uniqKey="Gautier E">EL Gautier</name>
</author>
<author>
<name sortKey="Westerterp, M" uniqKey="Westerterp M">M Westerterp</name>
</author>
<author>
<name sortKey="Bittman, R" uniqKey="Bittman R">R Bittman</name>
</author>
<author>
<name sortKey="Tall, Ar" uniqKey="Tall A">AR Tall</name>
</author>
<author>
<name sortKey="Chen, S H" uniqKey="Chen S">S-H Chen</name>
</author>
<author>
<name sortKey="Thomas, Mj" uniqKey="Thomas M">MJ Thomas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wigle, Jt" uniqKey="Wigle J">JT Wigle</name>
</author>
<author>
<name sortKey="Oliver, G" uniqKey="Oliver G">G Oliver</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ng, Cp" uniqKey="Ng C">CP Ng</name>
</author>
<author>
<name sortKey="Helm, C Le" uniqKey="Helm C">C-LE Helm</name>
</author>
<author>
<name sortKey="Swartz, Ma" uniqKey="Swartz M">MA Swartz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Breslin, Jw" uniqKey="Breslin J">JW Breslin</name>
</author>
<author>
<name sortKey="Kurtz, Km" uniqKey="Kurtz K">KM Kurtz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baumer, Y" uniqKey="Baumer Y">Y Baumer</name>
</author>
<author>
<name sortKey="Spindler, V" uniqKey="Spindler V">V Spindler</name>
</author>
<author>
<name sortKey="Werthmann, R" uniqKey="Werthmann R">R Werthmann</name>
</author>
<author>
<name sortKey="Bunemann, M" uniqKey="Bunemann M">M Bünemann</name>
</author>
<author>
<name sortKey="Waschke, J" uniqKey="Waschke J">J Waschke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Birukova, Aa" uniqKey="Birukova A">AA Birukova</name>
</author>
<author>
<name sortKey="Liu, F" uniqKey="Liu F">F Liu</name>
</author>
<author>
<name sortKey="Garcia, Jg" uniqKey="Garcia J">JG Garcia</name>
</author>
<author>
<name sortKey="Verin, Ad" uniqKey="Verin A">AD Verin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Duran, Wn" uniqKey="Duran W">WN Durán</name>
</author>
<author>
<name sortKey="Sanchez, Fa" uniqKey="Sanchez F">FA Sánchez</name>
</author>
<author>
<name sortKey="Breslin, Jw" uniqKey="Breslin J">JW Breslin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="He, P" uniqKey="He P">P He</name>
</author>
<author>
<name sortKey="Zeng, M" uniqKey="Zeng M">M Zeng</name>
</author>
<author>
<name sortKey="Curry, F" uniqKey="Curry F">F Curry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qiao, J" uniqKey="Qiao J">J Qiao</name>
</author>
<author>
<name sortKey="Huang, F" uniqKey="Huang F">F Huang</name>
</author>
<author>
<name sortKey="Lum, H" uniqKey="Lum H">H Lum</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shikata, Y" uniqKey="Shikata Y">Y Shikata</name>
</author>
<author>
<name sortKey="Rios, A" uniqKey="Rios A">A Rios</name>
</author>
<author>
<name sortKey="Kawkitinarong, K" uniqKey="Kawkitinarong K">K Kawkitinarong</name>
</author>
<author>
<name sortKey="Depaola, N" uniqKey="Depaola N">N DePaola</name>
</author>
<author>
<name sortKey="Garcia, Jg" uniqKey="Garcia J">JG Garcia</name>
</author>
<author>
<name sortKey="Birukov, Kg" uniqKey="Birukov K">KG Birukov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Waschke, J" uniqKey="Waschke J">J Waschke</name>
</author>
<author>
<name sortKey="Drenckhahn, D" uniqKey="Drenckhahn D">D Drenckhahn</name>
</author>
<author>
<name sortKey="Adamson, R" uniqKey="Adamson R">R Adamson</name>
</author>
<author>
<name sortKey="Barth, H" uniqKey="Barth H">H Barth</name>
</author>
<author>
<name sortKey="Curry, F" uniqKey="Curry F">F Curry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Helm, C Le" uniqKey="Helm C">C-LE Helm</name>
</author>
<author>
<name sortKey="Fleury, Me" uniqKey="Fleury M">ME Fleury</name>
</author>
<author>
<name sortKey="Zisch, Ah" uniqKey="Zisch A">AH Zisch</name>
</author>
<author>
<name sortKey="Boschetti, F" uniqKey="Boschetti F">F Boschetti</name>
</author>
<author>
<name sortKey="Swartz, Ma" uniqKey="Swartz M">MA Swartz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boardman, Kc" uniqKey="Boardman K">KC Boardman</name>
</author>
<author>
<name sortKey="Swartz, Ma" uniqKey="Swartz M">MA Swartz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goldman, J" uniqKey="Goldman J">J Goldman</name>
</author>
<author>
<name sortKey="Conley, Ka" uniqKey="Conley K">KA Conley</name>
</author>
<author>
<name sortKey="Raehl, A" uniqKey="Raehl A">A Raehl</name>
</author>
<author>
<name sortKey="Bondy, Dm" uniqKey="Bondy D">DM Bondy</name>
</author>
<author>
<name sortKey="Pytowski, B" uniqKey="Pytowski B">B Pytowski</name>
</author>
<author>
<name sortKey="Swartz, Ma" uniqKey="Swartz M">MA Swartz</name>
</author>
<author>
<name sortKey="Rutkowski, Jm" uniqKey="Rutkowski J">JM Rutkowski</name>
</author>
<author>
<name sortKey="Jaroch, Db" uniqKey="Jaroch D">DB Jaroch</name>
</author>
<author>
<name sortKey="Ongstad, El" uniqKey="Ongstad E">EL Ongstad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Planas Paz, L" uniqKey="Planas Paz L">L Planas-Paz</name>
</author>
<author>
<name sortKey="Strili, B" uniqKey="Strili B">B Strilić</name>
</author>
<author>
<name sortKey="Goedecke, A" uniqKey="Goedecke A">A Goedecke</name>
</author>
<author>
<name sortKey="Breier, G" uniqKey="Breier G">G Breier</name>
</author>
<author>
<name sortKey="F Ssler, R" uniqKey="F Ssler R">R Fässler</name>
</author>
<author>
<name sortKey="Lammert, E" uniqKey="Lammert E">E Lammert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sabine, A" uniqKey="Sabine A">A Sabine</name>
</author>
<author>
<name sortKey="Agalarov, Y" uniqKey="Agalarov Y">Y Agalarov</name>
</author>
<author>
<name sortKey="Maby El Hajjami, H" uniqKey="Maby El Hajjami H">H Maby-El Hajjami</name>
</author>
<author>
<name sortKey="Jaquet, M" uniqKey="Jaquet M">M Jaquet</name>
</author>
<author>
<name sortKey="H Gerling, R" uniqKey="H Gerling R">R Hägerling</name>
</author>
<author>
<name sortKey="Pollmann, C" uniqKey="Pollmann C">C Pollmann</name>
</author>
<author>
<name sortKey="Bebber, D" uniqKey="Bebber D">D Bebber</name>
</author>
<author>
<name sortKey="Pfenniger, A" uniqKey="Pfenniger A">A Pfenniger</name>
</author>
<author>
<name sortKey="Miura, N" uniqKey="Miura N">N Miura</name>
</author>
<author>
<name sortKey="Dormond, O" uniqKey="Dormond O">O Dormond</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bazigou, E" uniqKey="Bazigou E">E Bazigou</name>
</author>
<author>
<name sortKey="Makinen, T" uniqKey="Makinen T">T Makinen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bazigou, E" uniqKey="Bazigou E">E Bazigou</name>
</author>
<author>
<name sortKey="Xie, S" uniqKey="Xie S">S Xie</name>
</author>
<author>
<name sortKey="Chen, C" uniqKey="Chen C">C Chen</name>
</author>
<author>
<name sortKey="Weston, A" uniqKey="Weston A">A Weston</name>
</author>
<author>
<name sortKey="Miura, N" uniqKey="Miura N">N Miura</name>
</author>
<author>
<name sortKey="Sorokin, L" uniqKey="Sorokin L">L Sorokin</name>
</author>
<author>
<name sortKey="Adams, R" uniqKey="Adams R">R Adams</name>
</author>
<author>
<name sortKey="Muro, Af" uniqKey="Muro A">AF Muro</name>
</author>
<author>
<name sortKey="Sheppard, D" uniqKey="Sheppard D">D Sheppard</name>
</author>
<author>
<name sortKey="Makinen, T" uniqKey="Makinen T">T Makinen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bouvree, K" uniqKey="Bouvree K">K Bouvrée</name>
</author>
<author>
<name sortKey="Brunet, I" uniqKey="Brunet I">I Brunet</name>
</author>
<author>
<name sortKey="Del Toro, R" uniqKey="Del Toro R">R del Toro</name>
</author>
<author>
<name sortKey="Gordon, E" uniqKey="Gordon E">E Gordon</name>
</author>
<author>
<name sortKey="Prahst, C" uniqKey="Prahst C">C Prahst</name>
</author>
<author>
<name sortKey="Cristofaro, B" uniqKey="Cristofaro B">B Cristofaro</name>
</author>
<author>
<name sortKey="Mathivet, T" uniqKey="Mathivet T">T Mathivet</name>
</author>
<author>
<name sortKey="Xu, Y" uniqKey="Xu Y">Y Xu</name>
</author>
<author>
<name sortKey="Soueid, J" uniqKey="Soueid J">J Soueid</name>
</author>
<author>
<name sortKey="Fortuna, V" uniqKey="Fortuna V">V Fortuna</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dellinger, M" uniqKey="Dellinger M">M Dellinger</name>
</author>
<author>
<name sortKey="Hunter, R" uniqKey="Hunter R">R Hunter</name>
</author>
<author>
<name sortKey="Bernas, M" uniqKey="Bernas M">M Bernas</name>
</author>
<author>
<name sortKey="Gale, N" uniqKey="Gale N">N Gale</name>
</author>
<author>
<name sortKey="Yancopoulos, G" uniqKey="Yancopoulos G">G Yancopoulos</name>
</author>
<author>
<name sortKey="Erickson, R" uniqKey="Erickson R">R Erickson</name>
</author>
<author>
<name sortKey="Witte, M" uniqKey="Witte M">M Witte</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jurisic, G" uniqKey="Jurisic G">G Jurisic</name>
</author>
<author>
<name sortKey="Maby El Hajjami, H" uniqKey="Maby El Hajjami H">H Maby-El Hajjami</name>
</author>
<author>
<name sortKey="Karaman, S" uniqKey="Karaman S">S Karaman</name>
</author>
<author>
<name sortKey="Ochsenbein, Am" uniqKey="Ochsenbein A">AM Ochsenbein</name>
</author>
<author>
<name sortKey="Alitalo, A" uniqKey="Alitalo A">A Alitalo</name>
</author>
<author>
<name sortKey="Siddiqui, Ss" uniqKey="Siddiqui S">SS Siddiqui</name>
</author>
<author>
<name sortKey="Pereira, Co" uniqKey="Pereira C">CO Pereira</name>
</author>
<author>
<name sortKey="Petrova, Tv" uniqKey="Petrova T">TV Petrova</name>
</author>
<author>
<name sortKey="Detmar, M" uniqKey="Detmar M">M Detmar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kanady, Jd" uniqKey="Kanady J">JD Kanady</name>
</author>
<author>
<name sortKey="Dellinger, Mt" uniqKey="Dellinger M">MT Dellinger</name>
</author>
<author>
<name sortKey="Munger, Sj" uniqKey="Munger S">SJ Munger</name>
</author>
<author>
<name sortKey="Witte, Mh" uniqKey="Witte M">MH Witte</name>
</author>
<author>
<name sortKey="Simon, Am" uniqKey="Simon A">AM Simon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kulkarni, Rm" uniqKey="Kulkarni R">RM Kulkarni</name>
</author>
<author>
<name sortKey="Greenberg, Jm" uniqKey="Greenberg J">JM Greenberg</name>
</author>
<author>
<name sortKey="Akeson, Al" uniqKey="Akeson A">AL Akeson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="M Kinen, T" uniqKey="M Kinen T">T Mäkinen</name>
</author>
<author>
<name sortKey="Adams, Rh" uniqKey="Adams R">RH Adams</name>
</author>
<author>
<name sortKey="Bailey, J" uniqKey="Bailey J">J Bailey</name>
</author>
<author>
<name sortKey="Lu, Q" uniqKey="Lu Q">Q Lu</name>
</author>
<author>
<name sortKey="Ziemiecki, A" uniqKey="Ziemiecki A">A Ziemiecki</name>
</author>
<author>
<name sortKey="Alitalo, K" uniqKey="Alitalo K">K Alitalo</name>
</author>
<author>
<name sortKey="Klein, R" uniqKey="Klein R">R Klein</name>
</author>
<author>
<name sortKey="Wilkinson, Ga" uniqKey="Wilkinson G">GA Wilkinson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Norrmen, C" uniqKey="Norrmen C">C Norrmén</name>
</author>
<author>
<name sortKey="Ivanov, Ki" uniqKey="Ivanov K">KI Ivanov</name>
</author>
<author>
<name sortKey="Cheng, J" uniqKey="Cheng J">J Cheng</name>
</author>
<author>
<name sortKey="Zangger, N" uniqKey="Zangger N">N Zangger</name>
</author>
<author>
<name sortKey="Delorenzi, M" uniqKey="Delorenzi M">M Delorenzi</name>
</author>
<author>
<name sortKey="Jaquet, M" uniqKey="Jaquet M">M Jaquet</name>
</author>
<author>
<name sortKey="Miura, N" uniqKey="Miura N">N Miura</name>
</author>
<author>
<name sortKey="Puolakkainen, P" uniqKey="Puolakkainen P">P Puolakkainen</name>
</author>
<author>
<name sortKey="Horsley, V" uniqKey="Horsley V">V Horsley</name>
</author>
<author>
<name sortKey="Hu, J" uniqKey="Hu J">J Hu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Petrova, Tv" uniqKey="Petrova T">TV Petrova</name>
</author>
<author>
<name sortKey="Karpanen, T" uniqKey="Karpanen T">T Karpanen</name>
</author>
<author>
<name sortKey="Norrmen, C" uniqKey="Norrmen C">C Norrmén</name>
</author>
<author>
<name sortKey="Mellor, R" uniqKey="Mellor R">R Mellor</name>
</author>
<author>
<name sortKey="Tamakoshi, T" uniqKey="Tamakoshi T">T Tamakoshi</name>
</author>
<author>
<name sortKey="Finegold, D" uniqKey="Finegold D">D Finegold</name>
</author>
<author>
<name sortKey="Ferrell, R" uniqKey="Ferrell R">R Ferrell</name>
</author>
<author>
<name sortKey="Kerjaschki, D" uniqKey="Kerjaschki D">D Kerjaschki</name>
</author>
<author>
<name sortKey="Mortimer, P" uniqKey="Mortimer P">P Mortimer</name>
</author>
<author>
<name sortKey="Yl Herttuala, S" uniqKey="Yl Herttuala S">S Ylä-Herttuala</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bazigou, E" uniqKey="Bazigou E">E Bazigou</name>
</author>
<author>
<name sortKey="Lyons, Ot" uniqKey="Lyons O">OT Lyons</name>
</author>
<author>
<name sortKey="Smith, A" uniqKey="Smith A">A Smith</name>
</author>
<author>
<name sortKey="Venn, Ge" uniqKey="Venn G">GE Venn</name>
</author>
<author>
<name sortKey="Cope, C" uniqKey="Cope C">C Cope</name>
</author>
<author>
<name sortKey="Brown, Na" uniqKey="Brown N">NA Brown</name>
</author>
<author>
<name sortKey="Makinen, T" uniqKey="Makinen T">T Makinen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abtahian, F" uniqKey="Abtahian F">F Abtahian</name>
</author>
<author>
<name sortKey="Guerriero, A" uniqKey="Guerriero A">A Guerriero</name>
</author>
<author>
<name sortKey="Sebzda, E" uniqKey="Sebzda E">E Sebzda</name>
</author>
<author>
<name sortKey="Lu, M M" uniqKey="Lu M">M-M Lu</name>
</author>
<author>
<name sortKey="Zhou, R" uniqKey="Zhou R">R Zhou</name>
</author>
<author>
<name sortKey="Mocsai, A" uniqKey="Mocsai A">A Mocsai</name>
</author>
<author>
<name sortKey="Myers, Ee" uniqKey="Myers E">EE Myers</name>
</author>
<author>
<name sortKey="Huang, B" uniqKey="Huang B">B Huang</name>
</author>
<author>
<name sortKey="Jackson, Dg" uniqKey="Jackson D">DG Jackson</name>
</author>
<author>
<name sortKey="Ferrari, Va" uniqKey="Ferrari V">VA Ferrari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bertozzi, Cc" uniqKey="Bertozzi C">CC Bertozzi</name>
</author>
<author>
<name sortKey="Schmaier, Aa" uniqKey="Schmaier A">AA Schmaier</name>
</author>
<author>
<name sortKey="Mericko, P" uniqKey="Mericko P">P Mericko</name>
</author>
<author>
<name sortKey="Hess, Pr" uniqKey="Hess P">PR Hess</name>
</author>
<author>
<name sortKey="Zou, Z" uniqKey="Zou Z">Z Zou</name>
</author>
<author>
<name sortKey="Chen, M" uniqKey="Chen M">M Chen</name>
</author>
<author>
<name sortKey="Chen, C Y" uniqKey="Chen C">C-Y Chen</name>
</author>
<author>
<name sortKey="Xu, B" uniqKey="Xu B">B Xu</name>
</author>
<author>
<name sortKey="M M, L" uniqKey="M M L">L M-m</name>
</author>
<author>
<name sortKey="Zhou, D" uniqKey="Zhou D">D Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, C Y" uniqKey="Chen C">C-Y Chen</name>
</author>
<author>
<name sortKey="Bertozzi, C" uniqKey="Bertozzi C">C Bertozzi</name>
</author>
<author>
<name sortKey="Zou, Z" uniqKey="Zou Z">Z Zou</name>
</author>
<author>
<name sortKey="Yuan, L" uniqKey="Yuan L">L Yuan</name>
</author>
<author>
<name sortKey="Lee, Js" uniqKey="Lee J">JS Lee</name>
</author>
<author>
<name sortKey="Lu, M" uniqKey="Lu M">M Lu</name>
</author>
<author>
<name sortKey="Stachelek, Sj" uniqKey="Stachelek S">SJ Stachelek</name>
</author>
<author>
<name sortKey="Srinivasan, S" uniqKey="Srinivasan S">S Srinivasan</name>
</author>
<author>
<name sortKey="Guo, L" uniqKey="Guo L">L Guo</name>
</author>
<author>
<name sortKey="Vincente, A" uniqKey="Vincente A">A Vincente</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article" xml:lang="en">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Vasc Cell</journal-id>
<journal-title-group>
<journal-title>Vascular Cell</journal-title>
</journal-title-group>
<issn pub-type="epub">2045-824X</issn>
<publisher>
<publisher-name>BioMed Central</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25053993</article-id>
<article-id pub-id-type="pmc">4105398</article-id>
<article-id pub-id-type="publisher-id">2045-824X-6-14</article-id>
<article-id pub-id-type="doi">10.1186/2045-824X-6-14</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Flow-regulated lymphatic vasculature development and signaling</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" id="A1">
<name>
<surname>Wang</surname>
<given-names>Yingdi</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>yingdi.wang@yale.edu</email>
</contrib>
<contrib contrib-type="author" corresp="yes" id="A2">
<name>
<surname>Simons</surname>
<given-names>Michael</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<xref ref-type="aff" rid="I2">2</xref>
<email>michael.simons@yale.edu</email>
</contrib>
</contrib-group>
<aff id="I1">
<label>1</label>
Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, 300 George St, New Haven, CT 06520, USA</aff>
<aff id="I2">
<label>2</label>
Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA</aff>
<pub-date pub-type="collection">
<year>2014</year>
</pub-date>
<pub-date pub-type="epub">
<day>9</day>
<month>7</month>
<year>2014</year>
</pub-date>
<volume>6</volume>
<fpage>14</fpage>
<lpage>14</lpage>
<history>
<date date-type="received">
<day>6</day>
<month>5</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>29</day>
<month>6</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2014 Wang and Simons; licensee BioMed Central Ltd.</copyright-statement>
<copyright-year>2014</copyright-year>
<copyright-holder>Wang and Simons; licensee BioMed Central Ltd.</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/4.0">
<license-p>This is an Open Access article distributed under the terms of the Creative Commons Attribution License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0">http://creativecommons.org/licenses/by/4.0</ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/publicdomain/zero/1.0/">http://creativecommons.org/publicdomain/zero/1.0/</ext-link>
) applies to the data made available in this article, unless otherwise stated.</license-p>
</license>
</permissions>
<self-uri xlink:href="http://www.vascularcell.com/content/6/1/14"></self-uri>
<abstract>
<p>The role of blood flow in regulating signaling pathways and gene expression in the blood vasculature is well known. Recent studies have identified equally important roles of flow-mediated signaling in the lymphatic circulation including control of lymphatic vascular growth, remodeling, regeneration and maintenance of the lymphatic fate. In this review, we summarize these advances focusing on the role of fluid dynamics in control of lymphatic vasculature formation.</p>
</abstract>
<kwd-group>
<kwd>Flow</kwd>
<kwd>Shear stress</kwd>
<kwd>Signaling</kwd>
<kwd>Lymphatic endothelial cells</kwd>
<kwd>Lymphatic vascular development</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec sec-type="intro">
<title>Introduction</title>
<p>Blood flow generates shear stress that plays critical role in regulation of vascular growth and remodeling while disturbed shear is central to a number of important vascular disease processes. Thus, physiological shear forces regulate expression of transcription factors such as c-Fos and Egr-1, growth factors (PDGF-A, PDGF-B, TGF-β) and integrins among other molecules [
<xref ref-type="bibr" rid="B1">1</xref>
-
<xref ref-type="bibr" rid="B4">4</xref>
]. On the other hand, disrupted blood flow dynamics play a key role in initiation and propagation of atherosclerosis and neointima growth [
<xref ref-type="bibr" rid="B5">5</xref>
-
<xref ref-type="bibr" rid="B8">8</xref>
]. While flow-mediated effects on vascular biology are well described little attention, until recently, has been paid to the effects of fluid flow and shear stress in the lymphatic vasculature.</p>
<p>Lymphatic and blood vasculatures are closely related but yet distinctly different vascular systems. The lymphatic vasculature develops from embryonic venous circulation in a series of well-defined steps that are initiated by a fate change in a subset of endothelial cells (ECs) in the cardinal vein that begin expressing lymphatic markers. These newly defined lymphatic endothelial cells (LECs) then migrate out of the cardinal vein forming jugular lymph sacs that then sprout, giving rise to the entire lymphatic vascular network [
<xref ref-type="bibr" rid="B9">9</xref>
].</p>
<p>Unlike the blood vasculature which is a closed system, lymphatic circulation is open with blind-ended lymphatic capillaries serving as an entry point for the interstitial fluid and immune cells that are then transported via progressively enlarging collecting vessels to the thoracic duct that then empties into subclavian vein. Furthermore, while blood flow is propelled by rhythmic contractions of the heart, mammalian lymphatic circulation is driven by a combination of hydrostatic forces and skeletal muscle contraction in the limbs augmented by opening and closing of lymphatic valves. As a result, the lymphatic flow is slower and more irregular than blood flow.</p>
<p>Lymphatic vessels serve a variety of roles including draining interstitial fluid and macromolecules extravasated from blood vessels and returning them to blood circulation as well as facilitating immune cell trafficking and absorption of lipids. Therefore, lymphatic circulation is important for the regulation of interstitial fluid balance, tissue homeostasis and immune surveillance. Abnormal development or malfunction of lymphatic vessels is associated with pathological conditions such as lymphedema, late-onset obesity, hypertension and cardiovascular diseases including atherosclerosis [
<xref ref-type="bibr" rid="B10">10</xref>
-
<xref ref-type="bibr" rid="B15">15</xref>
].</p>
<p>Although LECs, similarly to blood endothelial cells (BECs), have the ability to sense flow-mediated signaling, the role played by this signaling in lymphatic vasculature development and function is still poorly understood. Recent studies have identified contributions of lymphatic shear stress signaling to the regulation of lymphatic vascular growth, remodeling and lymphatic fate maintenance that will be the subject of this review.</p>
<sec>
<title>Flow-mediated signaling in lymphatic endothelial cells</title>
<p>In mammals, the lymphatic vasculature is composed of lymphatic capillaries (also known as initial lymphatics), pre-collectors and larger collecting lymphatic vessels. Lymphatic capillaries are blind-ended structures consisting of a single layer of overlapping ECs that lack pericyte coverage and have little or no basement membrane [
<xref ref-type="bibr" rid="B9">9</xref>
]. Similar to BECs, LECs can sense flow. When cultured in 3D collagen gels and subjected to interstitial fluid flow (flow through the junctions into the lumen), LECs show distinct morphological changes including formation of long extensions and large vacuoles. In contrast, in BECs, interstitial fluid flow causes increased networking and multicellular tubulogenesis [
<xref ref-type="bibr" rid="B16">16</xref>
]. Although LECs and BECs express some common markers, they possess distinct gene expression profiles. Interstitial flow mediated different cellular responses in BECs and LECs may attribute to different signaling pathways activated by flow in these two cell types. Interestingly, in response to shear flow (flow down the lumen of the vessels), LECs do not display changes in morphology. Instead, they align along the axis of the flow and down-regulate expression levels of pan-cadherins leading to reduced LEC barrier function [
<xref ref-type="bibr" rid="B16">16</xref>
]. Taken together, these data indicate that LECs have the ability to sense distinct signals mediated by different types of flow and to respond differentially.</p>
<p>LECs can also detect changes of shear stress magnitude and adjust their barrier function accordingly [
<xref ref-type="bibr" rid="B17">17</xref>
]. Increasing shear stress magnitude enhances lymphatic endothelial barrier function indicated by increased transendothelial electrical resistance (TER) [
<xref ref-type="bibr" rid="B17">17</xref>
]. Mechanistically, Rac1, a small Rho family GTPase, is involved in the signaling responsible for this process as blockade of Rac1 activity significantly reduces the enhancement of lymphatic endothelial barrier function in response to increased shear stress [
<xref ref-type="bibr" rid="B17">17</xref>
]. It is known that cAMP/PKA signaling pathway can promote enhanced endothelial barrier function, which can also activate Rac1 [
<xref ref-type="bibr" rid="B18">18</xref>
-
<xref ref-type="bibr" rid="B24">24</xref>
]. Of note, inhibition of PKA activity did not affect shear stress-mediated enhancement of lymphatic endothelial barrier function [
<xref ref-type="bibr" rid="B17">17</xref>
] suggesting that shear-induced activation of Rac1 is not PKA-dependent.</p>
</sec>
<sec>
<title>Flow-regulated lymphatic vasculature growth</title>
<p>Recently, an increasing body of evidence has pointed to an important role of fluid flow in lymphatic vasculature formation. For example, it has been shown that fluid flow can work synergistically with growth factors such as VEGF to promote lymphangiogenesis [
<xref ref-type="bibr" rid="B25">25</xref>
]. In a 3D fibrin gel system, in which fibrin gel is mixed with a fibrin-bound form of VEGF (α2-PI
<sub>1–8</sub>
-VEGF
<sub>121</sub>
) and LECs which then are pipetted into an interstitial flow culture chamber; interstitial flow enhances the effects of the fibrin-bound VEGF (α2-PI
<sub>1–8</sub>
-VEGF
<sub>121</sub>
) in promoting lymphatic network formation [
<xref ref-type="bibr" rid="B25">25</xref>
]. Notably, in this system, lymphatic structures are formed in parallel to flow only under the condition of the combined fibrin-bound VEGF (α2-PI
<sub>1–8</sub>
-VEGF
<sub>121</sub>
) and interstitial flow [
<xref ref-type="bibr" rid="B25">25</xref>
]. This result is correlated with interstitial flow induced changes of the extracellular distribution of soluble matrix metalloproteinases (MMPs) that release fibrin-bound VEGF (α2-PI
<sub>1–8</sub>
-VEGF
<sub>121</sub>
) to form a VEGF gradient [
<xref ref-type="bibr" rid="B25">25</xref>
].</p>
<p>The role of interstitial fluid flow in lymphangiogenesis has been investigated in vivo using a mouse skin regeneration model [
<xref ref-type="bibr" rid="B26">26</xref>
,
<xref ref-type="bibr" rid="B27">27</xref>
]. In this model, a circumferential section of tail skin is removed midway up the tail resulting in completely interrupted lymphatic vascular network whereas big blood vessels remain intact. A diameter-matched silicone sleeve was placed over the wound and fixed in place to the intact skin on the proximal and distal edges. 0.3% type I rat tail collagen solution was injected into the wound under the sleeve and allowed to gel; this formed a collagen dermal equivalent (CDE) [
<xref ref-type="bibr" rid="B26">26</xref>
]. During tissue regeneration, interstitial fluid channels are formed in CDE prior to the formation of lymphatic vessels, which bridge the distal and proximal portions of the lymphatic vessels in intact tail skin. Once formed, the channels guide LEC migration and formation of a functional lymphatic capillary network. Importantly, these processes take place only in the direction of interstitial flow [
<xref ref-type="bibr" rid="B26">26</xref>
].</p>
<p>In line with these results, reduced interstitial flow during tissue regeneration results in decreased LEC migration and lymphatic vasculature formation. VEGF-C administration fails to induce lymphangiogenesis in this setting [
<xref ref-type="bibr" rid="B27">27</xref>
]. During skin regeneration, MMPs activity and VEGF-C expression are more pronounced at the upstream than the downstream of interstitial flow [
<xref ref-type="bibr" rid="B26">26</xref>
]. These data suggest that MMPs and VEGF-C transport are likely directed by interstitial fluid flow [
<xref ref-type="bibr" rid="B26">26</xref>
]. Consistent with this hypothesis, reduced interstitial flow results in significantly increased sub-dermal MMPs and VEGF-C accumulation [
<xref ref-type="bibr" rid="B27">27</xref>
]. Together, these data suggest that growth factors and proteases transported by interstitial flow may be important for lymphatic vasculature formation [
<xref ref-type="bibr" rid="B27">27</xref>
].</p>
<p>Interestingly, in the tail skin regeneration model, BEC migration and vascular network organization in CDE are not directional [
<xref ref-type="bibr" rid="B26">26</xref>
] indicating that LECs and BECs have different genetic programs in response to interstitial fluid flow.</p>
<p>Interstitial fluid also generates pressure, which has recently been shown to be involved in lymphangiogenesis in mice. In developing mouse embryos, the volume of fluid in the interstitium is correlated with LEC morphologic changes, proliferation and lymphatic vessel expansion [
<xref ref-type="bibr" rid="B28">28</xref>
]. In response to increased interstitial fluid, LECs become elongated, show increased proliferation and enhanced VEGFR3 tyrosine phosphorylation. In contrast, a reduction in the amount of interstitial fluid causes the opposite effect – reduced LEC proliferation and decreased VEGFR3 phosphorylation [
<xref ref-type="bibr" rid="B28">28</xref>
]. Although LECs become elongated in response to changes in the volume of interstitial fluid, this elongation requires a molecular mediator that converts the fluid-induced mechanical forces to the observed cellular responses. It appears that β1 integrins play the role of “mediator” in this process [
<xref ref-type="bibr" rid="B28">28</xref>
]. When the amount of interstitial fluid is increased, β1 integrins are activated, which subsequently activates Src Family Kinases (SFKs) and the activation of SFKs results in tyrosine phosphorylation of VEGFR3 [
<xref ref-type="bibr" rid="B28">28</xref>
].</p>
</sec>
<sec>
<title>Flow in lymphatic valve development</title>
<p>A recent study has identified lymph flow as a factor that regulates lymphatic valve development during lymphatic remodeling [
<xref ref-type="bibr" rid="B29">29</xref>
]. Lymphatic valves form in collecting lymphatic vessels, thereby preventing back flow of lymph. This is a complex process that involves a large number of genes and a variety of intracellular signaling pathways (reviewed by [
<xref ref-type="bibr" rid="B30">30</xref>
] which include ephrin-B2, Foxc2, Prox1, connexins, Ang2, and integrin-α9/FN-EIIIA, Sema3A/NRP1 and calcineurin/NFATc1 signaling [
<xref ref-type="bibr" rid="B29">29</xref>
,
<xref ref-type="bibr" rid="B31">31</xref>
-
<xref ref-type="bibr" rid="B39">39</xref>
].</p>
<p>In mice, lymph flow in mesenteric lymphatic vessels commences on embryonic day (E) 15.5 and at this time lymphatic valves have not yet formed [
<xref ref-type="bibr" rid="B29">29</xref>
]. As a result, reverse lymph flow does occur in many places, especially at vessel bifurcations. This flow dynamics induce lymphatic valve development at ~ E16.0. At that time, lymphatic-valve-forming cells (LVCs) begin to express high levels of Prox1 and Foxc2, followed by the induction of Cx37 and activation of calcineurin/NFATc1 signaling [
<xref ref-type="bibr" rid="B29">29</xref>
] (Figure 
<xref ref-type="fig" rid="F1">1</xref>
A). In cultured LECs, oscillatory fluid shear stress (OSS) that mimics lymph flow reversal occurring prior to lymphatic valve development, is able to trigger Cx37 expression and activate calcineurin/NFATc1 signaling as indicated by the nuclear accumulation of the transcription factor NFATc1 [
<xref ref-type="bibr" rid="B29">29</xref>
]. This process is also dependent upon the expression levels of PROX1 and FOXC2.</p>
<fig id="F1" position="float">
<label>Figure 1</label>
<caption>
<p>
<bold>Fluid flow in lymphatic vasculature development in mice. (A)</bold>
Flow triggers lymphatic valve development. At approximately embryonic day (E)16.0, lymph flow induces Cx37 expression and activates calcineurin/NFATc1 signaling in lymphatic-valve-forming cells initiating luminal valve development.
<bold>(B)</bold>
Fluid flow plays a role in lymphatic fate maintenance. In mice, loss of
<italic>Slp-76</italic>
results in shunt formation between blood and lymphatic vessels in mesentery and, therefore mixing of blood and lymphatic circulation. The presence of blood flow in lymphatic vessels in
<italic>Slp-76</italic>
null mice causes the change of lymphatic fate to a venous identity.</p>
</caption>
<graphic xlink:href="2045-824X-6-14-1"></graphic>
</fig>
<p>Upon exposure to OSS, LECs with high levels of PROX1 and FOXC2 accumulate NFATc1 in the nucleus, which does not occur in LECs expressing low levels of PROX1 and FOXC2. These data suggest that flow-induced shear stress activates distinct signaling pathways in different LEC populations [
<xref ref-type="bibr" rid="B29">29</xref>
]. Together, both the in vivo and in vitro data support the notion that lymph flow is involved in triggering lymphatic valve formation.</p>
<p>Furthermore, it now appears that different types of flow shear stress result in distinct cell morphology and actin cytoskeleton organization changes in LECs [
<xref ref-type="bibr" rid="B29">29</xref>
]. When subjected to OSS, LECs adapt a more cuboidal shape and have increased amounts of short perinuclear F-actin stress fibers, which are hallmarks of LVCs in vivo. Upon laminar shear stress (LSS), LECs become elongated, align in the direction of flow and form stress fibers, reminiscent of LECs (lymphangion cells) that express low levels of Prox1 and Foxc2 and are located adjacent to LVCs [
<xref ref-type="bibr" rid="B29">29</xref>
].</p>
<p>Similar to lymphatic vessels, veins also have luminal valves. Interestingly, both venous and lymphatic valve ECs share common molecular regulators [
<xref ref-type="bibr" rid="B40">40</xref>
]. For instance, molecules such as Prox1, ephrin-B2, Vegfr3 and integrin-α9 that are important for lymphatic valve development are also expressed in venous valve ECs [
<xref ref-type="bibr" rid="B40">40</xref>
]. These data suggest common signaling pathways are involved in venous and lymphatic valve formation. Fluid flow mediates distinct shear forces in veins and in lymphatic vessels. It remains intriguing to investigate the role of flow in venous valve development and how different shear forces regulate luminal valve formation in veins and lymphatic vessels through common molecular regulators.</p>
</sec>
<sec>
<title>Fluid flow and lymphatic fate maintenance</title>
<p>Fluid flow is also important in the lymphatic fate maintenance. SLP-76 is a hematopoietic intracellular signaling protein, which has been shown to be required for blood and lymphatic vascular separation [
<xref ref-type="bibr" rid="B41">41</xref>
-
<xref ref-type="bibr" rid="B43">43</xref>
]. In mice, loss of
<italic>Slp-76</italic>
results in the formation of abnormal connections between blood and lymphatic vessels, and thus mixing of blood and lymphatic circulation [
<xref ref-type="bibr" rid="B41">41</xref>
-
<xref ref-type="bibr" rid="B43">43</xref>
]. Moreover, mesenteric lymphatic vessels in
<italic>Slp-76</italic>
null mice lose their lymphatic fate and adapt a venous identity [
<xref ref-type="bibr" rid="B43">43</xref>
] (Figure 
<xref ref-type="fig" rid="F1">1</xref>
B). This phenotype has been attributed to the presence of blood flow in mesenteric lymphatic vessels in SLP-76 deficient mice and it is not due to a response to factors in the blood that are not present in the lymph [
<xref ref-type="bibr" rid="B43">43</xref>
]. These findings highlight the importance of hemodynamic forces in the maintenance of LEC identity even though the molecular mechanisms underlying this process remain unknown.</p>
</sec>
</sec>
<sec sec-type="conclusions">
<title>Conclusions</title>
<p>Recent research advances have largely improved our knowledge on gene products and signaling pathways involved in lymphatic vascular development and have expanded the list of players that contribute to this process. An increasing amount of evidence has elevated the importance of fluid flow in the formation of lymphatic vasculature. Although our understanding of the molecular mechanism(s) underlying flow-regulated lymphatic vascular development is very limited, the importance of fluid flow in this process will draw increasing research efforts and will help to gain further insight into this fascinating research area.</p>
</sec>
<sec>
<title>Competing interests</title>
<p>The authors declare that they have no competing interests.</p>
</sec>
<sec>
<title>Authors’ contribution</title>
<p>YW and MS prepared and wrote the manuscript. All authors read and approved the final manuscript.</p>
</sec>
</body>
<back>
<sec>
<title>Acknowledgments</title>
<p>We thank A. Lanahan for editing of the manuscript. This review was supported in part by NIH grant R01 HL062289 (M.S.).</p>
</sec>
<ref-list>
<ref id="B1">
<mixed-citation publication-type="journal">
<name>
<surname>Brown</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>DiChiara</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>KR</given-names>
</name>
<name>
<surname>Gimbrone</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Topper</surname>
<given-names>JN</given-names>
</name>
<article-title>MEKK-1, a component of the stress (stress-activated protein kinase/c-Jun N-terminal kinase) pathway, can selectively activate Smad2-mediated transcriptional activation in endothelial cells</article-title>
<source>J Biol Chem</source>
<year>1999</year>
<volume>274</volume>
<fpage>8797</fpage>
<lpage>8805</lpage>
<pub-id pub-id-type="pmid">10085121</pub-id>
</mixed-citation>
</ref>
<ref id="B2">
<mixed-citation publication-type="journal">
<name>
<surname>Chien</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Shyy</surname>
<given-names>JY</given-names>
</name>
<article-title>Effects of mechanical forces on signal transduction and gene expression in endothelial cells</article-title>
<source>Hypertension</source>
<year>1998</year>
<volume>31</volume>
<fpage>162</fpage>
<lpage>169</lpage>
<pub-id pub-id-type="pmid">9453297</pub-id>
</mixed-citation>
</ref>
<ref id="B3">
<mixed-citation publication-type="journal">
<name>
<surname>Topper</surname>
<given-names>JN</given-names>
</name>
<name>
<surname>Gimbrone</surname>
<given-names>MA</given-names>
<suffix>Jr</suffix>
</name>
<article-title>Blood flow and vascular gene expression: fluid shear stress as a modulator of endothelial phenotype</article-title>
<source>Mol Med Today</source>
<year>1999</year>
<volume>5</volume>
<fpage>40</fpage>
<lpage>46</lpage>
<pub-id pub-id-type="pmid">10088131</pub-id>
</mixed-citation>
</ref>
<ref id="B4">
<mixed-citation publication-type="journal">
<name>
<surname>Wasserman</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Topper</surname>
<given-names>JN</given-names>
</name>
<article-title>Adaptation of the endothelium to fluid flow: in vitro analyses of gene expression and in vivo implications</article-title>
<source>Vasc Med</source>
<year>2004</year>
<volume>9</volume>
<fpage>35</fpage>
<lpage>45</lpage>
<pub-id pub-id-type="pmid">15230487</pub-id>
</mixed-citation>
</ref>
<ref id="B5">
<mixed-citation publication-type="journal">
<name>
<surname>Chiu</surname>
<given-names>J-J</given-names>
</name>
<name>
<surname>Usami</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Chien</surname>
<given-names>S</given-names>
</name>
<article-title>Vascular endothelial responses to altered shear stress: pathologic implications for atherosclerosis</article-title>
<source>Ann Med</source>
<year>2009</year>
<volume>41</volume>
<fpage>19</fpage>
<lpage>28</lpage>
<pub-id pub-id-type="pmid">18608132</pub-id>
</mixed-citation>
</ref>
<ref id="B6">
<mixed-citation publication-type="journal">
<name>
<surname>Gimbrone</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Topper</surname>
<given-names>JN</given-names>
</name>
<name>
<surname>Nagel</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>KR</given-names>
</name>
<name>
<surname>Garcia-Cardeña</surname>
<given-names>G</given-names>
</name>
<article-title>Endothelial dysfunction, hemodynamic forces, and atherogenesisa</article-title>
<source>Ann N Y Acad Sci</source>
<year>2000</year>
<volume>902</volume>
<fpage>230</fpage>
<lpage>240</lpage>
<pub-id pub-id-type="pmid">10865843</pub-id>
</mixed-citation>
</ref>
<ref id="B7">
<mixed-citation publication-type="journal">
<name>
<surname>Malek</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Alper</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Izumo</surname>
<given-names>S</given-names>
</name>
<article-title>Hemodynamic shear stress and its role in atherosclerosis</article-title>
<source>JAMA</source>
<year>1999</year>
<volume>282</volume>
<fpage>2035</fpage>
<lpage>2042</lpage>
<pub-id pub-id-type="pmid">10591386</pub-id>
</mixed-citation>
</ref>
<ref id="B8">
<mixed-citation publication-type="journal">
<name>
<surname>Zhou</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y-S</given-names>
</name>
<name>
<surname>Nguyen</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>K-C</given-names>
</name>
<name>
<surname>Weiss</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kuo</surname>
<given-names>Y-C</given-names>
</name>
<name>
<surname>Chiu</surname>
<given-names>J-J</given-names>
</name>
<name>
<surname>Shyy</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Chien</surname>
<given-names>S</given-names>
</name>
<article-title>Regulation of vascular smooth muscle cell turnover by endothelial cell–secreted microRNA-126 role of shear stress</article-title>
<source>Circ Res</source>
<year>2013</year>
<volume>113</volume>
<fpage>40</fpage>
<lpage>51</lpage>
<pub-id pub-id-type="pmid">23603512</pub-id>
</mixed-citation>
</ref>
<ref id="B9">
<mixed-citation publication-type="journal">
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Oliver</surname>
<given-names>G</given-names>
</name>
<article-title>Current views on the function of the lymphatic vasculature in health and disease</article-title>
<source>Genes Dev</source>
<year>2010</year>
<volume>24</volume>
<fpage>2115</fpage>
<lpage>2126</lpage>
<pub-id pub-id-type="pmid">20889712</pub-id>
</mixed-citation>
</ref>
<ref id="B10">
<mixed-citation publication-type="journal">
<name>
<surname>Harvey</surname>
<given-names>NL</given-names>
</name>
<name>
<surname>Srinivasan</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Dillard</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>NC</given-names>
</name>
<name>
<surname>Witte</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Boyd</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Sleeman</surname>
<given-names>MW</given-names>
</name>
<name>
<surname>Oliver</surname>
<given-names>G</given-names>
</name>
<article-title>Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult-onset obesity</article-title>
<source>Nat Genet</source>
<year>2005</year>
<volume>37</volume>
<fpage>1072</fpage>
<lpage>1081</lpage>
<pub-id pub-id-type="pmid">16170315</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<mixed-citation publication-type="journal">
<name>
<surname>Karkkainen</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Ferrell</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Lawrence</surname>
<given-names>EC</given-names>
</name>
<name>
<surname>Kimak</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Levinson</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>McTigue</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Alitalo</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Finegold</surname>
<given-names>DN</given-names>
</name>
<article-title>Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema</article-title>
<source>Nat Genet</source>
<year>2000</year>
<volume>25</volume>
<fpage>153</fpage>
<lpage>159</lpage>
<pub-id pub-id-type="pmid">10835628</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<mixed-citation publication-type="journal">
<name>
<surname>Karkkainen</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Haiko</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Sainio</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Partanen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Taipale</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Petrova</surname>
<given-names>TV</given-names>
</name>
<name>
<surname>Jeltsch</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Jackson</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>Talikka</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rauvala</surname>
<given-names>H</given-names>
</name>
<article-title>Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins</article-title>
<source>Nat Immunol</source>
<year>2004</year>
<volume>5</volume>
<fpage>74</fpage>
<lpage>80</lpage>
<pub-id pub-id-type="pmid">14634646</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<mixed-citation publication-type="journal">
<name>
<surname>Machnik</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Neuhofer</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Jantsch</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Dahlmann</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Tammela</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Machura</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>J-K</given-names>
</name>
<name>
<surname>Beck</surname>
<given-names>F-X</given-names>
</name>
<name>
<surname>Müller</surname>
<given-names>DN</given-names>
</name>
<name>
<surname>Derer</surname>
<given-names>W</given-names>
</name>
<article-title>Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C–dependent buffering mechanism</article-title>
<source>Nat Med</source>
<year>2009</year>
<volume>15</volume>
<fpage>545</fpage>
<lpage>552</lpage>
<pub-id pub-id-type="pmid">19412173</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<mixed-citation publication-type="journal">
<name>
<surname>Martel</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Fulp</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Platt</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Gautier</surname>
<given-names>EL</given-names>
</name>
<name>
<surname>Westerterp</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bittman</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Tall</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>S-H</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>MJ</given-names>
</name>
<article-title>Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice</article-title>
<source>J Clin Invest</source>
<year>2013</year>
<volume>123</volume>
<fpage>1571</fpage>
<pub-id pub-id-type="pmid">23524964</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<mixed-citation publication-type="journal">
<name>
<surname>Wigle</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Oliver</surname>
<given-names>G</given-names>
</name>
<article-title>Prox1 function is required for the development of the murine lymphatic system</article-title>
<source>Cell</source>
<year>1999</year>
<volume>98</volume>
<fpage>769</fpage>
<lpage>778</lpage>
<pub-id pub-id-type="pmid">10499794</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<mixed-citation publication-type="journal">
<name>
<surname>Ng</surname>
<given-names>CP</given-names>
</name>
<name>
<surname>Helm</surname>
<given-names>C-LE</given-names>
</name>
<name>
<surname>Swartz</surname>
<given-names>MA</given-names>
</name>
<article-title>Interstitial flow differentially stimulates blood and lymphatic endothelial cell morphogenesis in vitro</article-title>
<source>Microvasc Res</source>
<year>2004</year>
<volume>68</volume>
<fpage>258</fpage>
<lpage>264</lpage>
<pub-id pub-id-type="pmid">15501245</pub-id>
</mixed-citation>
</ref>
<ref id="B17">
<mixed-citation publication-type="journal">
<name>
<surname>Breslin</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Kurtz</surname>
<given-names>KM</given-names>
</name>
<article-title>Lymphatic endothelial cells adapt their barrier function in response to changes in shear stress</article-title>
<source>Lymphat Res Biol</source>
<year>2009</year>
<volume>7</volume>
<fpage>229</fpage>
<lpage>237</lpage>
<pub-id pub-id-type="pmid">20143922</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<mixed-citation publication-type="journal">
<name>
<surname>Baumer</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Spindler</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Werthmann</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Bünemann</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Waschke</surname>
<given-names>J</given-names>
</name>
<article-title>Role of Rac 1 and cAMP in endothelial barrier stabilization and thrombin‒induced barrier breakdown</article-title>
<source>J Cell Physiol</source>
<year>2009</year>
<volume>220</volume>
<fpage>716</fpage>
<lpage>726</lpage>
<pub-id pub-id-type="pmid">19472214</pub-id>
</mixed-citation>
</ref>
<ref id="B19">
<mixed-citation publication-type="journal">
<name>
<surname>Birukova</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Garcia</surname>
<given-names>JG</given-names>
</name>
<name>
<surname>Verin</surname>
<given-names>AD</given-names>
</name>
<article-title>Protein kinase A attenuates endothelial cell barrier dysfunction induced by microtubule disassembly</article-title>
<source>Am J Physiol Lung Cell Mol Physiol</source>
<year>2004</year>
<volume>287</volume>
<fpage>L86</fpage>
<lpage>L93</lpage>
<pub-id pub-id-type="pmid">15003930</pub-id>
</mixed-citation>
</ref>
<ref id="B20">
<mixed-citation publication-type="book">
<name>
<surname>Durán</surname>
<given-names>WN</given-names>
</name>
<name>
<surname>Sánchez</surname>
<given-names>FA</given-names>
</name>
<name>
<surname>Breslin</surname>
<given-names>JW</given-names>
</name>
<person-group person-group-type="editor">Tuma RF, Dura’n WN, Ley K</person-group>
<article-title>Microcirculatory exchange function</article-title>
<source>Handbook of Physiology: Microcirculation</source>
<year>2008</year>
<edition>2</edition>
<publisher-name>San Diego, CA: Academic Press–Elsevier</publisher-name>
<fpage>81</fpage>
<lpage>124</lpage>
</mixed-citation>
</ref>
<ref id="B21">
<mixed-citation publication-type="journal">
<name>
<surname>He</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Curry</surname>
<given-names>F</given-names>
</name>
<article-title>Dominant role of cAMP in regulation of microvessel permeability</article-title>
<source>Am J Physiol Heart Circ Physiol</source>
<year>2000</year>
<volume>278</volume>
<fpage>H1124</fpage>
<lpage>H1133</lpage>
<pub-id pub-id-type="pmid">10749706</pub-id>
</mixed-citation>
</ref>
<ref id="B22">
<mixed-citation publication-type="journal">
<name>
<surname>Qiao</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Lum</surname>
<given-names>H</given-names>
</name>
<article-title>PKA inhibits RhoA activation: a protection mechanism against endothelial barrier dysfunction</article-title>
<source>Am J Physiol Lung Cell Mol Physiol</source>
<year>2003</year>
<volume>284</volume>
<fpage>L972</fpage>
<lpage>L980</lpage>
<pub-id pub-id-type="pmid">12588708</pub-id>
</mixed-citation>
</ref>
<ref id="B23">
<mixed-citation publication-type="journal">
<name>
<surname>Shikata</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Rios</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kawkitinarong</surname>
<given-names>K</given-names>
</name>
<name>
<surname>DePaola</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Garcia</surname>
<given-names>JG</given-names>
</name>
<name>
<surname>Birukov</surname>
<given-names>KG</given-names>
</name>
<article-title>Differential effects of shear stress and cyclic stretch on focal adhesion remodeling, site-specific FAK phosphorylation, and small GTPases in human lung endothelial cells</article-title>
<source>Exp Cell Res</source>
<year>2005</year>
<volume>304</volume>
<fpage>40</fpage>
<lpage>49</lpage>
<pub-id pub-id-type="pmid">15707572</pub-id>
</mixed-citation>
</ref>
<ref id="B24">
<mixed-citation publication-type="journal">
<name>
<surname>Waschke</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Drenckhahn</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Adamson</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Barth</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Curry</surname>
<given-names>F</given-names>
</name>
<article-title>cAMP protects endothelial barrier functions by preventing Rac-1 inhibition</article-title>
<source>Am J Physiol Heart Circ Physiol</source>
<year>2004</year>
<volume>287</volume>
<fpage>H2427</fpage>
<lpage>H2433</lpage>
<pub-id pub-id-type="pmid">15271660</pub-id>
</mixed-citation>
</ref>
<ref id="B25">
<mixed-citation publication-type="journal">
<name>
<surname>Helm</surname>
<given-names>C-LE</given-names>
</name>
<name>
<surname>Fleury</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Zisch</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Boschetti</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Swartz</surname>
<given-names>MA</given-names>
</name>
<article-title>Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2005</year>
<volume>102</volume>
<fpage>15779</fpage>
<lpage>15784</lpage>
<pub-id pub-id-type="pmid">16249343</pub-id>
</mixed-citation>
</ref>
<ref id="B26">
<mixed-citation publication-type="journal">
<name>
<surname>Boardman</surname>
<given-names>KC</given-names>
</name>
<name>
<surname>Swartz</surname>
<given-names>MA</given-names>
</name>
<article-title>Interstitial flow as a guide for lymphangiogenesis</article-title>
<source>Circ Res</source>
<year>2003</year>
<volume>92</volume>
<fpage>801</fpage>
<lpage>808</lpage>
<pub-id pub-id-type="pmid">12623882</pub-id>
</mixed-citation>
</ref>
<ref id="B27">
<mixed-citation publication-type="journal">
<name>
<surname>Goldman</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Conley</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Raehl</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bondy</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Pytowski</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Swartz</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Rutkowski</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Jaroch</surname>
<given-names>DB</given-names>
</name>
<name>
<surname>Ongstad</surname>
<given-names>EL</given-names>
</name>
<article-title>Regulation of lymphatic capillary regeneration by interstitial flow in skin</article-title>
<source>Am J Physiol Cell Physiol</source>
<year>2007</year>
<volume>61</volume>
<fpage>H2176</fpage>
</mixed-citation>
</ref>
<ref id="B28">
<mixed-citation publication-type="journal">
<name>
<surname>Planas-Paz</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Strilić</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Goedecke</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Breier</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Fässler</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Lammert</surname>
<given-names>E</given-names>
</name>
<article-title>Mechanoinduction of lymph vessel expansion</article-title>
<source>EMBO J</source>
<year>2012</year>
<volume>31</volume>
<fpage>788</fpage>
<lpage>804</lpage>
<pub-id pub-id-type="pmid">22157817</pub-id>
</mixed-citation>
</ref>
<ref id="B29">
<mixed-citation publication-type="journal">
<name>
<surname>Sabine</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Agalarov</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Maby-El Hajjami</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Jaquet</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hägerling</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Pollmann</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Bebber</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Pfenniger</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Miura</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Dormond</surname>
<given-names>O</given-names>
</name>
<article-title>Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation</article-title>
<source>Dev Cell</source>
<year>2012</year>
<volume>22</volume>
<fpage>430</fpage>
<lpage>445</lpage>
<pub-id pub-id-type="pmid">22306086</pub-id>
</mixed-citation>
</ref>
<ref id="B30">
<mixed-citation publication-type="journal">
<name>
<surname>Bazigou</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Makinen</surname>
<given-names>T</given-names>
</name>
<article-title>Flow control in our vessels: vascular valves make sure there is no way back</article-title>
<source>Cell Mol Life Sci</source>
<year>2013</year>
<volume>70</volume>
<fpage>1055</fpage>
<lpage>1066</lpage>
<pub-id pub-id-type="pmid">22922986</pub-id>
</mixed-citation>
</ref>
<ref id="B31">
<mixed-citation publication-type="journal">
<name>
<surname>Bazigou</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Weston</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Miura</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Sorokin</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Adams</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Muro</surname>
<given-names>AF</given-names>
</name>
<name>
<surname>Sheppard</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Makinen</surname>
<given-names>T</given-names>
</name>
<article-title>Integrin-α9 is required for fibronectin matrix assembly during lymphatic valve morphogenesis</article-title>
<source>Dev Cell</source>
<year>2009</year>
<volume>17</volume>
<fpage>175</fpage>
<lpage>186</lpage>
<pub-id pub-id-type="pmid">19686679</pub-id>
</mixed-citation>
</ref>
<ref id="B32">
<mixed-citation publication-type="journal">
<name>
<surname>Bouvrée</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Brunet</surname>
<given-names>I</given-names>
</name>
<name>
<surname>del Toro</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Gordon</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Prahst</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Cristofaro</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Mathivet</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Soueid</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Fortuna</surname>
<given-names>V</given-names>
</name>
<article-title>Semaphorin3A, Neuropilin-1, and PlexinA1 are required for lymphatic valve formation</article-title>
<source>Circ Res</source>
<year>2012</year>
<volume>111</volume>
<fpage>437</fpage>
<lpage>445</lpage>
<pub-id pub-id-type="pmid">22723296</pub-id>
</mixed-citation>
</ref>
<ref id="B33">
<mixed-citation publication-type="journal">
<name>
<surname>Dellinger</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hunter</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Bernas</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gale</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Yancopoulos</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Erickson</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Witte</surname>
<given-names>M</given-names>
</name>
<article-title>Defective remodeling and maturation of the lymphatic vasculature in Angiopoietin-2 deficient mice</article-title>
<source>Dev Biol</source>
<year>2008</year>
<volume>319</volume>
<fpage>309</fpage>
<lpage>320</lpage>
<pub-id pub-id-type="pmid">18514180</pub-id>
</mixed-citation>
</ref>
<ref id="B34">
<mixed-citation publication-type="journal">
<name>
<surname>Jurisic</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Maby-El Hajjami</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Karaman</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ochsenbein</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Alitalo</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Siddiqui</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Pereira</surname>
<given-names>CO</given-names>
</name>
<name>
<surname>Petrova</surname>
<given-names>TV</given-names>
</name>
<name>
<surname>Detmar</surname>
<given-names>M</given-names>
</name>
<article-title>An Unexpected Role of Semaphorin3A–Neuropilin-1 Signaling in Lymphatic Vessel Maturation and Valve Formation</article-title>
<source>Circ Res</source>
<year>2012</year>
<volume>111</volume>
<fpage>426</fpage>
<lpage>436</lpage>
<pub-id pub-id-type="pmid">22723300</pub-id>
</mixed-citation>
</ref>
<ref id="B35">
<mixed-citation publication-type="journal">
<name>
<surname>Kanady</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Dellinger</surname>
<given-names>MT</given-names>
</name>
<name>
<surname>Munger</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Witte</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Simon</surname>
<given-names>AM</given-names>
</name>
<article-title>Connexin37 and Connexin43 deficiencies in mice disrupt lymphatic valve development and result in lymphatic disorders including lymphedema and chylothorax</article-title>
<source>Dev Biol</source>
<year>2011</year>
<volume>354</volume>
<fpage>253</fpage>
<lpage>266</lpage>
<pub-id pub-id-type="pmid">21515254</pub-id>
</mixed-citation>
</ref>
<ref id="B36">
<mixed-citation publication-type="journal">
<name>
<surname>Kulkarni</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Greenberg</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Akeson</surname>
<given-names>AL</given-names>
</name>
<article-title>NFATc1 regulates lymphatic endothelial development</article-title>
<source>Mech Dev</source>
<year>2009</year>
<volume>126</volume>
<fpage>350</fpage>
<lpage>365</lpage>
<pub-id pub-id-type="pmid">19233265</pub-id>
</mixed-citation>
</ref>
<ref id="B37">
<mixed-citation publication-type="journal">
<name>
<surname>Mäkinen</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Adams</surname>
<given-names>RH</given-names>
</name>
<name>
<surname>Bailey</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Ziemiecki</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Alitalo</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Klein</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Wilkinson</surname>
<given-names>GA</given-names>
</name>
<article-title>PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature</article-title>
<source>Genes Dev</source>
<year>2005</year>
<volume>19</volume>
<fpage>397</fpage>
<lpage>410</lpage>
<pub-id pub-id-type="pmid">15687262</pub-id>
</mixed-citation>
</ref>
<ref id="B38">
<mixed-citation publication-type="journal">
<name>
<surname>Norrmén</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Ivanov</surname>
<given-names>KI</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zangger</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Delorenzi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Jaquet</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Miura</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Puolakkainen</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Horsley</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>J</given-names>
</name>
<article-title>FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1</article-title>
<source>J Cell Biol</source>
<year>2009</year>
<volume>185</volume>
<fpage>439</fpage>
<lpage>457</lpage>
<pub-id pub-id-type="pmid">19398761</pub-id>
</mixed-citation>
</ref>
<ref id="B39">
<mixed-citation publication-type="journal">
<name>
<surname>Petrova</surname>
<given-names>TV</given-names>
</name>
<name>
<surname>Karpanen</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Norrmén</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Mellor</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Tamakoshi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Finegold</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Ferrell</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kerjaschki</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Mortimer</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Ylä-Herttuala</surname>
<given-names>S</given-names>
</name>
<article-title>Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis</article-title>
<source>Nat Med</source>
<year>2004</year>
<volume>10</volume>
<fpage>974</fpage>
<lpage>981</lpage>
<pub-id pub-id-type="pmid">15322537</pub-id>
</mixed-citation>
</ref>
<ref id="B40">
<mixed-citation publication-type="journal">
<name>
<surname>Bazigou</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Lyons</surname>
<given-names>OT</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Venn</surname>
<given-names>GE</given-names>
</name>
<name>
<surname>Cope</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>NA</given-names>
</name>
<name>
<surname>Makinen</surname>
<given-names>T</given-names>
</name>
<article-title>Genes regulating lymphangiogenesis control venous valve formation and maintenance in mice</article-title>
<source>J Clin Invest</source>
<year>2011</year>
<volume>121</volume>
<fpage>2984</fpage>
<pub-id pub-id-type="pmid">21765212</pub-id>
</mixed-citation>
</ref>
<ref id="B41">
<mixed-citation publication-type="journal">
<name>
<surname>Abtahian</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Guerriero</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sebzda</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>M-M</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Mocsai</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Myers</surname>
<given-names>EE</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Jackson</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>Ferrari</surname>
<given-names>VA</given-names>
</name>
<article-title>Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk</article-title>
<source>Science</source>
<year>2003</year>
<volume>299</volume>
<fpage>247</fpage>
<lpage>251</lpage>
<pub-id pub-id-type="pmid">12522250</pub-id>
</mixed-citation>
</ref>
<ref id="B42">
<mixed-citation publication-type="journal">
<name>
<surname>Bertozzi</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Schmaier</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Mericko</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Hess</surname>
<given-names>PR</given-names>
</name>
<name>
<surname>Zou</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>C-Y</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>B</given-names>
</name>
<name>
<surname>M-m</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>D</given-names>
</name>
<article-title>Platelets regulate lymphatic vascular development through CLEC-2–SLP-76 signaling</article-title>
<source>Blood</source>
<year>2010</year>
<volume>116</volume>
<fpage>661</fpage>
<lpage>670</lpage>
<pub-id pub-id-type="pmid">20363774</pub-id>
</mixed-citation>
</ref>
<ref id="B43">
<mixed-citation publication-type="journal">
<name>
<surname>Chen</surname>
<given-names>C-Y</given-names>
</name>
<name>
<surname>Bertozzi</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Zou</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Stachelek</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Srinivasan</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Vincente</surname>
<given-names>A</given-names>
</name>
<article-title>Blood flow reprograms lymphatic vessels to blood vessels</article-title>
<source>J Clin Invest</source>
<year>2012</year>
<volume>122</volume>
<fpage>2006</fpage>
<pub-id pub-id-type="pmid">22622036</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004734 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 004734 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4105398
   |texte=   Flow-regulated lymphatic vasculature development and signaling
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:25053993" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a LymphedemaV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024