Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 003643 ( Pmc/Corpus ); précédent : 0036429; suivant : 0036440 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Molecular Analysis and Differentiation Capacity of Adipose-Derived Stem Cells from Lymphedema Tissue</title>
<author>
<name sortKey="Levi, Benjamin" sort="Levi, Benjamin" uniqKey="Levi B" first="Benjamin" last="Levi">Benjamin Levi</name>
</author>
<author>
<name sortKey="Glotzbach, Jason P" sort="Glotzbach, Jason P" uniqKey="Glotzbach J" first="Jason P." last="Glotzbach">Jason P. Glotzbach</name>
</author>
<author>
<name sortKey="Sorkin, Michael" sort="Sorkin, Michael" uniqKey="Sorkin M" first="Michael" last="Sorkin">Michael Sorkin</name>
</author>
<author>
<name sortKey="Hyun, Jeong" sort="Hyun, Jeong" uniqKey="Hyun J" first="Jeong" last="Hyun">Jeong Hyun</name>
</author>
<author>
<name sortKey="Januszyk, Michael" sort="Januszyk, Michael" uniqKey="Januszyk M" first="Michael" last="Januszyk">Michael Januszyk</name>
</author>
<author>
<name sortKey="Wan, Derrick C" sort="Wan, Derrick C" uniqKey="Wan D" first="Derrick C." last="Wan">Derrick C. Wan</name>
</author>
<author>
<name sortKey="Li, Shuli" sort="Li, Shuli" uniqKey="Li S" first="Shuli" last="Li">Shuli Li</name>
</author>
<author>
<name sortKey="Nelson, Emily R" sort="Nelson, Emily R" uniqKey="Nelson E" first="Emily R." last="Nelson">Emily R. Nelson</name>
</author>
<author>
<name sortKey="Longaker, M D Michael T" sort="Longaker, M D Michael T" uniqKey="Longaker M" first="M. D. Michael T." last="Longaker">M. D. Michael T. Longaker</name>
</author>
<author>
<name sortKey="Gurtner, Geoffrey C" sort="Gurtner, Geoffrey C" uniqKey="Gurtner G" first="Geoffrey C." last="Gurtner">Geoffrey C. Gurtner</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">23985633</idno>
<idno type="pmc">4447496</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447496</idno>
<idno type="RBID">PMC:4447496</idno>
<idno type="doi">10.1097/PRS.0b013e31829ace13</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">003643</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">003643</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Molecular Analysis and Differentiation Capacity of Adipose-Derived Stem Cells from Lymphedema Tissue</title>
<author>
<name sortKey="Levi, Benjamin" sort="Levi, Benjamin" uniqKey="Levi B" first="Benjamin" last="Levi">Benjamin Levi</name>
</author>
<author>
<name sortKey="Glotzbach, Jason P" sort="Glotzbach, Jason P" uniqKey="Glotzbach J" first="Jason P." last="Glotzbach">Jason P. Glotzbach</name>
</author>
<author>
<name sortKey="Sorkin, Michael" sort="Sorkin, Michael" uniqKey="Sorkin M" first="Michael" last="Sorkin">Michael Sorkin</name>
</author>
<author>
<name sortKey="Hyun, Jeong" sort="Hyun, Jeong" uniqKey="Hyun J" first="Jeong" last="Hyun">Jeong Hyun</name>
</author>
<author>
<name sortKey="Januszyk, Michael" sort="Januszyk, Michael" uniqKey="Januszyk M" first="Michael" last="Januszyk">Michael Januszyk</name>
</author>
<author>
<name sortKey="Wan, Derrick C" sort="Wan, Derrick C" uniqKey="Wan D" first="Derrick C." last="Wan">Derrick C. Wan</name>
</author>
<author>
<name sortKey="Li, Shuli" sort="Li, Shuli" uniqKey="Li S" first="Shuli" last="Li">Shuli Li</name>
</author>
<author>
<name sortKey="Nelson, Emily R" sort="Nelson, Emily R" uniqKey="Nelson E" first="Emily R." last="Nelson">Emily R. Nelson</name>
</author>
<author>
<name sortKey="Longaker, M D Michael T" sort="Longaker, M D Michael T" uniqKey="Longaker M" first="M. D. Michael T." last="Longaker">M. D. Michael T. Longaker</name>
</author>
<author>
<name sortKey="Gurtner, Geoffrey C" sort="Gurtner, Geoffrey C" uniqKey="Gurtner G" first="Geoffrey C." last="Gurtner">Geoffrey C. Gurtner</name>
</author>
</analytic>
<series>
<title level="j">Plastic and reconstructive surgery</title>
<idno type="ISSN">0032-1052</idno>
<idno type="eISSN">1529-4242</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec id="S1">
<title>Background</title>
<p id="P1">Many breast cancer patients are plagued by the disabling complication of upper limb lymphedema after axillary surgery. Conservative treatments using massage and compression therapy do not offer a lasting relief, as they fail to address the chronic transformation of edema into excess adipose tissue. Liposuction to address the adipose nature of the lymphedema has provided an opportunity for a detailed analysis of the stromal fraction of lymphedema-associated fat to clarify the molecular mechanisms for this adipogenic transformation.</p>
</sec>
<sec id="S2">
<title>Methods</title>
<p id="P2">Adipose-derived stem cells were harvested from human lipoaspirate of the upper extremity from age-matched patients with lymphedema (
<italic>n</italic>
= 3) or subcutaneous adipose tissue from control patients undergoing cosmetic procedures (
<italic>n</italic>
= 3). Immediately after harvest, adipose-derived stem cells were analyzed using single-cell transcriptional profiling techniques. Osteogenic, adipogenic, and vasculogenic gene expression and differentiation were assessed by quantitative real-time polymerase chain reaction and standard in vitro differentiation assays.</p>
</sec>
<sec id="S3">
<title>Results</title>
<p id="P3">Differential transcriptional clusters of adipose-derived stem cells were found between lymphedema and subcutaneous fat. Interestingly, lymphedema-associated stem cells had a much higher adipogenic gene expression and enhanced ability to undergo adipogenic differentiation. Conversely, they had lower vasculogenic gene expression and diminished capability to form tubules in vitro, whereas the osteogenic differentiation capacity was not significantly altered.</p>
</sec>
<sec id="S4">
<title>Conclusions</title>
<p id="P4">Adipose-derived stem cells from extremities affected by lymphedema appear to exhibit transcriptional profiles similar to those of abdominal adipose-derived stem cells; however, their adipogenic differentiation potential is strongly increased and their vasculogenic capacity is compromised. These results suggest that the underlying pathophysiology of lymphedema drives adipose-derived stem cells toward adipogenic differentiation.</p>
</sec>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<pmc-dir>properties manuscript</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-journal-id">1306050</journal-id>
<journal-id journal-id-type="pubmed-jr-id">6482</journal-id>
<journal-id journal-id-type="nlm-ta">Plast Reconstr Surg</journal-id>
<journal-id journal-id-type="iso-abbrev">Plast. Reconstr. Surg.</journal-id>
<journal-title-group>
<journal-title>Plastic and reconstructive surgery</journal-title>
</journal-title-group>
<issn pub-type="ppub">0032-1052</issn>
<issn pub-type="epub">1529-4242</issn>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">23985633</article-id>
<article-id pub-id-type="pmc">4447496</article-id>
<article-id pub-id-type="doi">10.1097/PRS.0b013e31829ace13</article-id>
<article-id pub-id-type="manuscript">NIHMS688468</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Molecular Analysis and Differentiation Capacity of Adipose-Derived Stem Cells from Lymphedema Tissue</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Levi</surname>
<given-names>Benjamin</given-names>
</name>
<degrees>M.D.</degrees>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Glotzbach</surname>
<given-names>Jason P.</given-names>
</name>
<degrees>M.D.</degrees>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sorkin</surname>
<given-names>Michael</given-names>
</name>
<degrees>M.D.</degrees>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hyun</surname>
<given-names>Jeong</given-names>
</name>
<degrees>M.D.</degrees>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Januszyk</surname>
<given-names>Michael</given-names>
</name>
<degrees>M.D.</degrees>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wan</surname>
<given-names>Derrick C.</given-names>
</name>
<degrees>M.D.</degrees>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Li</surname>
<given-names>Shuli</given-names>
</name>
<degrees>Ph.D.</degrees>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Nelson</surname>
<given-names>Emily R.</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Longaker</surname>
<given-names>M.D. Michael T.</given-names>
</name>
<degrees>M.D., M.B.A.</degrees>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Gurtner</surname>
<given-names>Geoffrey C.</given-names>
</name>
<degrees>M.D.</degrees>
</contrib>
<aff id="A1">Hagey Laboratory for Pediatric Regenerative Medicine; Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine; and the Institute for Stem Cell Biology and Regenerative Medicine, Stanford University. Stanford, Calif</aff>
</contrib-group>
<author-notes>
<fn id="FN1">
<p>Geoffrey C. Gurtner, M.D. Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, 257 Campus Drive West, Hagey Building Stanford, Calif. 94305-5148,
<email>ggurtner@stanford.edu</email>
</p>
</fn>
<fn id="FN2" fn-type="equal">
<p>The first two authors contributed equally to this work.</p>
</fn>
</author-notes>
<pub-date pub-type="nihms-submitted">
<day>14</day>
<month>5</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="ppub">
<month>9</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>28</day>
<month>5</month>
<year>2015</year>
</pub-date>
<volume>132</volume>
<issue>3</issue>
<fpage>580</fpage>
<lpage>589</lpage>
<pmc-comment>elocation-id from pubmed: 10.1097/PRS.0b013e31829ace13</pmc-comment>
<permissions>
<copyright-statement>© 2013 by the American Society of Plastic Surgeons</copyright-statement>
<copyright-year>2013</copyright-year>
</permissions>
<abstract>
<sec id="S1">
<title>Background</title>
<p id="P1">Many breast cancer patients are plagued by the disabling complication of upper limb lymphedema after axillary surgery. Conservative treatments using massage and compression therapy do not offer a lasting relief, as they fail to address the chronic transformation of edema into excess adipose tissue. Liposuction to address the adipose nature of the lymphedema has provided an opportunity for a detailed analysis of the stromal fraction of lymphedema-associated fat to clarify the molecular mechanisms for this adipogenic transformation.</p>
</sec>
<sec id="S2">
<title>Methods</title>
<p id="P2">Adipose-derived stem cells were harvested from human lipoaspirate of the upper extremity from age-matched patients with lymphedema (
<italic>n</italic>
= 3) or subcutaneous adipose tissue from control patients undergoing cosmetic procedures (
<italic>n</italic>
= 3). Immediately after harvest, adipose-derived stem cells were analyzed using single-cell transcriptional profiling techniques. Osteogenic, adipogenic, and vasculogenic gene expression and differentiation were assessed by quantitative real-time polymerase chain reaction and standard in vitro differentiation assays.</p>
</sec>
<sec id="S3">
<title>Results</title>
<p id="P3">Differential transcriptional clusters of adipose-derived stem cells were found between lymphedema and subcutaneous fat. Interestingly, lymphedema-associated stem cells had a much higher adipogenic gene expression and enhanced ability to undergo adipogenic differentiation. Conversely, they had lower vasculogenic gene expression and diminished capability to form tubules in vitro, whereas the osteogenic differentiation capacity was not significantly altered.</p>
</sec>
<sec id="S4">
<title>Conclusions</title>
<p id="P4">Adipose-derived stem cells from extremities affected by lymphedema appear to exhibit transcriptional profiles similar to those of abdominal adipose-derived stem cells; however, their adipogenic differentiation potential is strongly increased and their vasculogenic capacity is compromised. These results suggest that the underlying pathophysiology of lymphedema drives adipose-derived stem cells toward adipogenic differentiation.</p>
</sec>
</abstract>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003643  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 003643  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024