Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Insights into synaptic function from mouse models of human cognitive disorders

Identifieur interne : 003529 ( Pmc/Corpus ); précédent : 003528; suivant : 003530

Insights into synaptic function from mouse models of human cognitive disorders

Auteurs : Jessica L. Banko ; Justin Trotter ; Edwin J. Weeber

Source :

RBID : PMC:4114080

Abstract

Modern approaches to the investigation of the molecular mechanisms underlying human cognitive disease often include multidisciplinary examination of animal models engineered with specific mutations that spatially and temporally restrict expression of a gene of interest. This approach not only makes possible the development of animal models that demonstrate phenotypic similarities to their respective human disorders, but has also allowed for significant progress towards understanding the processes that mediate synaptic function and memory formation in the nondiseased state. Examples of successful mouse models where genetic manipulation of the mouse resulted in recapitulation of the symptomatology of the human disorder and was used to significantly expand our understanding of the molecular mechanisms underlying normal synaptic plasticity and memory formation are discussed in this article. These studies have broadened our knowledge of several signal transduction cascades that function throughout life to mediate synaptic physiology. Defining these events is key for developing therapies to address disorders of cognitive ability.


Url:
DOI: 10.2217/fnl.10.80
PubMed: 25083141
PubMed Central: 4114080

Links to Exploration step

PMC:4114080

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Insights into synaptic function from mouse models of human cognitive disorders</title>
<author>
<name sortKey="Banko, Jessica L" sort="Banko, Jessica L" uniqKey="Banko J" first="Jessica L" last="Banko">Jessica L. Banko</name>
<affiliation>
<nlm:aff id="A1">Department of Molecular Medicine, USF Health Byrd Alzheimer’s Research Institute, University of South Florida, Tampa, FL, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Trotter, Justin" sort="Trotter, Justin" uniqKey="Trotter J" first="Justin" last="Trotter">Justin Trotter</name>
<affiliation>
<nlm:aff id="A2">Department of Molecular Pharmacology & Physiology, USF Health Byrd Alzheimer’s Research Institute, University of South Florida, 4001 East Fletcher Ave, Tampa, FL 33612, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Weeber, Edwin J" sort="Weeber, Edwin J" uniqKey="Weeber E" first="Edwin J" last="Weeber">Edwin J. Weeber</name>
<affiliation>
<nlm:aff id="A2">Department of Molecular Pharmacology & Physiology, USF Health Byrd Alzheimer’s Research Institute, University of South Florida, 4001 East Fletcher Ave, Tampa, FL 33612, USA</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25083141</idno>
<idno type="pmc">4114080</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4114080</idno>
<idno type="RBID">PMC:4114080</idno>
<idno type="doi">10.2217/fnl.10.80</idno>
<date when="2011">2011</date>
<idno type="wicri:Area/Pmc/Corpus">003529</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">003529</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Insights into synaptic function from mouse models of human cognitive disorders</title>
<author>
<name sortKey="Banko, Jessica L" sort="Banko, Jessica L" uniqKey="Banko J" first="Jessica L" last="Banko">Jessica L. Banko</name>
<affiliation>
<nlm:aff id="A1">Department of Molecular Medicine, USF Health Byrd Alzheimer’s Research Institute, University of South Florida, Tampa, FL, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Trotter, Justin" sort="Trotter, Justin" uniqKey="Trotter J" first="Justin" last="Trotter">Justin Trotter</name>
<affiliation>
<nlm:aff id="A2">Department of Molecular Pharmacology & Physiology, USF Health Byrd Alzheimer’s Research Institute, University of South Florida, 4001 East Fletcher Ave, Tampa, FL 33612, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Weeber, Edwin J" sort="Weeber, Edwin J" uniqKey="Weeber E" first="Edwin J" last="Weeber">Edwin J. Weeber</name>
<affiliation>
<nlm:aff id="A2">Department of Molecular Pharmacology & Physiology, USF Health Byrd Alzheimer’s Research Institute, University of South Florida, 4001 East Fletcher Ave, Tampa, FL 33612, USA</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Future neurology</title>
<idno type="ISSN">1479-6708</idno>
<idno type="eISSN">1748-6971</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="P1">Modern approaches to the investigation of the molecular mechanisms underlying human cognitive disease often include multidisciplinary examination of animal models engineered with specific mutations that spatially and temporally restrict expression of a gene of interest. This approach not only makes possible the development of animal models that demonstrate phenotypic similarities to their respective human disorders, but has also allowed for significant progress towards understanding the processes that mediate synaptic function and memory formation in the nondiseased state. Examples of successful mouse models where genetic manipulation of the mouse resulted in recapitulation of the symptomatology of the human disorder and was used to significantly expand our understanding of the molecular mechanisms underlying normal synaptic plasticity and memory formation are discussed in this article. These studies have broadened our knowledge of several signal transduction cascades that function throughout life to mediate synaptic physiology. Defining these events is key for developing therapies to address disorders of cognitive ability.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<pmc-dir>properties manuscript</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-journal-id">101278119</journal-id>
<journal-id journal-id-type="pubmed-jr-id">34288</journal-id>
<journal-id journal-id-type="nlm-ta">Future Neurol</journal-id>
<journal-id journal-id-type="iso-abbrev">Future Neurol</journal-id>
<journal-title-group>
<journal-title>Future neurology</journal-title>
</journal-title-group>
<issn pub-type="ppub">1479-6708</issn>
<issn pub-type="epub">1748-6971</issn>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25083141</article-id>
<article-id pub-id-type="pmc">4114080</article-id>
<article-id pub-id-type="doi">10.2217/fnl.10.80</article-id>
<article-id pub-id-type="manuscript">NIHMS269089</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Insights into synaptic function from mouse models of human cognitive disorders</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Banko</surname>
<given-names>Jessica L</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Trotter</surname>
<given-names>Justin</given-names>
</name>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Weeber</surname>
<given-names>Edwin J</given-names>
</name>
<xref ref-type="corresp" rid="cor1"></xref>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
</contrib-group>
<aff id="A1">
<label>1</label>
Department of Molecular Medicine, USF Health Byrd Alzheimer’s Research Institute, University of South Florida, Tampa, FL, USA</aff>
<aff id="A2">
<label>2</label>
Department of Molecular Pharmacology & Physiology, USF Health Byrd Alzheimer’s Research Institute, University of South Florida, 4001 East Fletcher Ave, Tampa, FL 33612, USA</aff>
<author-notes>
<corresp id="cor1">
<label></label>
Author for correspondence: Tel.: +1 813 396 9995, Fax:+1 813 971 0373,
<email>eweeber@health.usf.edu</email>
</corresp>
</author-notes>
<pub-date pub-type="nihms-submitted">
<day>12</day>
<month>9</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="ppub">
<month>1</month>
<year>2011</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>29</day>
<month>7</month>
<year>2014</year>
</pub-date>
<volume>6</volume>
<issue>1</issue>
<fpage>113</fpage>
<lpage>125</lpage>
<pmc-comment>elocation-id from pubmed: 10.2217/fnl.10.80</pmc-comment>
<permissions>
<copyright-statement>© 2011 Future Medicine Ltd</copyright-statement>
<copyright-year>2011</copyright-year>
</permissions>
<abstract>
<p id="P1">Modern approaches to the investigation of the molecular mechanisms underlying human cognitive disease often include multidisciplinary examination of animal models engineered with specific mutations that spatially and temporally restrict expression of a gene of interest. This approach not only makes possible the development of animal models that demonstrate phenotypic similarities to their respective human disorders, but has also allowed for significant progress towards understanding the processes that mediate synaptic function and memory formation in the nondiseased state. Examples of successful mouse models where genetic manipulation of the mouse resulted in recapitulation of the symptomatology of the human disorder and was used to significantly expand our understanding of the molecular mechanisms underlying normal synaptic plasticity and memory formation are discussed in this article. These studies have broadened our knowledge of several signal transduction cascades that function throughout life to mediate synaptic physiology. Defining these events is key for developing therapies to address disorders of cognitive ability.</p>
</abstract>
<kwd-group>
<kwd>Alzheimer’s disease</kwd>
<kwd>Angelman syndrome</kwd>
<kwd>autism</kwd>
<kwd>hippocampus</kwd>
<kwd>knockout mouse</kwd>
<kwd>neurofibromatosis type 1</kwd>
<kwd>Reelin</kwd>
<kwd>Rubinstein-Taybi syndrome</kwd>
<kwd>secretin</kwd>
<kwd>synaptic plasticity</kwd>
</kwd-group>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003529 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 003529 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4114080
   |texte=   Insights into synaptic function from mouse models of human cognitive disorders
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:25083141" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a LymphedemaV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024