Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 002B95 ( Pmc/Corpus ); précédent : 002B949; suivant : 002B960 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Minimally invasive method for determining the effective lymphatic pumping pressure in rats using near-infrared imaging</title>
<author>
<name sortKey="Nelson, Tyler S" sort="Nelson, Tyler S" uniqKey="Nelson T" first="Tyler S." last="Nelson">Tyler S. Nelson</name>
<affiliation>
<nlm:aff id="aff1">Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Akin, Ryan E" sort="Akin, Ryan E" uniqKey="Akin R" first="Ryan E." last="Akin">Ryan E. Akin</name>
<affiliation>
<nlm:aff id="aff1">Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Weiler, Michael J" sort="Weiler, Michael J" uniqKey="Weiler M" first="Michael J." last="Weiler">Michael J. Weiler</name>
<affiliation>
<nlm:aff id="aff1">Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff wicri:cut="; and" id="aff3">Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kassis, Timothy" sort="Kassis, Timothy" uniqKey="Kassis T" first="Timothy" last="Kassis">Timothy Kassis</name>
<affiliation>
<nlm:aff id="aff1">Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kornuta, Jeffrey A" sort="Kornuta, Jeffrey A" uniqKey="Kornuta J" first="Jeffrey A." last="Kornuta">Jeffrey A. Kornuta</name>
<affiliation>
<nlm:aff id="aff1">Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dixon, J Brandon" sort="Dixon, J Brandon" uniqKey="Dixon J" first="J. Brandon" last="Dixon">J. Brandon Dixon</name>
<affiliation>
<nlm:aff id="aff1">Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff wicri:cut="; and" id="aff3">Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24430884</idno>
<idno type="pmc">3949075</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3949075</idno>
<idno type="RBID">PMC:3949075</idno>
<idno type="doi">10.1152/ajpregu.00369.2013</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">002B95</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">002B95</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Minimally invasive method for determining the effective lymphatic pumping pressure in rats using near-infrared imaging</title>
<author>
<name sortKey="Nelson, Tyler S" sort="Nelson, Tyler S" uniqKey="Nelson T" first="Tyler S." last="Nelson">Tyler S. Nelson</name>
<affiliation>
<nlm:aff id="aff1">Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Akin, Ryan E" sort="Akin, Ryan E" uniqKey="Akin R" first="Ryan E." last="Akin">Ryan E. Akin</name>
<affiliation>
<nlm:aff id="aff1">Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Weiler, Michael J" sort="Weiler, Michael J" uniqKey="Weiler M" first="Michael J." last="Weiler">Michael J. Weiler</name>
<affiliation>
<nlm:aff id="aff1">Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff wicri:cut="; and" id="aff3">Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kassis, Timothy" sort="Kassis, Timothy" uniqKey="Kassis T" first="Timothy" last="Kassis">Timothy Kassis</name>
<affiliation>
<nlm:aff id="aff1">Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kornuta, Jeffrey A" sort="Kornuta, Jeffrey A" uniqKey="Kornuta J" first="Jeffrey A." last="Kornuta">Jeffrey A. Kornuta</name>
<affiliation>
<nlm:aff id="aff1">Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dixon, J Brandon" sort="Dixon, J Brandon" uniqKey="Dixon J" first="J. Brandon" last="Dixon">J. Brandon Dixon</name>
<affiliation>
<nlm:aff id="aff1">Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia;</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff wicri:cut="; and" id="aff3">Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">American Journal of Physiology - Regulatory, Integrative and Comparative Physiology</title>
<idno type="ISSN">0363-6119</idno>
<idno type="eISSN">1522-1490</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The ability to quantify collecting vessel function in a minimally invasive fashion is crucial to the study of lymphatic physiology and the role of lymphatic pump function in disease progression. Therefore, we developed a highly sensitive, minimally invasive research platform for quantifying the pumping capacity of collecting lymphatic vessels in the rodent tail and forelimb. To achieve this, we have integrated a near-infrared lymphatic imaging system with a feedback-controlled pressure cuff to modulate lymph flow. After occluding lymphatic flow by inflating a pressure cuff on the limb or tail, we gradually deflate the cuff while imaging flow restoration proximal to the cuff. Using prescribed pressure applications and automated image processing of fluorescence intensity levels in the vessels, we were able to noninvasively quantify the effective pumping pressure (P
<sub>eff</sub>
, pressure at which flow is restored after occlusion) and vessel emptying rate (rate of fluorescence clearance during flow occlusion) of lymphatics in the rat. To demonstrate the sensitivity of this system to changes in lymphatic function, a nitric oxide (NO) donor cream, glyceryl trinitrate ointment (GTNO), was applied to the tails. GTNO decreased P
<sub>eff</sub>
of the vessels by nearly 50% and the average emptying rate by more than 60%. We also demonstrate the suitability of this approach for acquiring measurements on the rat forelimb. Thus, this novel research platform provides the first minimally invasive measurements of P
<sub>eff</sub>
and emptying rate in rodents. This experimental platform holds strong potential for future in vivo studies that seek to evaluate changes in lymphatic health and disease.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Am J Physiol Regul Integr Comp Physiol</journal-id>
<journal-id journal-id-type="iso-abbrev">Am. J. Physiol. Regul. Integr. Comp. Physiol</journal-id>
<journal-id journal-id-type="hwp">ajpregu</journal-id>
<journal-id journal-id-type="pmc">ajpregu</journal-id>
<journal-id journal-id-type="publisher-id">AJPREGU</journal-id>
<journal-title-group>
<journal-title>American Journal of Physiology - Regulatory, Integrative and Comparative Physiology</journal-title>
</journal-title-group>
<issn pub-type="ppub">0363-6119</issn>
<issn pub-type="epub">1522-1490</issn>
<publisher>
<publisher-name>American Physiological Society</publisher-name>
<publisher-loc>Bethesda, MD</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24430884</article-id>
<article-id pub-id-type="pmc">3949075</article-id>
<article-id pub-id-type="publisher-id">R-00369-2013</article-id>
<article-id pub-id-type="doi">10.1152/ajpregu.00369.2013</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Innovative Methodology</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Minimally invasive method for determining the effective lymphatic pumping pressure in rats using near-infrared imaging</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Nelson</surname>
<given-names>Tyler S.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="author-notes" rid="fn1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Akin</surname>
<given-names>Ryan E.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="author-notes" rid="fn1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Weiler</surname>
<given-names>Michael J.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kassis</surname>
<given-names>Timothy</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kornuta</surname>
<given-names>Jeffrey A.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Dixon</surname>
<given-names>J. Brandon</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
<aff id="aff1">
<sup>1</sup>
Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia;</aff>
<aff id="aff2">
<sup>2</sup>
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia;</aff>
<aff id="aff3">
<sup>3</sup>
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia; and</aff>
<aff id="aff4">
<sup>4</sup>
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia</aff>
</contrib-group>
<author-notes>
<fn id="fn1" fn-type="equal">
<label>*</label>
<p>Tyler S. Nelson and Ryan E. Akin contributed equally to this article.</p>
</fn>
<corresp id="cor1">Address for reprint requests and other correspondence: J. B. Dixon,
<addr-line>Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, IBB 2312, 315 Ferst Dr., Atlanta, GA 30332-0405</addr-line>
(e-mail:
<email>dixon@gatech.edu</email>
).</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>15</day>
<month>1</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="ppub">
<day>1</day>
<month>3</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>1</day>
<month>3</month>
<year>2015</year>
</pub-date>
<pmc-comment> PMC Release delay is 12 months and 0 days and was based on the . </pmc-comment>
<volume>306</volume>
<issue>5</issue>
<fpage>R281</fpage>
<lpage>R290</lpage>
<history>
<date date-type="received">
<day>2</day>
<month>8</month>
<year>2013</year>
</date>
<date date-type="accepted">
<day>7</day>
<month>1</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2014 the American Physiological Society</copyright-statement>
<copyright-year>2014</copyright-year>
<copyright-holder>American Physiological Society</copyright-holder>
</permissions>
<self-uri xlink:title="pdf" xlink:type="simple" xlink:href="zh600514000281.pdf"></self-uri>
<abstract>
<p>The ability to quantify collecting vessel function in a minimally invasive fashion is crucial to the study of lymphatic physiology and the role of lymphatic pump function in disease progression. Therefore, we developed a highly sensitive, minimally invasive research platform for quantifying the pumping capacity of collecting lymphatic vessels in the rodent tail and forelimb. To achieve this, we have integrated a near-infrared lymphatic imaging system with a feedback-controlled pressure cuff to modulate lymph flow. After occluding lymphatic flow by inflating a pressure cuff on the limb or tail, we gradually deflate the cuff while imaging flow restoration proximal to the cuff. Using prescribed pressure applications and automated image processing of fluorescence intensity levels in the vessels, we were able to noninvasively quantify the effective pumping pressure (P
<sub>eff</sub>
, pressure at which flow is restored after occlusion) and vessel emptying rate (rate of fluorescence clearance during flow occlusion) of lymphatics in the rat. To demonstrate the sensitivity of this system to changes in lymphatic function, a nitric oxide (NO) donor cream, glyceryl trinitrate ointment (GTNO), was applied to the tails. GTNO decreased P
<sub>eff</sub>
of the vessels by nearly 50% and the average emptying rate by more than 60%. We also demonstrate the suitability of this approach for acquiring measurements on the rat forelimb. Thus, this novel research platform provides the first minimally invasive measurements of P
<sub>eff</sub>
and emptying rate in rodents. This experimental platform holds strong potential for future in vivo studies that seek to evaluate changes in lymphatic health and disease.</p>
</abstract>
<kwd-group>
<kwd>lymphatic diagnostic</kwd>
<kwd>near-infrared imaging</kwd>
<kwd>nitric oxide</kwd>
<kwd>lymphatic pumping pressure</kwd>
<kwd>rat tail model</kwd>
</kwd-group>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002B95  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 002B95  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024