Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Adipose-derived stem cells promote lymphangiogenesis in response to VEGF-C stimulation or TGF-β1 inhibition

Identifieur interne : 002989 ( Pmc/Corpus ); précédent : 002988; suivant : 002990

Adipose-derived stem cells promote lymphangiogenesis in response to VEGF-C stimulation or TGF-β1 inhibition

Auteurs : Alan Yan ; Tomer Avraham ; Jamie C. Zampell ; Yosef S. Haviv ; Evan Weitman ; Babak J. Mehrara

Source :

RBID : PMC:3263831

Abstract

Aims

Recent studies have demonstrated that augmentation of lymphangiogenesis and tissue engineering hold promise as a treatment for lymphedema. The purpose of this study was to determine whether adipose-derived stem cells (ASCs) can be used in lymphatic tissue-engineering by altering the balance between pro- and anti-lymphangiogenic cytokines.

Materials & methods

ASCs were harvested and cultured in media with or without recombinant VEGF-C for 48 h. ASCs were then implanted in mice using Matrigel plugs. Additional groups of animals were implanted with ASCs transfected with a dominant-negative TGF-β1 receptor-II adenovirus with or without VEGF-C stimulation, since TGF-β1 has been shown to have potent antilymphangiogenic effects. Lymphangiogenesis, lymphatic differentiation and cellular proliferation were assessed.

Results

Stimulation of ASCs with VEGF-C in vitro significantly increased expression of VEGF-A, VEGF-C and Prox-1. ASCs stimulated with VEGF-C prior to implantation induced a significant (threefold increase) lymphangiogenic response as compared with control groups (unstimulated ASCs or empty Matrigel plugs; p < 0.01). This effect was significantly potentiated when TGF-β1 signaling was inhibited using the dominant-negative TGF-β1 receptor-II virus (4.5-fold increase; p < 0.01). Stimulation of ASCs with VEGF-C resulted in a marked increase in the number of donor ASCs (twofold; p < 0.01) and increased the number of proliferating cells (sevenfold; p < 0.01) surrounding the Matrigel. ASCs stimulated with VEGF-C expressed podoplanin, a lymphangiogenic cell marker, whereas unstimulated cells did not.

Conclusion

Short-term stimulation of ASCs with VEGF-C results in increased expression of VEGF-A, VEGF-C and Prox-1 in vitro and is associated with a marked increase lymphangiogenic response after in vivo implantation. This lymphangiogenic response is significantly potentiated by blocking TGF-β1 function. Furthermore, stimulation of ASCs with VEGF-C markedly increases cellular proliferation and cellular survival after in vivo implantation and stimulated cells express podoplanin, a lymphangiogenic cell marker.


Url:
DOI: 10.2217/fon.11.121
PubMed: 22112321
PubMed Central: 3263831

Links to Exploration step

PMC:3263831

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Adipose-derived stem cells promote lymphangiogenesis in response to VEGF-C stimulation or TGF-β1 inhibition</title>
<author>
<name sortKey="Yan, Alan" sort="Yan, Alan" uniqKey="Yan A" first="Alan" last="Yan">Alan Yan</name>
<affiliation>
<nlm:aff id="A1">The Division of Plastic & Reconstructive Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Avraham, Tomer" sort="Avraham, Tomer" uniqKey="Avraham T" first="Tomer" last="Avraham">Tomer Avraham</name>
<affiliation>
<nlm:aff id="A1">The Division of Plastic & Reconstructive Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zampell, Jamie C" sort="Zampell, Jamie C" uniqKey="Zampell J" first="Jamie C" last="Zampell">Jamie C. Zampell</name>
<affiliation>
<nlm:aff id="A1">The Division of Plastic & Reconstructive Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Haviv, Yosef S" sort="Haviv, Yosef S" uniqKey="Haviv Y" first="Yosef S" last="Haviv">Yosef S. Haviv</name>
<affiliation>
<nlm:aff id="A2">Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Weitman, Evan" sort="Weitman, Evan" uniqKey="Weitman E" first="Evan" last="Weitman">Evan Weitman</name>
<affiliation>
<nlm:aff id="A1">The Division of Plastic & Reconstructive Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mehrara, Babak J" sort="Mehrara, Babak J" uniqKey="Mehrara B" first="Babak J" last="Mehrara">Babak J. Mehrara</name>
<affiliation>
<nlm:aff id="A1">The Division of Plastic & Reconstructive Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">22112321</idno>
<idno type="pmc">3263831</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3263831</idno>
<idno type="RBID">PMC:3263831</idno>
<idno type="doi">10.2217/fon.11.121</idno>
<date when="2011">2011</date>
<idno type="wicri:Area/Pmc/Corpus">002989</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">002989</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Adipose-derived stem cells promote lymphangiogenesis in response to VEGF-C stimulation or TGF-β1 inhibition</title>
<author>
<name sortKey="Yan, Alan" sort="Yan, Alan" uniqKey="Yan A" first="Alan" last="Yan">Alan Yan</name>
<affiliation>
<nlm:aff id="A1">The Division of Plastic & Reconstructive Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Avraham, Tomer" sort="Avraham, Tomer" uniqKey="Avraham T" first="Tomer" last="Avraham">Tomer Avraham</name>
<affiliation>
<nlm:aff id="A1">The Division of Plastic & Reconstructive Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zampell, Jamie C" sort="Zampell, Jamie C" uniqKey="Zampell J" first="Jamie C" last="Zampell">Jamie C. Zampell</name>
<affiliation>
<nlm:aff id="A1">The Division of Plastic & Reconstructive Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Haviv, Yosef S" sort="Haviv, Yosef S" uniqKey="Haviv Y" first="Yosef S" last="Haviv">Yosef S. Haviv</name>
<affiliation>
<nlm:aff id="A2">Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Weitman, Evan" sort="Weitman, Evan" uniqKey="Weitman E" first="Evan" last="Weitman">Evan Weitman</name>
<affiliation>
<nlm:aff id="A1">The Division of Plastic & Reconstructive Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mehrara, Babak J" sort="Mehrara, Babak J" uniqKey="Mehrara B" first="Babak J" last="Mehrara">Babak J. Mehrara</name>
<affiliation>
<nlm:aff id="A1">The Division of Plastic & Reconstructive Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Future Oncology (London, England)</title>
<idno type="ISSN">1479-6694</idno>
<idno type="eISSN">1744-8301</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec id="S1">
<title>Aims</title>
<p id="P1">Recent studies have demonstrated that augmentation of lymphangiogenesis and tissue engineering hold promise as a treatment for lymphedema. The purpose of this study was to determine whether adipose-derived stem cells (ASCs) can be used in lymphatic tissue-engineering by altering the balance between pro- and anti-lymphangiogenic cytokines.</p>
</sec>
<sec sec-type="materials|methods" id="S2">
<title>Materials & methods</title>
<p id="P2">ASCs were harvested and cultured in media with or without recombinant VEGF-C for 48 h. ASCs were then implanted in mice using Matrigel plugs. Additional groups of animals were implanted with ASCs transfected with a dominant-negative TGF-β1 receptor-II adenovirus with or without VEGF-C stimulation, since TGF-β1 has been shown to have potent antilymphangiogenic effects. Lymphangiogenesis, lymphatic differentiation and cellular proliferation were assessed.</p>
</sec>
<sec id="S3">
<title>Results</title>
<p id="P3">Stimulation of ASCs with VEGF-C
<italic>in vitro</italic>
significantly increased expression of VEGF-A, VEGF-C and Prox-1. ASCs stimulated with VEGF-C prior to implantation induced a significant (threefold increase) lymphangiogenic response as compared with control groups (unstimulated ASCs or empty Matrigel plugs; p < 0.01). This effect was significantly potentiated when TGF-β1 signaling was inhibited using the dominant-negative TGF-β1 receptor-II virus (4.5-fold increase; p < 0.01). Stimulation of ASCs with VEGF-C resulted in a marked increase in the number of donor ASCs (twofold; p < 0.01) and increased the number of proliferating cells (sevenfold; p < 0.01) surrounding the Matrigel. ASCs stimulated with VEGF-C expressed podoplanin, a lymphangiogenic cell marker, whereas unstimulated cells did not.</p>
</sec>
<sec id="S4">
<title>Conclusion</title>
<p id="P4">Short-term stimulation of ASCs with VEGF-C results in increased expression of VEGF-A, VEGF-C and Prox-1
<italic>in vitro</italic>
and is associated with a marked increase lymphangiogenic response after
<italic>in vivo</italic>
implantation. This lymphangiogenic response is significantly potentiated by blocking TGF-β1 function. Furthermore, stimulation of ASCs with VEGF-C markedly increases cellular proliferation and cellular survival after
<italic>in vivo</italic>
implantation and stimulated cells express podoplanin, a lymphangiogenic cell marker.</p>
</sec>
</div>
</front>
</TEI>
<pmc article-type="research-article" xml:lang="en">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<pmc-dir>properties manuscript</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-journal-id">101256629</journal-id>
<journal-id journal-id-type="pubmed-jr-id">32856</journal-id>
<journal-id journal-id-type="nlm-ta">Future Oncol</journal-id>
<journal-title-group>
<journal-title>Future Oncology (London, England)</journal-title>
</journal-title-group>
<issn pub-type="ppub">1479-6694</issn>
<issn pub-type="epub">1744-8301</issn>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">22112321</article-id>
<article-id pub-id-type="pmc">3263831</article-id>
<article-id pub-id-type="doi">10.2217/fon.11.121</article-id>
<article-id pub-id-type="manuscript">NIHMS347916</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Adipose-derived stem cells promote lymphangiogenesis in response to VEGF-C stimulation or TGF-β1 inhibition</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Yan</surname>
<given-names>Alan</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Avraham</surname>
<given-names>Tomer</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zampell</surname>
<given-names>Jamie C</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Haviv</surname>
<given-names>Yosef S</given-names>
</name>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Weitman</surname>
<given-names>Evan</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mehrara</surname>
<given-names>Babak J</given-names>
</name>
<xref ref-type="corresp" rid="CR1">*</xref>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
</contrib-group>
<aff id="A1">
<label>1</label>
The Division of Plastic & Reconstructive Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA</aff>
<aff id="A2">
<label>2</label>
Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel</aff>
<author-notes>
<corresp id="CR1">
<label>*</label>
Author for correspondence: 1275 York Avenue, Room MRI 1005, New York, NY 10065, USA, Tel.: +1 212 639 8639, Fax: +1 212 717 3677, mehrarab@mskcc.org</corresp>
</author-notes>
<pub-date pub-type="nihms-submitted">
<day>18</day>
<month>1</month>
<year>2012</year>
</pub-date>
<pub-date pub-type="ppub">
<month>12</month>
<year>2011</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>1</day>
<month>10</month>
<year>2012</year>
</pub-date>
<volume>7</volume>
<issue>12</issue>
<fpage>1457</fpage>
<lpage>1473</lpage>
<permissions>
<copyright-statement>© 2011 Future Medicine Ltd</copyright-statement>
<copyright-year>2011</copyright-year>
</permissions>
<abstract>
<sec id="S1">
<title>Aims</title>
<p id="P1">Recent studies have demonstrated that augmentation of lymphangiogenesis and tissue engineering hold promise as a treatment for lymphedema. The purpose of this study was to determine whether adipose-derived stem cells (ASCs) can be used in lymphatic tissue-engineering by altering the balance between pro- and anti-lymphangiogenic cytokines.</p>
</sec>
<sec sec-type="materials|methods" id="S2">
<title>Materials & methods</title>
<p id="P2">ASCs were harvested and cultured in media with or without recombinant VEGF-C for 48 h. ASCs were then implanted in mice using Matrigel plugs. Additional groups of animals were implanted with ASCs transfected with a dominant-negative TGF-β1 receptor-II adenovirus with or without VEGF-C stimulation, since TGF-β1 has been shown to have potent antilymphangiogenic effects. Lymphangiogenesis, lymphatic differentiation and cellular proliferation were assessed.</p>
</sec>
<sec id="S3">
<title>Results</title>
<p id="P3">Stimulation of ASCs with VEGF-C
<italic>in vitro</italic>
significantly increased expression of VEGF-A, VEGF-C and Prox-1. ASCs stimulated with VEGF-C prior to implantation induced a significant (threefold increase) lymphangiogenic response as compared with control groups (unstimulated ASCs or empty Matrigel plugs; p < 0.01). This effect was significantly potentiated when TGF-β1 signaling was inhibited using the dominant-negative TGF-β1 receptor-II virus (4.5-fold increase; p < 0.01). Stimulation of ASCs with VEGF-C resulted in a marked increase in the number of donor ASCs (twofold; p < 0.01) and increased the number of proliferating cells (sevenfold; p < 0.01) surrounding the Matrigel. ASCs stimulated with VEGF-C expressed podoplanin, a lymphangiogenic cell marker, whereas unstimulated cells did not.</p>
</sec>
<sec id="S4">
<title>Conclusion</title>
<p id="P4">Short-term stimulation of ASCs with VEGF-C results in increased expression of VEGF-A, VEGF-C and Prox-1
<italic>in vitro</italic>
and is associated with a marked increase lymphangiogenic response after
<italic>in vivo</italic>
implantation. This lymphangiogenic response is significantly potentiated by blocking TGF-β1 function. Furthermore, stimulation of ASCs with VEGF-C markedly increases cellular proliferation and cellular survival after
<italic>in vivo</italic>
implantation and stimulated cells express podoplanin, a lymphangiogenic cell marker.</p>
</sec>
</abstract>
<kwd-group>
<kwd>adipose-derived stem cells</kwd>
<kwd>antilymphangiogenic</kwd>
<kwd>lymphangiogenesis</kwd>
<kwd>TGF-β</kwd>
<kwd>tissue engineering</kwd>
<kwd>VEGF-C</kwd>
</kwd-group>
<funding-group>
<award-group>
<funding-source country="United States">National Cancer Institute : NCI</funding-source>
<award-id>T32 CA009501-25 || CA</award-id>
</award-group>
<award-group>
<funding-source country="United States">National Cancer Institute : NCI</funding-source>
<award-id>T32 CA009501-24 || CA</award-id>
</award-group>
<award-group>
<funding-source country="United States">National Cancer Institute : NCI</funding-source>
<award-id>T32 CA009501-23 || CA</award-id>
</award-group>
</funding-group>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002989 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 002989 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:3263831
   |texte=   Adipose-derived stem cells promote lymphangiogenesis in response to VEGF-C stimulation or TGF-β1 inhibition
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:22112321" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a LymphedemaV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024