Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 001D42 ( Pmc/Corpus ); précédent : 001D419; suivant : 001D430 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The role of VEGF receptors in angiogenesis; complex partnerships</title>
<author>
<name sortKey="Cebe Suarez, S" sort="Cebe Suarez, S" uniqKey="Cebe Suarez S" first="S." last="Cébe-Suarez">S. Cébe-Suarez</name>
<affiliation>
<nlm:aff id="Aff1">Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institut, 5232 Villigen, Switzerland</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zehnder Fj Llman, A" sort="Zehnder Fj Llman, A" uniqKey="Zehnder Fj Llman A" first="A." last="Zehnder-Fj Llman">A. Zehnder-Fj Llman</name>
<affiliation>
<nlm:aff id="Aff1">Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institut, 5232 Villigen, Switzerland</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ballmer Hofer, K" sort="Ballmer Hofer, K" uniqKey="Ballmer Hofer K" first="K." last="Ballmer-Hofer">K. Ballmer-Hofer</name>
<affiliation>
<nlm:aff id="Aff1">Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institut, 5232 Villigen, Switzerland</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">16465447</idno>
<idno type="pmc">2773843</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2773843</idno>
<idno type="RBID">PMC:2773843</idno>
<idno type="doi">10.1007/s00018-005-5426-3</idno>
<date when="2006">2006</date>
<idno type="wicri:Area/Pmc/Corpus">001D42</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">001D42</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">The role of VEGF receptors in angiogenesis; complex partnerships</title>
<author>
<name sortKey="Cebe Suarez, S" sort="Cebe Suarez, S" uniqKey="Cebe Suarez S" first="S." last="Cébe-Suarez">S. Cébe-Suarez</name>
<affiliation>
<nlm:aff id="Aff1">Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institut, 5232 Villigen, Switzerland</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zehnder Fj Llman, A" sort="Zehnder Fj Llman, A" uniqKey="Zehnder Fj Llman A" first="A." last="Zehnder-Fj Llman">A. Zehnder-Fj Llman</name>
<affiliation>
<nlm:aff id="Aff1">Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institut, 5232 Villigen, Switzerland</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ballmer Hofer, K" sort="Ballmer Hofer, K" uniqKey="Ballmer Hofer K" first="K." last="Ballmer-Hofer">K. Ballmer-Hofer</name>
<affiliation>
<nlm:aff id="Aff1">Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institut, 5232 Villigen, Switzerland</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cellular and Molecular Life Sciences </title>
<idno type="ISSN">1420-682X</idno>
<idno type="eISSN">1420-9071</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Abstract.</title>
<p>Vascular endothelial growth factors (VEGFs) regulate blood and lymphatic vessel development and homeostasis but also have profound effects on neural cells. VEGFs are predominantly produced by endothelial, hematopoietic and stromal cells in response to hypoxia and upon stimulation with growth factors such as transforming growth factors, interleukins or platelet-derived growth factor. VEGFs bind to three variants of type III receptor tyrosine kinases, VEGF receptor 1, 2 and 3. Each VEGF isoform binds to a particular subset of these receptors giving rise to the formation of receptor homo- and heterodimers that activate discrete signaling pathways. Signal specificity of VEGF receptors is further modulated upon recruitment of coreceptors, such as neuropilins, heparan sulfate, integrins or cadherins. Here we summarize the knowledge accumulated since the discovery of these proteins more than 20 years ago with the emphasis on the signaling pathways activated by VEGF receptors in endothelial cells during cell migration, growth and differentiation.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc xml:lang="EN" article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Cell Mol Life Sci</journal-id>
<journal-title>Cellular and Molecular Life Sciences </journal-title>
<issn pub-type="ppub">1420-682X</issn>
<issn pub-type="epub">1420-9071</issn>
<publisher>
<publisher-name>Birkhäuser-Verlag</publisher-name>
<publisher-loc>Basel</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">16465447</article-id>
<article-id pub-id-type="pmc">2773843</article-id>
<article-id pub-id-type="publisher-id">5426</article-id>
<article-id pub-id-type="doi">10.1007/s00018-005-5426-3</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>The role of VEGF receptors in angiogenesis; complex partnerships</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name name-style="western">
<surname>Cébe-Suarez</surname>
<given-names>S.</given-names>
</name>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name name-style="western">
<surname>Zehnder-Fjällman</surname>
<given-names>A.</given-names>
</name>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name name-style="western">
<surname>Ballmer-Hofer</surname>
<given-names>K.</given-names>
</name>
<address>
<email>kurt.ballmer@psi.ch</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<aff id="Aff1">Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institut, 5232 Villigen, Switzerland</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>7</day>
<month>2</month>
<year>2006</year>
</pub-date>
<pub-date pub-type="ppub">
<month>3</month>
<year>2006</year>
</pub-date>
<volume>63</volume>
<issue>5</issue>
<fpage>601</fpage>
<lpage>615</lpage>
<permissions>
<copyright-statement>© Birkhäuser Verlag, Basel 2006</copyright-statement>
</permissions>
<abstract xml:lang="EN">
<title>Abstract.</title>
<p>Vascular endothelial growth factors (VEGFs) regulate blood and lymphatic vessel development and homeostasis but also have profound effects on neural cells. VEGFs are predominantly produced by endothelial, hematopoietic and stromal cells in response to hypoxia and upon stimulation with growth factors such as transforming growth factors, interleukins or platelet-derived growth factor. VEGFs bind to three variants of type III receptor tyrosine kinases, VEGF receptor 1, 2 and 3. Each VEGF isoform binds to a particular subset of these receptors giving rise to the formation of receptor homo- and heterodimers that activate discrete signaling pathways. Signal specificity of VEGF receptors is further modulated upon recruitment of coreceptors, such as neuropilins, heparan sulfate, integrins or cadherins. Here we summarize the knowledge accumulated since the discovery of these proteins more than 20 years ago with the emphasis on the signaling pathways activated by VEGF receptors in endothelial cells during cell migration, growth and differentiation.</p>
</abstract>
<kwd-group>
<title>Key words.</title>
<kwd>Angiogenesis</kwd>
<kwd>vascular endothelial growth factor</kwd>
<kwd>VEGF</kwd>
<kwd>neuropilin</kwd>
<kwd>signaling</kwd>
<kwd>endothelial cell</kwd>
<kwd>integrin</kwd>
<kwd>tyrosine kinase receptor</kwd>
</kwd-group>
<custom-meta-wrap>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© Birkhäuser Verlag, Basel 2006</meta-value>
</custom-meta>
</custom-meta-wrap>
</article-meta>
</front>
<body>
<sec id="Sec1">
<title>Historical background</title>
<p>In higher organisms, blood and lymphatic vasculature is formed by two distinct processes: vasculogenesis and angiogenesis. Vasculogenesis is the de novo formation of vessels from hematopoietic precursor cells and predominantly takes place in the developing embryo. Angiogenesis, on the other hand, is the formation of vessels from preexisting vasculature by processes such as sprouting, pruning and intussusception [
<xref ref-type="bibr" rid="CR1">1</xref>
] and is an important biological process throughout the life of an organism, both under normal conditions and in disease. Impaired vessel function is the cause of many illnesses such as atherosclerosis, diabetic retinopathy, psoriasis, arthritis, malignant cell growth, neurodegenerative disease and a placental insufficiency, preeclampsia [
<xref ref-type="bibr" rid="CR2">2</xref>
]. Hematopoietic precursor cells are programmed by soluble factors, extracellular matrix (ECM) components as well as cell-cell contacts to mature to their final functional states during vessel formation. Research in this field has been profoundly stimulated by the discovery of a plethora of growth factors that instruct primordial cells to migrate, divide and differentiate and to give rise to endothelial cells that ultimately form blood and lymphatic vessels. Vascular endothelial growth factors, (VEGFs) are among the most important players that regulate vessel formation during embryonic development, in wound healing and in maintaining vessel homeostasis in adult organisms. In addition, impaired vessel function resulting from defects in VEGF ligands or receptors is the cause of many diseases. VEGF was originally described as vascular permeability factor (VPF), an activity released by tumor cells that promotes vascular leakage [
<xref ref-type="bibr" rid="CR3">3</xref>
<xref ref-type="bibr" rid="CR12">12</xref>
]. It is now clear that VPF represented a biological activity attributable to a family of polypeptide growth factors that are encoded by several genes. VEGFs specifically interact with hematopoietic cells, endothelial precursor cells, such as the angioblasts, and with differentiating and mature endothelial cells. The best studied variant is VEGF-A, which activates a plethora of signaling pathways through VEGF receptor-2 (VEGFR-2) and regulates vessel morphogenesis through VEGFR-1. The importance of VEGF-A and its receptors in vascular development has been best illustrated in knockout mice. Both VEGF-A [
<xref ref-type="bibr" rid="CR13">13</xref>
] and VEGFR-2 knockouts [
<xref ref-type="bibr" rid="CR14">14</xref>
,
<xref ref-type="bibr" rid="CR15">15</xref>
] are lethal due to a deficiency in blood vessel formation, while VEGFR-1 knockouts show overgrowth of immature vessels that blocks the development of a fully developed functional vasculature and leads to embryonic death [
<xref ref-type="bibr" rid="CR16">16</xref>
]. The function of VEGFs in vessel formation is complemented by additional factors, such as basic fibroblast growth factor (bFGF) [
<xref ref-type="bibr" rid="CR17">17</xref>
], transforming growth factor β (TGFβ) [
<xref ref-type="bibr" rid="CR18">18</xref>
], platelet-derived growth factors (PDGFs) [
<xref ref-type="bibr" rid="CR19">19</xref>
] and angiopoietins [
<xref ref-type="bibr" rid="CR20">20</xref>
].</p>
<p>VEGF homologs also exist in arthropods, where they regulate hemocyte development upon binding to PDGF/VEGF receptors (PVRs). Apparently, in such simpler organisms, a single growth factor performs the tasks performed by PDGF and VEGF in higher organisms [
<xref ref-type="bibr" rid="CR21">21</xref>
<xref ref-type="bibr" rid="CR23">23</xref>
]. Apart from their role in vessel development and homeostasis, VEGF family proteins play diverse roles in other organs such as the neural system, bones, the hematopoietic system and the reproductive organs, which have been excellently reviewed recently [
<xref ref-type="bibr" rid="CR24">24</xref>
].</p>
</sec>
<sec id="Sec2">
<title>Biological function of VEGF receptors and their ligands</title>
<sec id="Sec3">
<title>VEGF family proteins</title>
<p>VEGF polypeptides belong to the PDGF family of growth factors. They are dimeric cysteine-linked secreted glycoproteins with an M
<sub>r</sub>
of approximately 40 kDa. In mammals, VEGFs are encoded by a family of genes that includes VEGF-A, -B, -C, -D [
<xref ref-type="bibr" rid="CR25">25</xref>
] and PlGF [
<xref ref-type="bibr" rid="CR26">26</xref>
]. Highly related proteins called VEGF-E are encoded by pox viruses of the Orf family [
<xref ref-type="bibr" rid="CR27">27</xref>
<xref ref-type="bibr" rid="CR29">29</xref>
] and additional variants, collectively called VEGF-F, have been isolated from snake venoms [
<xref ref-type="bibr" rid="CR30">30</xref>
<xref ref-type="bibr" rid="CR35">35</xref>
]. Alternative splicing and proteolytic processing of VEGFs give rise to a number of functionally distinct isoforms with different signaling properties [
<xref ref-type="bibr" rid="CR36">36</xref>
,
<xref ref-type="bibr" rid="CR37">37</xref>
]. For example, Bates and colleagues described an interesting variant, VEGF-A165b, closely related to VEGF-A165, that carries sequences encoded by exon 9, instead of exon 8, at the carboxy terminus [
<xref ref-type="bibr" rid="CR38">38</xref>
,
<xref ref-type="bibr" rid="CR39">39</xref>
]. When added together with VEGF-A165 to endothelial cells, this variant inhibited VEGF signaling. The concept emerging from such studies is that multiple isoforms of VEGFs, binding their receptors with similar affinity, yet eliciting distinct signaling properties, are responsible for the bewildering complexity of VEGF-induced signal output.</p>
<p>VEGFs are expressed in response to hypoxia and when cells encounter specific growth and differentiation factors and are produced by many cell types, in particular by hematopoietic, stromal and endothelial cells [
<xref ref-type="bibr" rid="CR40">40</xref>
<xref ref-type="bibr" rid="CR42">42</xref>
]. One of the most prominent examples is the stimulation of VEGF expression by cancer cells that cannot form tumors bigger than a few millimeters unless they produce angiogenic growth factors [
<xref ref-type="bibr" rid="CR2">2</xref>
,
<xref ref-type="bibr" rid="CR43">43</xref>
].</p>
</sec>
<sec id="Sec4">
<title>VEGF receptors</title>
<p>The biological functions of VEGF polypeptides are mediated upon binding to type III receptor tyrosine kinases (RTKs), VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1) and VEGFR-3 (Flt-4) [
<xref ref-type="bibr" rid="CR2">2</xref>
,
<xref ref-type="bibr" rid="CR44">44</xref>
<xref ref-type="bibr" rid="CR47">47</xref>
]. VEGF receptors are closely related to Fms, Kit and PDGF receptors. They consist of seven extracellular immunoglobulin (Ig)-like domains, a transmembrane (TM) domain, a regulatory juxtamembrane domain, an intracellular tyrosine kinase domain interrupted by a short peptide, the kinase insert domain, followed by a sequence carrying several tyrosine residues involved in recruiting downstream signaling molecules. These receptors are expressed on the cell surface of many bone-marrow-derived cells such as hematopoietic cells [
<xref ref-type="bibr" rid="CR48">48</xref>
], macrophages and endothelial cells [
<xref ref-type="bibr" rid="CR49">49</xref>
], on some malignant cells [
<xref ref-type="bibr" rid="CR50">50</xref>
] and on vascular smooth muscle cells (VSMCs) [
<xref ref-type="bibr" rid="CR51">51</xref>
]. Mutation analysis of the extracellular domains of VEGFR-1 and -2 showed that the second and third Ig-like domains constitute the high-affinity ligand-binding domain for VEGF with the first and fourth Ig domains apparently regulating ligand binding and receptor dimerization, respectively [
<xref ref-type="bibr" rid="CR52">52</xref>
<xref ref-type="bibr" rid="CR54">54</xref>
]. VEGFs show distinct patterns of receptor specificity as indicated in figure
<xref rid="Fig1" ref-type="fig">1</xref>
. VEGF-A binds to VEGFR-1 and -2 and to receptor heterodimers, while VEGF-C and -D bind VEGFR-2 and -3. Receptor-specific interactions have been described for some VEGF variants: PlGF [
<xref ref-type="bibr" rid="CR55">55</xref>
,
<xref ref-type="bibr" rid="CR56">56</xref>
] and VEGF-B [
<xref ref-type="bibr" rid="CR57">57</xref>
] exclusively bind VEGFR-1 and VEGF-E interacts only with VEGFR-2 [
<xref ref-type="bibr" rid="CR27">27</xref>
,
<xref ref-type="bibr" rid="CR58">58</xref>
]. VEGF-F variants interact with either VEGFR-1 or -2, e.g. VR-1 and Vammin bind only to VEGFR-2 [
<xref ref-type="bibr" rid="CR32">32</xref>
,
<xref ref-type="bibr" rid="CR33">33</xref>
]. VEGF-A, -B and PlGF are predominantly required for blood vessel formation, while VEGF-C and -D are essential for the formation of lymphatic vessels [
<xref ref-type="bibr" rid="CR59">59</xref>
,
<xref ref-type="bibr" rid="CR60">60</xref>
].
<fig id="Fig1">
<label>Figure 1</label>
<caption>
<p>Schematic representation of VEGF family ligands and their receptors.</p>
</caption>
<graphic position="anchor" xlink:href="18_2005_Article_5426_Fig1" id="MO1"></graphic>
</fig>
</p>
</sec>
<sec id="Sec5">
<title>Regulation of receptor activity</title>
<p>RTKs are activated upon ligand-mediated receptor dimerization [
<xref ref-type="bibr" rid="CR61">61</xref>
<xref ref-type="bibr" rid="CR63">63</xref>
]. Earlier published work suggested that ligand binding is not directly responsible for receptor dimerization but may induce conformational changes in the extracellular Ig domain 4 which then promote receptor dimerization [
<xref ref-type="bibr" rid="CR64">64</xref>
<xref ref-type="bibr" rid="CR67">67</xref>
]. Ligand-induced dimerization leads to structural changes transduced to the intracellular kinase domain upon rearrangement of the transmembrane and the juxtamembrane domain. The molecular mechanisms responsible for activation of the intracellular kinase domain of these receptors are poorly understood at present. Kit and PDGF receptors mutated in the trans- or juxtamembrane domains are constitutively active and often oncogenic [
<xref ref-type="bibr" rid="CR68">68</xref>
,
<xref ref-type="bibr" rid="CR69">69</xref>
]. Similarly, a role of the TM domain in receptor activation has been elegantly documented for PDGF receptors carrying artificially engineered dimerization motifs [
<xref ref-type="bibr" rid="CR70">70</xref>
]. These data clearly establish that the TM and the juxtamembrane domains are involved in regulating receptor kinase activity.</p>
<p>All three VEGF receptors contain tyrosine phosphorylation sites that have an either regulatory or signaling function. While phosphorylation of sites in the juxtamembrane domain and the lower lobe of the kinase domain presumably modulates receptor structure and kinase activity, others act as docking sites for SH2-domain-containing signaling molecules. Four experimental approaches have been used to study the biological function of these phosphorylation sites: (i) mutation analysis in which specific tyrosine residues were mutated and receptor-associated signaling molecules and biological output were determined, (ii) phosphopeptide mapping of receptors isolated from resting and ligand-stimulated cells labeled with inorganic phosphate
<italic>in vivo</italic>
, (iii) phosphopeptide mapping of
<italic>in-vitro</italic>
-phosphorylated receptors, (iv) determination of the phosphorylation state of specific residues with phosphotyrosine-specific antibodies. Each of these methods has its shortcomings and published data on receptor activity and binding of downstream signaling molecules are therefore often difficult to compare. Mutational analysis, for example, might change receptor structure and therefore biological activity, while results from
<italic>in vivo</italic>
and
<italic>in vitro</italic>
phosphorylation analysis are biased by the different turnover of tyrosine phosphates labeled under these conditions.</p>
</sec>
<sec id="Sec6">
<title>VEGFR-1 regulates blood vessel morphogenesis</title>
<p>VEGFR-1 is an 180-kDa glycoprotein expressed in many hematopoietic cells. The receptor is required for normal blood vessel development during embryogenesis, since homozygous deletion of VEGFR-1 is lethal in mice at embryonic day E8.5 due to severe malformation of the vasculature [
<xref ref-type="bibr" rid="CR16">16</xref>
]. A VEGFR-1 splice variant lacking the intracellular tyrosine kinase and the transmembrane domain, sVEGFR-1 or sFlt-1, has been shown to be deficient in signaling, yet is expressed in many tissues during normal embryonic development. This molecule apparently acts as a decoy for VEGF ligands [
<xref ref-type="bibr" rid="CR71">71</xref>
<xref ref-type="bibr" rid="CR73">73</xref>
] and is clinically associated with a placental insufficiency, called preeclampsia, observed in some patients late in pregnancy [
<xref ref-type="bibr" rid="CR74">74</xref>
]. The view that VEGFR-1 kinase activity is dispensable for vessel development at particular developmental stages is further supported by the finding that a kinase-inactive VEGFR-1 mutant rescues VEGFR-1 null mutant mice [
<xref ref-type="bibr" rid="CR75">75</xref>
]. More recent data indicate that the kinase activity of VEGFR-1 plays an essential role during pathological angiogenesis and in wound healing, by potentiating VEGFR-2 signaling [
<xref ref-type="bibr" rid="CR76">76</xref>
<xref ref-type="bibr" rid="CR78">78</xref>
], however, the molecular details for this receptor cross-talk have not yet been elucidated. Undisputed is the role of kinase-active VEGFR-1 in recruiting hematopoietic cells from bone marrow precursors [
<xref ref-type="bibr" rid="CR79">79</xref>
,
<xref ref-type="bibr" rid="CR80">80</xref>
].</p>
<p>VEGFR-1 has poor kinase activity compared with VEGFR-2 due to the presence of a repressor motif in the juxtamembrane domain, making studies on receptor phosphorylation difficult [
<xref ref-type="bibr" rid="CR81">81</xref>
]. A wide variety of signaling molecules has been shown to be activated by VEGFR-1 upon recruitment to specific phosphorylation sites [
<xref ref-type="bibr" rid="CR82">82</xref>
<xref ref-type="bibr" rid="CR86">86</xref>
]. Tyr1213 and 1333 serve as binding sites for adaptor molecules such as Nck, Crk, Grb-2 [
<xref ref-type="bibr" rid="CR84">84</xref>
,
<xref ref-type="bibr" rid="CR87">87</xref>
], Sck [
<xref ref-type="bibr" rid="CR88">88</xref>
], the regulatory p85 subunit of phosphatidylinositol (PI) 3-kinase [
<xref ref-type="bibr" rid="CR85">85</xref>
] and the phosphatase SHP-2 [
<xref ref-type="bibr" rid="CR87">87</xref>
]. Phospholipase C
<italic>γ</italic>
-1 (PLC
<italic>γ</italic>
-1) has been shown to associate with VEGFR-1 via Tyr794 and 1169 [
<xref ref-type="bibr" rid="CR86">86</xref>
,
<xref ref-type="bibr" rid="CR89">89</xref>
]. Tyr1242 and 1327 are minor phosphorylation sites with no interacting intermediates described to date. The downstream signaling pathways activated by VEGFR-1 are not well characterized and only weak proliferative or migratory effects are mediated by this receptor in endothelial cells. Conflicting reports indicate that VEGFR-1 has mitogenic potential in a PLC
<italic>γ</italic>
-1- and phosphokinase C (PKC)-dependent or independent manner [
<xref ref-type="bibr" rid="CR89">89</xref>
<xref ref-type="bibr" rid="CR91">91</xref>
]. Taking into account more recent results from P. Carmeliet’s group, these data may arise from receptor cross-talk with VEGFR-2 [
<xref ref-type="bibr" rid="CR76">76</xref>
]. A single study shows activation of Fyn and Yes, two members of Src family kinases [
<xref ref-type="bibr" rid="CR92">92</xref>
], but no biological function has been attributed to these interactions. The function of VEGFR-1 is best established in monocyte migration and differentiation [
<xref ref-type="bibr" rid="CR79">79</xref>
,
<xref ref-type="bibr" rid="CR93">93</xref>
], in the recruitment of endothelial cell progenitors from bone marrow [
<xref ref-type="bibr" rid="CR80">80</xref>
,
<xref ref-type="bibr" rid="CR94">94</xref>
,
<xref ref-type="bibr" rid="CR95">95</xref>
], the migration and invasion of carcinoma cells [
<xref ref-type="bibr" rid="CR96">96</xref>
] , the production of growth factors by liver sinusoidal endothelial cells [
<xref ref-type="bibr" rid="CR97">97</xref>
] and the adhesion of natural killer cells to endothelial cells [
<xref ref-type="bibr" rid="CR98">98</xref>
].</p>
</sec>
<sec id="Sec7">
<title>VEGFR-2 is the predominant receptor in angiogenic signaling</title>
<p>VEGFR-2 is a 200-kDa glycoprotein expressed in hematopoietic [
<xref ref-type="bibr" rid="CR48">48</xref>
,
<xref ref-type="bibr" rid="CR99">99</xref>
,
<xref ref-type="bibr" rid="CR100">100</xref>
], neural [
<xref ref-type="bibr" rid="CR101">101</xref>
<xref ref-type="bibr" rid="CR103">103</xref>
] and retinal cells [
<xref ref-type="bibr" rid="CR104">104</xref>
]. VEGFR-2 regulates endothelial cell migration, proliferation, differentiation and survival as well as vessel permeability and dilation. Among the 19 tyrosine residues present in the intracellular domain of VEGFR-2, seven putative phosphorylation sites have been described in some detail to date: Tyr801, 951, 996, 1054, 1059, 1175 and 1214. A comprehensive study of receptor activity based on
<italic>in vitro</italic>
phosphorylation of immunoprecipitated VEGFR-2, on receptor mutagenesis and on
<italic>in vivo</italic>
mapping with phosphorylation site-specific antibodies identified Tyr951, 1054, 1059, 1175 and 1214 as the most prominent phosphorylation sites and Tyr1305, 1309 and 1319 as minor sites, while Tyr801 and 996 phosphorylation was not detected in this study [
<xref ref-type="bibr" rid="CR105">105</xref>
]. Tyr1175 is clearly the most important site implicated in activation of many pathways via PLC
<italic>γ</italic>
-1 [
<xref ref-type="bibr" rid="CR106">106</xref>
]. A role for Tyr1175 in endothelial and hematopoietic cell signaling was also shown in knockin mice expressing a Tyr1175 mutant. In this study, animals expressing the mutant receptor died in utero from vascular defects similar to those observed in VEGFR-2 null mice [
<xref ref-type="bibr" rid="CR107">107</xref>
]. A mutagenesis study led to the identification of Tyr1008 as an additional site involved in activation of PLC
<italic>γ</italic>
-1, promoting endothelial cell tubulogenesis and differentiation but not cell proliferation [
<xref ref-type="bibr" rid="CR108">108</xref>
].</p>
<p>The mechanism of receptor activation is not understood in molecular detail. Tyr1054 and 1059 in the kinase domain, which are homologous to regulatory residues present in all protein kinases, were tentatively identified as autophosphorylation sites [
<xref ref-type="bibr" rid="CR109">109</xref>
,
<xref ref-type="bibr" rid="CR110">110</xref>
]. Similar to other RTKs, the putative phosphorylation sites Tyr801 and 822 located in the juxtamembrane domain may be phosphorylated following dimerization of VEGFR-2 and maintain the receptor in an active conformation [
<xref ref-type="bibr" rid="CR111">111</xref>
]. Mutation analysis also showed that Tyr996 and 1214 in the kinase and the carboxy-terminal domain are essential for receptor activation; however, one should bear in mind that such results may derive from structural changes in these mutant receptors [
<xref ref-type="bibr" rid="CR109">109</xref>
,
<xref ref-type="bibr" rid="CR112">112</xref>
].</p>
<p>VEGFR-2 is downregulated and dephosphorylated upon internalization into endocytic vesicles [
<xref ref-type="bibr" rid="CR109">109</xref>
,
<xref ref-type="bibr" rid="CR113">113</xref>
]. Both inactivation by directly associated phosphatases as well as dephosphorylation upon association with other membrane receptors carrying associated phosphatases such as SHP-1 and -2 have been described [
<xref ref-type="bibr" rid="CR114">114</xref>
,
<xref ref-type="bibr" rid="CR115">115</xref>
]. A particularly interesting case is the downregulation of VEGFR-2 by tumor necrosis factor
<italic>α</italic>
(TNF
<italic>α</italic>
), which recruits SHP-1 to the plasma membrane [
<xref ref-type="bibr" rid="CR116">116</xref>
,
<xref ref-type="bibr" rid="CR117">117</xref>
]. Finally, a variety of less well characterized signaling molecules have been shown to associate with the activated receptor and to transmit downstream signals. These include the Ras GT-Pase-activating protein GAP [
<xref ref-type="bibr" rid="CR118">118</xref>
], the adaptor proteins Nck [
<xref ref-type="bibr" rid="CR118">118</xref>
], Grb-2, Grb-10 and Sck [
<xref ref-type="bibr" rid="CR88">88</xref>
,
<xref ref-type="bibr" rid="CR114">114</xref>
,
<xref ref-type="bibr" rid="CR119">119</xref>
,
<xref ref-type="bibr" rid="CR120">120</xref>
] and the human cellular protein tyrosine phosphatase A (HCTPA) [
<xref ref-type="bibr" rid="CR121">121</xref>
].</p>
</sec>
<sec id="Sec8">
<title>VEGFR-2 promotes mitogenesis</title>
<p>VEGF-mediated endothelial cell proliferation depends on the activation of multiple pathways downstream from VEGFR-2. Similar to other members of the RTK family, VEGFR-2 activates the classical Ras-dependent signaling cascade impinging on MAP kinases such as ERK1 and 2 [
<xref ref-type="bibr" rid="CR122">122</xref>
]. In this pathway, VEGFR-2 recruits Grb-2, either by a direct interaction involving the putative docking site at Tyr1214 [
<xref ref-type="bibr" rid="CR123">123</xref>
], or via association with the adaptor protein Shc [
<xref ref-type="bibr" rid="CR114">114</xref>
]. Phosphorylation of Grb-2 leads to activation of the nucleotide exchange factor Sos followed by activation of Ras and stimulation of the Raf1/MEK/ERK signaling cascade. Cross-talk between ERK1 and 2 and another MAP kinase family member, c-Jun N-terminal protein kinase (JNK), has also been described, rendering difficult the assignment of specific biological roles to the individual MAP kinase family members [
<xref ref-type="bibr" rid="CR124">124</xref>
]. Activated MAP kinases translocate to the nucleus where they phosphorylate transcription factors and regulate gene expression.</p>
<p>Most studies on VEGF signaling agree that receptor recruitment of PLC
<italic>γ</italic>
-1 upon phosphorylation of Tyr1175 is essential for stimulation of mitogenesis. Activation of PLC
<italic>γ</italic>
-1 promotes phosphatidylinositol 4,5-bisphosphate (PIP
<sub>2</sub>
) hydrolysis giving rise to 1,2-diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP
<sub>3</sub>
). Production of DAG activates PKC resulting in Ras-independent Raf activation which leads to stimulation of ERK activity [
<xref ref-type="bibr" rid="CR106">106</xref>
,
<xref ref-type="bibr" rid="CR125">125</xref>
<xref ref-type="bibr" rid="CR128">128</xref>
]. Treating cells with PKC inhibitors blocked mitogenic signaling by VEGF supporting a role for PKC in this pathway [
<xref ref-type="bibr" rid="CR129">129</xref>
]. Receptor association of PLC
<italic>γ</italic>
-1 via Tyr801 has been reported using receptor mutants [
<xref ref-type="bibr" rid="CR86">86</xref>
] and mutation analysis of VEGFR-2 showed that Tyr801 and 1175 are putative docking sites for the p85 subunit of PI 3-kinase [
<xref ref-type="bibr" rid="CR130">130</xref>
]. PI 3-kinase has also been implicated in mitogenic signaling by VEGFR-2, based on treatment of cells with specific inhibitors [
<xref ref-type="bibr" rid="CR131">131</xref>
]. This lipid kinase regulates the S6 kinase/Akt pathway which has been shown in many cell types to stimulate cell growth. Conflicting results suggest, however, that PI 3-kinase is not required for VEGFR-2-mediated mitogenesis [
<xref ref-type="bibr" rid="CR122">122</xref>
,
<xref ref-type="bibr" rid="CR126">126</xref>
]. Taken together, these data, mostly based on mutagenesis studies, should be interpreted with some care since changes in receptor structure that alter association with signaling molecules may affect receptor readout.</p>
<p>Finally, c-Src and nitric oxide (NO) [
<xref ref-type="bibr" rid="CR132">132</xref>
] have been identified as intracellular mediators of VEGF signaling, and heparan sulfate and components of the ECM act as extracellular modulators in mitogenic signaling [
<xref ref-type="bibr" rid="CR133">133</xref>
,
<xref ref-type="bibr" rid="CR134">134</xref>
], while the classical mechanism of ‘contact inhibition of growth’, described for epithelial cells or fibroblasts and mediated by VE-cadherin in endothelial cells, is reponsible for regulation of cell proliferation in a density-dependent manner [
<xref ref-type="bibr" rid="CR135">135</xref>
].</p>
</sec>
<sec id="Sec9">
<title>VEGFR-2 regulates cytoskeleton organization and cell migration</title>
<p>The motogenic signals transduced by VEGFR-2 impinge on focal adhesion kinase (FAK), which regulates focal adhesion assembly and disassembly and actin organization. VEGF regulates FAK phosphorylation and activity and leads, together with paxillin and actin-anchoring proteins such as talin or vinculin, to recruitment of this kinase to focal adhesions [
<xref ref-type="bibr" rid="CR136">136</xref>
,
<xref ref-type="bibr" rid="CR137">137</xref>
]. FAK activation has been shown to require signaling by PKC [
<xref ref-type="bibr" rid="CR136">136</xref>
]. In addition, Nck/PAK (p21-activated kinase) was shown to promote FAK phosphorylation and cell migration [
<xref ref-type="bibr" rid="CR138">138</xref>
<xref ref-type="bibr" rid="CR141">141</xref>
]. Src-dependent FAK phosphorylation was reported to regulate cell migration and survival [
<xref ref-type="bibr" rid="CR142">142</xref>
] and, consistent with these data, the Src kinase inhibitor M475271 blocked VEGF-induced endothelial cell migration [
<xref ref-type="bibr" rid="CR143">143</xref>
]. Besides its role in cellular proliferation, Tyr1175 phosphorylation has been shown to regulate stress fiber formation, focal adhesion assembly and cell migration upon recruitment of the adaptor protein Shb and subsequent activation of PI 3-kinase and FAK [
<xref ref-type="bibr" rid="CR144">144</xref>
]. More recently, Tyr951 located in the kinase insert domain and presumably phosphorylated by an associated kinase when VEGFR-2 is activated, was shown to recruit the adaptor molecule VRAP/TSAd (VEGF-receptor-associated protein/T-cell-specific adaptor molecule) in a subfraction of endothelial cells [
<xref ref-type="bibr" rid="CR105">105</xref>
]. This adapter molecule associates with Src, PI 3-kinase and PLC
<italic>γ</italic>
-1 and regulates actin organization and cell migration, but it also plays a crucial role in tumor angiogenesis [
<xref ref-type="bibr" rid="CR105">105</xref>
,
<xref ref-type="bibr" rid="CR145">145</xref>
].</p>
<p>VEGF-induced endothelial cell migration is also mediated by stress activated protein kinase 2, SAPK/p38 [
<xref ref-type="bibr" rid="CR139">139</xref>
,
<xref ref-type="bibr" rid="CR146">146</xref>
]. SAPK/p38 activity is regulated by Src and related focal adhesion protein kinase/proline-rich tyrosine kinase 2 (RAFTK/Pyk2) [
<xref ref-type="bibr" rid="CR147">147</xref>
]. Ca
<sup>2+</sup>
mobilization and activation of Cdc42 have been shown to lead to SAPK/p38 phosphorylation [
<xref ref-type="bibr" rid="CR147">147</xref>
,
<xref ref-type="bibr" rid="CR148">148</xref>
] and to induce phosphorylation of MAPKAP kinases 2 and 3 and the small heat shock protein HSP27 [
<xref ref-type="bibr" rid="CR146">146</xref>
,
<xref ref-type="bibr" rid="CR149">149</xref>
]. This leads to the release of phosphorylated HSP27 from capped actin filaments, actin reorganization and the formation of stress fibers and lamellipodia which promote cell migration [
<xref ref-type="bibr" rid="CR150">150</xref>
]. Furthermore, a role for the small GTPases Rho and Rac, which modulate actin dynamics and cell contraction in endothelial cell migration and which are regulated by G proteins such as Gq/11 and Gbg and by PLC, is well documented [
<xref ref-type="bibr" rid="CR151">151</xref>
].</p>
</sec>
<sec id="Sec10">
<title>Signaling by VEGFR-2 is essential for cell survival</title>
<p>VEGF also protects endothelial cells against apoptosis
<italic>in vitro</italic>
and
<italic>in vivo. In vivo</italic>
, the role of VEGF in preventing apoptosis is restricted to immature vessels that lack pericytes, as indicated by experiments showing that VEGF is essential for endothelial cell survival and blood vessel development in early postnatal life, but not in adult mice [
<xref ref-type="bibr" rid="CR152">152</xref>
<xref ref-type="bibr" rid="CR154">154</xref>
]. Activation of the PI 3-kinase/Akt pathway by VEGF protects cultured cells against apoptosis induced by serum starvation [
<xref ref-type="bibr" rid="CR155">155</xref>
,
<xref ref-type="bibr" rid="CR156">156</xref>
]. Signal output from VEGFR-2 maintains adequate levels of active PI 3-kinase and thereby regulates the production of the second messenger phosphoinositide(3,4,5)trisphosphate (PIP
<sub>3</sub>
) which is required for activation of the serine/threonine kinase Akt [
<xref ref-type="bibr" rid="CR157">157</xref>
]. VEGF was also shown to induce the expression of anti-apoptotic molecules including the caspase inhibitors Bcl-2 and A1 [
<xref ref-type="bibr" rid="CR158">158</xref>
] and IAP (inhibitors of apoptosis) family proteins [
<xref ref-type="bibr" rid="CR159">159</xref>
]. Finally, survival signaling by VEGFR-2, PI 3-kinase and Akt depends on the integrity of adherens junctions that contain a transient tetrameric complex composed of VEGFR-2, PI 3-kinase, VE-cadherin and
<italic>β</italic>
-catenin [
<xref ref-type="bibr" rid="CR160">160</xref>
,
<xref ref-type="bibr" rid="CR161">161</xref>
]. Disruption of this multimeric complex by loss or truncation of VE-cadherin induced endothelial cell apoptosis and blocked the transmission of PI 3-kinase-dependent survival signals.</p>
</sec>
<sec id="Sec11">
<title>VEGFR-2 regulates vessel permeability</title>
<p>VEGF also regulates vascular permeability, and indeed was initially described as a vascular permeability factor [
<xref ref-type="bibr" rid="CR3">3</xref>
]. Increased vascular permeability is observed shortly after VEGF administration concomitant with the formation of so-called vesicular-vacuolar organelles, VVOs, [
<xref ref-type="bibr" rid="CR162">162</xref>
] and fenestrae [
<xref ref-type="bibr" rid="CR163">163</xref>
<xref ref-type="bibr" rid="CR165">165</xref>
]. These specialized regions in the plasma membrane of endothelial cells are highly permeable for macromolecules. How these membrane structures are formed is still unclear, but based on data from mutant mice lacking both c-Src and c-Yes, which showed reduced vascular permeability after VEGF administration, a role for Src family kinases has been suggested [
<xref ref-type="bibr" rid="CR166">166</xref>
]. Addition of VEGF to endothelial cells induces expression of the plasmalemmal vesicule-associated protein (PLVAP), a component of diaphragmed endothelial fenestrations. PLVAP expression is regulated by PI 3-kinase and SAPK/p38 [
<xref ref-type="bibr" rid="CR167">167</xref>
]. In mature vessels, VEGF also regulates vascular permeability by loosening the junctions between endothelial cells, giving rise to the formation of transcellular gaps. Phosphorylation of major components of tight, adherens and gap junctions, such as VE-cadherin [
<xref ref-type="bibr" rid="CR168">168</xref>
<xref ref-type="bibr" rid="CR170">170</xref>
],
<italic>β</italic>
-catenin [
<xref ref-type="bibr" rid="CR168">168</xref>
,
<xref ref-type="bibr" rid="CR171">171</xref>
], occludin and zonula occluden 1 [
<xref ref-type="bibr" rid="CR172">172</xref>
,
<xref ref-type="bibr" rid="CR173">173</xref>
] and of connexin 43 [
<xref ref-type="bibr" rid="CR174">174</xref>
] have been reported in response to VEGF. Vessel dilation and permeability are also regulated by NO which is upregulated by Akt upon induction of endothelial NO synthase (eNOS) expression [
<xref ref-type="bibr" rid="CR175">175</xref>
,
<xref ref-type="bibr" rid="CR176">176</xref>
]. Blocking eNOS and cyclooxygenase with specific inhibitors prevents the release of NO and prostacyclin (PGI2) and blocks VEGF-induced vessel hyperpermeability [
<xref ref-type="bibr" rid="CR177">177</xref>
].</p>
</sec>
<sec id="Sec12">
<title>VEGFR-3 regulates lymphangiogenesis</title>
<p>VEGFR-3 is synthesized as a 195-kDa precursor protein consisting of seven extracellular Ig-like domains, a TM and an intracellular kinase domain. The protein is proteolytically processed in the fifth Ig domain giving rise to a 125- and a 75-kDa chain held together by a disulfide bond [
<xref ref-type="bibr" rid="CR178">178</xref>
,
<xref ref-type="bibr" rid="CR179">179</xref>
]. Expression of this receptor starts at E8.5 of mouse development in all embryonic endothelial cells. After E8.5, VEGFR-3 expression is only seen on developing veins and lymphatics but not on arteries [
<xref ref-type="bibr" rid="CR59">59</xref>
,
<xref ref-type="bibr" rid="CR180">180</xref>
]. Later in development, the expression gradually becomes restricted to lymphatic vessels. In VEGFR-3 null mice, vascular remodeling and maturation are abnormal in larger vessels with a defective lumens causing fluid accumulation in the pericardial cavity and embryonic death at E9.5 [
<xref ref-type="bibr" rid="CR181">181</xref>
]. Recent reports also showed expression of the receptor on blood vessels in the vicinity of tumors as well as on several benign and malignant tumor cells [
<xref ref-type="bibr" rid="CR182">182</xref>
,
<xref ref-type="bibr" rid="CR183">183</xref>
]. A role for VEGFR-3 in cell-to-cell signaling in adult blood vessel angiogenesis, where the expression of this receptor and its ligands seems to be induced by VEGF-A, has also been suggested [
<xref ref-type="bibr" rid="CR184">184</xref>
]. VEGFR-3 is activated by VEGF-C and -D, and proteolytic processing of these ligands gives rise to variants also interacting with VEGFR-2, although with lower affinity than with VEGFR-3. VEGFR-3 apparently also heterodimerizes with VEGFR-2 in lymphatic endothelial cells, expanding the repertoire of signaling pathways activated by this receptor [
<xref ref-type="bibr" rid="CR185">185</xref>
]. Paracrine expression of VEGF-C at sites of lymphatic sprouting further supports a role for VEGFR-3 in the development of lymphatic vessels [
<xref ref-type="bibr" rid="CR186">186</xref>
]. VEGFR-3 promotes cell migration and survival in lymphatic endothelia by inducing PKC-dependent MAP kinase activation and via a wortmannin-sensitive pathway requiring PI 3-kinase and Akt [
<xref ref-type="bibr" rid="CR187">187</xref>
,
<xref ref-type="bibr" rid="CR188">188</xref>
]. In addition, a splice variant of this receptor has been shown to bind SHC [
<xref ref-type="bibr" rid="CR189">189</xref>
]. That signaling via VEGFR-3 is a prerequisite for lymphangiogenesis is further supported by data showing that a soluble, kinase-deficient receptor variant blocks lymphatic vessel formation [
<xref ref-type="bibr" rid="CR190">190</xref>
,
<xref ref-type="bibr" rid="CR191">191</xref>
].</p>
</sec>
</sec>
<sec id="Sec13">
<title>VEGF receptors form multiprotein complexes with various coreceptors</title>
<p>VEGF signaling is complicated by the fact that the ligands and their receptors interact with additional cellular proteins such as neuropilins, heparan sulfate, integrins and cadherins. These interactions allow coordination of signal strength, timing and specificity with extracellular cues arising from soluble ligands, cell-cell and cell-substratum interactions.</p>
<sec id="Sec14">
<title>Association with heparan sulfate and neuropilins</title>
<p>The short form of VEGF-A, VEGF-A121, encoded by exons 2–5 and 8, consists of a receptor-binding domain specific for VEGFR-1 and -2 and is a poor mitogen. The longer VEGF-A165 isoform, that also contains sequences encoded by exon 7, binds the receptors with similar affinity as VEGF-A121 but displays increased signaling potential [
<xref ref-type="bibr" rid="CR192">192</xref>
<xref ref-type="bibr" rid="CR194">194</xref>
]; the underlying mechanism remains unclear at present. All isoforms carrying exon 7, or 6 plus 7, such as VEGF-A165, VEGF-A183, VEGF-A189 and VEGF-A203, interact with proteins of the neuropilin family and with heparan sulfate [
<xref ref-type="bibr" rid="CR193">193</xref>
<xref ref-type="bibr" rid="CR202">202</xref>
]. Neuropilin-1 and -2 interact with VEGFR-2 and -1, respectively, stimulating signaling by these receptors. Interaction of VEGF-A165 with neuropilin-1 is particularly important for endothelial tip cell guidance where regulation of cell migration is the predominant signal output [
<xref ref-type="bibr" rid="CR203">203</xref>
,
<xref ref-type="bibr" rid="CR204">204</xref>
]. VEGF-A165 has also been shown to interact with neuropilin-1 and VEGFR-2 expressed separately on adjacent cells. This may be particularly important during endothelial cell guidance when vessels are formed along tracks predetermined by neural cells [
<xref ref-type="bibr" rid="CR205">205</xref>
<xref ref-type="bibr" rid="CR207">207</xref>
].</p>
</sec>
<sec id="Sec15">
<title>Association with integrins</title>
<p>Integrins play an important role in cell signaling linking intracellular signaling pathways activated by soluble factors to output elicited by cellular interactions with the ECM and with neighboring cells. Specific integrins bind to the extracellular domain of VEGFR-2 and augment receptor signaling [
<xref ref-type="bibr" rid="CR208">208</xref>
]. Integrins of the
<italic>β</italic>
<sub>3</sub>
subfamily specifically bind to the extracellular domain of VEGFR-2 resulting in increased receptor activation upon VEGF stimulation [
<xref ref-type="bibr" rid="CR209">209</xref>
<xref ref-type="bibr" rid="CR211">211</xref>
]. Direct interaction between
<italic>β</italic>
<sub>3</sub>
integrin and VEGFR-2 is restricted to
<italic>α</italic>
<sub>v</sub>
<italic>β</italic>
<sub>3</sub>
and was shown to be either ligand independent [
<xref ref-type="bibr" rid="CR210">210</xref>
] or dependent [
<xref ref-type="bibr" rid="CR211">211</xref>
]. VEGFR-2 signaling in the context of
<italic>α</italic>
<sub>1</sub>
<italic>β</italic>
<sub>1</sub>
and
<italic>α</italic>
<sub>2</sub>
<italic>β</italic>
<sub>1</sub>
integrins has been shown to regulate lymphangiogenesis during tissue repair, further demonstrating how output from VEGF receptors is modulated by cellular interactions with the ECM [
<xref ref-type="bibr" rid="CR212">212</xref>
]. VEGFR-2-mediated angiogenesis is also directly regulated by integrins as proposed by work performed in knockout mice lacking
<italic>β</italic>
<sub>3</sub>
or
<italic>β</italic>
<sub>5</sub>
integrin [
<xref ref-type="bibr" rid="CR213">213</xref>
,
<xref ref-type="bibr" rid="CR214">214</xref>
]. Animals that did not express these integrins showed increased VEGFR-2 activity and tumor vascularization. Taken together these studies suggest that integrins act as ‘gatekeepers’, preventing aberrant stimulation of resting endothelial cells under non-pathological conditions, or as ‘caretakers’, which facilitate angiogenesis during vessel repair in disease [
<xref ref-type="bibr" rid="CR215">215</xref>
].</p>
<p>VEGF bound to the ECM promotes integrin-dependent cell spreading, migration and survival that do not require signaling by VEGF receptors [
<xref ref-type="bibr" rid="CR216">216</xref>
]. Similarly, sVEGFR-1 interacts with
<italic>α</italic>
<sub>5</sub>
<italic>β</italic>
<sub>1</sub>
integrin thus becoming part of the ECM and promoting cell migration and spreading [
<xref ref-type="bibr" rid="CR217">217</xref>
]. In addition, interaction of VEGF-A with fibronectin, an ECM component interacting predominantly with
<italic>α</italic>
<sub>5</sub>
<italic>β</italic>
<sub>1</sub>
and, to a minor extent, with the vitronectin receptor
<italic>α</italic>
<sub>v</sub>
<italic>β</italic>
<sub>3</sub>
, has been reported recently [
<xref ref-type="bibr" rid="CR218">218</xref>
]. Finally, in cells grown on fibronectin instead of vitronectin or collagen, increased biological activity of VEGF and augmented endothelial cell migration and MAP kinase activity were reported [
<xref ref-type="bibr" rid="CR219">219</xref>
<xref ref-type="bibr" rid="CR221">221</xref>
].</p>
</sec>
<sec id="Sec16">
<title>Association with cadherins</title>
<p>Cadherins are involved in the formation of adherens junctions in endothelial and epithelial cells and play an essential role in VEGF signaling [
<xref ref-type="bibr" rid="CR160">160</xref>
,
<xref ref-type="bibr" rid="CR222">222</xref>
<xref ref-type="bibr" rid="CR225">225</xref>
]. Interaction of VEGFR-2 with VE-cadherin is regulated by
<italic>β</italic>
-catenin. At high cell density, the phosphatase PTP1/Dep1/CD148 associates with VE-cadherin and attenuates tyrosine phosphorylation of VEGFR-2 thereby suppressing signaling via PI 3-kinase, MAP kinases and PLC
<italic>γ</italic>
-1 [
<xref ref-type="bibr" rid="CR135">135</xref>
]. At low cell density, such as at the tip of developing blood vessels, VEGFR-2 associates with integrin
<italic>α</italic>
<sub>v</sub>
<italic>β</italic>
<sub>3</sub>
instead of cadherin and signal output is directed toward stimulation of cell migration and mitogenesis [
<xref ref-type="bibr" rid="CR215">215</xref>
]. Reduced turnover of VEGFR-2 at high cell density has also been demonstrated to depend on cadherin and to enhance VEGF-mediated activation of MAP kinases [
<xref ref-type="bibr" rid="CR226">226</xref>
]. To a large extent, vessel homeostasis is determined by cell-to-cell junctions that play an essential role during formation of a mechanosensory complex that regulates the response of endothelial cells to fluid shear stress [
<xref ref-type="bibr" rid="CR227">227</xref>
].</p>
</sec>
</sec>
<sec id="Sec17">
<title>Structure of VEGF receptors and their ligands</title>
<p>The structures of VEGF-A [
<xref ref-type="bibr" rid="CR228">228</xref>
,
<xref ref-type="bibr" rid="CR229">229</xref>
], PlGF [
<xref ref-type="bibr" rid="CR230">230</xref>
] and the snake venom components Vammin and VR-1 [
<xref ref-type="bibr" rid="CR31">31</xref>
] have been solved. These molecules form homodimers and fold into a cysteine-knot structure also described for other growth factors [
<xref ref-type="bibr" rid="CR231">231</xref>
]. The structure of Ig domain 2, which is part of the ligand-binding domain of VEGFR-1, has also been determined [
<xref ref-type="bibr" rid="CR232">232</xref>
] and there are structural data available for complexes formed between VEGF-A and PlGF with domain 2 of VEGFR-1 [
<xref ref-type="bibr" rid="CR233">233</xref>
<xref ref-type="bibr" rid="CR235">235</xref>
]. These structural studies were complemented with biochemical investigation of receptor-blocking peptides [
<xref ref-type="bibr" rid="CR236">236</xref>
,
<xref ref-type="bibr" rid="CR237">237</xref>
]. Biochemical analysis also led to the identification of specific residues determining receptor selectivity [
<xref ref-type="bibr" rid="CR56">56</xref>
,
<xref ref-type="bibr" rid="CR229">229</xref>
,
<xref ref-type="bibr" rid="CR238">238</xref>
,
<xref ref-type="bibr" rid="CR239">239</xref>
].</p>
<p>The extracellular Ig-like domain 2 is sufficient for high-affinity binding of VEGF-A to VEGFR-1, while domains 2 and 3 are required for binding to VEGFR-2 [
<xref ref-type="bibr" rid="CR54">54</xref>
]. VEGF mutants with altered loops L1 and L3 were used to determine the molecular basis for receptor selectivity of VEGF polypeptides [
<xref ref-type="bibr" rid="CR239">239</xref>
,
<xref ref-type="bibr" rid="CR240">240</xref>
]. We created similar chimeric molecules based on our recently solved structure of the VEGFR-2-specific VEGF-E NZ2 variant. Loops L1 and L3 are tightly associated at their base and apparently function as a structural entity determining receptor selectivity, while L2 is required for interaction with both receptors [unpublished data].</p>
<p>The structure of the heparan-sulfate- and neuropilin-1-binding domain of VEGF-A, encoded by exons 7 and 8, has been solved by nuclear magnetic resonance spectroscopy [
<xref ref-type="bibr" rid="CR241">241</xref>
]. Analysis of the electrostatic surface potential shows an extended patch of positively charged residues on one side of the molecule that is a candidate binding site for negatively charged heparan sulfate side chains. All VEGFs carrying sequences encoded by exon 7 bind to heparan sulfate both
<italic>in vitro</italic>
and
<italic>in vivo</italic>
[
<xref ref-type="bibr" rid="CR242">242</xref>
]. However, high-affinity interaction with heparan sulfate, and particularly with neuropilin-1, also requires the short carboxy-terminal peptide encoded by exon 8 as shown by our laboratory [unpublished data].</p>
<p>Clearly, additional in-depth structural information is required for a comprehensive understanding of VEGF interaction with VEGFR-1 and -2, neuropilin-1 and heparan sulfate. Similarly challenging is the task to unravel the structural changes in the intracellular kinase domain following ligand binding to the extracellular domain. A first step in this direction is the resolution of a partial structure of the kinase domain of VEGFR-2 [
<xref ref-type="bibr" rid="CR243">243</xref>
]. Such information will be useful to dissect the activation mechanism of VEGF receptor kinases and to engineer more specific reagents interfering with receptor activation, with the goal to block or stimulate VEGF signaling in disease.</p>
</sec>
<sec id="Sec18" sec-type="conclusion">
<title>Conclusions</title>
<p>Endothelial cells integrate signals elicited by cell-cell contacts, cell-extracellular matrix interactions and angiogenic growth factors. The final signal output results from the formation of context-specific signaling modules in distinct membrane compartments where receptor activity is tuned to the specific needs of a particular cell and aberrant signaling is suppressed [
<xref ref-type="bibr" rid="CR244">244</xref>
]. Signal specificity of VEGF receptors arises from combinatorial activation of multiple cellular pathways. Each receptor subtype assembles a distinct set of signaling molecules in a spatially and temporally controlled manner giving rise to the formation of specific signal transduction modules or ‘signalosomes’ at the plasma membrane.
<italic>In vivo</italic>
, cells release VEGFs into their neighborhood in a temporally and spatially well-defined manner that allows gradual formation of receptor-ligand complexes. This significantly differs from tissue culture models where growth factors are usually administered as a single bolus, and great caution is required when extrapolating such
<italic>in vitro</italic>
data to the
<italic>in vivo</italic>
situation. Signal output is also determined by competition among the various VEGF receptors for VEGFs that interact with more than one receptor isoform and is influenced by the kinetics with which receptors are activated by different ligands. Finally, the exact three-dimensional structure of each ligand-receptor-coreceptor complex determines the efficacy with which intracellular tyrosine residues are phosphorylated and subsequently exposed to downstream signaling molecules. This has an impact on the strength and the kinetics with which individual signaling pathways are activated and execute their tasks.</p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgement</title>
<p>This work was supported by grants from the Swiss National Foundation (3100A0-100204, 3100B0-10345/1 and 3100-054441), from Schweizerische Krebsliga (KLS-01220-02-2002), from the Hauptabteilung für die Sicherheit der Kernanlagen des Bundesamtes für Energiewirtschaft and by grants from the Paul Scherrer Institut. We are grateful to M. Pieren for critical reading the manuscript.</p>
</ack>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kurz</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Burri</surname>
<given-names>P. H.</given-names>
</name>
<name>
<surname>Djonov</surname>
<given-names>V. G.</given-names>
</name>
</person-group>
<article-title>Angiogenesis and vascular remodeling by intussusception: from form to function</article-title>
<source>News Physiol Sci.</source>
<year>2003</year>
<volume>18</volume>
<fpage>65</fpage>
<lpage>70</lpage>
</citation>
<citation citation-type="display-unstructured">Kurz H., Burri P. H. and Djonov V. G. (2003) Angiogenesis and vascular remodeling by intussusception: from form to function. News Physiol Sci. 18: 65–70
<pub-id pub-id-type="pmid">12644622</pub-id>
</citation>
</ref>
<ref id="CR2">
<label>2</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ferrara</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Vascular endothelial growth factor: basic science and clinical progress</article-title>
<source>Endocr. Rev.</source>
<year>2004</year>
<volume>25</volume>
<fpage>581</fpage>
<lpage>611</lpage>
</citation>
<citation citation-type="display-unstructured">Ferrara N. (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev. 25: 581–611
<pub-id pub-id-type="pmid">15294883</pub-id>
</citation>
</ref>
<ref id="CR3">
<label>3</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Senger</surname>
<given-names>D. R.</given-names>
</name>
<name>
<surname>Galli</surname>
<given-names>S. J.</given-names>
</name>
<name>
<surname>Dvorak</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Perruzzi</surname>
<given-names>C. A.</given-names>
</name>
<name>
<surname>Harvey</surname>
<given-names>V. S.</given-names>
</name>
<name>
<surname>Dvorak</surname>
<given-names>H. F.</given-names>
</name>
</person-group>
<article-title>Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid</article-title>
<source>Science</source>
<year>1983</year>
<volume>219</volume>
<fpage>983</fpage>
<lpage>985</lpage>
</citation>
<citation citation-type="display-unstructured">Senger D. R., Galli S. J., Dvorak A. M., Perruzzi C. A., Harvey V. S. and Dvorak H. F. (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219: 983–985
<pub-id pub-id-type="pmid">6823562</pub-id>
</citation>
</ref>
<ref id="CR4">
<label>4</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Senger</surname>
<given-names>D. R.</given-names>
</name>
<name>
<surname>Perruzzi</surname>
<given-names>C. A.</given-names>
</name>
<name>
<surname>Feder</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Dvorak</surname>
<given-names>H. F.</given-names>
</name>
</person-group>
<article-title>A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines</article-title>
<source>Cancer Res.</source>
<year>1986</year>
<volume>46</volume>
<fpage>5629</fpage>
<lpage>5632</lpage>
</citation>
<citation citation-type="display-unstructured">Senger D. R., Perruzzi C. A., Feder J. and Dvorak H. F. (1986) A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Res. 46: 5629–5632
<pub-id pub-id-type="pmid">3756910</pub-id>
</citation>
</ref>
<ref id="CR5">
<label>5</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Senger</surname>
<given-names>D. R.</given-names>
</name>
<name>
<surname>Connolly</surname>
<given-names>D. T.</given-names>
</name>
<name>
<surname>W. L.</surname>
</name>
<name>
<surname>Feder</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Dvorak</surname>
<given-names>H. F.</given-names>
</name>
</person-group>
<article-title>Purification and NH2-terminal amino acid sequence of guinea pig tumor-secreted vascular permeability factor</article-title>
<source>Cancer Res.</source>
<year>1990</year>
<volume>50</volume>
<fpage>1774</fpage>
<lpage>1778</lpage>
</citation>
<citation citation-type="display-unstructured">Senger D. R., Connolly D. T., Van De W. L., Feder J. and Dvorak H. F. (1990) Purification and NH2-terminal amino acid sequence of guinea pig tumor-secreted vascular permeability factor. Cancer Res. 50: 1774–1778
<pub-id pub-id-type="pmid">2155059</pub-id>
</citation>
</ref>
<ref id="CR6">
<label>6</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Keck</surname>
<given-names>P. J.</given-names>
</name>
<name>
<surname>Hauser</surname>
<given-names>S. D.</given-names>
</name>
<name>
<surname>Krivi</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Sanzo</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Warren</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Feder</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Vascular permeability factor, an endothelial cell mitogen related to PDGF</article-title>
<source>Science</source>
<year>1989</year>
<volume>246</volume>
<fpage>1309</fpage>
<lpage>1312</lpage>
</citation>
<citation citation-type="display-unstructured">Keck P. J., Hauser S. D., Krivi G., Sanzo K., Warren T., Feder J. et al. (1989) Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246: 1309–1312
<pub-id pub-id-type="pmid">2479987</pub-id>
</citation>
</ref>
<ref id="CR7">
<label>7</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lobb</surname>
<given-names>R. R.</given-names>
</name>
<name>
<surname>Key</surname>
<given-names>M. E.</given-names>
</name>
<name>
<surname>Alderman</surname>
<given-names>E. M.</given-names>
</name>
<name>
<surname>Fett</surname>
<given-names>J. W.</given-names>
</name>
</person-group>
<article-title>Partial purification and characterization of a vascular permeability factor secreted by a human colon adenocarcinoma cell line</article-title>
<source>Int. J. Cancer</source>
<year>1985</year>
<volume>36</volume>
<fpage>473</fpage>
<lpage>478</lpage>
</citation>
<citation citation-type="display-unstructured">Lobb R. R., Key M. E., Alderman E. M. and Fett J. W. (1985) Partial purification and characterization of a vascular permeability factor secreted by a human colon adenocarcinoma cell line. Int. J. Cancer 36: 473–478
<pub-id pub-id-type="pmid">4044056</pub-id>
</citation>
</ref>
<ref id="CR8">
<label>8</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bruce</surname>
<given-names>J. N.</given-names>
</name>
<name>
<surname>Criscuolo</surname>
<given-names>G. R.</given-names>
</name>
<name>
<surname>Merrill</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Moquin</surname>
<given-names>R. R.</given-names>
</name>
<name>
<surname>Blacklock</surname>
<given-names>J. B.</given-names>
</name>
<name>
<surname>Oldfield</surname>
<given-names>E. H.</given-names>
</name>
</person-group>
<article-title>Vascular permeability induced by protein product of malignant brain tumors: inhibition by dexamethasone</article-title>
<source>J. Neurosurg.</source>
<year>1987</year>
<volume>67</volume>
<fpage>880</fpage>
<lpage>884</lpage>
</citation>
<citation citation-type="display-unstructured">Bruce J. N., Criscuolo G. R., Merrill M. J., Moquin R. R., Blacklock J. B. and Oldfield E. H. (1987) Vascular permeability induced by protein product of malignant brain tumors: inhibition by dexamethasone. J. Neurosurg. 67: 880–884
<pub-id pub-id-type="pmid">3681425</pub-id>
</citation>
</ref>
<ref id="CR9">
<label>9</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Criscuolo</surname>
<given-names>G. R.</given-names>
</name>
<name>
<surname>Merrill</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Oldfield</surname>
<given-names>E. H.</given-names>
</name>
</person-group>
<article-title>Further characterization of malignant glioma-derived vascular permeability factor</article-title>
<source>J. Neurosurg.</source>
<year>1988</year>
<volume>69</volume>
<fpage>254</fpage>
<lpage>262</lpage>
</citation>
<citation citation-type="display-unstructured">Criscuolo G. R., Merrill M. J. and Oldfield E. H. (1988) Further characterization of malignant glioma-derived vascular permeability factor. J. Neurosurg. 69: 254–262
<pub-id pub-id-type="pmid">3134521</pub-id>
</citation>
</ref>
<ref id="CR10">
<label>10</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Connolly</surname>
<given-names>D. T.</given-names>
</name>
<name>
<surname>Heuvelman</surname>
<given-names>D. M.</given-names>
</name>
<name>
<surname>Nelson</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Olander</surname>
<given-names>J. V.</given-names>
</name>
<name>
<surname>Eppley</surname>
<given-names>B. L.</given-names>
</name>
<name>
<surname>Delfino</surname>
<given-names>J. J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis</article-title>
<source>J. Clin. Invest</source>
<year>1989</year>
<volume>84</volume>
<fpage>1470</fpage>
<lpage>1478</lpage>
</citation>
<citation citation-type="display-unstructured">Connolly D. T., Heuvelman D. M., Nelson R., Olander J. V., Eppley B. L., Delfino J. J. et al. (1989) Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J. Clin. Invest 84: 1470–1478
<pub-id pub-id-type="pmid">2478587</pub-id>
</citation>
</ref>
<ref id="CR11">
<label>11</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rosenthal</surname>
<given-names>R. A.</given-names>
</name>
<name>
<surname>Megyesi</surname>
<given-names>J. F.</given-names>
</name>
<name>
<surname>Henzel</surname>
<given-names>W. J.</given-names>
</name>
<name>
<surname>Ferrara</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Folkman</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Conditioned medium from mouse sarcoma 180 cells contains vascular endothelial growth factor</article-title>
<source>Growth Factors</source>
<year>1990</year>
<volume>4</volume>
<fpage>53</fpage>
<lpage>59</lpage>
</citation>
<citation citation-type="display-unstructured">Rosenthal R. A., Megyesi J. F., Henzel W. J., Ferrara N. and Folkman J. (1990) Conditioned medium from mouse sarcoma 180 cells contains vascular endothelial growth factor. Growth Factors 4: 53–59
<pub-id pub-id-type="pmid">2085441</pub-id>
</citation>
</ref>
<ref id="CR12">
<label>12</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Clauss</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gerlach</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gerlach</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Brett</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Familletti</surname>
<given-names>P. C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Vascular permeability factor: a tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration</article-title>
<source>J. Exp. Med.</source>
<year>1990</year>
<volume>172</volume>
<fpage>1535</fpage>
<lpage>1545</lpage>
</citation>
<citation citation-type="display-unstructured">Clauss M., Gerlach M., Gerlach H., Brett J., Wang F., Familletti P. C. et al. (1990) Vascular permeability factor: a tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration. J. Exp. Med. 172: 1535–1545
<pub-id pub-id-type="pmid">2258694</pub-id>
</citation>
</ref>
<ref id="CR13">
<label>13</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carmeliet</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Ferreira</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Breier</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Pollefeyt</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kieckens</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Gertsenstein</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele</article-title>
<source>Nature</source>
<year>1996</year>
<volume>380</volume>
<fpage>435</fpage>
<lpage>439</lpage>
</citation>
<citation citation-type="display-unstructured">Carmeliet P., Ferreira V., Breier G., Pollefeyt S., Kieckens L., Gertsenstein M. et al. (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380: 435–439
<pub-id pub-id-type="pmid">8602241</pub-id>
</citation>
</ref>
<ref id="CR14">
<label>14</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shalaby</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Rossant</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yamaguchi</surname>
<given-names>T. P.</given-names>
</name>
<name>
<surname>Gertsenstein</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>X. F.</given-names>
</name>
<name>
<surname>Breitman</surname>
<given-names>M. L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice</article-title>
<source>Nature</source>
<year>1995</year>
<volume>376</volume>
<fpage>62</fpage>
<lpage>66</lpage>
</citation>
<citation citation-type="display-unstructured">Shalaby F., Rossant J., Yamaguchi T. P., Gertsenstein M., Wu X. F., Breitman M. L. et al. (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376: 62–66
<pub-id pub-id-type="pmid">7596435</pub-id>
</citation>
</ref>
<ref id="CR15">
<label>15</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shalaby</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Stanford</surname>
<given-names>W. L.</given-names>
</name>
<name>
<surname>Fischer</surname>
<given-names>K. D.</given-names>
</name>
<name>
<surname>Schuh</surname>
<given-names>A. C.</given-names>
</name>
<name>
<surname>Schwartz</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis</article-title>
<source>Cell</source>
<year>1997</year>
<volume>89</volume>
<fpage>981</fpage>
<lpage>990</lpage>
</citation>
<citation citation-type="display-unstructured">Shalaby F., Ho J., Stanford W. L., Fischer K. D., Schuh A. C., Schwartz L. et al. (1997) A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 89: 981–990
<pub-id pub-id-type="pmid">9200616</pub-id>
</citation>
</ref>
<ref id="CR16">
<label>16</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fong</surname>
<given-names>G. H.</given-names>
</name>
<name>
<surname>Rossant</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Gertsenstein</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Breitman</surname>
<given-names>M. L.</given-names>
</name>
</person-group>
<article-title>Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium</article-title>
<source>Nature</source>
<year>1995</year>
<volume>376</volume>
<fpage>66</fpage>
<lpage>70</lpage>
</citation>
<citation citation-type="display-unstructured">Fong G. H., Rossant J., Gertsenstein M. and Breitman M. L. (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376: 66–70
<pub-id pub-id-type="pmid">7596436</pub-id>
</citation>
</ref>
<ref id="CR17">
<label>17</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Javerzat</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Auguste</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Bikfalvi</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>The role of fibroblast growth factors in vascular development</article-title>
<source>Trends Mol. Med.</source>
<year>2002</year>
<volume>8</volume>
<fpage>483</fpage>
</citation>
<citation citation-type="display-unstructured">Javerzat S., Auguste P. and Bikfalvi A. (2002) The role of fibroblast growth factors in vascular development. Trends Mol. Med. 8: 483
<pub-id pub-id-type="pmid">12383771</pub-id>
</citation>
</ref>
<ref id="CR18">
<label>18</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pepper</surname>
<given-names>M. S.</given-names>
</name>
</person-group>
<article-title>Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity</article-title>
<source>Cytokine Growth Factor Rev.</source>
<year>1997</year>
<volume>8</volume>
<fpage>21</fpage>
<lpage>43</lpage>
</citation>
<citation citation-type="display-unstructured">Pepper M. S. (1997) Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev. 8: 21–43
<pub-id pub-id-type="pmid">9174661</pub-id>
</citation>
</ref>
<ref id="CR19">
<label>19</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Benjamin</surname>
<given-names>L. E.</given-names>
</name>
<name>
<surname>Hemo</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Keshet</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF</article-title>
<source>Development</source>
<year>1998</year>
<volume>125</volume>
<fpage>1591</fpage>
<lpage>1598</lpage>
</citation>
<citation citation-type="display-unstructured">Benjamin L. E., Hemo I. and Keshet E. (1998) A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 125: 1591–1598
<pub-id pub-id-type="pmid">9521897</pub-id>
</citation>
</ref>
<ref id="CR20">
<label>20</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jones</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Iljin</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Dumont D</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Alitalo</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Tie receptors: new modulators of angiogenic and lymphangiogenic responses</article-title>
<source>Nat. Rev. Mol. Cell Biol.</source>
<year>2001</year>
<volume>2</volume>
<fpage>257</fpage>
<lpage>267</lpage>
</citation>
<citation citation-type="display-unstructured">Jones N., Iljin K., Dumont D. J. and Alitalo K. (2001) Tie receptors: new modulators of angiogenic and lymphangiogenic responses. Nat. Rev. Mol. Cell Biol. 2: 257–267
<pub-id pub-id-type="pmid">11283723</pub-id>
</citation>
</ref>
<ref id="CR21">
<label>21</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bruckner</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kockel</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Duchek</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Luque C</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Rorth</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Perrimon</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>The PDGF/VEGF receptor controls blood cell survival in
<italic>Drosophila</italic>
</article-title>
<source>Dev. Cell</source>
<year>2004</year>
<volume>7</volume>
<fpage>73</fpage>
<lpage>84</lpage>
</citation>
<citation citation-type="display-unstructured">Bruckner K., Kockel L., Duchek P., Luque C. M., Rorth P. and Perrimon N. (2004) The PDGF/VEGF receptor controls blood cell survival in Drosophila. Dev. Cell 7: 73–84
<pub-id pub-id-type="pmid">15239955</pub-id>
</citation>
</ref>
<ref id="CR22">
<label>22</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cho</surname>
<given-names>N. K.</given-names>
</name>
<name>
<surname>Keyes</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Heller</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Ryner</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Karim</surname>
<given-names>F.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Developmental control of blood cell migration by the
<italic>Drosophila</italic>
VEGF pathway</article-title>
<source>Cell</source>
<year>2002</year>
<volume>108</volume>
<fpage>865</fpage>
<lpage>876</lpage>
</citation>
<citation citation-type="display-unstructured">Cho N. K., Keyes L., Johnson E., Heller J., Ryner L., Karim F. et al. (2002) Developmental control of blood cell migration by the Drosophila VEGF pathway. Cell 108: 865–876
<pub-id pub-id-type="pmid">11955438</pub-id>
</citation>
</ref>
<ref id="CR23">
<label>23</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Duchek</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Somogyi</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Jekely</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Beccari</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Rorth</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Guidance of cell migration by the
<italic>Drosophila</italic>
PDGF/VEGF receptor</article-title>
<source>Cell</source>
<year>2001</year>
<volume>107</volume>
<fpage>17</fpage>
<lpage>26</lpage>
</citation>
<citation citation-type="display-unstructured">Duchek P., Somogyi K., Jekely G., Beccari S. and Rorth P. (2001) Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell 107: 17–26
<pub-id pub-id-type="pmid">11595182</pub-id>
</citation>
</ref>
<ref id="CR24">
<label>24</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tjwa</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Luttun</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Autiero</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Carmeliet</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>VEGF and PlGF: two pleiotropic growth factors with distinct roles in development and homeostasis</article-title>
<source>Cell Tissue Res.</source>
<year>2003</year>
<volume>314</volume>
<fpage>5</fpage>
<lpage>14</lpage>
</citation>
<citation citation-type="display-unstructured">Tjwa M., Luttun A., Autiero M. and Carmeliet P. (2003) VEGF and PlGF: two pleiotropic growth factors with distinct roles in development and homeostasis. Cell Tissue Res. 314: 5–14
<pub-id pub-id-type="pmid">13680354</pub-id>
</citation>
</ref>
<ref id="CR25">
<label>25</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tammela</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Enholm</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Alitalo</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Paavonen</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>The biology of vascular endothelial growth factors</article-title>
<source>Cardiovasc. Res.</source>
<year>2005</year>
<volume>65</volume>
<fpage>550</fpage>
<lpage>563</lpage>
</citation>
<citation citation-type="display-unstructured">Tammela T., Enholm B., Alitalo K. and Paavonen K. (2005) The biology of vascular endothelial growth factors. Cardiovasc. Res. 65: 550–563
<pub-id pub-id-type="pmid">15664381</pub-id>
</citation>
</ref>
<ref id="CR26">
<label>26</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maglione</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Guerriero</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Viglietto</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Delli-Bovi</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Persico</surname>
<given-names>M. G.</given-names>
</name>
</person-group>
<article-title>Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>1991</year>
<volume>88</volume>
<fpage>9267</fpage>
<lpage>9271</lpage>
</citation>
<citation citation-type="display-unstructured">Maglione D., Guerriero V., Viglietto G., Delli-Bovi P. and Persico M. G. (1991) Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor. Proc. Natl. Acad. Sci. USA 88: 9267–9271
<pub-id pub-id-type="pmid">1924389</pub-id>
</citation>
</ref>
<ref id="CR27">
<label>27</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meyer</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Clauss</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lepple</surname>
<given-names>W. A.</given-names>
</name>
<name>
<surname>Waltenberger</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Augustin</surname>
<given-names>H. G.</given-names>
</name>
<name>
<surname>Ziche</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signaling through VEGFR-2 (KDR) but not VEGFR-1 (Flt-1) receptor tyrosine kinases</article-title>
<source>EMBO J.</source>
<year>1999</year>
<volume>18</volume>
<fpage>363</fpage>
<lpage>374</lpage>
</citation>
<citation citation-type="display-unstructured">Meyer M., Clauss M., Lepple W. A., Waltenberger J., Augustin H. G., Ziche M. et al. (1999) A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signaling through VEGFR-2 (KDR) but not VEGFR-1 (Flt-1) receptor tyrosine kinases. EMBO J. 18: 363–374
<pub-id pub-id-type="pmid">9889193</pub-id>
</citation>
</ref>
<ref id="CR28">
<label>28</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ogawa</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Oku</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Sawano</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Yamaguchi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Yazaki</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Shibuya</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>A novel type of vascular endothelial growth factor, VEGF-E (NZ-7 VEGF), preferentially utilizes KDR/Flk-1 receptor and carries a potent mitotic activity without heparin-binding domain</article-title>
<source>J. Biol. Chem.</source>
<year>1998</year>
<volume>273</volume>
<fpage>31273</fpage>
<lpage>31282</lpage>
</citation>
<citation citation-type="display-unstructured">Ogawa S., Oku A., Sawano A., Yamaguchi S., Yazaki Y. and Shibuya M. (1998) A novel type of vascular endothelial growth factor, VEGF-E (NZ-7 VEGF), preferentially utilizes KDR/Flk-1 receptor and carries a potent mitotic activity without heparin-binding domain. J. Biol. Chem. 273: 31273–31282
<pub-id pub-id-type="pmid">9813035</pub-id>
</citation>
</ref>
<ref id="CR29">
<label>29</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wise</surname>
<given-names>L. M.</given-names>
</name>
<name>
<surname>Veikkola</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Mercer</surname>
<given-names>A. A.</given-names>
</name>
<name>
<surname>Savory</surname>
<given-names>L. J.</given-names>
</name>
<name>
<surname>Fleming</surname>
<given-names>S. B.</given-names>
</name>
<name>
<surname>Caesar</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Vascular endothelial growth factor (VEGF)-like protein from orf virus NZ2 binds to VEGFR2 and neuropilin-1</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>1999</year>
<volume>96</volume>
<fpage>3071</fpage>
<lpage>3076</lpage>
</citation>
<citation citation-type="display-unstructured">Wise L. M., Veikkola T., Mercer A. A., Savory L. J., Fleming S. B., Caesar C. et al. (1999) Vascular endothelial growth factor (VEGF)-like protein from orf virus NZ2 binds to VEGFR2 and neuropilin-1. Proc. Natl. Acad. Sci. USA 96: 3071–3076
<pub-id pub-id-type="pmid">10077638</pub-id>
</citation>
</ref>
<ref id="CR30">
<label>30</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Junqueira-De-Azevedo</surname>
<given-names>I. I.</given-names>
</name>
<name>
<surname>Silva</surname>
<given-names>M. B.</given-names>
</name>
<name>
<surname>Chudzinski-Tavassi</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>P. L.</given-names>
</name>
</person-group>
<article-title>Identification and cloning of snake venom vascular endothelial growth factor (svVEGF) from
<italic>Bothrops erythromelas</italic>
pitviper</article-title>
<source>Toxicon</source>
<year>2004</year>
<volume>44</volume>
<fpage>571</fpage>
<lpage>575</lpage>
</citation>
<citation citation-type="display-unstructured">Junqueira-De-Azevedo Id Ide, Silva M. B., Chudzinski-Tavassi A. M. and Ho P. L. (2004) Identification and cloning of snake venom vascular endothelial growth factor (svVEGF) from Bothrops erythromelas pitviper. Toxicon 44: 571–575
<pub-id pub-id-type="pmid">15450933</pub-id>
</citation>
</ref>
<ref id="CR31">
<label>31</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Suto</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Yamazaki</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Morita</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Mizuno</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Crystal structures of novel VEGFs from snake venoms</article-title>
<source>J. Biol. Chem.</source>
<year>2004</year>
<volume>280</volume>
<fpage>2126</fpage>
<lpage>2131</lpage>
</citation>
<citation citation-type="display-unstructured">Suto K., Yamazaki Y., Morita T. and Mizuno H. (2004) Crystal structures of novel VEGFs from snake venoms. J. Biol. Chem. 280: 2126–2131
<pub-id pub-id-type="pmid">15542594</pub-id>
</citation>
</ref>
<ref id="CR32">
<label>32</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Takahashi</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Hattori</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Iwamatsu</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Takizawa</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Shibuya</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>A novel snake venom vascular endothelial growth factor (VEGF) predominantly induces vascular permeability through preferential signaling via VEGF receptor-1</article-title>
<source>J. Biol. Chem.</source>
<year>2004</year>
<volume>279</volume>
<fpage>46304</fpage>
<lpage>46314</lpage>
</citation>
<citation citation-type="display-unstructured">Takahashi H., Hattori S., Iwamatsu A., Takizawa H. and Shibuya M. (2004) A novel snake venom vascular endothelial growth factor (VEGF) predominantly induces vascular permeability through preferential signaling via VEGF receptor-1. J. Biol. Chem. 279: 46304–46314
<pub-id pub-id-type="pmid">15328352</pub-id>
</citation>
</ref>
<ref id="CR33">
<label>33</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yamazaki</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Takani</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Atoda</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Morita</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Snake venom VEGFs exhibit potent activity through their specific recognition of KDR (VEGF receptor 2)</article-title>
<source>J. Biol. Chem.</source>
<year>2003</year>
<volume>278</volume>
<fpage>51985</fpage>
<lpage>51988</lpage>
</citation>
<citation citation-type="display-unstructured">Yamazaki Y., Takani K., Atoda H. and Morita T. (2003) Snake venom VEGFs exhibit potent activity through their specific recognition of KDR (VEGF receptor 2). J. Biol. Chem. 278: 51985–51988
<pub-id pub-id-type="pmid">14600159</pub-id>
</citation>
</ref>
<ref id="CR34">
<label>34</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tokunaga</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yamazaki</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Morita</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Specific distribution of VEGF-F in Viperinae snake venoms: isolation and characterization of a VEGF-F from the venom of
<italic>Daboia russelli siamensis</italic>
</article-title>
<source>Arch. Biochem. Biophys.</source>
<year>2005</year>
<volume>439</volume>
<fpage>241</fpage>
<lpage>247</lpage>
</citation>
<citation citation-type="display-unstructured">Tokunaga Y., Yamazaki Y. and Morita T. (2005) Specific distribution of VEGF-F in Viperinae snake venoms: isolation and characterization of a VEGF-F from the venom of Daboia russelli siamensis. Arch. Biochem. Biophys. 439: 241–247
<pub-id pub-id-type="pmid">15992764</pub-id>
</citation>
</ref>
<ref id="CR35">
<label>35</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yamazaki</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Matsunaga</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Nakano</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Morita</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Identification of VEGF receptor-binding protein in the venom of eastern cottonmouth: a new role of snake venom myotoxic Lys49-phospholipase A2</article-title>
<source>J. Biol. Chem.</source>
<year>2005</year>
<volume>280</volume>
<fpage>29989</fpage>
<lpage>29992</lpage>
</citation>
<citation citation-type="display-unstructured">Yamazaki Y., Matsunaga Y., Nakano Y. and Morita T. (2005) Identification of VEGF receptor-binding protein in the venom of eastern cottonmouth: a new role of snake venom myotoxic Lys49-phospholipase A2. J. Biol. Chem. 280: 29989–29992
<pub-id pub-id-type="pmid">16014630</pub-id>
</citation>
</ref>
<ref id="CR36">
<label>36</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Robinson</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Stringer</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>The splice variants of vascular endothelial growth factor (VEGF) and their receptors</article-title>
<source>J. Cell Sci.</source>
<year>2001</year>
<volume>114</volume>
<fpage>853</fpage>
<lpage>865</lpage>
</citation>
<citation citation-type="display-unstructured">Robinson C. and Stringer S. (2001) The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J. Cell Sci. 114: 853–865
<pub-id pub-id-type="pmid">11181169</pub-id>
</citation>
</ref>
<ref id="CR37">
<label>37</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Jilani</surname>
<given-names>S. M.</given-names>
</name>
<name>
<surname>Nikolova</surname>
<given-names>G. V.</given-names>
</name>
<name>
<surname>Carpizo</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Iruela-Arispe</surname>
<given-names>M. L.</given-names>
</name>
</person-group>
<article-title>Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors</article-title>
<source>J. Cell Biol.</source>
<year>2005</year>
<volume>169</volume>
<fpage>681</fpage>
<lpage>691</lpage>
</citation>
<citation citation-type="display-unstructured">Lee S., Jilani S. M., Nikolova G. V., Carpizo D. and Iruela-Arispe M. L. (2005) Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J. Cell Biol. 169: 681–691
<pub-id pub-id-type="pmid">15911882</pub-id>
</citation>
</ref>
<ref id="CR38">
<label>38</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bates</surname>
<given-names>D. O.</given-names>
</name>
<name>
<surname>Cui</surname>
<given-names>T. G.</given-names>
</name>
<name>
<surname>Doughty</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Winkler</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sugiono</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Shields</surname>
<given-names>J. D.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>VEGF(165)b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma</article-title>
<source>Cancer Res.</source>
<year>2002</year>
<volume>62</volume>
<fpage>4123</fpage>
<lpage>4131</lpage>
</citation>
<citation citation-type="display-unstructured">Bates D. O., Cui T. G., Doughty J. M., Winkler M., Sugiono M., Shields J. D. et al. (2002) VEGF(165)b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res. 62: 4123–4131
<pub-id pub-id-type="pmid">12124351</pub-id>
</citation>
</ref>
<ref id="CR39">
<label>39</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Woolard</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>W. Y.</given-names>
</name>
<name>
<surname>Bevan</surname>
<given-names>H. S.</given-names>
</name>
<name>
<surname>Qiu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Morbidelli</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Pritchard-Jones</surname>
<given-names>R. O.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression</article-title>
<source>Cancer Res.</source>
<year>2004</year>
<volume>64</volume>
<fpage>7822</fpage>
<lpage>7835</lpage>
</citation>
<citation citation-type="display-unstructured">Woolard J., Wang W. Y., Bevan H. S., Qiu Y., Morbidelli L., Pritchard-Jones R. O. et al. (2004) VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res. 64: 7822–7835
<pub-id pub-id-type="pmid">15520188</pub-id>
</citation>
</ref>
<ref id="CR40">
<label>40</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Forsythe</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>B. H.</given-names>
</name>
<name>
<surname>Iyer</surname>
<given-names>N. V.</given-names>
</name>
<name>
<surname>Agani</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>S. W.</given-names>
</name>
<name>
<surname>Koos</surname>
<given-names>R. D.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1</article-title>
<source>Mol. Cell. Biol.</source>
<year>1996</year>
<volume>16</volume>
<fpage>4604</fpage>
<lpage>4613</lpage>
</citation>
<citation citation-type="display-unstructured">Forsythe J. A., Jiang B. H., Iyer N. V., Agani F., Leung S. W., Koos R. D. et al. (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol. 16: 4604–4613
<pub-id pub-id-type="pmid">8756616</pub-id>
</citation>
</ref>
<ref id="CR41">
<label>41</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brogi</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Schatteman</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kim E</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Varticovski</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Keyt</surname>
<given-names>B.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Hypoxia-induced paracrine regulation of vascular endothelial growth factor receptor expression</article-title>
<source>J. Clin. Invest.</source>
<year>1996</year>
<volume>97</volume>
<fpage>469</fpage>
<lpage>476</lpage>
</citation>
<citation citation-type="display-unstructured">Brogi E., Schatteman G., Wu T., Kim E. A., Varticovski L., Keyt B. et al. (1996) Hypoxia-induced paracrine regulation of vascular endothelial growth factor receptor expression. J. Clin. Invest. 97: 469–476
<pub-id pub-id-type="pmid">8567969</pub-id>
</citation>
</ref>
<ref id="CR42">
<label>42</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Namiki</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Brogi</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Kearney</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kim E</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Couffinhal</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Hypoxia induces vascular endothelial growth factor in cultured human endothelial cells</article-title>
<source>J. Biol. Chem.</source>
<year>1995</year>
<volume>270</volume>
<fpage>31189</fpage>
<lpage>31195</lpage>
</citation>
<citation citation-type="display-unstructured">Namiki A., Brogi E., Kearney M., Kim E. A., Wu T., Couffinhal T. et al. (1995) Hypoxia induces vascular endothelial growth factor in cultured human endothelial cells. J. Biol. Chem. 270: 31189–31195
<pub-id pub-id-type="pmid">8537383</pub-id>
</citation>
</ref>
<ref id="CR43">
<label>43</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ferrara</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Timeline: VEGF and the quest for tumour angiogenesis factors</article-title>
<source>Nat. Rev. Cancer</source>
<year>2002</year>
<volume>2</volume>
<fpage>795</fpage>
<lpage>803</lpage>
</citation>
<citation citation-type="display-unstructured">Ferrara N. (2002) Timeline: VEGF and the quest for tumour angiogenesis factors. Nat. Rev. Cancer 2: 795–803
<pub-id pub-id-type="pmid">12360282</pub-id>
</citation>
</ref>
<ref id="CR44">
<label>44</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shibuya</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Yamaguchi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Yamane</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ikeda</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Tojo</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Matsushime</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family</article-title>
<source>Oncogene</source>
<year>1990</year>
<volume>5</volume>
<fpage>519</fpage>
<lpage>524</lpage>
</citation>
<citation citation-type="display-unstructured">Shibuya M., Yamaguchi S., Yamane A., Ikeda T., Tojo A., Matsushime H. et al. (1990) Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family. Oncogene 5: 519–524
<pub-id pub-id-type="pmid">2158038</pub-id>
</citation>
</ref>
<ref id="CR45">
<label>45</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Terman</surname>
<given-names>B. I.</given-names>
</name>
<name>
<surname>Carrion</surname>
<given-names>M. E.</given-names>
</name>
<name>
<surname>Kovacs</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Rasmussen</surname>
<given-names>B. A.</given-names>
</name>
<name>
<surname>Eddy</surname>
<given-names>R. L.</given-names>
</name>
<name>
<surname>Shows</surname>
<given-names>T. B.</given-names>
</name>
</person-group>
<article-title>Identification of a new endothelial cell growth factor receptor tyrosine kinase</article-title>
<source>Oncogene</source>
<year>1991</year>
<volume>6</volume>
<fpage>1677</fpage>
<lpage>1683</lpage>
</citation>
<citation citation-type="display-unstructured">Terman B. I., Carrion M. E., Kovacs E., Rasmussen B. A., Eddy R. L. and Shows T. B. (1991) Identification of a new endothelial cell growth factor receptor tyrosine kinase. Oncogene 6: 1677–1683
<pub-id pub-id-type="pmid">1656371</pub-id>
</citation>
</ref>
<ref id="CR46">
<label>46</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pajusola</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Aprelikova</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Korhonen</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Kaipainen</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Pertovaara</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Alitalo</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>FLT4 receptor tyrosine kinase contains seven immunoglobulin-like loops and is expressed in multiple human tissues and cell lines</article-title>
<source>Cancer Res.</source>
<year>1992</year>
<volume>52</volume>
<fpage>5738</fpage>
<lpage>5743</lpage>
</citation>
<citation citation-type="display-unstructured">Pajusola K., Aprelikova O., Korhonen J., Kaipainen A., Pertovaara L., Alitalo R. et al. (1992) FLT4 receptor tyrosine kinase contains seven immunoglobulin-like loops and is expressed in multiple human tissues and cell lines. Cancer Res. 52: 5738–5743
<pub-id pub-id-type="pmid">1327515</pub-id>
</citation>
</ref>
<ref id="CR47">
<label>47</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matthews</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Jordan</surname>
<given-names>C. T.</given-names>
</name>
<name>
<surname>Gavin</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Jenkins</surname>
<given-names>N. A.</given-names>
</name>
<name>
<surname>Copeland</surname>
<given-names>N. G.</given-names>
</name>
<name>
<surname>Lemischka</surname>
<given-names>I. R.</given-names>
</name>
</person-group>
<article-title>A receptor tyrosine kinase cDNA isolated from a population of enriched primitive hematopoietic cells and exhibiting close genetic linkage to ckit</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>1991</year>
<volume>88</volume>
<fpage>9026</fpage>
<lpage>9030</lpage>
</citation>
<citation citation-type="display-unstructured">Matthews W., Jordan C. T., Gavin M., Jenkins N. A., Copeland N. G. and Lemischka I. R. (1991) A receptor tyrosine kinase cDNA isolated from a population of enriched primitive hematopoietic cells and exhibiting close genetic linkage to ckit. Proc. Natl. Acad. Sci. USA 88: 9026–9030
<pub-id pub-id-type="pmid">1717995</pub-id>
</citation>
</ref>
<ref id="CR48">
<label>48</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kabrun</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Buhring</surname>
<given-names>H. J.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Ullrich</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Risau</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Keller</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Flk-1 expression defines a population of early embryonic hematopoietic precursors</article-title>
<source>Development</source>
<year>1997</year>
<volume>124</volume>
<fpage>2039</fpage>
<lpage>2048</lpage>
</citation>
<citation citation-type="display-unstructured">Kabrun N., Buhring H. J., Choi K., Ullrich A., Risau W. and Keller G. (1997) Flk-1 expression defines a population of early embryonic hematopoietic precursors. Development 124: 2039–2048
<pub-id pub-id-type="pmid">9169850</pub-id>
</citation>
</ref>
<ref id="CR49">
<label>49</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ferrara</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Davis-Smyth</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>The biology of vascular endothelial growth factor</article-title>
<source>Endocr. Rev.</source>
<year>1997</year>
<volume>18</volume>
<fpage>4</fpage>
<lpage>25</lpage>
</citation>
<citation citation-type="display-unstructured">Ferrara N. and Davis-Smyth T. (1997) The biology of vascular endothelial growth factor. Endocr. Rev. 18: 4–25
<pub-id pub-id-type="pmid">9034784</pub-id>
</citation>
</ref>
<ref id="CR50">
<label>50</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bellamy</surname>
<given-names>W. T.</given-names>
</name>
</person-group>
<article-title>Vascular endothelial growth factor as a target opportunity in hematological malignancies</article-title>
<source>Curr. Opin. Oncol.</source>
<year>2002</year>
<volume>14</volume>
<fpage>649</fpage>
<lpage>656</lpage>
</citation>
<citation citation-type="display-unstructured">Bellamy W. T. (2002) Vascular endothelial growth factor as a target opportunity in hematological malignancies. Curr. Opin. Oncol. 14: 649–656
<pub-id pub-id-type="pmid">12409656</pub-id>
</citation>
</ref>
<ref id="CR51">
<label>51</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ishida</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Murray</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Saito</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Kanthou</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Benzakour</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Shibuya</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Expression of vascular endothelial growth factor receptors in smooth muscle cells</article-title>
<source>J. Cell Physiol.</source>
<year>2001</year>
<volume>188</volume>
<fpage>359</fpage>
<lpage>368</lpage>
</citation>
<citation citation-type="display-unstructured">Ishida A., Murray J., Saito Y., Kanthou C., Benzakour O., Shibuya M. et al. (2001) Expression of vascular endothelial growth factor receptors in smooth muscle cells. J. Cell Physiol. 188: 359–368
<pub-id pub-id-type="pmid">11473363</pub-id>
</citation>
</ref>
<ref id="CR52">
<label>52</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Davis-Smyth</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Presta</surname>
<given-names>L. G.</given-names>
</name>
<name>
<surname>Ferrara</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Mapping the charged residues in the second immunoglobulin-like domain of the vascular endothelial growth factor/placenta growth factor receptor Flt-1 required for binding and structural stability</article-title>
<source>J. Biol. Chem.</source>
<year>1998</year>
<volume>273</volume>
<fpage>3216</fpage>
<lpage>3222</lpage>
</citation>
<citation citation-type="display-unstructured">Davis-Smyth T., Presta L. G. and Ferrara N. (1998) Mapping the charged residues in the second immunoglobulin-like domain of the vascular endothelial growth factor/placenta growth factor receptor Flt-1 required for binding and structural stability. J. Biol. Chem. 273: 3216–3222
<pub-id pub-id-type="pmid">9452434</pub-id>
</citation>
</ref>
<ref id="CR53">
<label>53</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fuh</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Crowley</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Cunningham</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Wells</surname>
<given-names>J. A.</given-names>
</name>
</person-group>
<article-title>Requirements for binding and signaling of the kinase domain receptor for vascular endothelial growth factor</article-title>
<source>J. Biol. Chem.</source>
<year>1998</year>
<volume>273</volume>
<fpage>11197</fpage>
<lpage>11204</lpage>
</citation>
<citation citation-type="display-unstructured">Fuh G., Li B., Crowley C., Cunningham B. and Wells J. A. (1998) Requirements for binding and signaling of the kinase domain receptor for vascular endothelial growth factor. J. Biol. Chem. 273: 11197–11204
<pub-id pub-id-type="pmid">9556609</pub-id>
</citation>
</ref>
<ref id="CR54">
<label>54</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shinkai</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ito</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Anazawa</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Yamaguchi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Shitara</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Shibuya</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Mapping of the sites involved in ligand association and dissociation at the extracellular domain of the kinase insert domain-containing receptor for vascular endothelial growth factor</article-title>
<source>J. Biol. Chem.</source>
<year>1998</year>
<volume>273</volume>
<fpage>31283</fpage>
<lpage>31288</lpage>
</citation>
<citation citation-type="display-unstructured">Shinkai A., Ito M., Anazawa H., Yamaguchi S., Shitara K. and Shibuya M. (1998) Mapping of the sites involved in ligand association and dissociation at the extracellular domain of the kinase insert domain-containing receptor for vascular endothelial growth factor. J. Biol. Chem. 273: 31283–31288
<pub-id pub-id-type="pmid">9813036</pub-id>
</citation>
</ref>
<ref id="CR55">
<label>55</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Falco</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Gigante</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Persico</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Structure and function of placental growth factor</article-title>
<source>Trends Cardiovasc. Med.</source>
<year>2002</year>
<volume>12</volume>
<fpage>241</fpage>
<lpage>246</lpage>
</citation>
<citation citation-type="display-unstructured">De Falco S., Gigante B. and Persico M. (2002) Structure and function of placental growth factor. Trends Cardiovasc. Med. 12: 241–246
<pub-id pub-id-type="pmid">12242046</pub-id>
</citation>
</ref>
<ref id="CR56">
<label>56</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Errico</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Riccioni</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Iyer</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Pisano</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Acharya</surname>
<given-names>K. R.</given-names>
</name>
<name>
<surname>Persico</surname>
<given-names>G. M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Identification of placental growth factor determinants for binding and activation of Flt-1 receptor</article-title>
<source>J. Biol. Chem.</source>
<year>2004</year>
<volume>279</volume>
<fpage>43929</fpage>
<lpage>43939</lpage>
</citation>
<citation citation-type="display-unstructured">Errico M., Riccioni T., Iyer S., Pisano C., Acharya K. R., Persico G. M. et al. (2004) Identification of placental growth factor determinants for binding and activation of Flt-1 receptor. J. Biol. Chem. 279: 43929–43939
<pub-id pub-id-type="pmid">15272021</pub-id>
</citation>
</ref>
<ref id="CR57">
<label>57</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Olofsson</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Korpelainen</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Pepper</surname>
<given-names>M. S.</given-names>
</name>
<name>
<surname>Mandriota</surname>
<given-names>S. J.</given-names>
</name>
<name>
<surname>Aase</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kumarr</surname>
</name>
<etal></etal>
</person-group>
<article-title>Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>1998</year>
<volume>95</volume>
<fpage>11709</fpage>
<lpage>11714</lpage>
</citation>
<citation citation-type="display-unstructured">Olofsson B., Korpelainen E., Pepper M. S., Mandriota S. J., Aase K., Kumarr et al. (1998) Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells. Proc. Natl. Acad. Sci. USA 95: 11709–11714
<pub-id pub-id-type="pmid">9751730</pub-id>
</citation>
</ref>
<ref id="CR58">
<label>58</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wise</surname>
<given-names>L. M.</given-names>
</name>
<name>
<surname>Ueda</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Dryden</surname>
<given-names>N. H.</given-names>
</name>
<name>
<surname>Fleming</surname>
<given-names>S. B.</given-names>
</name>
<name>
<surname>Caesar</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Roufail</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Viral vascular endothelial growth factors vary extensively in amino acid sequence, receptor-binding specificities, and the ability to induce vascular permeability yet are uniformly active mitogens</article-title>
<source>J. Biol. Chem.</source>
<year>2003</year>
<volume>278</volume>
<fpage>38004</fpage>
<lpage>38014</lpage>
</citation>
<citation citation-type="display-unstructured">Wise L. M., Ueda N., Dryden N. H., Fleming S. B., Caesar C., Roufail S. et al. (2003) Viral vascular endothelial growth factors vary extensively in amino acid sequence, receptor-binding specificities, and the ability to induce vascular permeability yet are uniformly active mitogens. J. Biol. Chem. 278: 38004–38014
<pub-id pub-id-type="pmid">12867434</pub-id>
</citation>
</ref>
<ref id="CR59">
<label>59</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jussila</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Alitalo</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Vascular growth factors and lymphangiogenesis</article-title>
<source>Physiol. Rev.</source>
<year>2002</year>
<volume>82</volume>
<fpage>673</fpage>
<lpage>700</lpage>
</citation>
<citation citation-type="display-unstructured">Jussila L. and Alitalo K. (2002) Vascular growth factors and lymphangiogenesis. Physiol. Rev. 82: 673–700
<pub-id pub-id-type="pmid">12087132</pub-id>
</citation>
</ref>
<ref id="CR60">
<label>60</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Takahashi</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Shibuya</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions</article-title>
<source>Clin. Sci. (Lond)</source>
<year>2005</year>
<volume>109</volume>
<fpage>227</fpage>
<lpage>241</lpage>
</citation>
<citation citation-type="display-unstructured">Takahashi H. and Shibuya M. (2005) The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin. Sci. (Lond) 109: 227–241
<pub-id pub-id-type="pmid">16104843</pub-id>
</citation>
</ref>
<ref id="CR61">
<label>61</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hubbard</surname>
<given-names>S. R.</given-names>
</name>
</person-group>
<article-title>Structural analysis of receptor tyrosine kinases</article-title>
<source>Prog. Biophys. Mol. Biol.</source>
<year>1999</year>
<volume>71</volume>
<fpage>343</fpage>
<lpage>358</lpage>
</citation>
<citation citation-type="display-unstructured">Hubbard S. R. (1999) Structural analysis of receptor tyrosine kinases. Prog. Biophys. Mol. Biol. 71: 343–358
<pub-id pub-id-type="pmid">10354703</pub-id>
</citation>
</ref>
<ref id="CR62">
<label>62</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Hunter</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Receptor signaling: when dimerization is not enough</article-title>
<source>Curr. Biol.</source>
<year>1999</year>
<volume>9</volume>
<fpage>R568</fpage>
<lpage>R571</lpage>
</citation>
<citation citation-type="display-unstructured">Jiang G. and Hunter T. (1999) Receptor signaling: when dimerization is not enough. Curr. Biol. 9: R568–R571
<pub-id pub-id-type="pmid">10469554</pub-id>
</citation>
</ref>
<ref id="CR63">
<label>63</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lemmon</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Schlessinger</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Transmembrane signaling by receptor oligomerization</article-title>
<source>Methods Mol. Biol.</source>
<year>1998</year>
<volume>84</volume>
<fpage>49</fpage>
<lpage>71</lpage>
</citation>
<citation citation-type="display-unstructured">Lemmon M. A. and Schlessinger J. (1998) Transmembrane signaling by receptor oligomerization. Methods Mol. Biol. 84: 49–71
<pub-id pub-id-type="pmid">9666441</pub-id>
</citation>
</ref>
<ref id="CR64">
<label>64</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Blechman</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Lev</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Barg</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Eisenstein</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Vaks</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Vogel</surname>
<given-names>Z.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The fourth immunoglobulin domain of the stem cell factor receptor couples ligand binding to signal transduction</article-title>
<source>Cell</source>
<year>1995</year>
<volume>80</volume>
<fpage>103</fpage>
<lpage>113</lpage>
</citation>
<citation citation-type="display-unstructured">Blechman J. M., Lev S., Barg J., Eisenstein M., Vaks B., Vogel Z. et al. (1995) The fourth immunoglobulin domain of the stem cell factor receptor couples ligand binding to signal transduction. Cell 80: 103–113
<pub-id pub-id-type="pmid">7529140</pub-id>
</citation>
</ref>
<ref id="CR65">
<label>65</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Blechman</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Yarden</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Structural aspects of receptor dimerization: c-kit as an example</article-title>
<source>Ann. N. Y. Acad. Sci.</source>
<year>1995</year>
<volume>766</volume>
<fpage>344</fpage>
<lpage>362</lpage>
</citation>
<citation citation-type="display-unstructured">Blechman J. M. and Yarden Y. (1995) Structural aspects of receptor dimerization: c-kit as an example. Ann. N. Y. Acad. Sci. 766: 344–362
<pub-id pub-id-type="pmid">7486681</pub-id>
</citation>
</ref>
<ref id="CR66">
<label>66</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Herren</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Rooney</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Weyer K</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Iberg</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Schmid</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Pech</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Dimerization of extracellular domains of platelet-derived growth factor receptors: a revised model of receptor-ligand interaction</article-title>
<source>J. Biol. Chem.</source>
<year>1993</year>
<volume>268</volume>
<fpage>15088</fpage>
<lpage>15095</lpage>
</citation>
<citation citation-type="display-unstructured">Herren B., Rooney B., Weyer K. A., Iberg N., Schmid G. and Pech M. (1993) Dimerization of extracellular domains of platelet-derived growth factor receptors: a revised model of receptor-ligand interaction. J. Biol. Chem. 268: 15088–15095
<pub-id pub-id-type="pmid">8325884</pub-id>
</citation>
</ref>
<ref id="CR67">
<label>67</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tao</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Backer</surname>
<given-names>M. V.</given-names>
</name>
<name>
<surname>Backer</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Terman</surname>
<given-names>B. I.</given-names>
</name>
</person-group>
<article-title>Kinase insert domain receptor (kdr) extracellular immunoglobulin-like domains 4–7 contain structural features that block receptor dimerization and vascular endothelial growth factor-induced signaling</article-title>
<source>J. Biol. Chem.</source>
<year>2001</year>
<volume>276</volume>
<fpage>21916</fpage>
<lpage>21923</lpage>
</citation>
<citation citation-type="display-unstructured">Tao Q., Backer M. V., Backer J. M. and Terman B. I. (2001) Kinase insert domain receptor (kdr) extracellular immunoglobulin-like domains 4–7 contain structural features that block receptor dimerization and vascular endothelial growth factor-induced signaling. J. Biol. Chem. 276: 21916–21923
<pub-id pub-id-type="pmid">11399777</pub-id>
</citation>
</ref>
<ref id="CR68">
<label>68</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Corless</surname>
<given-names>C. L.</given-names>
</name>
<name>
<surname>McGreevey</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Haley</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Town</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Heinrich</surname>
<given-names>M. C.</given-names>
</name>
</person-group>
<article-title>KIT mutations are common in incidental gastrointestinal stromal tumors one centimeter or less in size</article-title>
<source>Am. J. Pathol.</source>
<year>2002</year>
<volume>160</volume>
<fpage>1567</fpage>
<lpage>1572</lpage>
</citation>
<citation citation-type="display-unstructured">Corless C. L., McGreevey L., Haley A., Town A. and Heinrich M. C. (2002) KIT mutations are common in incidental gastrointestinal stromal tumors one centimeter or less in size. Am. J. Pathol. 160: 1567–1572
<pub-id pub-id-type="pmid">12000708</pub-id>
</citation>
</ref>
<ref id="CR69">
<label>69</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Heinrich</surname>
<given-names>M. C.</given-names>
</name>
<name>
<surname>Corless</surname>
<given-names>C. L.</given-names>
</name>
<name>
<surname>Duensing</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>McGreevey</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>C. J.</given-names>
</name>
<name>
<surname>Joseph</surname>
<given-names>N.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>PDGFRA activating mutations in gastrointestinal stromal tumors</article-title>
<source>Science</source>
<year>2003</year>
<volume>299</volume>
<fpage>708</fpage>
<lpage>710</lpage>
</citation>
<citation citation-type="display-unstructured">Heinrich M. C., Corless C. L., Duensing A., McGreevey L., Chen C. J., Joseph N. et al. (2003) PDGFRA activating mutations in gastrointestinal stromal tumors. Science 299: 708–710
<pub-id pub-id-type="pmid">12522257</pub-id>
</citation>
</ref>
<ref id="CR70">
<label>70</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bell</surname>
<given-names>C. A.</given-names>
</name>
<name>
<surname>Tynan</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Hart</surname>
<given-names>K. C.</given-names>
</name>
<name>
<surname>Meyer</surname>
<given-names>A. N.</given-names>
</name>
<name>
<surname>Robertson</surname>
<given-names>S. C.</given-names>
</name>
<name>
<surname>Donoghue</surname>
<given-names>D. J.</given-names>
</name>
</person-group>
<article-title>Rotational coupling of the transmembrane and kinase domains of the neu receptor tyrosine kinase</article-title>
<source>Mol. Biol. Cell</source>
<year>2000</year>
<volume>11</volume>
<fpage>3589</fpage>
<lpage>3599</lpage>
</citation>
<citation citation-type="display-unstructured">Bell C. A., Tynan J. A., Hart K. C., Meyer A. N., Robertson S. C. and Donoghue D. J. (2000) Rotational coupling of the transmembrane and kinase domains of the neu receptor tyrosine kinase. Mol. Biol. Cell 11: 3589–3599
<pub-id pub-id-type="pmid">11029057</pub-id>
</citation>
</ref>
<ref id="CR71">
<label>71</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kendall</surname>
<given-names>R. L.</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>K. A.</given-names>
</name>
</person-group>
<article-title>Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>1993</year>
<volume>90</volume>
<fpage>10705</fpage>
<lpage>10709</lpage>
</citation>
<citation citation-type="display-unstructured">Kendall R. L. and Thomas K. A. (1993) Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc. Natl. Acad. Sci. USA 90: 10705–10709
<pub-id pub-id-type="pmid">8248162</pub-id>
</citation>
</ref>
<ref id="CR72">
<label>72</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goldman</surname>
<given-names>C. K.</given-names>
</name>
<name>
<surname>Kendall</surname>
<given-names>R. L.</given-names>
</name>
<name>
<surname>Cabrera</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Soroceanu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Heike</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Gillespie</surname>
<given-names>G. Y.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Paracrine expression of a native soluble vascular endothelial growth factor receptor inhibits tumor growth, metastasis, and mortality rate</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>1998</year>
<volume>95</volume>
<fpage>8795</fpage>
<lpage>8800</lpage>
</citation>
<citation citation-type="display-unstructured">Goldman C. K., Kendall R. L., Cabrera G., Soroceanu L., Heike Y., Gillespie G. Y. et al. (1998) Paracrine expression of a native soluble vascular endothelial growth factor receptor inhibits tumor growth, metastasis, and mortality rate. Proc. Natl. Acad. Sci. USA 95: 8795–8800
<pub-id pub-id-type="pmid">9671758</pub-id>
</citation>
</ref>
<ref id="CR73">
<label>73</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hornig</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Weich</surname>
<given-names>H. A.</given-names>
</name>
</person-group>
<article-title>Soluble VEGF receptors</article-title>
<source>Angiogenesis</source>
<year>1999</year>
<volume>3</volume>
<fpage>33</fpage>
<lpage>39</lpage>
</citation>
<citation citation-type="display-unstructured">Hornig C. and Weich H. A. (1999) Soluble VEGF receptors. Angiogenesis 3: 33–39
<pub-id pub-id-type="pmid">14517442</pub-id>
</citation>
</ref>
<ref id="CR74">
<label>74</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luttun</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Carmeliet</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Soluble VEGF receptor Flt1: the elusive preeclampsia factor discovered?</article-title>
<source>J. Clin. Invest.</source>
<year>2003</year>
<volume>111</volume>
<fpage>600</fpage>
<lpage>602</lpage>
</citation>
<citation citation-type="display-unstructured">Luttun A. and Carmeliet P. (2003) Soluble VEGF receptor Flt1: the elusive preeclampsia factor discovered? J. Clin. Invest. 111: 600–602
<pub-id pub-id-type="pmid">12618513</pub-id>
</citation>
</ref>
<ref id="CR75">
<label>75</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hiratsuka</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Minowa</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Kuno</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Noda</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Shibuya</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>1998</year>
<volume>95</volume>
<fpage>9349</fpage>
<lpage>9354</lpage>
</citation>
<citation citation-type="display-unstructured">Hiratsuka S., Minowa O., Kuno J., Noda T. and Shibuya M. (1998) Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc. Natl. Acad. Sci. USA 95: 9349–9354
<pub-id pub-id-type="pmid">9689083</pub-id>
</citation>
</ref>
<ref id="CR76">
<label>76</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Autiero</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Waltenberger</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Communi</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Kranz</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Moons</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Lambrechts</surname>
<given-names>D.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1</article-title>
<source>Nat. Med.</source>
<year>2003</year>
<volume>9</volume>
<fpage>936</fpage>
<lpage>943</lpage>
</citation>
<citation citation-type="display-unstructured">Autiero M., Waltenberger J., Communi D., Kranz A., Moons L., Lambrechts D. et al. (2003) Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat. Med. 9: 936–943
<pub-id pub-id-type="pmid">12796773</pub-id>
</citation>
</ref>
<ref id="CR77">
<label>77</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hiratsuka</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Maru</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Okada</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Seiki</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Noda</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Shibuya</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Involvement of Flt-1 tyrosine kinase (vascular endothelial growth factor receptor-1) in pathological angiogenesis</article-title>
<source>Cancer Res.</source>
<year>2001</year>
<volume>61</volume>
<fpage>1207</fpage>
<lpage>1213</lpage>
</citation>
<citation citation-type="display-unstructured">Hiratsuka S., Maru Y., Okada A., Seiki M., Noda T. and Shibuya M. (2001) Involvement of Flt-1 tyrosine kinase (vascular endothelial growth factor receptor-1) in pathological angiogenesis. Cancer Res. 61: 1207–1213
<pub-id pub-id-type="pmid">11221852</pub-id>
</citation>
</ref>
<ref id="CR78">
<label>78</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Park</surname>
<given-names>J. E.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>H. H.</given-names>
</name>
<name>
<surname>Winer</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Houck</surname>
<given-names>K. A.</given-names>
</name>
<name>
<surname>Ferrara</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Placenta growth factor: potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR</article-title>
<source>J. Biol. Chem.</source>
<year>1994</year>
<volume>269</volume>
<fpage>25646</fpage>
<lpage>25654</lpage>
</citation>
<citation citation-type="display-unstructured">Park J. E., Chen H. H., Winer J., Houck K. A. and Ferrara N. (1994) Placenta growth factor: potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J. Biol. Chem. 269: 25646–25654
<pub-id pub-id-type="pmid">7929268</pub-id>
</citation>
</ref>
<ref id="CR79">
<label>79</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barleon</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Sozzani</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Weich</surname>
<given-names>H. A.</given-names>
</name>
<name>
<surname>Mantovani</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Marmé</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1</article-title>
<source>Blood</source>
<year>1996</year>
<volume>87</volume>
<fpage>3336</fpage>
<lpage>3343</lpage>
</citation>
<citation citation-type="display-unstructured">Barleon B., Sozzani S., Zhou D., Weich H. A., Mantovani A. and Marmé D. (1996) Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87: 3336–3343
<pub-id pub-id-type="pmid">8605350</pub-id>
</citation>
</ref>
<ref id="CR80">
<label>80</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hattori</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Heissig</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Dias</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Tejada</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Ferris</surname>
<given-names>B.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment</article-title>
<source>Nat. Med.</source>
<year>2002</year>
<volume>8</volume>
<fpage>841</fpage>
<lpage>849</lpage>
</citation>
<citation citation-type="display-unstructured">Hattori K., Heissig B., Wu Y., Dias S., Tejada R., Ferris B. et al. (2002) Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat. Med. 8: 841–849
<pub-id pub-id-type="pmid">12091880</pub-id>
</citation>
</ref>
<ref id="CR81">
<label>81</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gille</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kowalski</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Pisabarro</surname>
<given-names>M. T.</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>S. T.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A repressor sequence in the juxtamembrane domain of Flt-1 (VEGFR-1) constitutively inhibits vascular endothelial growth factor-dependent phosphatidylinositol 3′-kinase activation and endothelial cell migration</article-title>
<source>EMBO J.</source>
<year>2000</year>
<volume>19</volume>
<fpage>4064</fpage>
<lpage>4073</lpage>
</citation>
<citation citation-type="display-unstructured">Gille H., Kowalski J., Yu L., Chen H., Pisabarro M. T., Davis S. T. et al. (2000) A repressor sequence in the juxtamembrane domain of Flt-1 (VEGFR-1) constitutively inhibits vascular endothelial growth factor-dependent phosphatidylinositol 3′-kinase activation and endothelial cell migration. EMBO J. 19: 4064–4073
<pub-id pub-id-type="pmid">10921887</pub-id>
</citation>
</ref>
<ref id="CR82">
<label>82</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Andersson</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Roomans</surname>
<given-names>G. M.</given-names>
</name>
<name>
<surname>Ito</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Claesson-Welsh</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Signaling properties of VEGF receptor-1 and −2 homo- and heterodimers</article-title>
<source>Int. J. Biochem. Cell Biol.</source>
<year>2001</year>
<volume>33</volume>
<fpage>315</fpage>
<lpage>324</lpage>
</citation>
<citation citation-type="display-unstructured">Huang K., Andersson C., Roomans G. M., Ito N. and Claesson-Welsh L. (2001) Signaling properties of VEGF receptor-1 and −2 homo- and heterodimers. Int. J. Biochem. Cell Biol. 33: 315–324
<pub-id pub-id-type="pmid">11312102</pub-id>
</citation>
</ref>
<ref id="CR83">
<label>83</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ito</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Claesson-Welsh</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Signal transduction by VEGF receptor-1 wild type and mutant proteins</article-title>
<source>Cell. Signal.</source>
<year>2001</year>
<volume>13</volume>
<fpage>849</fpage>
<lpage>854</lpage>
</citation>
<citation citation-type="display-unstructured">Ito N., Huang K. and Claesson-Welsh L. (2001) Signal transduction by VEGF receptor-1 wild type and mutant proteins. Cell. Signal. 13: 849–854
<pub-id pub-id-type="pmid">11583921</pub-id>
</citation>
</ref>
<ref id="CR84">
<label>84</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ito</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Wernstedt</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Engstrom</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Claesson-Welsh</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Identification of vascular endothelial growth factor receptor-1 tyrosine phosphorylation sites and binding of SH2 domain-containing molecules</article-title>
<source>J. Biol. Chem.</source>
<year>1998</year>
<volume>273</volume>
<fpage>23410</fpage>
<lpage>23418</lpage>
</citation>
<citation citation-type="display-unstructured">Ito N., Wernstedt C., Engstrom U. and Claesson-Welsh L. (1998) Identification of vascular endothelial growth factor receptor-1 tyrosine phosphorylation sites and binding of SH2 domain-containing molecules. J. Biol. Chem. 273: 23410–23418
<pub-id pub-id-type="pmid">9722576</pub-id>
</citation>
</ref>
<ref id="CR85">
<label>85</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cunningham</surname>
<given-names>S. A.</given-names>
</name>
<name>
<surname>Waxham</surname>
<given-names>M. N.</given-names>
</name>
<name>
<surname>Arrate</surname>
<given-names>P. M.</given-names>
</name>
<name>
<surname>Brock</surname>
<given-names>T. A.</given-names>
</name>
</person-group>
<article-title>Interaction of the Flt-1 tyrosine kinase receptor with the p85 subunit of phosphatidylinositol 3-kinase. Mapping of a novel site involved in binding</article-title>
<source>J. Biol. Chem.</source>
<year>1995</year>
<volume>270</volume>
<fpage>20254</fpage>
<lpage>20257</lpage>
</citation>
<citation citation-type="display-unstructured">Cunningham S. A., Waxham M. N., Arrate P. M. and Brock T. A. (1995) Interaction of the Flt-1 tyrosine kinase receptor with the p85 subunit of phosphatidylinositol 3-kinase. Mapping of a novel site involved in binding. J. Biol. Chem. 270: 20254–20257
<pub-id pub-id-type="pmid">7657594</pub-id>
</citation>
</ref>
<ref id="CR86">
<label>86</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cunningham</surname>
<given-names>S. A.</given-names>
</name>
<name>
<surname>Arrate</surname>
<given-names>M. P.</given-names>
</name>
<name>
<surname>Brock</surname>
<given-names>T. A.</given-names>
</name>
<name>
<surname>Waxham</surname>
<given-names>M. N.</given-names>
</name>
</person-group>
<article-title>Interactions of FLT-1 and KDR with phospholipase C gamma: identification of the phosphotyrosine binding sites</article-title>
<source>Biochem. Biophys. Res. Commun.</source>
<year>1997</year>
<volume>240</volume>
<fpage>635</fpage>
<lpage>639</lpage>
</citation>
<citation citation-type="display-unstructured">Cunningham S. A., Arrate M. P., Brock T. A. and Waxham M. N. (1997) Interactions of FLT-1 and KDR with phospholipase C gamma: identification of the phosphotyrosine binding sites. Biochem. Biophys. Res. Commun. 240: 635–639
<pub-id pub-id-type="pmid">9398617</pub-id>
</citation>
</ref>
<ref id="CR87">
<label>87</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Igarashi</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Isohara</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kato</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Shigeta</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Yamano</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Uno</surname>
<given-names>I.</given-names>
</name>
</person-group>
<article-title>Tyrosine 1213 of Flt-1 is a major binding site of Nck and SHP-2</article-title>
<source>Biochem. Biophys. Res. Commun.</source>
<year>1998</year>
<volume>246</volume>
<fpage>95</fpage>
<lpage>99</lpage>
</citation>
<citation citation-type="display-unstructured">Igarashi K., Isohara T., Kato T., Shigeta K., Yamano T. and Uno I. (1998) Tyrosine 1213 of Flt-1 is a major binding site of Nck and SHP-2. Biochem. Biophys. Res. Commun. 246: 95–99
<pub-id pub-id-type="pmid">9600074</pub-id>
</citation>
</ref>
<ref id="CR88">
<label>88</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Igarashi</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Shigeta</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Isohara</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Yamano</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Uno</surname>
<given-names>I.</given-names>
</name>
</person-group>
<article-title>Sck interacts with KDR and Flt-1 via its SH2 domain</article-title>
<source>Biochem. Biophys. Res. Commun.</source>
<year>1998</year>
<volume>251</volume>
<fpage>77</fpage>
<lpage>82</lpage>
</citation>
<citation citation-type="display-unstructured">Igarashi K., Shigeta K., Isohara T., Yamano T. and Uno I. (1998) Sck interacts with KDR and Flt-1 via its SH2 domain. Biochem. Biophys. Res. Commun. 251: 77–82
<pub-id pub-id-type="pmid">9790910</pub-id>
</citation>
</ref>
<ref id="CR89">
<label>89</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sawano</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Takahashi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Yamaguchi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Shibuya</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>The phosphorylated 1169-tyrosine containing region of flt-1 kinase (VEGFR-1) is a major binding site for PLCgamma</article-title>
<source>Biochem. Biophys. Res. Commun.</source>
<year>1997</year>
<volume>238</volume>
<fpage>487</fpage>
<lpage>491</lpage>
</citation>
<citation citation-type="display-unstructured">Sawano A., Takahashi T., Yamaguchi S. and Shibuya M. (1997) The phosphorylated 1169-tyrosine containing region of flt-1 kinase (VEGFR-1) is a major binding site for PLCgamma. Biochem. Biophys. Res. Commun. 238: 487–491
<pub-id pub-id-type="pmid">9299537</pub-id>
</citation>
</ref>
<ref id="CR90">
<label>90</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Landgren</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Schiller</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Claesson-Welsh</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Placenta growth factor stimulates MAP kinase and mitogenicity but not phospholipase C-gamma and migration of endothelial cells expressing Flt 1</article-title>
<source>Oncogene</source>
<year>1998</year>
<volume>16</volume>
<fpage>359</fpage>
<lpage>367</lpage>
</citation>
<citation citation-type="display-unstructured">Landgren E., Schiller P., Cao Y. and Claesson-Welsh L. (1998) Placenta growth factor stimulates MAP kinase and mitogenicity but not phospholipase C-gamma and migration of endothelial cells expressing Flt 1. Oncogene 16: 359–367
<pub-id pub-id-type="pmid">9467961</pub-id>
</citation>
</ref>
<ref id="CR91">
<label>91</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Seetharam</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Gotoh</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Maru</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Neufeld</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Yamaguchi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Shibuya</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>A unique signal transduction from FLT tyrosine kinase, a receptor for vascular endothelial growth factor VEGF</article-title>
<source>Oncogene</source>
<year>1995</year>
<volume>10</volume>
<fpage>135</fpage>
<lpage>147</lpage>
</citation>
<citation citation-type="display-unstructured">Seetharam L., Gotoh N., Maru Y., Neufeld G., Yamaguchi S. and Shibuya M. (1995) A unique signal transduction from FLT tyrosine kinase, a receptor for vascular endothelial growth factor VEGF. Oncogene 10: 135–147
<pub-id pub-id-type="pmid">7824266</pub-id>
</citation>
</ref>
<ref id="CR92">
<label>92</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Waltenberger</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Claesson-Welsh</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Siegbahn</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Shibuya</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Heldin</surname>
<given-names>C. H.</given-names>
</name>
</person-group>
<article-title>Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor</article-title>
<source>J. Biol. Chem.</source>
<year>1994</year>
<volume>269</volume>
<fpage>26988</fpage>
<lpage>26995</lpage>
</citation>
<citation citation-type="display-unstructured">Waltenberger J., Claesson-Welsh L., Siegbahn A., Shibuya M. and Heldin C. H. (1994) Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J. Biol. Chem. 269: 26988–26995
<pub-id pub-id-type="pmid">7929439</pub-id>
</citation>
</ref>
<ref id="CR93">
<label>93</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Clauss</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Weich</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Breier</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Knies</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Rockl</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Waltenberger</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The vascular endothelial growth factor receptor Flt-1 mediates biological activities: implications for a functional role of placenta growth factor in monocyte activation and chemotaxis</article-title>
<source>J. Biol. Chem.</source>
<year>1996</year>
<volume>271</volume>
<fpage>17629</fpage>
<lpage>17634</lpage>
</citation>
<citation citation-type="display-unstructured">Clauss M., Weich H., Breier G., Knies U., Rockl W., Waltenberger J. et al. (1996) The vascular endothelial growth factor receptor Flt-1 mediates biological activities: implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J. Biol. Chem. 271: 17629–17634
<pub-id pub-id-type="pmid">8663424</pub-id>
</citation>
</ref>
<ref id="CR94">
<label>94</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carmeliet</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Luttun</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>The emerging role of the bone marrow-derived stem cells in (therapeutic) angiogenesis</article-title>
<source>Thromb. Haemost.</source>
<year>2001</year>
<volume>86</volume>
<fpage>289</fpage>
<lpage>297</lpage>
</citation>
<citation citation-type="display-unstructured">Carmeliet P. and Luttun A. (2001) The emerging role of the bone marrow-derived stem cells in (therapeutic) angiogenesis. Thromb. Haemost. 86: 289–297
<pub-id pub-id-type="pmid">11487017</pub-id>
</citation>
</ref>
<ref id="CR95">
<label>95</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lyden</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Hattori</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Dias</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Costa</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Blaikie</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Butros</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth</article-title>
<source>Nat. Med.</source>
<year>2001</year>
<volume>7</volume>
<fpage>1194</fpage>
<lpage>1201</lpage>
</citation>
<citation citation-type="display-unstructured">Lyden D., Hattori K., Dias S., Costa C., Blaikie P., Butros L. et al. (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat. Med. 7: 1194–1201
<pub-id pub-id-type="pmid">11689883</pub-id>
</citation>
</ref>
<ref id="CR96">
<label>96</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wey</surname>
<given-names>J. S.</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Gray</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Bauer</surname>
<given-names>T. W.</given-names>
</name>
<name>
<surname>McCarty</surname>
<given-names>M. F.</given-names>
</name>
<name>
<surname>Somcio</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Vascular endothelial growth factor receptor-1 promotes migration and invasion in pancreatic carcinoma cell lines</article-title>
<source>Cancer</source>
<year>2005</year>
<volume>104</volume>
<fpage>427</fpage>
<lpage>438</lpage>
</citation>
<citation citation-type="display-unstructured">Wey J. S., Fan F., Gray M. J., Bauer T. W., McCarty M. F., Somcio R. et al. (2005) Vascular endothelial growth factor receptor-1 promotes migration and invasion in pancreatic carcinoma cell lines. Cancer 104: 427–438
<pub-id pub-id-type="pmid">15952180</pub-id>
</citation>
</ref>
<ref id="CR97">
<label>97</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>LeCouter</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Moritz</surname>
<given-names>D. R.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Phillips</surname>
<given-names>G. L.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>X. H.</given-names>
</name>
<name>
<surname>Gerber</surname>
<given-names>H. P.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Angiogenesis-independent endothelial protection of liver: role of VEGFR-1</article-title>
<source>Science</source>
<year>2003</year>
<volume>299</volume>
<fpage>890</fpage>
<lpage>893</lpage>
</citation>
<citation citation-type="display-unstructured">LeCouter J., Moritz D. R., Li B., Phillips G. L., Liang X. H., Gerber H. P. et al. (2003) Angiogenesis-independent endothelial protection of liver: role of VEGFR-1. Science 299: 890–893
<pub-id pub-id-type="pmid">12574630</pub-id>
</citation>
</ref>
<ref id="CR98">
<label>98</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>W. S.</given-names>
</name>
<name>
<surname>Kitson</surname>
<given-names>R. P.</given-names>
</name>
<name>
<surname>Goldfarb</surname>
<given-names>R. H.</given-names>
</name>
</person-group>
<article-title>Modulation of human NK cell lines by vascular endothelial growth factor and receptor VEGFR-1 (FLT-1)</article-title>
<source>In Vivo</source>
<year>2002</year>
<volume>16</volume>
<fpage>439</fpage>
<lpage>445</lpage>
</citation>
<citation citation-type="display-unstructured">Chen W. S., Kitson R. P. and Goldfarb R. H. (2002) Modulation of human NK cell lines by vascular endothelial growth factor and receptor VEGFR-1 (FLT-1). In Vivo 16: 439–445
<pub-id pub-id-type="pmid">12494887</pub-id>
</citation>
</ref>
<ref id="CR99">
<label>99</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Choi</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kennedy</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kazarov</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Papadimitriou</surname>
<given-names>J. C.</given-names>
</name>
<name>
<surname>Keller</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>A common precursor for hematopoietic and endothelial cells</article-title>
<source>Development</source>
<year>1998</year>
<volume>125</volume>
<fpage>725</fpage>
<lpage>732</lpage>
</citation>
<citation citation-type="display-unstructured">Choi K., Kennedy M., Kazarov A., Papadimitriou J. C. and Keller G. (1998) A common precursor for hematopoietic and endothelial cells. Development 125: 725–732
<pub-id pub-id-type="pmid">9435292</pub-id>
</citation>
</ref>
<ref id="CR100">
<label>100</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gille</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kowalski</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>LeCouter</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Moffat</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Zioncheck</surname>
<given-names>T. F.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Analysis of biological effects and signaling properties of Flt-1 (VEGFR-1) and KDR (VEGFR-2): a reassessment using novel receptor-specific vascular endothelial growth factor mutants</article-title>
<source>J. Biol. Chem.</source>
<year>2001</year>
<volume>276</volume>
<fpage>3222</fpage>
<lpage>3230</lpage>
</citation>
<citation citation-type="display-unstructured">Gille H., Kowalski J., Li B., LeCouter J., Moffat B., Zioncheck T. F. et al. (2001) Analysis of biological effects and signaling properties of Flt-1 (VEGFR-1) and KDR (VEGFR-2): a reassessment using novel receptor-specific vascular endothelial growth factor mutants. J. Biol. Chem. 276: 3222–3230
<pub-id pub-id-type="pmid">11058584</pub-id>
</citation>
</ref>
<ref id="CR101">
<label>101</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jin</surname>
<given-names>K. L.</given-names>
</name>
<name>
<surname>Mao</surname>
<given-names>X. O.</given-names>
</name>
<name>
<surname>Greenberg</surname>
<given-names>D. A.</given-names>
</name>
</person-group>
<article-title>Vascular endothelial growth factor: direct neuroprotective effect in
<italic>in vitro</italic>
ischemia</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>2000</year>
<volume>97</volume>
<fpage>10242</fpage>
<lpage>10247</lpage>
</citation>
<citation citation-type="display-unstructured">Jin K. L., Mao X. O. and Greenberg D. A. (2000) Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia. Proc. Natl. Acad. Sci. USA 97: 10242–10247
<pub-id pub-id-type="pmid">10963684</pub-id>
</citation>
</ref>
<ref id="CR102">
<label>102</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Omolara</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Ogunshola</surname>
<given-names>O. O.</given-names>
</name>
<name>
<surname>Antic</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Donoghue</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>S.-Y.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Paracrine and autocrine functions of neuronal VEGF in the CNS</article-title>
<source>J. Biol. Chem.</source>
<year>2002</year>
<volume>277</volume>
<fpage>11410</fpage>
<lpage>11415</lpage>
</citation>
<citation citation-type="display-unstructured">Omolara O., Ogunshola O. O., Antic A., Donoghue M. J., Fan S.-Y., Kim H. et al. (2002) Paracrine and autocrine functions of neuronal VEGF in the CNS. J. Biol. Chem. 277: 11410–11415
<pub-id pub-id-type="pmid">11777931</pub-id>
</citation>
</ref>
<ref id="CR103">
<label>103</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shiote</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Nagano</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Ilieva</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Murakami</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Narai</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ohta</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Reduction of a vascular endothelial growth factor receptor, fetal liver kinase-1, by antisense oligonucleotides induces motor neuron death in rat spinal cord exposed to hypoxia</article-title>
<source>Neuroscience</source>
<year>2005</year>
<volume>132</volume>
<fpage>175</fpage>
<lpage>182</lpage>
</citation>
<citation citation-type="display-unstructured">Shiote M., Nagano I., Ilieva H., Murakami T., Narai H., Ohta Y. et al. (2005) Reduction of a vascular endothelial growth factor receptor, fetal liver kinase-1, by antisense oligonucleotides induces motor neuron death in rat spinal cord exposed to hypoxia. Neuroscience 132: 175–182
<pub-id pub-id-type="pmid">15780476</pub-id>
</citation>
</ref>
<ref id="CR104">
<label>104</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Cepko</surname>
<given-names>C. L.</given-names>
</name>
</person-group>
<article-title>Flk-1, a receptor for vascular endothelial growth factor (VEGF), is expressed by retinal progenitor cells</article-title>
<source>J. Neurosci.</source>
<year>1996</year>
<volume>16</volume>
<fpage>6089</fpage>
<lpage>6099</lpage>
</citation>
<citation citation-type="display-unstructured">Yang K. and Cepko C. L. (1996) Flk-1, a receptor for vascular endothelial growth factor (VEGF), is expressed by retinal progenitor cells. J. Neurosci. 16: 6089–6099
<pub-id pub-id-type="pmid">8815891</pub-id>
</citation>
</ref>
<ref id="CR105">
<label>105</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matsumoto</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Bohman</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Dixelius</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Berge</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Dimberg</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Magnusson</surname>
<given-names>P.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis</article-title>
<source>EMBO J.</source>
<year>2005</year>
<volume>24</volume>
<fpage>2342</fpage>
<lpage>2353</lpage>
</citation>
<citation citation-type="display-unstructured">Matsumoto T., Bohman S., Dixelius J., Berge T., Dimberg A., Magnusson P. et al. (2005) VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis. EMBO J. 24: 2342–2353
<pub-id pub-id-type="pmid">15962004</pub-id>
</citation>
</ref>
<ref id="CR106">
<label>106</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Takahashi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Yamaguchi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Chida</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Shibuya</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells</article-title>
<source>EMBO J.</source>
<year>2001</year>
<volume>20</volume>
<fpage>2768</fpage>
<lpage>2778</lpage>
</citation>
<citation citation-type="display-unstructured">Takahashi T., Yamaguchi S., Chida K. and Shibuya M. (2001) A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J. 20: 2768–2778
<pub-id pub-id-type="pmid">11387210</pub-id>
</citation>
</ref>
<ref id="CR107">
<label>107</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sakurai</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ohgimoto</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kataoka</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yoshida</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Shibuya</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Essential role of Flk-1 (VEGF receptor 2) tyrosine residue 1173 in vasculogenesis in mice</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>2005</year>
<volume>102</volume>
<fpage>1076</fpage>
<lpage>1081</lpage>
</citation>
<citation citation-type="display-unstructured">Sakurai Y., Ohgimoto K., Kataoka Y., Yoshida N. and Shibuya M. (2005) Essential role of Flk-1 (VEGF receptor 2) tyrosine residue 1173 in vasculogenesis in mice. Proc. Natl. Acad. Sci. USA 102: 1076–1081
<pub-id pub-id-type="pmid">15644447</pub-id>
</citation>
</ref>
<ref id="CR108">
<label>108</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meyer</surname>
<given-names>R. D.</given-names>
</name>
<name>
<surname>Latz</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Rahimi</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Recruitment and activation of phospholipase Cgamma1 by vascular endothelial growth factor receptor-2 are required for tubulogenesis and differentiation of endothelial cells</article-title>
<source>J. Biol. Chem.</source>
<year>2003</year>
<volume>278</volume>
<fpage>16347</fpage>
<lpage>16355</lpage>
</citation>
<citation citation-type="display-unstructured">Meyer R. D., Latz C. and Rahimi N. (2003) Recruitment and activation of phospholipase Cgamma1 by vascular endothelial growth factor receptor-2 are required for tubulogenesis and differentiation of endothelial cells. J. Biol. Chem. 278: 16347–16355
<pub-id pub-id-type="pmid">12598525</pub-id>
</citation>
</ref>
<ref id="CR109">
<label>109</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dougher</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Terman</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Terman</surname>
<given-names>I.</given-names>
</name>
</person-group>
<article-title>Autophosphorylation of KDR in the kinase domain is required for maximal VEGF-stimulated kinase activity and receptor internalization</article-title>
<source>Oncogene</source>
<year>1999</year>
<volume>18</volume>
<fpage>1619</fpage>
<lpage>1627</lpage>
</citation>
<citation citation-type="display-unstructured">Dougher M. and Terman B., I. (1999) Autophosphorylation of KDR in the kinase domain is required for maximal VEGF-stimulated kinase activity and receptor internalization. Oncogene 18: 1619–1627
<pub-id pub-id-type="pmid">10102632</pub-id>
</citation>
</ref>
<ref id="CR110">
<label>110</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kendall</surname>
<given-names>R. L.</given-names>
</name>
<name>
<surname>Rutledge</surname>
<given-names>R. Z.</given-names>
</name>
<name>
<surname>Mao</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Tebben</surname>
<given-names>A. J.</given-names>
</name>
<name>
<surname>Hungate</surname>
<given-names>R. W.</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Vascular endothelial growth factor receptor KDR tyrosine kinase activity is increased by autophosphorylation of two activation loop tyrosine residues</article-title>
<source>J. Biol. Chem.</source>
<year>1999</year>
<volume>274</volume>
<fpage>6453</fpage>
<lpage>6460</lpage>
</citation>
<citation citation-type="display-unstructured">Kendall R. L., Rutledge R. Z., Mao X., Tebben A. J., Hungate R. W. and Thomas K. (1999) Vascular endothelial growth factor receptor KDR tyrosine kinase activity is increased by autophosphorylation of two activation loop tyrosine residues. J. Biol. Chem. 274: 6453–6460
<pub-id pub-id-type="pmid">10037737</pub-id>
</citation>
</ref>
<ref id="CR111">
<label>111</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hubbard</surname>
<given-names>S. R.</given-names>
</name>
</person-group>
<article-title>Juxtamembrane autoinhibition in receptor tyrosine kinases</article-title>
<source>Nat. Rev. Mol. Cell Biol.</source>
<year>2004</year>
<volume>5</volume>
<fpage>464</fpage>
<lpage>471</lpage>
</citation>
<citation citation-type="display-unstructured">Hubbard S. R. (2004) Juxtamembrane autoinhibition in receptor tyrosine kinases. Nat. Rev. Mol. Cell Biol. 5: 464–471
<pub-id pub-id-type="pmid">15173825</pub-id>
</citation>
</ref>
<ref id="CR112">
<label>112</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meyer</surname>
<given-names>R. D.</given-names>
</name>
<name>
<surname>Dayanir</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Majnoun</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Rahimi</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>The presence of a single tyrosine residue at the carboxyl domain of vascular endothelial growth factor receptor-2/FLK-1 regulates its autophosphorylation and activation of signaling molecules</article-title>
<source>J. Biol. Chem.</source>
<year>2002</year>
<volume>277</volume>
<fpage>27081</fpage>
<lpage>27087</lpage>
</citation>
<citation citation-type="display-unstructured">Meyer R. D., Dayanir V., Majnoun F. and Rahimi N. (2002) The presence of a single tyrosine residue at the carboxyl domain of vascular endothelial growth factor receptor-2/FLK-1 regulates its autophosphorylation and activation of signaling molecules. J. Biol. Chem. 277: 27081–27087
<pub-id pub-id-type="pmid">12023952</pub-id>
</citation>
</ref>
<ref id="CR113">
<label>113</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Duval</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Bedard-Goulet</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Delisle</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Gratton</surname>
<given-names>J. P.</given-names>
</name>
</person-group>
<article-title>Vascular endothelial growth factor-dependent down-regulation of Flk-1/KDR involves Cbl-mediated ubiquitination: consequences on nitric oxide production from endothelial cells</article-title>
<source>J. Biol. Chem.</source>
<year>2003</year>
<volume>278</volume>
<fpage>20091</fpage>
<lpage>20097</lpage>
</citation>
<citation citation-type="display-unstructured">Duval M., Bedard-Goulet S., Delisle C. and Gratton J. P. (2003) Vascular endothelial growth factor-dependent down-regulation of Flk-1/KDR involves Cbl-mediated ubiquitination: consequences on nitric oxide production from endothelial cells. J. Biol. Chem. 278: 20091–20097
<pub-id pub-id-type="pmid">12649282</pub-id>
</citation>
</ref>
<ref id="CR114">
<label>114</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kroll</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Waltenberger</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>The vascular endothelial growth factor receptor KDR activates multiple signal transduction pathways in porcine aortic endothelial cells</article-title>
<source>J. Biol. Chem.</source>
<year>1997</year>
<volume>272</volume>
<fpage>32521</fpage>
<lpage>32527</lpage>
</citation>
<citation citation-type="display-unstructured">Kroll J. and Waltenberger J. (1997) The vascular endothelial growth factor receptor KDR activates multiple signal transduction pathways in porcine aortic endothelial cells. J. Biol. Chem. 272: 32521–32527
<pub-id pub-id-type="pmid">9405464</pub-id>
</citation>
</ref>
<ref id="CR115">
<label>115</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gallicchio</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mitola</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Valdembri</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Fantozzi</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Varnum</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Avanzi</surname>
<given-names>G. C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inhibition of vascular endothelial growth factor receptor 2-mediated endothelial cell activation by Axl tyrosine kinase receptor</article-title>
<source>Blood</source>
<year>2004</year>
<volume>105</volume>
<fpage>1970</fpage>
<lpage>1976</lpage>
</citation>
<citation citation-type="display-unstructured">Gallicchio M., Mitola S., Valdembri D., Fantozzi R., Varnum B., Avanzi G. C. et al. (2004) Inhibition of vascular endothelial growth factor receptor 2-mediated endothelial cell activation by Axl tyrosine kinase receptor. Blood 105: 1970–1976
<pub-id pub-id-type="pmid">15507525</pub-id>
</citation>
</ref>
<ref id="CR116">
<label>116</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guo</surname>
<given-names>D. Q.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>L. W.</given-names>
</name>
<name>
<surname>Dunbar</surname>
<given-names>J. D.</given-names>
</name>
<name>
<surname>Ozes</surname>
<given-names>O. N.</given-names>
</name>
<name>
<surname>Mayo</surname>
<given-names>L. D.</given-names>
</name>
<name>
<surname>Kessler</surname>
<given-names>K. M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Tumor necrosis factor employs a protein-tyrosine phosphatase to inhibit activation of KDR and vascular endothelial cell growth factor-induced endothelial cell proliferation</article-title>
<source>J. Biol. Chem.</source>
<year>2000</year>
<volume>275</volume>
<fpage>11216</fpage>
<lpage>11221</lpage>
</citation>
<citation citation-type="display-unstructured">Guo D. Q., Wu L. W., Dunbar J. D., Ozes O. N., Mayo L. D., Kessler K. M. et al. (2000) Tumor necrosis factor employs a protein-tyrosine phosphatase to inhibit activation of KDR and vascular endothelial cell growth factor-induced endothelial cell proliferation. J. Biol. Chem. 275: 11216–11221
<pub-id pub-id-type="pmid">10753929</pub-id>
</citation>
</ref>
<ref id="CR117">
<label>117</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nakagami</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Cui T</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Iwai</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Shiuchi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Takeda-Matsubara</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Tumor necrosis factor-alpha inhibits growth factor-mediated cell proliferation through SHP-1 activation in endothelial cells</article-title>
<source>Arterioscler. Thromb. Vasc. Biol.</source>
<year>2002</year>
<volume>22</volume>
<fpage>238</fpage>
<lpage>242</lpage>
</citation>
<citation citation-type="display-unstructured">Nakagami H., Cui T. X., Iwai M., Shiuchi T., Takeda-Matsubara Y., Wu L. et al. (2002) Tumor necrosis factor-alpha inhibits growth factor-mediated cell proliferation through SHP-1 activation in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 22: 238–242
<pub-id pub-id-type="pmid">11834522</pub-id>
</citation>
</ref>
<ref id="CR118">
<label>118</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guo</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Jia</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>H. Y.</given-names>
</name>
<name>
<surname>Warren</surname>
<given-names>R. S.</given-names>
</name>
<name>
<surname>Donner</surname>
<given-names>D. B.</given-names>
</name>
</person-group>
<article-title>Vascular endothelial cell growth factor promotes tyrosine phosphorylation of mediators of signal transduction that contain SH2 domains: association with endothelial cell proliferation</article-title>
<source>J. Biol. Chem.</source>
<year>1995</year>
<volume>270</volume>
<fpage>6729</fpage>
<lpage>6733</lpage>
</citation>
<citation citation-type="display-unstructured">Guo D., Jia Q., Song H. Y., Warren R. S. and Donner D. B. (1995) Vascular endothelial cell growth factor promotes tyrosine phosphorylation of mediators of signal transduction that contain SH2 domains: association with endothelial cell proliferation. J. Biol. Chem. 270: 6729–6733
<pub-id pub-id-type="pmid">7896817</pub-id>
</citation>
</ref>
<ref id="CR119">
<label>119</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Warner</surname>
<given-names>A. J.</given-names>
</name>
<name>
<surname>Lopez-Dee</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Knight</surname>
<given-names>E. L.</given-names>
</name>
<name>
<surname>Feramisco</surname>
<given-names>J. R.</given-names>
</name>
<name>
<surname>Prigent</surname>
<given-names>S. A.</given-names>
</name>
</person-group>
<article-title>The Shc-related adaptor protein, Sck, forms a complex with the vascular-endothelial-growth-factor receptor KDR in transfected cells</article-title>
<source>Biochem. J.</source>
<year>2000</year>
<volume>347</volume>
<fpage>501</fpage>
<lpage>509</lpage>
</citation>
<citation citation-type="display-unstructured">Warner A. J., Lopez-Dee J., Knight E. L., Feramisco J. R. and Prigent S. A. (2000) The Shc-related adaptor protein, Sck, forms a complex with the vascular-endothelial-growth-factor receptor KDR in transfected cells. Biochem. J. 347: 501–509
<pub-id pub-id-type="pmid">10749680</pub-id>
</citation>
</ref>
<ref id="CR120">
<label>120</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Giorgetti-Peraldi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Murdaca</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Mas J</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Obberghen</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>The adapter protein, Grb10, is a positive regulator of vascular endothelial growth factor signaling</article-title>
<source>Oncogene</source>
<year>2001</year>
<volume>20</volume>
<fpage>3959</fpage>
<lpage>3968</lpage>
</citation>
<citation citation-type="display-unstructured">Giorgetti-Peraldi S., Murdaca J., Mas J. C. and Van Obberghen E. (2001) The adapter protein, Grb10, is a positive regulator of vascular endothelial growth factor signaling. Oncogene 20: 3959–3968
<pub-id pub-id-type="pmid">11494124</pub-id>
</citation>
</ref>
<ref id="CR121">
<label>121</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Sankar</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Kontos</surname>
<given-names>C. D.</given-names>
</name>
<name>
<surname>Schroff</surname>
<given-names>A. D.</given-names>
</name>
<name>
<surname>Cha</surname>
<given-names>E. H.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>HCPTPA, a protein tyrosine phosphatase that regulates vascular endothelial growth factor receptor-mediated signal transduction and biological activity</article-title>
<source>J. Biol. Chem.</source>
<year>1999</year>
<volume>274</volume>
<fpage>38183</fpage>
<lpage>38188</lpage>
</citation>
<citation citation-type="display-unstructured">Huang L., Sankar S., Lin C., Kontos C. D., Schroff A. D., Cha E. H. et al. (1999) HCPTPA, a protein tyrosine phosphatase that regulates vascular endothelial growth factor receptor-mediated signal transduction and biological activity. J. Biol. Chem. 274: 38183–38188
<pub-id pub-id-type="pmid">10608891</pub-id>
</citation>
</ref>
<ref id="CR122">
<label>122</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meadows</surname>
<given-names>K. N.</given-names>
</name>
<name>
<surname>Bryant</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Pumiglia</surname>
<given-names>K. M.</given-names>
</name>
</person-group>
<article-title>VEGF-induction of the angiogenic phenotype requires Ras activation</article-title>
<source>J. Biol. Chem.</source>
<year>2001</year>
<volume>276</volume>
<fpage>49289</fpage>
<lpage>49298</lpage>
</citation>
<citation citation-type="display-unstructured">Meadows K. N., Bryant P. and Pumiglia K. M. (2001) VEGF-induction of the angiogenic phenotype requires Ras activation. J. Biol. Chem. 276: 49289–49298
<pub-id pub-id-type="pmid">11682481</pub-id>
</citation>
</ref>
<ref id="CR123">
<label>123</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Songyang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Sheolson</surname>
<given-names>S. E.</given-names>
</name>
<name>
<surname>Chaudhuri</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gish</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Pawson</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Haser</surname>
<given-names>W. G.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>SH2 domains recognize specific phosphopeptide sequences</article-title>
<source>Cell</source>
<year>1993</year>
<volume>72</volume>
<fpage>767</fpage>
<lpage>778</lpage>
</citation>
<citation citation-type="display-unstructured">Songyang Z., Sheolson S. E., Chaudhuri M., Gish G., Pawson T., Haser W. G. et al. (1993) SH2 domains recognize specific phosphopeptide sequences. Cell 72: 767–778
<pub-id pub-id-type="pmid">7680959</pub-id>
</citation>
</ref>
<ref id="CR124">
<label>124</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pedram</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Razandi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Levin</surname>
<given-names>E. R.</given-names>
</name>
</person-group>
<article-title>Extracellular signal-regulated protein kinase/Jun kinase cross-talk underlies vascular endothelial cell growth factor-induced endothelial cell proliferation</article-title>
<source>J. Biol. Chem.</source>
<year>1998</year>
<volume>273</volume>
<fpage>26722</fpage>
<lpage>26728</lpage>
</citation>
<citation citation-type="display-unstructured">Pedram A., Razandi M. and Levin E. R. (1998) Extracellular signal-regulated protein kinase/Jun kinase cross-talk underlies vascular endothelial cell growth factor-induced endothelial cell proliferation. J. Biol. Chem. 273: 26722–26728
<pub-id pub-id-type="pmid">9756915</pub-id>
</citation>
</ref>
<ref id="CR125">
<label>125</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Doanes</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Hegland</surname>
<given-names>D. D.</given-names>
</name>
<name>
<surname>Sethi</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Kovesdi</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Bruder</surname>
<given-names>J. T.</given-names>
</name>
<name>
<surname>Finkel</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>VEGF stimulates MAPK through a pathway that is unique for receptor tyrosine kinases</article-title>
<source>Biochem. Biophys. Res. Commun.</source>
<year>1999</year>
<volume>255</volume>
<fpage>545</fpage>
<lpage>548</lpage>
</citation>
<citation citation-type="display-unstructured">Doanes A. M., Hegland D. D., Sethi R., Kovesdi I., Bruder J. T. and Finkel T. (1999) VEGF stimulates MAPK through a pathway that is unique for receptor tyrosine kinases. Biochem. Biophys. Res. Commun. 255: 545–548
<pub-id pub-id-type="pmid">10049745</pub-id>
</citation>
</ref>
<ref id="CR126">
<label>126</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Takahashi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Ueno</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Shibuya</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>VEGF activates protein kinase C-dependent, but Ras-independent Raf- MEKMAP kinase pathway for DNA synthesis in primary endothelial cells</article-title>
<source>Oncogene</source>
<year>1999</year>
<volume>18</volume>
<fpage>2221</fpage>
<lpage>2230</lpage>
</citation>
<citation citation-type="display-unstructured">Takahashi T., Ueno H. and Shibuya M. (1999) VEGF activates protein kinase C-dependent, but Ras-independent Raf- MEKMAP kinase pathway for DNA synthesis in primary endothelial cells. Oncogene 18: 2221–2230
<pub-id pub-id-type="pmid">10327068</pub-id>
</citation>
</ref>
<ref id="CR127">
<label>127</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>L. W.</given-names>
</name>
<name>
<surname>Mayo</surname>
<given-names>L. D.</given-names>
</name>
<name>
<surname>Dunbar</surname>
<given-names>J. D.</given-names>
</name>
<name>
<surname>Kessler</surname>
<given-names>K. M.</given-names>
</name>
<name>
<surname>Baerwald</surname>
<given-names>M. R.</given-names>
</name>
<name>
<surname>Jaffe</surname>
<given-names>E. A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Utilization of distinct signaling pathways by receptors for vascular endothelial cell growth factor and other mitogens in the induction of endothelial cell proliferation</article-title>
<source>J. Biol. Chem.</source>
<year>2000</year>
<volume>275</volume>
<fpage>5096</fpage>
<lpage>5103</lpage>
</citation>
<citation citation-type="display-unstructured">Wu L. W., Mayo L. D., Dunbar J. D., Kessler K. M., Baerwald M. R., Jaffe E. A. et al. (2000) Utilization of distinct signaling pathways by receptors for vascular endothelial cell growth factor and other mitogens in the induction of endothelial cell proliferation. J. Biol. Chem. 275: 5096–5103
<pub-id pub-id-type="pmid">10671553</pub-id>
</citation>
</ref>
<ref id="CR128">
<label>128</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xia</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Aiello</surname>
<given-names>L. P.</given-names>
</name>
<name>
<surname>Ishii</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>Z. Y.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>D. J.</given-names>
</name>
<name>
<surname>Robinson</surname>
<given-names>G. S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Characterization of vascular endothelial growth factor's effect on the activation of protein kinase C, its isoforms, and endothelial cell growth</article-title>
<source>J. Clin. Invest.</source>
<year>1996</year>
<volume>98</volume>
<fpage>2018</fpage>
<lpage>2026</lpage>
</citation>
<citation citation-type="display-unstructured">Xia P., Aiello L. P., Ishii H., Jiang Z. Y., Park D. J., Robinson G. S. et al. (1996) Characterization of vascular endothelial growth factor's effect on the activation of protein kinase C, its isoforms, and endothelial cell growth. J. Clin. Invest. 98: 2018–2026
<pub-id pub-id-type="pmid">8903320</pub-id>
</citation>
</ref>
<ref id="CR129">
<label>129</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gliki</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Abu-Ghazaleh</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Jezequel</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Wheeler-Jones</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Zachary</surname>
<given-names>I.</given-names>
</name>
</person-group>
<article-title>Vascular endothelial growth factor-induced prostacyclin production is mediated by a protein kinase C (PKC)-dependent activation of extracellular signal-regulated protein kinases 1 and 2 involving PKC-delta and by mobilization of intracellular Ca
<sup>2+</sup>
</article-title>
<source>Biochem. J.</source>
<year>2001</year>
<volume>353</volume>
<fpage>503</fpage>
<lpage>512</lpage>
</citation>
<citation citation-type="display-unstructured">Gliki G., Abu-Ghazaleh R., Jezequel S., Wheeler-Jones C. and Zachary I. (2001) Vascular endothelial growth factor-induced prostacyclin production is mediated by a protein kinase C (PKC)-dependent activation of extracellular signal-regulated protein kinases 1 and 2 involving PKC-delta and by mobilization of intracellular Ca2+. Biochem. J. 353: 503–512
<pub-id pub-id-type="pmid">11171046</pub-id>
</citation>
</ref>
<ref id="CR130">
<label>130</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dayanir</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Meyer</surname>
<given-names>R. D.</given-names>
</name>
<name>
<surname>Lashkari</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Rahimi</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Identification of tyrosine residues in vascular endothelial growth factor receptor-2/FLK-1 involved in activation of phosphatidylinositol-3 kinase and cell proliferation</article-title>
<source>J. Biol. Chem.</source>
<year>2001</year>
<volume>276</volume>
<fpage>17686</fpage>
<lpage>17692</lpage>
</citation>
<citation citation-type="display-unstructured">Dayanir V., Meyer R. D., Lashkari K. and Rahimi N. (2001) Identification of tyrosine residues in vascular endothelial growth factor receptor-2/FLK-1 involved in activation of phosphatidylinositol-3 kinase and cell proliferation. J. Biol. Chem. 276: 17686–17692
<pub-id pub-id-type="pmid">11278468</pub-id>
</citation>
</ref>
<ref id="CR131">
<label>131</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Sato</surname>
<given-names>J. D.</given-names>
</name>
</person-group>
<article-title>MAP kinases, phosphatidylinositol 3-kinase, and p70 S6 kinase mediate the mitogenic response of human endothelial cells to vascular endothelial growth factor</article-title>
<source>J. Cell Physiol.</source>
<year>1999</year>
<volume>178</volume>
<fpage>235</fpage>
<lpage>246</lpage>
</citation>
<citation citation-type="display-unstructured">Yu Y. and Sato J. D. (1999) MAP kinases, phosphatidylinositol 3-kinase, and p70 S6 kinase mediate the mitogenic response of human endothelial cells to vascular endothelial growth factor. J. Cell Physiol. 178: 235–246
<pub-id pub-id-type="pmid">10048588</pub-id>
</citation>
</ref>
<ref id="CR132">
<label>132</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>He</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Venema</surname>
<given-names>V. J.</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Venema</surname>
<given-names>R. C.</given-names>
</name>
<name>
<surname>Marrero</surname>
<given-names>M. B.</given-names>
</name>
<name>
<surname>Caldwell</surname>
<given-names>R. B.</given-names>
</name>
</person-group>
<article-title>Vascular endothelial growth factor signals endothelial cell production of nitric oxide and prostacyclin through flk-1/KDR activation of c-Src</article-title>
<source>J. Biol. Chem.</source>
<year>1999</year>
<volume>274</volume>
<fpage>25130</fpage>
<lpage>25135</lpage>
</citation>
<citation citation-type="display-unstructured">He H., Venema V. J., Gu X., Venema R. C., Marrero M. B. and Caldwell R. B. (1999) Vascular endothelial growth factor signals endothelial cell production of nitric oxide and prostacyclin through flk-1/KDR activation of c-Src. J. Biol. Chem. 274: 25130–25135
<pub-id pub-id-type="pmid">10455194</pub-id>
</citation>
</ref>
<ref id="CR133">
<label>133</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miralem</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Steinberg</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Price</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Avraham</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>VEGF(165) requires extracellular matrix components to induce mitogenic effects and migratory response in breast cancer cells</article-title>
<source>Oncogene</source>
<year>2001</year>
<volume>20</volume>
<fpage>5511</fpage>
<lpage>5524</lpage>
</citation>
<citation citation-type="display-unstructured">Miralem T., Steinberg R., Price D. and Avraham H. (2001) VEGF(165) requires extracellular matrix components to induce mitogenic effects and migratory response in breast cancer cells. Oncogene 20: 5511–5524
<pub-id pub-id-type="pmid">11571649</pub-id>
</citation>
</ref>
<ref id="CR134">
<label>134</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Miralem</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Templeton</surname>
<given-names>D. M.</given-names>
</name>
</person-group>
<article-title>Heparan sulfate chains with antimitogenic properties arise from mesangial cell-surface proteoglycans</article-title>
<source>Metabolism</source>
<year>1999</year>
<volume>48</volume>
<fpage>1220</fpage>
<lpage>1229</lpage>
</citation>
<citation citation-type="display-unstructured">Wang A., Miralem T. and Templeton D. M. (1999) Heparan sulfate chains with antimitogenic properties arise from mesangial cell-surface proteoglycans. Metabolism 48: 1220–1229
<pub-id pub-id-type="pmid">10535382</pub-id>
</citation>
</ref>
<ref id="CR135">
<label>135</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grazia Lampugnani</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zanetti</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Corada</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Takahashi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Balconi</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Breviario</surname>
<given-names>F.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, beta-catenin, and the phosphatase DEP-1/CD148</article-title>
<source>J. Cell Biol.</source>
<year>2003</year>
<volume>161</volume>
<fpage>793</fpage>
<lpage>804</lpage>
</citation>
<citation citation-type="display-unstructured">Grazia Lampugnani M., Zanetti A., Corada M., Takahashi T., Balconi G., Breviario F. et al. (2003) Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, beta-catenin, and the phosphatase DEP-1/CD148. J. Cell Biol. 161: 793–804
<pub-id pub-id-type="pmid">12771128</pub-id>
</citation>
</ref>
<ref id="CR136">
<label>136</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abedi</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Zachary</surname>
<given-names>I.</given-names>
</name>
</person-group>
<article-title>Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells</article-title>
<source>J. Biol. Chem.</source>
<year>1997</year>
<volume>272</volume>
<fpage>15442</fpage>
<lpage>15451</lpage>
</citation>
<citation citation-type="display-unstructured">Abedi H. and Zachary I. (1997) Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. J. Biol. Chem. 272: 15442–15451
<pub-id pub-id-type="pmid">9182576</pub-id>
</citation>
</ref>
<ref id="CR137">
<label>137</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kanno</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Oda</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Abe</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Terai</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ito</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Shitara</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Roles of two VEGF receptors, Flt-1 and KDR, in the signal transduction of VEGF effects in human vascular endothelial cells</article-title>
<source>Oncogene</source>
<year>2000</year>
<volume>19</volume>
<fpage>2138</fpage>
<lpage>2146</lpage>
</citation>
<citation citation-type="display-unstructured">Kanno S., Oda N., Abe M., Terai Y., Ito M., Shitara K. et al. (2000) Roles of two VEGF receptors, Flt-1 and KDR, in the signal transduction of VEGF effects in human vascular endothelial cells. Oncogene 19: 2138–2146
<pub-id pub-id-type="pmid">10815805</pub-id>
</citation>
</ref>
<ref id="CR138">
<label>138</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kiosses</surname>
<given-names>W. B.</given-names>
</name>
<name>
<surname>Daniels</surname>
<given-names>R. H.</given-names>
</name>
<name>
<surname>Otey</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Bokoch</surname>
<given-names>G. M.</given-names>
</name>
<name>
<surname>Schwartz</surname>
<given-names>M. A.</given-names>
</name>
</person-group>
<article-title>A role for p21-activated kinase in endothelial cell migration</article-title>
<source>J. Cell Biol.</source>
<year>1999</year>
<volume>147</volume>
<fpage>831</fpage>
<lpage>844</lpage>
</citation>
<citation citation-type="display-unstructured">Kiosses W. B., Daniels R. H., Otey C., Bokoch G. M. and Schwartz M. A. (1999) A role for p21-activated kinase in endothelial cell migration. J. Cell Biol. 147: 831–844
<pub-id pub-id-type="pmid">10562284</pub-id>
</citation>
</ref>
<ref id="CR139">
<label>139</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rousseau</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Houle</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Kotanides</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Witte</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Waltenberger</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Landry</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Vascular endothelial growth factor (VEGF)-driven actin-based motility is mediated by VEGFR2 and requires concerted activation of stress-activated protein kinase 2 (SAPK2/p38) and geldanamycin-sensitive phosphorylation of focal adhesion kinase</article-title>
<source>J. Biol. Chem.</source>
<year>2000</year>
<volume>275</volume>
<fpage>10661</fpage>
<lpage>10672</lpage>
</citation>
<citation citation-type="display-unstructured">Rousseau S., Houle F., Kotanides H., Witte L., Waltenberger J., Landry J. et al. (2000) Vascular endothelial growth factor (VEGF)-driven actin-based motility is mediated by VEGFR2 and requires concerted activation of stress-activated protein kinase 2 (SAPK2/p38) and geldanamycin-sensitive phosphorylation of focal adhesion kinase. J. Biol. Chem. 275: 10661–10672
<pub-id pub-id-type="pmid">10744763</pub-id>
</citation>
</ref>
<ref id="CR140">
<label>140</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stoletov</surname>
<given-names>K. V.</given-names>
</name>
<name>
<surname>Ratcliffe</surname>
<given-names>K. E.</given-names>
</name>
<name>
<surname>Spring</surname>
<given-names>S. C.</given-names>
</name>
<name>
<surname>Terman</surname>
<given-names>B. I.</given-names>
</name>
</person-group>
<article-title>NCK and PAK participate in the signaling pathway by which VEGF stimulates the assembly of focal adhesions</article-title>
<source>J. Biol. Chem.</source>
<year>2001</year>
<volume>276</volume>
<fpage>22748</fpage>
<lpage>22755</lpage>
</citation>
<citation citation-type="display-unstructured">Stoletov K. V., Ratcliffe K. E., Spring S. C. and Terman B. I. (2001) NCK and PAK participate in the signaling pathway by which VEGF stimulates the assembly of focal adhesions. J. Biol. Chem. 276: 22748–22755
<pub-id pub-id-type="pmid">11278553</pub-id>
</citation>
</ref>
<ref id="CR141">
<label>141</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stoletov</surname>
<given-names>K. V.</given-names>
</name>
<name>
<surname>Gong</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Terman</surname>
<given-names>B. I.</given-names>
</name>
</person-group>
<article-title>Nck and Crk mediate distinct VEGF-induced signaling pathways that serve overlapping functions in focal adhesion turnover and integrin activation</article-title>
<source>Exp. Cell Res.</source>
<year>2004</year>
<volume>295</volume>
<fpage>258</fpage>
<lpage>268</lpage>
</citation>
<citation citation-type="display-unstructured">Stoletov K. V., Gong C. and Terman B. I. (2004) Nck and Crk mediate distinct VEGF-induced signaling pathways that serve overlapping functions in focal adhesion turnover and integrin activation. Exp. Cell Res. 295: 258–268
<pub-id pub-id-type="pmid">15051508</pub-id>
</citation>
</ref>
<ref id="CR142">
<label>142</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abu-Ghazaleh</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Kabir</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Jia</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Lobo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zachary</surname>
<given-names>I.</given-names>
</name>
</person-group>
<article-title>Src mediates stimulation by vascular endothelial growth factor of the phosphorylation of focal adhesion kinase at tyrosine 861, and migration and anti-apoptosis in endothelial cells</article-title>
<source>Biochem. J.</source>
<year>2001</year>
<volume>360</volume>
<fpage>255</fpage>
<lpage>264</lpage>
</citation>
<citation citation-type="display-unstructured">Abu-Ghazaleh R., Kabir J., Jia H., Lobo M. and Zachary I. (2001) Src mediates stimulation by vascular endothelial growth factor of the phosphorylation of focal adhesion kinase at tyrosine 861, and migration and anti-apoptosis in endothelial cells. Biochem. J. 360: 255–264
<pub-id pub-id-type="pmid">11696015</pub-id>
</citation>
</ref>
<ref id="CR143">
<label>143</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ali</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Yoshizumi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Fujita</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Izawa</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Kanematsu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ishizawa</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A novel Src kinase inhibitor, M475271, inhibits VEGF-induced human umbilical vein endothelial cell proliferation and migration</article-title>
<source>J. Pharmacol. Sci.</source>
<year>2005</year>
<volume>98</volume>
<fpage>130</fpage>
<lpage>141</lpage>
</citation>
<citation citation-type="display-unstructured">Ali N., Yoshizumi M., Fujita Y., Izawa Y., Kanematsu Y., Ishizawa K. et al. (2005) A novel Src kinase inhibitor, M475271, inhibits VEGF-induced human umbilical vein endothelial cell proliferation and migration. J. Pharmacol. Sci. 98: 130–141
<pub-id pub-id-type="pmid">15937404</pub-id>
</citation>
</ref>
<ref id="CR144">
<label>144</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Holmqvist</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Cross M</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Rolny</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Hagerkvist</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Rahimi</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Matsumoto</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The adaptor protein Shb binds to tyrosine 1175 in the VEGFR-2 and regulates VEGF-dependent cellular migration</article-title>
<source>J. Biol. Chem.</source>
<year>2004</year>
<volume>279</volume>
<fpage>22267</fpage>
<lpage>22275</lpage>
</citation>
<citation citation-type="display-unstructured">Holmqvist K., Cross M. J., Rolny C., Hagerkvist R., Rahimi N., Matsumoto T. et al. (2004) The adaptor protein Shb binds to tyrosine 1175 in the VEGFR-2 and regulates VEGF-dependent cellular migration. J. Biol. Chem. 279: 22267–22275
<pub-id pub-id-type="pmid">15026417</pub-id>
</citation>
</ref>
<ref id="CR145">
<label>145</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>L. W.</given-names>
</name>
<name>
<surname>Mayo</surname>
<given-names>L. D.</given-names>
</name>
<name>
<surname>Dunbar</surname>
<given-names>J. D.</given-names>
</name>
<name>
<surname>Kessler</surname>
<given-names>K. M.</given-names>
</name>
<name>
<surname>Ozes</surname>
<given-names>O. N.</given-names>
</name>
<name>
<surname>Warren</surname>
<given-names>R. S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>VRAP is an adaptor protein that binds KDR, a receptor for vascular endothelial cell growth factor</article-title>
<source>J. Biol. Chem.</source>
<year>2000</year>
<volume>275</volume>
<fpage>6059</fpage>
<lpage>6062</lpage>
</citation>
<citation citation-type="display-unstructured">Wu L. W., Mayo L. D., Dunbar J. D., Kessler K. M., Ozes O. N., Warren R. S. et al. (2000) VRAP is an adaptor protein that binds KDR, a receptor for vascular endothelial cell growth factor. J. Biol. Chem. 275: 6059–6062
<pub-id pub-id-type="pmid">10692392</pub-id>
</citation>
</ref>
<ref id="CR146">
<label>146</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rousseau</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Houle</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Landry</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Huot</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells</article-title>
<source>Oncogene</source>
<year>1997</year>
<volume>15</volume>
<fpage>2169</fpage>
<lpage>2177</lpage>
</citation>
<citation citation-type="display-unstructured">Rousseau S., Houle F., Landry J. and Huot J. (1997) p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene 15: 2169–2177
<pub-id pub-id-type="pmid">9393975</pub-id>
</citation>
</ref>
<ref id="CR147">
<label>147</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>McMullen</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Keller</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Sussman</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Pumiglia</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Vascular endothelial growth factor-mediated activation of p38 is dependent upon Src and RAFTK/Pyk2</article-title>
<source>Oncogene</source>
<year>2003</year>
<volume>23</volume>
<fpage>1275</fpage>
<lpage>1282</lpage>
</citation>
<citation citation-type="display-unstructured">McMullen M., Keller R., Sussman M. and Pumiglia K. (2003) Vascular endothelial growth factor-mediated activation of p38 is dependent upon Src and RAFTK/Pyk2. Oncogene 23: 1275–1282
<pub-id pub-id-type="pmid">14676843</pub-id>
</citation>
</ref>
<ref id="CR148">
<label>148</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lamalice</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Houle</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Jourdan</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Huot</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Phosphorylation of tyrosine 1214 on VEGFR2 is required for VEGF-induced activation of Cdc42 upstream of SAPK2/p38</article-title>
<source>Oncogene</source>
<year>2004</year>
<volume>23</volume>
<fpage>434</fpage>
<lpage>445</lpage>
</citation>
<citation citation-type="display-unstructured">Lamalice L., Houle F., Jourdan G. and Huot J. (2004) Phosphorylation of tyrosine 1214 on VEGFR2 is required for VEGF-induced activation of Cdc42 upstream of SAPK2/p38. Oncogene 23: 434–445
<pub-id pub-id-type="pmid">14724572</pub-id>
</citation>
</ref>
<ref id="CR149">
<label>149</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huot</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Houle</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Marceau</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Landry</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Oxidative stress-induced actin reorganization mediated by the p38 mitogen-activated protein kinase/heat shock protein 27 pathway in vascular endothelial cells</article-title>
<source>Circ. Res.</source>
<year>1997</year>
<volume>80</volume>
<fpage>383</fpage>
<lpage>392</lpage>
</citation>
<citation citation-type="display-unstructured">Huot J., Houle F., Marceau F. and Landry J. (1997) Oxidative stress-induced actin reorganization mediated by the p38 mitogen-activated protein kinase/heat shock protein 27 pathway in vascular endothelial cells. Circ. Res. 80: 383–392
<pub-id pub-id-type="pmid">9048659</pub-id>
</citation>
</ref>
<ref id="CR150">
<label>150</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rousseau</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Houle</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Huot</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Integrating the VEGF signals leading to actin-based motility in vascular endothelial cells</article-title>
<source>Trends Cardiovasc. Med.</source>
<year>2000</year>
<volume>10</volume>
<fpage>321</fpage>
<lpage>327</lpage>
</citation>
<citation citation-type="display-unstructured">Rousseau S., Houle F. and Huot J. (2000) Integrating the VEGF signals leading to actin-based motility in vascular endothelial cells. Trends Cardiovasc. Med. 10: 321–327
<pub-id pub-id-type="pmid">11369257</pub-id>
</citation>
</ref>
<ref id="CR151">
<label>151</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zeng</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Mukhopadhyay</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>KDR stimulates endothelial cell migration through heterotrimeric G proteins Gq/11-mediated activation of a small GTPase Rho A</article-title>
<source>J. Biol. Chem.</source>
<year>2002</year>
<volume>277</volume>
<fpage>46791</fpage>
<lpage>46798</lpage>
</citation>
<citation citation-type="display-unstructured">Zeng H., Zhao D. and Mukhopadhyay D. (2002) KDR stimulates endothelial cell migration through heterotrimeric G proteins Gq/11-mediated activation of a small GTPase Rho A. J. Biol. Chem. 277: 46791–46798
<pub-id pub-id-type="pmid">12244099</pub-id>
</citation>
</ref>
<ref id="CR152">
<label>152</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alon</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Hemo</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Itin</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Peer</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Stone</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Keshet</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity</article-title>
<source>Nat. Med.</source>
<year>1995</year>
<volume>1</volume>
<fpage>1024</fpage>
<lpage>1028</lpage>
</citation>
<citation citation-type="display-unstructured">Alon T., Hemo I., Itin A., Peer J., Stone J. and Keshet E. (1995) Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat. Med. 1: 1024–1028
<pub-id pub-id-type="pmid">7489357</pub-id>
</citation>
</ref>
<ref id="CR153">
<label>153</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gerber</surname>
<given-names>H. P.</given-names>
</name>
<name>
<surname>Hillan</surname>
<given-names>K. J.</given-names>
</name>
<name>
<surname>Ryan</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Kowalski</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Keller</surname>
<given-names>G. A.</given-names>
</name>
<name>
<surname>Rangell</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>VEGF is required for growth and survival in neonatal mice</article-title>
<source>Development</source>
<year>1999</year>
<volume>126</volume>
<fpage>1149</fpage>
<lpage>1159</lpage>
</citation>
<citation citation-type="display-unstructured">Gerber H. P., Hillan K. J., Ryan A. M., Kowalski J., Keller G. A., Rangell L. et al. (1999) VEGF is required for growth and survival in neonatal mice. Development 126: 1149–1159
<pub-id pub-id-type="pmid">10021335</pub-id>
</citation>
</ref>
<ref id="CR154">
<label>154</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Benjamin</surname>
<given-names>L. E.</given-names>
</name>
<name>
<surname>Golijanin</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Itin</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Pode</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Keshet</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal</article-title>
<source>J. Clin. Invest</source>
<year>1999</year>
<volume>103</volume>
<fpage>159</fpage>
<lpage>165</lpage>
</citation>
<citation citation-type="display-unstructured">Benjamin L. E., Golijanin D., Itin A., Pode D. and Keshet E. (1999) Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J. Clin. Invest 103: 159–165
<pub-id pub-id-type="pmid">9916127</pub-id>
</citation>
</ref>
<ref id="CR155">
<label>155</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gerber</surname>
<given-names>H. P.</given-names>
</name>
<name>
<surname>McMurtrey</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kowalski</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Keyt</surname>
<given-names>B. A.</given-names>
</name>
<name>
<surname>Dixit</surname>
<given-names>V.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway: requirement for Flk-1/KDR activation</article-title>
<source>J. Biol. Chem.</source>
<year>1998</year>
<volume>273</volume>
<fpage>30336</fpage>
<lpage>30343</lpage>
</citation>
<citation citation-type="display-unstructured">Gerber H. P., McMurtrey A., Kowalski J., Yan M., Keyt B. A., Dixit V. et al. (1998) Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway: requirement for Flk-1/KDR activation. J. Biol. Chem. 273: 30336–30343
<pub-id pub-id-type="pmid">9804796</pub-id>
</citation>
</ref>
<ref id="CR156">
<label>156</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fujio</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Walsh</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Akt mediates cytoprotection of endothelial cells by vascular endothelial growth factor in an anchorage-dependent manner</article-title>
<source>J. Biol. Chem.</source>
<year>1999</year>
<volume>274</volume>
<fpage>16349</fpage>
<lpage>16354</lpage>
</citation>
<citation citation-type="display-unstructured">Fujio Y. and Walsh K. (1999) Akt mediates cytoprotection of endothelial cells by vascular endothelial growth factor in an anchorage-dependent manner. J. Biol. Chem. 274: 16349–16354
<pub-id pub-id-type="pmid">10347193</pub-id>
</citation>
</ref>
<ref id="CR157">
<label>157</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brazil</surname>
<given-names>D. P.</given-names>
</name>
<name>
<surname>Hemmings</surname>
<given-names>B. A.</given-names>
</name>
</person-group>
<article-title>Ten years of protein kinase B signaling: a hard Akt to follow</article-title>
<source>Trends Biochem. Sci.</source>
<year>2001</year>
<volume>26</volume>
<fpage>657</fpage>
<lpage>664</lpage>
</citation>
<citation citation-type="display-unstructured">Brazil D. P. and Hemmings B. A. (2001) Ten years of protein kinase B signaling: a hard Akt to follow. Trends Biochem. Sci. 26: 657–664
<pub-id pub-id-type="pmid">11701324</pub-id>
</citation>
</ref>
<ref id="CR158">
<label>158</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gerber</surname>
<given-names>H. P.</given-names>
</name>
<name>
<surname>Dixit</surname>
<given-names>V. M.</given-names>
</name>
<name>
<surname>Ferrara</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells</article-title>
<source>J. Biol. Chem.</source>
<year>1998</year>
<volume>273</volume>
<fpage>13313</fpage>
<lpage>13316</lpage>
</citation>
<citation citation-type="display-unstructured">Gerber H. P., Dixit V. M. and Ferrara N. (1998) Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J. Biol. Chem. 273: 13313–13316
<pub-id pub-id-type="pmid">9582377</pub-id>
</citation>
</ref>
<ref id="CR159">
<label>159</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tran</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Rak</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Sheehan</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Saibil</surname>
<given-names>S. D.</given-names>
</name>
<name>
<surname>LaCasse</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Korneluk</surname>
<given-names>R. G.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Marked induction of the IAP family antiapoptotic proteins survivin and XIAP by VEGF in vascular endothelial cells</article-title>
<source>Biochem. Biophys. Res. Commun.</source>
<year>1999</year>
<volume>264</volume>
<fpage>781</fpage>
<lpage>788</lpage>
</citation>
<citation citation-type="display-unstructured">Tran J., Rak J., Sheehan C., Saibil S. D., LaCasse E., Korneluk R. G. et al. (1999) Marked induction of the IAP family antiapoptotic proteins survivin and XIAP by VEGF in vascular endothelial cells. Biochem. Biophys. Res. Commun. 264: 781–788
<pub-id pub-id-type="pmid">10544009</pub-id>
</citation>
</ref>
<ref id="CR160">
<label>160</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carmeliet</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Lampugnani</surname>
<given-names>M. G.</given-names>
</name>
<name>
<surname>Moons</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Breviario</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Compernolle</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Bono</surname>
<given-names>F.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis</article-title>
<source>Cell</source>
<year>1999</year>
<volume>98</volume>
<fpage>147</fpage>
<lpage>157</lpage>
</citation>
<citation citation-type="display-unstructured">Carmeliet P., Lampugnani M. G., Moons L., Breviario F., Compernolle V., Bono F. et al. (1999) Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98: 147–157
<pub-id pub-id-type="pmid">10428027</pub-id>
</citation>
</ref>
<ref id="CR161">
<label>161</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Spagnuolo</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Corada</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Orsenigo</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Zanetta</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Deuschle</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Sandy</surname>
<given-names>P.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Gas1 is induced by VE-cadherin and vascular endothelial growth factor and inhibits endothelial cell apoptosis</article-title>
<source>Blood</source>
<year>2004</year>
<volume>103</volume>
<fpage>3005</fpage>
<lpage>3012</lpage>
</citation>
<citation citation-type="display-unstructured">Spagnuolo R., Corada M., Orsenigo F., Zanetta L., Deuschle U., Sandy P. et al. (2004) Gas1 is induced by VE-cadherin and vascular endothelial growth factor and inhibits endothelial cell apoptosis. Blood 103: 3005–3012
<pub-id pub-id-type="pmid">15070677</pub-id>
</citation>
</ref>
<ref id="CR162">
<label>162</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dvorak</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>The vesiculo-vacuolar organelle (VVO): a new endothelial cell permeability organelle</article-title>
<source>J. Histochem. Cytochem.</source>
<year>2001</year>
<volume>49</volume>
<fpage>419</fpage>
<lpage>432</lpage>
</citation>
<citation citation-type="display-unstructured">Dvorak A. M. and Feng D. (2001) The vesiculo-vacuolar organelle (VVO): a new endothelial cell permeability organelle. J. Histochem. Cytochem. 49: 419–432
<pub-id pub-id-type="pmid">11259444</pub-id>
</citation>
</ref>
<ref id="CR163">
<label>163</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Esser</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Wolburg</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Wolburg</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Breier</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Kurzchalia</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Risau</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>Vascular endothelial growth factor induces endothelial fenestrations in vitro</article-title>
<source>J. Cell Biol.</source>
<year>1998</year>
<volume>140</volume>
<fpage>947</fpage>
<lpage>959</lpage>
</citation>
<citation citation-type="display-unstructured">Esser S., Wolburg K., Wolburg H., Breier G., Kurzchalia T. and Risau W. (1998) Vascular endothelial growth factor induces endothelial fenestrations in vitro. J. Cell Biol. 140: 947–959
<pub-id pub-id-type="pmid">9472045</pub-id>
</citation>
</ref>
<ref id="CR164">
<label>164</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roberts</surname>
<given-names>W. G.</given-names>
</name>
<name>
<surname>Palade</surname>
<given-names>G. E.</given-names>
</name>
</person-group>
<article-title>Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor</article-title>
<source>J. Cell Sci.</source>
<year>1995</year>
<volume>108</volume>
<fpage>2369</fpage>
<lpage>2379</lpage>
</citation>
<citation citation-type="display-unstructured">Roberts W. G. and Palade G. E. (1995) Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J. Cell Sci. 108: 2369–2379
<pub-id pub-id-type="pmid">7673356</pub-id>
</citation>
</ref>
<ref id="CR165">
<label>165</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roberts</surname>
<given-names>W. G.</given-names>
</name>
<name>
<surname>Palade</surname>
<given-names>G. E.</given-names>
</name>
</person-group>
<article-title>Neovasculature induced by vascular endothelial growth factor is fenestrated</article-title>
<source>Cancer Res.</source>
<year>1997</year>
<volume>57</volume>
<fpage>765</fpage>
<lpage>772</lpage>
</citation>
<citation citation-type="display-unstructured">Roberts W. G. and Palade G. E. (1997) Neovasculature induced by vascular endothelial growth factor is fenestrated. Cancer Res. 57: 765–772
<pub-id pub-id-type="pmid">9044858</pub-id>
</citation>
</ref>
<ref id="CR166">
<label>166</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eliceiri</surname>
<given-names>B. P.</given-names>
</name>
<name>
<surname>Paul</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Schwartzberg</surname>
<given-names>P. L.</given-names>
</name>
<name>
<surname>Hood</surname>
<given-names>J. D.</given-names>
</name>
<name>
<surname>Leng</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Cheresh</surname>
<given-names>D. A.</given-names>
</name>
</person-group>
<article-title>Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability</article-title>
<source>Mol. Cell</source>
<year>1999</year>
<volume>4</volume>
<fpage>915</fpage>
<lpage>924</lpage>
</citation>
<citation citation-type="display-unstructured">Eliceiri B. P., Paul R., Schwartzberg P. L., Hood J. D., Leng J. and Cheresh D. A. (1999) Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol. Cell 4: 915–924
<pub-id pub-id-type="pmid">10635317</pub-id>
</citation>
</ref>
<ref id="CR167">
<label>167</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Strickland</surname>
<given-names>L. A.</given-names>
</name>
<name>
<surname>Jubb</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Hongo</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Zhong</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Burwick</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Plasmalemmal vesicle-associated protein (PLVAP) is expressed by tumour endothelium and is upregulated by vascular endothelial growth factor-A (VEGF)</article-title>
<source>J. Pathol.</source>
<year>2005</year>
<volume>206</volume>
<fpage>466</fpage>
<lpage>475</lpage>
</citation>
<citation citation-type="display-unstructured">Strickland L. A., Jubb A. M., Hongo J. A., Zhong F., Burwick J., Fu L. et al. (2005) Plasmalemmal vesicle-associated protein (PLVAP) is expressed by tumour endothelium and is upregulated by vascular endothelial growth factor-A (VEGF). J. Pathol. 206: 466–475
<pub-id pub-id-type="pmid">15971170</pub-id>
</citation>
</ref>
<ref id="CR168">
<label>168</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cruz</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>DeFouw</surname>
<given-names>L. M.</given-names>
</name>
<name>
<surname>DeFouw</surname>
<given-names>D. O.</given-names>
</name>
</person-group>
<article-title>Restrictive endothelial barrier function during normal angiogenesis in vivo: partial dependence on tyrosine dephosphorylation of beta-catenin</article-title>
<source>Microvasc. Res.</source>
<year>2000</year>
<volume>59</volume>
<fpage>195</fpage>
<lpage>203</lpage>
</citation>
<citation citation-type="display-unstructured">Cruz A., DeFouw L. M. and DeFouw D. O. (2000) Restrictive endothelial barrier function during normal angiogenesis in vivo: partial dependence on tyrosine dephosphorylation of beta-catenin. Microvasc. Res. 59: 195–203
<pub-id pub-id-type="pmid">10684725</pub-id>
</citation>
</ref>
<ref id="CR169">
<label>169</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>DeJana</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Bazzoni</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Lampugnani</surname>
<given-names>M. G.</given-names>
</name>
</person-group>
<article-title>Vascular endothelial (VE)-cadherin: only an intercellular glue?</article-title>
<source>Exp. Cell Res.</source>
<year>1999</year>
<volume>252</volume>
<fpage>13</fpage>
<lpage>19</lpage>
</citation>
<citation citation-type="display-unstructured">DeJana E., Bazzoni G. and Lampugnani M. G. (1999) Vascular endothelial (VE)-cadherin: only an intercellular glue? Exp. Cell Res. 252: 13–19
<pub-id pub-id-type="pmid">10502395</pub-id>
</citation>
</ref>
<ref id="CR170">
<label>170</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Esser</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lampugnani</surname>
<given-names>M. G.</given-names>
</name>
<name>
<surname>Corada</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>DeJana</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Risau</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells</article-title>
<source>J. Cell Sci.</source>
<year>1998</year>
<volume>111</volume>
<fpage>1853</fpage>
<lpage>1865</lpage>
</citation>
<citation citation-type="display-unstructured">Esser S., Lampugnani M. G., Corada M., DeJana E. and Risau W. (1998) Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J. Cell Sci. 111: 1853–1865
<pub-id pub-id-type="pmid">9625748</pub-id>
</citation>
</ref>
<ref id="CR171">
<label>171</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cohen</surname>
<given-names>A. W.</given-names>
</name>
<name>
<surname>Carbajal</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Schaeffer</surname>
<given-names>R. C.</given-names>
<suffix>Jr</suffix>
</name>
</person-group>
<article-title>VEGF stimulates tyrosine phosphorylation of beta-catenin and small-pore endothelial barrier dysfunction</article-title>
<source>Am. J. Physiol</source>
<year>1999</year>
<volume>277</volume>
<fpage>H2038</fpage>
<lpage>H2049</lpage>
</citation>
<citation citation-type="display-unstructured">Cohen A. W., Carbajal J. M. and Schaeffer R. C. Jr (1999) VEGF stimulates tyrosine phosphorylation of beta-catenin and small-pore endothelial barrier dysfunction. Am. J. Physiol 277: H2038–H2049
<pub-id pub-id-type="pmid">10564161</pub-id>
</citation>
</ref>
<ref id="CR172">
<label>172</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kevil</surname>
<given-names>C. G.</given-names>
</name>
<name>
<surname>Payne</surname>
<given-names>D. K.</given-names>
</name>
<name>
<surname>Mire</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Alexander</surname>
<given-names>J. S.</given-names>
</name>
</person-group>
<article-title>Vascular permeability factor/vascular endothelial cell growth factor- mediated permeability occurs through disorganization of endothelial junctional proteins</article-title>
<source>J. Biol. Chem.</source>
<year>1998</year>
<volume>273</volume>
<fpage>15099</fpage>
<lpage>15103</lpage>
</citation>
<citation citation-type="display-unstructured">Kevil C. G., Payne D. K., Mire E. and Alexander J. S. (1998) Vascular permeability factor/vascular endothelial cell growth factor- mediated permeability occurs through disorganization of endothelial junctional proteins. J. Biol. Chem. 273: 15099–15103
<pub-id pub-id-type="pmid">9614120</pub-id>
</citation>
</ref>
<ref id="CR173">
<label>173</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Antonetti</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Barber</surname>
<given-names>A. J.</given-names>
</name>
<name>
<surname>Hollinger</surname>
<given-names>L. A.</given-names>
</name>
<name>
<surname>Wolpert</surname>
<given-names>E. B.</given-names>
</name>
<name>
<surname>Gardner</surname>
<given-names>T. W.</given-names>
</name>
</person-group>
<article-title>Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1: a potential mechanism for vascular permeability in diabetic retinopathy and tumors</article-title>
<source>J. Biol. Chem.</source>
<year>1999</year>
<volume>274</volume>
<fpage>23463</fpage>
<lpage>23467</lpage>
</citation>
<citation citation-type="display-unstructured">Antonetti D. A., Barber A. J., Hollinger L. A., Wolpert E. B. and Gardner T. W. (1999) Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1: a potential mechanism for vascular permeability in diabetic retinopathy and tumors. J. Biol. Chem. 274: 23463–23467
<pub-id pub-id-type="pmid">10438525</pub-id>
</citation>
</ref>
<ref id="CR174">
<label>174</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Suarez</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ballmer-Hofer</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>VEGF transiently disrupts gap junctional communication in endothelial cells</article-title>
<source>J. Cell Sci.</source>
<year>2001</year>
<volume>114</volume>
<fpage>1229</fpage>
<lpage>1235</lpage>
</citation>
<citation citation-type="display-unstructured">Suarez S. and Ballmer-Hofer K. (2001) VEGF transiently disrupts gap junctional communication in endothelial cells. J. Cell Sci. 114: 1229–1235
<pub-id pub-id-type="pmid">11228166</pub-id>
</citation>
</ref>
<ref id="CR175">
<label>175</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fulton</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Gratton</surname>
<given-names>J. P.</given-names>
</name>
<name>
<surname>McCabe</surname>
<given-names>T. J.</given-names>
</name>
<name>
<surname>Fontana</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Fujio</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Walsh</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Regulation of endothelium-derived nitric oxide production by the protein kinase Akt</article-title>
<source>Nature</source>
<year>1999</year>
<volume>399</volume>
<fpage>597</fpage>
<lpage>601</lpage>
</citation>
<citation citation-type="display-unstructured">Fulton D., Gratton J. P., McCabe T. J., Fontana J., Fujio Y., Walsh K. et al. (1999) Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399: 597–601
<pub-id pub-id-type="pmid">10376602</pub-id>
</citation>
</ref>
<ref id="CR176">
<label>176</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Michell</surname>
<given-names>B. J.</given-names>
</name>
<name>
<surname>Griffiths</surname>
<given-names>J. E.</given-names>
</name>
<name>
<surname>Mitchelhill</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Mitchelhill</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Rodriguez</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Rodriguez</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Tiganis</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Bozinovski</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The Akt kinase signals directly to endothelial nitric oxide synthase</article-title>
<source>Curr. Biol.</source>
<year>1999</year>
<volume>9</volume>
<fpage>845</fpage>
<lpage>848</lpage>
</citation>
<citation citation-type="display-unstructured">Michell B. J., Griffiths J. E., Mitchelhill K., I, Rodriguez C., I, Tiganis T., Bozinovski S. et al. (1999) The Akt kinase signals directly to endothelial nitric oxide synthase. Curr. Biol. 9: 845–848
<pub-id pub-id-type="pmid">10469573</pub-id>
</citation>
</ref>
<ref id="CR177">
<label>177</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Murohara</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Horowitz</surname>
<given-names>J. R.</given-names>
</name>
<name>
<surname>Silver</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Tsurumi</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Sullivan</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Vascular endothelial growth factor/vascular permeability factor enhances vascular permeability via nitric oxide and prostacyclin</article-title>
<source>Circulation</source>
<year>1998</year>
<volume>97</volume>
<fpage>99</fpage>
<lpage>107</lpage>
</citation>
<citation citation-type="display-unstructured">Murohara T., Horowitz J. R., Silver M., Tsurumi Y., Chen D., Sullivan A. et al. (1998) Vascular endothelial growth factor/vascular permeability factor enhances vascular permeability via nitric oxide and prostacyclin. Circulation 97: 99–107
<pub-id pub-id-type="pmid">9443437</pub-id>
</citation>
</ref>
<ref id="CR178">
<label>178</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pajusola</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Aprelikova</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Armstrong</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Morris</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Alitalo</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Two human FLT4 receptor tyrosine kinase isoforms with distinct carboxy terminal tails are produced by alternative processing of primary transcripts</article-title>
<source>Oncogene</source>
<year>1993</year>
<volume>8</volume>
<fpage>2931</fpage>
<lpage>2937</lpage>
</citation>
<citation citation-type="display-unstructured">Pajusola K., Aprelikova O., Armstrong E., Morris S. and Alitalo K. (1993) Two human FLT4 receptor tyrosine kinase isoforms with distinct carboxy terminal tails are produced by alternative processing of primary transcripts. Oncogene 8: 2931–2937
<pub-id pub-id-type="pmid">7692369</pub-id>
</citation>
</ref>
<ref id="CR179">
<label>179</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Petrova</surname>
<given-names>T. V.</given-names>
</name>
<name>
<surname>Makinen</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Alitalo</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Signaling via vascular endothelial growth factor receptors</article-title>
<source>Exp. Cell Res.</source>
<year>1999</year>
<volume>253</volume>
<fpage>117</fpage>
<lpage>130</lpage>
</citation>
<citation citation-type="display-unstructured">Petrova T. V., Makinen T. and Alitalo K. (1999) Signaling via vascular endothelial growth factor receptors. Exp. Cell Res. 253: 117–130
<pub-id pub-id-type="pmid">10579917</pub-id>
</citation>
</ref>
<ref id="CR180">
<label>180</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaipainen</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Korhonen</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Mustonen</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Hinsbergh</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>G. H.</given-names>
</name>
<name>
<surname>Dumont</surname>
<given-names>D.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Expression of the fmslike tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>1995</year>
<volume>92</volume>
<fpage>3566</fpage>
<lpage>3570</lpage>
</citation>
<citation citation-type="display-unstructured">Kaipainen A., Korhonen J., Mustonen T., van Hinsbergh V., Fang G. H., Dumont D. et al. (1995) Expression of the fmslike tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc. Natl. Acad. Sci. USA 92: 3566–3570
<pub-id pub-id-type="pmid">7724599</pub-id>
</citation>
</ref>
<ref id="CR181">
<label>181</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dumont D</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Jussila</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Taipale</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Lymboussaki</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Mustonen</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Pajusola</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cardiovascular failure in mouse embryos deficient in VEGF receptor-3</article-title>
<source>Science</source>
<year>1998</year>
<volume>282</volume>
<fpage>946</fpage>
<lpage>949</lpage>
</citation>
<citation citation-type="display-unstructured">Dumont D. J., Jussila L., Taipale J., Lymboussaki A., Mustonen T., Pajusola K. et al. (1998) Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282: 946–949
<pub-id pub-id-type="pmid">9794766</pub-id>
</citation>
</ref>
<ref id="CR182">
<label>182</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Valtola</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Salven</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Heikkila</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Taipale</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Joensuu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Rehn</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer</article-title>
<source>Am. J. Pathol.</source>
<year>1999</year>
<volume>154</volume>
<fpage>1381</fpage>
<lpage>1390</lpage>
</citation>
<citation citation-type="display-unstructured">Valtola R., Salven P., Heikkila P., Taipale J., Joensuu H., Rehn M. et al. (1999) VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. Am. J. Pathol. 154: 1381–1390
<pub-id pub-id-type="pmid">10329591</pub-id>
</citation>
</ref>
<ref id="CR183">
<label>183</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Partanen</surname>
<given-names>T. A.</given-names>
</name>
<name>
<surname>Alitalo</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Miettinen</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Lack of lymphatic vascular specificity of vascular endothelial growth factor receptor 3 in 185 vascular tumors</article-title>
<source>Cancer</source>
<year>1999</year>
<volume>86</volume>
<fpage>2406</fpage>
<lpage>2412</lpage>
</citation>
<citation citation-type="display-unstructured">Partanen T. A., Alitalo K. and Miettinen M. (1999) Lack of lymphatic vascular specificity of vascular endothelial growth factor receptor 3 in 185 vascular tumors. Cancer 86: 2406–2412
<pub-id pub-id-type="pmid">10590384</pub-id>
</citation>
</ref>
<ref id="CR184">
<label>184</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Witmer</surname>
<given-names>A. N.</given-names>
</name>
<name>
<surname>Blijswijk</surname>
<given-names>B. C.</given-names>
</name>
<name>
<surname>Dai</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hofman</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Partanen</surname>
<given-names>T. A.</given-names>
</name>
<name>
<surname>Vrensen</surname>
<given-names>G. F.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>VEGFR-3 in adult angiogenesis</article-title>
<source>J. Pathol.</source>
<year>2001</year>
<volume>195</volume>
<fpage>490</fpage>
<lpage>497</lpage>
</citation>
<citation citation-type="display-unstructured">Witmer A. N., Blijswijk B. C. van, Dai J., Hofman P., Partanen T. A., Vrensen G. F. et al. (2001) VEGFR-3 in adult angiogenesis. J. Pathol. 195: 490–497
<pub-id pub-id-type="pmid">11745682</pub-id>
</citation>
</ref>
<ref id="CR185">
<label>185</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dixelius</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Makinen</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Wirzenius</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Karkkainen</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wernstedt</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Alitalo</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Ligand-induced vascular endothelial growth factor receptor-3 (VEGFR-3) heterodimerization with VEGFR-2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites</article-title>
<source>J. Biol. Chem.</source>
<year>2003</year>
<volume>278</volume>
<fpage>40973</fpage>
<lpage>40979</lpage>
</citation>
<citation citation-type="display-unstructured">Dixelius J., Makinen T., Wirzenius M., Karkkainen M., Wernstedt C., Alitalo K. et al. (2003) Ligand-induced vascular endothelial growth factor receptor-3 (VEGFR-3) heterodimerization with VEGFR-2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites. J. Biol. Chem. 278: 40973–40979
<pub-id pub-id-type="pmid">12881528</pub-id>
</citation>
</ref>
<ref id="CR186">
<label>186</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kukk</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Lymboussaki</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Taira</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kaipainen</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Jeltsch</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Joukov</surname>
<given-names>V.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development</article-title>
<source>Development</source>
<year>1996</year>
<volume>122</volume>
<fpage>3829</fpage>
<lpage>3837</lpage>
</citation>
<citation citation-type="display-unstructured">Kukk E., Lymboussaki A., Taira S., Kaipainen A., Jeltsch M., Joukov V. et al. (1996) VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development 122: 3829–3837
<pub-id pub-id-type="pmid">9012504</pub-id>
</citation>
</ref>
<ref id="CR187">
<label>187</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>J. F.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Groopman</surname>
<given-names>J. E.</given-names>
</name>
</person-group>
<article-title>Activation of vascular endothelial growth factor receptor-3 and its downstream signaling promote cell survival under oxidative stress</article-title>
<source>J. Biol. Chem.</source>
<year>2004</year>
<volume>279</volume>
<fpage>27088</fpage>
<lpage>27097</lpage>
</citation>
<citation citation-type="display-unstructured">Wang J. F., Zhang X. and Groopman J. E. (2004) Activation of vascular endothelial growth factor receptor-3 and its downstream signaling promote cell survival under oxidative stress. J. Biol. Chem. 279: 27088–27097
<pub-id pub-id-type="pmid">15102829</pub-id>
</citation>
</ref>
<ref id="CR188">
<label>188</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Makinen</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Veikkola</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Mustjoki</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Karpanen</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Catimel</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Nice</surname>
<given-names>E. C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3</article-title>
<source>EMBO J.</source>
<year>2001</year>
<volume>20</volume>
<fpage>4762</fpage>
<lpage>4773</lpage>
</citation>
<citation citation-type="display-unstructured">Makinen T., Veikkola T., Mustjoki S., Karpanen T., Catimel B., Nice E. C. et al. (2001) Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J. 20: 4762–4773
<pub-id pub-id-type="pmid">11532940</pub-id>
</citation>
</ref>
<ref id="CR189">
<label>189</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fournier</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Rosnet</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Marchetto</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Turck</surname>
<given-names>C. W.</given-names>
</name>
<name>
<surname>Rottapel</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Pelicci</surname>
<given-names>P. G.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Interaction with the phosphotyrosine binding domain/phosphotyrosine interacting domain of SHC is required for the transforming activity of the FLT4/VEGFR3 receptor tyrosine kinase</article-title>
<source>J. Biol. Chem.</source>
<year>1996</year>
<volume>271</volume>
<fpage>12956</fpage>
<lpage>12963</lpage>
</citation>
<citation citation-type="display-unstructured">Fournier E., Rosnet O., Marchetto S., Turck C. W., Rottapel R., Pelicci P. G. et al. (1996) Interaction with the phosphotyrosine binding domain/phosphotyrosine interacting domain of SHC is required for the transforming activity of the FLT4/VEGFR3 receptor tyrosine kinase. J. Biol. Chem. 271: 12956–12963
<pub-id pub-id-type="pmid">8662748</pub-id>
</citation>
</ref>
<ref id="CR190">
<label>190</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lin</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Lalani</surname>
<given-names>A. S.</given-names>
</name>
<name>
<surname>Harding</surname>
<given-names>T. C.</given-names>
</name>
<name>
<surname>Gonzalez</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>W. W.</given-names>
</name>
<name>
<surname>Luan</surname>
<given-names>B.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inhibition of lymphogenous metastasis using adeno-associated virus-mediated gene transfer of a soluble VEGFR-3 decoy receptor</article-title>
<source>Cancer Res.</source>
<year>2005</year>
<volume>65</volume>
<fpage>6901</fpage>
<lpage>6909</lpage>
</citation>
<citation citation-type="display-unstructured">Lin J., Lalani A. S., Harding T. C., Gonzalez M., Wu W. W., Luan B. et al. (2005) Inhibition of lymphogenous metastasis using adeno-associated virus-mediated gene transfer of a soluble VEGFR-3 decoy receptor. Cancer Res. 65: 6901–6909
<pub-id pub-id-type="pmid">16061674</pub-id>
</citation>
</ref>
<ref id="CR191">
<label>191</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Makinen</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Jussila</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Veikkola</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Karpanen</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kettunen</surname>
<given-names>M. I.</given-names>
</name>
<name>
<surname>Pulkkanen</surname>
<given-names>K. J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3</article-title>
<source>Nat. Med.</source>
<year>2001</year>
<volume>7</volume>
<fpage>199</fpage>
<lpage>205</lpage>
</citation>
<citation citation-type="display-unstructured">Makinen T., Jussila L., Veikkola T., Karpanen T., Kettunen M. I., Pulkkanen K. J. et al. (2001) Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat. Med. 7: 199–205
<pub-id pub-id-type="pmid">11175851</pub-id>
</citation>
</ref>
<ref id="CR192">
<label>192</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Keyt</surname>
<given-names>B. A.</given-names>
</name>
<name>
<surname>Berleau</surname>
<given-names>L. T.</given-names>
</name>
<name>
<surname>Nguyen</surname>
<given-names>H. V.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Heinsohn</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Vandlen</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The carboxyl-terminal domain (111–165) of vascular endothelial growth factor is critical for its mitogenic potency</article-title>
<source>J. Biol. Chem.</source>
<year>1996</year>
<volume>271</volume>
<fpage>7788</fpage>
<lpage>7795</lpage>
</citation>
<citation citation-type="display-unstructured">Keyt B. A., Berleau L. T., Nguyen H. V., Chen H., Heinsohn H., Vandlen R. et al. (1996) The carboxyl-terminal domain (111–165) of vascular endothelial growth factor is critical for its mitogenic potency. J. Biol. Chem. 271: 7788–7795
<pub-id pub-id-type="pmid">8631822</pub-id>
</citation>
</ref>
<ref id="CR193">
<label>193</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tessler</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Rockwell</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Hicklin</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Cohen</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Levi</surname>
<given-names>B. Z.</given-names>
</name>
<name>
<surname>Witte</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Heparin modulates the interaction of VEGF165 with soluble and cell associated flk-1 receptors</article-title>
<source>J. Biol. Chem.</source>
<year>1994</year>
<volume>269</volume>
<fpage>12456</fpage>
<lpage>12461</lpage>
</citation>
<citation citation-type="display-unstructured">Tessler S., Rockwell P., Hicklin D., Cohen T., Levi B. Z., Witte L. et al. (1994) Heparin modulates the interaction of VEGF165 with soluble and cell associated flk-1 receptors. J. Biol. Chem. 269: 12456–12461
<pub-id pub-id-type="pmid">8175651</pub-id>
</citation>
</ref>
<ref id="CR194">
<label>194</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Whitaker</surname>
<given-names>G. B.</given-names>
</name>
<name>
<surname>Limberg</surname>
<given-names>B. J.</given-names>
</name>
<name>
<surname>Rosenbaum</surname>
<given-names>J. S.</given-names>
</name>
</person-group>
<article-title>Vascular endothelial growth factor receptor-2 and neuropilin-1 form a receptor complex that is responsible for the differential signaling potency of VEGF(165) and VEGF(121)</article-title>
<source>J. Biol. Chem.</source>
<year>2001</year>
<volume>276</volume>
<fpage>25520</fpage>
<lpage>25531</lpage>
</citation>
<citation citation-type="display-unstructured">Whitaker G. B., Limberg B. J. and Rosenbaum J. S. (2001) Vascular endothelial growth factor receptor-2 and neuropilin-1 form a receptor complex that is responsible for the differential signaling potency of VEGF(165) and VEGF(121). J. Biol. Chem. 276: 25520–25531
<pub-id pub-id-type="pmid">11333271</pub-id>
</citation>
</ref>
<ref id="CR195">
<label>195</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chiang</surname>
<given-names>M. K.</given-names>
</name>
<name>
<surname>Flanagan</surname>
<given-names>J. G.</given-names>
</name>
</person-group>
<article-title>Interactions between the Flk-1 receptor, vascular endothelial growth factor, and cell surface proteoglycan identified with a soluble receptor reagent</article-title>
<source>Growth Factors</source>
<year>1995</year>
<volume>12</volume>
<fpage>1</fpage>
<lpage>10</lpage>
</citation>
<citation citation-type="display-unstructured">Chiang M. K. and Flanagan J. G. (1995) Interactions between the Flk-1 receptor, vascular endothelial growth factor, and cell surface proteoglycan identified with a soluble receptor reagent. Growth Factors 12: 1–10
<pub-id pub-id-type="pmid">8527158</pub-id>
</citation>
</ref>
<ref id="CR196">
<label>196</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gitay-Goren</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Cohen</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Tessler</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Soker</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Gengrinovitch</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Rockwell</surname>
<given-names>P.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Selective binding of VEGF121 to one of the three vascular endothelial growth factor receptors of vascular endothelial cells</article-title>
<source>J. Biol. Chem.</source>
<year>1996</year>
<volume>271</volume>
<fpage>5519</fpage>
<lpage>5523</lpage>
</citation>
<citation citation-type="display-unstructured">Gitay-Goren H., Cohen T., Tessler S., Soker S., Gengrinovitch S., Rockwell P. et al. (1996) Selective binding of VEGF121 to one of the three vascular endothelial growth factor receptors of vascular endothelial cells. J. Biol. Chem. 271: 5519–5523
<pub-id pub-id-type="pmid">8621410</pub-id>
</citation>
</ref>
<ref id="CR197">
<label>197</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Soker</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Fidder</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Neufeld</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Klagsbrun</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Characterization of novel vascular endothelial growth factor (VEGF) receptors on tumor cells that bind VEGF165 via its exon 7-encoded domain</article-title>
<source>J. Biol. Chem.</source>
<year>1996</year>
<volume>271</volume>
<fpage>5761</fpage>
<lpage>5767</lpage>
</citation>
<citation citation-type="display-unstructured">Soker S., Fidder H., Neufeld G. and Klagsbrun M. (1996) Characterization of novel vascular endothelial growth factor (VEGF) receptors on tumor cells that bind VEGF165 via its exon 7-encoded domain. J. Biol. Chem. 271: 5761–5767
<pub-id pub-id-type="pmid">8621443</pub-id>
</citation>
</ref>
<ref id="CR198">
<label>198</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fuh</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Garcia K</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Vos</surname>
<given-names>A. M.</given-names>
</name>
</person-group>
<article-title>The interaction of neuropilin-1 with vascular endothelial growth factor and its receptor flt-1</article-title>
<source>J. Biol. Chem.</source>
<year>2000</year>
<volume>275</volume>
<fpage>26690</fpage>
<lpage>26695</lpage>
</citation>
<citation citation-type="display-unstructured">Fuh G., Garcia K. C. and Vos A. M. de (2000) The interaction of neuropilin-1 with vascular endothelial growth factor and its receptor flt-1. J. Biol. Chem. 275: 26690–26695
<pub-id pub-id-type="pmid">10842181</pub-id>
</citation>
</ref>
<ref id="CR199">
<label>199</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gluzman-Poltorak</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Cohen</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Herzog</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Neufeld</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Neuropilin-2 is a receptor for the vascular endothelial growth factor (VEGF) forms VEGF-145 and VEGF-165</article-title>
<source>J. Biol. Chem.</source>
<year>2000</year>
<volume>275</volume>
<fpage>18040</fpage>
<lpage>18045</lpage>
</citation>
<citation citation-type="display-unstructured">Gluzman-Poltorak Z., Cohen T., Herzog Y. and Neufeld G. (2000) Neuropilin-2 is a receptor for the vascular endothelial growth factor (VEGF) forms VEGF-145 and VEGF-165. J. Biol. Chem. 275: 18040–18045
<pub-id pub-id-type="pmid">10748121</pub-id>
</citation>
</ref>
<ref id="CR200">
<label>200</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Soker</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Takashima</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Miao</surname>
<given-names>H. Q.</given-names>
</name>
<name>
<surname>Neufeld</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Klagsbrun</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor</article-title>
<source>Cell</source>
<year>1998</year>
<volume>92</volume>
<fpage>735</fpage>
<lpage>745</lpage>
</citation>
<citation citation-type="display-unstructured">Soker S., Takashima S., Miao H. Q., Neufeld G. and Klagsbrun M. (1998) Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92: 735–745
<pub-id pub-id-type="pmid">9529250</pub-id>
</citation>
</ref>
<ref id="CR201">
<label>201</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Soker</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Miao</surname>
<given-names>H. Q.</given-names>
</name>
<name>
<surname>Nomi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Takashima</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Klagsbrun</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>VEGF(165) mediates formation of complexes containing VEGFR-2 and neuropilin-1 that enhance VEGF(165)-receptor binding</article-title>
<source>J. Cell Biochem.</source>
<year>2002</year>
<volume>85</volume>
<fpage>357</fpage>
<lpage>368</lpage>
</citation>
<citation citation-type="display-unstructured">Soker S., Miao H. Q., Nomi M., Takashima S. and Klagsbrun M. (2002) VEGF(165) mediates formation of complexes containing VEGFR-2 and neuropilin-1 that enhance VEGF(165)-receptor binding. J. Cell Biochem. 85: 357–368
<pub-id pub-id-type="pmid">11948691</pub-id>
</citation>
</ref>
<ref id="CR202">
<label>202</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Klagsbrun</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Takashima</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Mamluk</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>The role of neuropilin in vascular and tumor biology</article-title>
<source>Adv. Exp. Med. Biol.</source>
<year>2002</year>
<volume>515</volume>
<fpage>33</fpage>
<lpage>48</lpage>
</citation>
<citation citation-type="display-unstructured">Klagsbrun M., Takashima S. and Mamluk R. (2002) The role of neuropilin in vascular and tumor biology. Adv. Exp. Med. Biol. 515: 33–48
<pub-id pub-id-type="pmid">12613541</pub-id>
</citation>
</ref>
<ref id="CR203">
<label>203</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gerhardt</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Golding</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Fruttiger</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ruhrberg</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Lundkvist</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Abramsson</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia</article-title>
<source>J. Cell Biol.</source>
<year>2003</year>
<volume>161</volume>
<fpage>1163</fpage>
<lpage>1177</lpage>
</citation>
<citation citation-type="display-unstructured">Gerhardt H., Golding M., Fruttiger M., Ruhrberg C., Lundkvist A., Abramsson A. et al. (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161: 1163–1177
<pub-id pub-id-type="pmid">12810700</pub-id>
</citation>
</ref>
<ref id="CR204">
<label>204</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gerhardt</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ruhrberg</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Abramsson</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Fujisawa</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Shima</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Betsholtz</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Neuropilin-1 is required for endothelial tip cell guidance in the developing central nervous system</article-title>
<source>Dev. Dyn.</source>
<year>2004</year>
<volume>231</volume>
<fpage>503</fpage>
<lpage>509</lpage>
</citation>
<citation citation-type="display-unstructured">Gerhardt H., Ruhrberg C., Abramsson A., Fujisawa H., Shima D. and Betsholtz C. (2004) Neuropilin-1 is required for endothelial tip cell guidance in the developing central nervous system. Dev. Dyn. 231: 503–509
<pub-id pub-id-type="pmid">15376331</pub-id>
</citation>
</ref>
<ref id="CR205">
<label>205</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kawasaki</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kitsukawa</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Bekku</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Matsuda</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Sanbo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Yagi</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A requirement for neuropilin-1 in embryonic vessel formation</article-title>
<source>Development</source>
<year>1999</year>
<volume>126</volume>
<fpage>4895</fpage>
<lpage>4902</lpage>
</citation>
<citation citation-type="display-unstructured">Kawasaki T., Kitsukawa T., Bekku Y., Matsuda Y., Sanbo M., Yagi T. et al. (1999) A requirement for neuropilin-1 in embryonic vessel formation. Development 126: 4895–4902
<pub-id pub-id-type="pmid">10518505</pub-id>
</citation>
</ref>
<ref id="CR206">
<label>206</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Neufeld</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Cohen</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Shraga</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Lange</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kessler</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Herzog</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>The neuropilins: multifunctional semaphorin and VEGF receptors that modulate axon guidance and angiogenesis</article-title>
<source>Trends Cardiovasc. Med.</source>
<year>2002</year>
<volume>12</volume>
<fpage>13</fpage>
<lpage>19</lpage>
</citation>
<citation citation-type="display-unstructured">Neufeld G., Cohen T., Shraga N., Lange T., Kessler O. and Herzog Y. (2002) The neuropilins: multifunctional semaphorin and VEGF receptors that modulate axon guidance and angiogenesis. Trends Cardiovasc. Med. 12: 13–19
<pub-id pub-id-type="pmid">11796239</pub-id>
</citation>
</ref>
<ref id="CR207">
<label>207</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schwarz</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Fujisawa</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Sabelko</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Gertsenstein</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Nagy</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Vascular endothelial growth factor controls neuronal migration and cooperates with Sema3A to pattern distinct compartments of the facial nerve</article-title>
<source>Genes Dev.</source>
<year>2004</year>
<volume>18</volume>
<fpage>2822</fpage>
<lpage>2834</lpage>
</citation>
<citation citation-type="display-unstructured">Schwarz Q., Gu C., Fujisawa H., Sabelko K., Gertsenstein M., Nagy A. et al. (2004) Vascular endothelial growth factor controls neuronal migration and cooperates with Sema3A to pattern distinct compartments of the facial nerve. Genes Dev. 18: 2822–2834
<pub-id pub-id-type="pmid">15545635</pub-id>
</citation>
</ref>
<ref id="CR208">
<label>208</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eliceiri</surname>
<given-names>B. P.</given-names>
</name>
<name>
<surname>Cheresh</surname>
<given-names>D. A.</given-names>
</name>
</person-group>
<article-title>Adhesion events in angiogenesis</article-title>
<source>Curr. Opin. Cell Biol.</source>
<year>2001</year>
<volume>13</volume>
<fpage>563</fpage>
<lpage>568</lpage>
</citation>
<citation citation-type="display-unstructured">Eliceiri B. P. and Cheresh D. A. (2001) Adhesion events in angiogenesis. Curr. Opin. Cell Biol. 13: 563–568
<pub-id pub-id-type="pmid">11544024</pub-id>
</citation>
</ref>
<ref id="CR209">
<label>209</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hall</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Hubbell</surname>
<given-names>J. A.</given-names>
</name>
</person-group>
<article-title>Matrix-bound sixth Ig-like domain of cell adhesion molecule L1 acts as an angiogenic factor by ligating alphavbeta3-integrin and activating VEGFR2</article-title>
<source>Microvasc. Res.</source>
<year>2004</year>
<volume>68</volume>
<fpage>169</fpage>
<lpage>178</lpage>
</citation>
<citation citation-type="display-unstructured">Hall H. and Hubbell J. A. (2004) Matrix-bound sixth Ig-like domain of cell adhesion molecule L1 acts as an angiogenic factor by ligating alphavbeta3-integrin and activating VEGFR2. Microvasc. Res. 68: 169–178
<pub-id pub-id-type="pmid">15501236</pub-id>
</citation>
</ref>
<ref id="CR210">
<label>210</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Borges</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Jan</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ruoslahti</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Platelet-derived growth factor receptor beta and vascular endothelial growth factor receptor 2 bind to the beta 3 integrin through its extracellular domain</article-title>
<source>J. Biol. Chem.</source>
<year>2000</year>
<volume>275</volume>
<fpage>39867</fpage>
<lpage>39873</lpage>
</citation>
<citation citation-type="display-unstructured">Borges E., Jan Y. and Ruoslahti E. (2000) Platelet-derived growth factor receptor beta and vascular endothelial growth factor receptor 2 bind to the beta 3 integrin through its extracellular domain. J. Biol. Chem. 275: 39867–39873
<pub-id pub-id-type="pmid">10964931</pub-id>
</citation>
</ref>
<ref id="CR211">
<label>211</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Soldi</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Mitola</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Strasly</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Defilippi</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Tarone</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Bussolino</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2</article-title>
<source>EMBO J.</source>
<year>1999</year>
<volume>18</volume>
<fpage>882</fpage>
<lpage>892</lpage>
</citation>
<citation citation-type="display-unstructured">Soldi R., Mitola S., Strasly M., Defilippi P., Tarone G. and Bussolino F. (1999) Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2. EMBO J. 18: 882–892
<pub-id pub-id-type="pmid">10022831</pub-id>
</citation>
</ref>
<ref id="CR212">
<label>212</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hong</surname>
<given-names>Y. K.</given-names>
</name>
<name>
<surname>Lange-Asschenfeldt</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Velasco</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Hirakawa</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kunstfeld</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>L. F.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the alpha1beta1 and alpha2beta1 integrins</article-title>
<source>FASEB J.</source>
<year>2004</year>
<volume>18</volume>
<fpage>1111</fpage>
<lpage>1113</lpage>
</citation>
<citation citation-type="display-unstructured">Hong Y. K., Lange-Asschenfeldt B., Velasco P., Hirakawa S., Kunstfeld R., Brown L. F. et al. (2004) VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the alpha1beta1 and alpha2beta1 integrins. FASEB J. 18: 1111–1113
<pub-id pub-id-type="pmid">15132990</pub-id>
</citation>
</ref>
<ref id="CR213">
<label>213</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reynolds</surname>
<given-names>A. R.</given-names>
</name>
<name>
<surname>Reynolds</surname>
<given-names>L. E.</given-names>
</name>
<name>
<surname>Nagel</surname>
<given-names>T. E.</given-names>
</name>
<name>
<surname>Lively</surname>
<given-names>J. C.</given-names>
</name>
<name>
<surname>Robinson</surname>
<given-names>S. D.</given-names>
</name>
<name>
<surname>Hicklin</surname>
<given-names>D. J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Elevated Flk1 (vascular endothelial growth factor receptor 2) signaling mediates enhanced angiogenesis in beta3-integrin-deficient mice</article-title>
<source>Cancer Res.</source>
<year>2004</year>
<volume>64</volume>
<fpage>8643</fpage>
<lpage>8650</lpage>
</citation>
<citation citation-type="display-unstructured">Reynolds A. R., Reynolds L. E., Nagel T. E., Lively J. C., Robinson S. D., Hicklin D. J. et al. (2004) Elevated Flk1 (vascular endothelial growth factor receptor 2) signaling mediates enhanced angiogenesis in beta3-integrin-deficient mice. Cancer Res. 64: 8643–8650
<pub-id pub-id-type="pmid">15574772</pub-id>
</citation>
</ref>
<ref id="CR214">
<label>214</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reynolds L</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Wyder</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Lively</surname>
<given-names>J. C.</given-names>
</name>
<name>
<surname>Taverna</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Robinson</surname>
<given-names>S. D.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>X.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins</article-title>
<source>Nat. Med.</source>
<year>2002</year>
<volume>8</volume>
<fpage>27</fpage>
<lpage>34</lpage>
</citation>
<citation citation-type="display-unstructured">Reynolds L. E., Wyder L., Lively J. C., Taverna D., Robinson S. D., Huang X. et al. (2002) Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat. Med. 8: 27–34
<pub-id pub-id-type="pmid">11786903</pub-id>
</citation>
</ref>
<ref id="CR215">
<label>215</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carmeliet</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Integrin indecision</article-title>
<source>Nat. Med.</source>
<year>2002</year>
<volume>8</volume>
<fpage>14</fpage>
<lpage>16</lpage>
</citation>
<citation citation-type="display-unstructured">Carmeliet P. (2002) Integrin indecision. Nat. Med. 8: 14–16
<pub-id pub-id-type="pmid">11786895</pub-id>
</citation>
</ref>
<ref id="CR216">
<label>216</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hutchings</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ortega</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Plouet</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Extracellular matrix-bound vascular endothelial growth factor promotes endothelial cell adhesion, migration, and survival through integrin ligation</article-title>
<source>FASEB J.</source>
<year>2003</year>
<volume>17</volume>
<fpage>1520</fpage>
<lpage>1522</lpage>
</citation>
<citation citation-type="display-unstructured">Hutchings H., Ortega N. and Plouet J. (2003) Extracellular matrix-bound vascular endothelial growth factor promotes endothelial cell adhesion, migration, and survival through integrin ligation. FASEB J. 17: 1520–1522
<pub-id pub-id-type="pmid">12709411</pub-id>
</citation>
</ref>
<ref id="CR217">
<label>217</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Orecchia</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Lacal</surname>
<given-names>P. M.</given-names>
</name>
<name>
<surname>Schietroma</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Morea</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Zambruno</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Failla</surname>
<given-names>C. M.</given-names>
</name>
</person-group>
<article-title>Vascular endothelial growth factor receptor-1 is deposited in the extracellular matrix by endothelial cells and is a ligand for the alpha 5 beta 1 integrin</article-title>
<source>J. Cell Sci.</source>
<year>2003</year>
<volume>116</volume>
<fpage>3479</fpage>
<lpage>3489</lpage>
</citation>
<citation citation-type="display-unstructured">Orecchia A., Lacal P. M., Schietroma C., Morea V., Zambruno G. and Failla C. M. (2003) Vascular endothelial growth factor receptor-1 is deposited in the extracellular matrix by endothelial cells and is a ligand for the alpha 5 beta 1 integrin. J. Cell Sci. 116: 3479–3489
<pub-id pub-id-type="pmid">12865438</pub-id>
</citation>
</ref>
<ref id="CR218">
<label>218</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wijelath</surname>
<given-names>E. S.</given-names>
</name>
<name>
<surname>Murray</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Rahman</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Patel</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ishida</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Strand</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Novel vascular endothelial growth factor binding domains of fibronectin enhance vascular endothelial growth factor biological activity</article-title>
<source>Circ. Res.</source>
<year>2002</year>
<volume>91</volume>
<fpage>25</fpage>
<lpage>31</lpage>
</citation>
<citation citation-type="display-unstructured">Wijelath E. S., Murray J., Rahman S., Patel Y., Ishida A., Strand K. et al. (2002) Novel vascular endothelial growth factor binding domains of fibronectin enhance vascular endothelial growth factor biological activity. Circ. Res. 91: 25–31
<pub-id pub-id-type="pmid">12114318</pub-id>
</citation>
</ref>
<ref id="CR219">
<label>219</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eliceiri</surname>
<given-names>B. P.</given-names>
</name>
<name>
<surname>Klemke</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Stromblad</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Cheresh</surname>
<given-names>D. A.</given-names>
</name>
</person-group>
<article-title>Integrin alphavbeta3 requirement for sustained mitogen-activated protein kinase activity during angiogenesis</article-title>
<source>J. Cell Biol.</source>
<year>1998</year>
<volume>140</volume>
<fpage>1255</fpage>
<lpage>1263</lpage>
</citation>
<citation citation-type="display-unstructured">Eliceiri B. P., Klemke R., Stromblad S. and Cheresh D. A. (1998) Integrin alphavbeta3 requirement for sustained mitogen-activated protein kinase activity during angiogenesis. J. Cell Biol. 140: 1255–1263
<pub-id pub-id-type="pmid">9490736</pub-id>
</citation>
</ref>
<ref id="CR220">
<label>220</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eliceiri</surname>
<given-names>B. P.</given-names>
</name>
<name>
<surname>Puente</surname>
<given-names>X. S.</given-names>
</name>
<name>
<surname>Hood</surname>
<given-names>J. D.</given-names>
</name>
<name>
<surname>Stupack</surname>
<given-names>D. G.</given-names>
</name>
<name>
<surname>Schlaepfer</surname>
<given-names>D. D.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>X. Z.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Src-mediated coupling of focal adhesion kinase to integrin alpha(v)beta5 in vascular endothelial growth factor signaling</article-title>
<source>J. Cell Biol.</source>
<year>2002</year>
<volume>157</volume>
<fpage>149</fpage>
<lpage>160</lpage>
</citation>
<citation citation-type="display-unstructured">Eliceiri B. P., Puente X. S., Hood J. D., Stupack D. G., Schlaepfer D. D., Huang X. Z. et al. (2002) Src-mediated coupling of focal adhesion kinase to integrin alpha(v)beta5 in vascular endothelial growth factor signaling. J. Cell Biol. 157: 149–160
<pub-id pub-id-type="pmid">11927607</pub-id>
</citation>
</ref>
<ref id="CR221">
<label>221</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Friedlander</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Brooks</surname>
<given-names>P. C.</given-names>
</name>
<name>
<surname>Shaffer</surname>
<given-names>R. W.</given-names>
</name>
<name>
<surname>Kincaid</surname>
<given-names>C. M.</given-names>
</name>
<name>
<surname>Varner</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Cheresh</surname>
<given-names>D. A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Definition of two angiogenic pathways by distinct alpha v integrins</article-title>
<source>Science</source>
<year>1995</year>
<volume>270</volume>
<fpage>1500</fpage>
<lpage>1502</lpage>
</citation>
<citation citation-type="display-unstructured">Friedlander M., Brooks P. C., Shaffer R. W., Kincaid C. M., Varner J. A., Cheresh D. A. et al. (1995) Definition of two angiogenic pathways by distinct alpha v integrins. Science 270: 1500–1502
<pub-id pub-id-type="pmid">7491498</pub-id>
</citation>
</ref>
<ref id="CR222">
<label>222</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rahimi</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Kazlauskas</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>A role for cadherin-5 in regulation of vascular endothelial growth factor receptor 2 activity in endothelial cells</article-title>
<source>Mol. Biol. Cell</source>
<year>1999</year>
<volume>10</volume>
<fpage>3401</fpage>
<lpage>3407</lpage>
</citation>
<citation citation-type="display-unstructured">Rahimi N. and Kazlauskas A. (1999) A role for cadherin-5 in regulation of vascular endothelial growth factor receptor 2 activity in endothelial cells. Mol. Biol. Cell 10: 3401–3407
<pub-id pub-id-type="pmid">10512875</pub-id>
</citation>
</ref>
<ref id="CR223">
<label>223</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shay-Salit</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Shushy</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wolfovitz</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Yahav</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Breviario</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>DeJana</surname>
<given-names>E.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>2002</year>
<volume>99</volume>
<fpage>9462</fpage>
<lpage>9467</lpage>
</citation>
<citation citation-type="display-unstructured">Shay-Salit A., Shushy M., Wolfovitz E., Yahav H., Breviario F., DeJana E. et al. (2002) VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells. Proc. Natl. Acad. Sci. USA 99: 9462–9467
<pub-id pub-id-type="pmid">12080144</pub-id>
</citation>
</ref>
<ref id="CR224">
<label>224</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Corada</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zanetta</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Orsenigo</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Breviario</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Lampugnani</surname>
<given-names>M. G.</given-names>
</name>
<name>
<surname>Bernasconi</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A monoclonal antibody to vascular endothelial-cadherin inhibits tumor angiogenesis without side effects on endothelial permeability</article-title>
<source>Blood</source>
<year>2002</year>
<volume>100</volume>
<fpage>905</fpage>
<lpage>911</lpage>
</citation>
<citation citation-type="display-unstructured">Corada M., Zanetta L., Orsenigo F., Breviario F., Lampugnani M. G., Bernasconi S. et al. (2002) A monoclonal antibody to vascular endothelial-cadherin inhibits tumor angiogenesis without side effects on endothelial permeability. Blood 100: 905–911
<pub-id pub-id-type="pmid">12130501</pub-id>
</citation>
</ref>
<ref id="CR225">
<label>225</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zanetti</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Lampugnani</surname>
<given-names>M. G.</given-names>
</name>
<name>
<surname>Balconi</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Breviario</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Corada</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lanfrancone</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Vascular endothelial growth factor induces shc association with vascular endothelial cadherin: a potential feedback mechanism to control vascular endothelial growth factor receptor-2 signaling</article-title>
<source>Arterioscler. Thromb. Vasc. Biol.</source>
<year>2002</year>
<volume>22</volume>
<fpage>617</fpage>
<lpage>622</lpage>
</citation>
<citation citation-type="display-unstructured">Zanetti A., Lampugnani M. G., Balconi G., Breviario F., Corada M., Lanfrancone L. et al. (2002) Vascular endothelial growth factor induces shc association with vascular endothelial cadherin: a potential feedback mechanism to control vascular endothelial growth factor receptor-2 signaling. Arterioscler. Thromb. Vasc. Biol. 22: 617–622
<pub-id pub-id-type="pmid">11950700</pub-id>
</citation>
</ref>
<ref id="CR226">
<label>226</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Calera</surname>
<given-names>M. R.</given-names>
</name>
<name>
<surname>Venkatakrishnan</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kazlauskas</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>VE-cadherin increases the half-life of VEGF receptor 2</article-title>
<source>Exp. Cell Res.</source>
<year>2004</year>
<volume>300</volume>
<fpage>248</fpage>
<lpage>256</lpage>
</citation>
<citation citation-type="display-unstructured">Calera M. R., Venkatakrishnan A. and Kazlauskas A. (2004) VE-cadherin increases the half-life of VEGF receptor 2. Exp. Cell Res. 300: 248–256
<pub-id pub-id-type="pmid">15383331</pub-id>
</citation>
</ref>
<ref id="CR227">
<label>227</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tzima</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Irani-Tehrani</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kiosses</surname>
<given-names>W. B.</given-names>
</name>
<name>
<surname>DeJana</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Schultz</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Engelhardt</surname>
<given-names>B.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A mechanosensory complex that mediates the endothelial cell response to fluid shear stress</article-title>
<source>Nature</source>
<year>2005</year>
<volume>437</volume>
<fpage>426</fpage>
<lpage>431</lpage>
</citation>
<citation citation-type="display-unstructured">Tzima E., Irani-Tehrani M., Kiosses W. B., DeJana E., Schultz D. A., Engelhardt B. et al. (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437: 426–431
<pub-id pub-id-type="pmid">16163360</pub-id>
</citation>
</ref>
<ref id="CR228">
<label>228</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Muller</surname>
<given-names>Y. A.</given-names>
</name>
<name>
<surname>Christinger</surname>
<given-names>H. W.</given-names>
</name>
<name>
<surname>Keyt</surname>
<given-names>B. A.</given-names>
</name>
<name>
<surname>de-Vos</surname>
<given-names>A. M.</given-names>
</name>
</person-group>
<article-title>The crystal structure of vascular endothelial growth factor (VEGF) refined to 1.93 A resolution: multiple copy flexibility and receptor binding</article-title>
<source>Curr. Biol.</source>
<year>1997</year>
<volume>5</volume>
<fpage>1325</fpage>
<lpage>1338</lpage>
</citation>
<citation citation-type="display-unstructured">Muller Y. A., Christinger H. W., Keyt B. A. and de-Vos A. M. (1997) The crystal structure of vascular endothelial growth factor (VEGF) refined to 1.93 A resolution: multiple copy flexibility and receptor binding. Curr. Biol. 5: 1325–1338 </citation>
</ref>
<ref id="CR229">
<label>229</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Muller</surname>
<given-names>Y. A.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Christinger</surname>
<given-names>H. W.</given-names>
</name>
<name>
<surname>Wells</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Cunningham</surname>
<given-names>B. C.</given-names>
</name>
<name>
<surname>Vos</surname>
<given-names>A. M.</given-names>
</name>
</person-group>
<article-title>Vascular endothelial growth factor: crystal structure and functional mapping of the kinase domain receptor binding site</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>1997</year>
<volume>94</volume>
<fpage>7192</fpage>
<lpage>7197</lpage>
</citation>
<citation citation-type="display-unstructured">Muller Y. A., Li B., Christinger H. W., Wells J. A., Cunningham B. C. and Vos A. M. de (1997) Vascular endothelial growth factor: crystal structure and functional mapping of the kinase domain receptor binding site. Proc. Natl. Acad. Sci. USA 94: 7192–7197
<pub-id pub-id-type="pmid">9207067</pub-id>
</citation>
</ref>
<ref id="CR230">
<label>230</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Iyer</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Leonidas</surname>
<given-names>D.D.</given-names>
</name>
<name>
<surname>Swaminathan</surname>
<given-names>G. J.</given-names>
</name>
<name>
<surname>Maglione</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Battisti</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Tucci</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The crystal structure of human placenta growth factor-1 (PlGF-1), an angiogenic protein, at 2.0 Å resolution</article-title>
<source>J. Biol. Chem.</source>
<year>2001</year>
<volume>276</volume>
<fpage>12153</fpage>
<lpage>12161</lpage>
</citation>
<citation citation-type="display-unstructured">Iyer S., Leonidas D.D., Swaminathan G. J., Maglione D., Battisti M., Tucci M. et al. (2001) The crystal structure of human placenta growth factor-1 (PlGF-1), an angiogenic protein, at 2.0 Å resolution. J. Biol. Chem. 276: 12153–12161
<pub-id pub-id-type="pmid">11069911</pub-id>
</citation>
</ref>
<ref id="CR231">
<label>231</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schlunegger</surname>
<given-names>M. P.</given-names>
</name>
<name>
<surname>Grutter</surname>
<given-names>M. G.</given-names>
</name>
</person-group>
<article-title>An unusual feature revealed by the crystal structure at 2. 2 A resolution of human transforming growth factor-beta 2</article-title>
<source>Nature</source>
<year>1992</year>
<volume>358</volume>
<fpage>430</fpage>
<lpage>434</lpage>
</citation>
<citation citation-type="display-unstructured">Schlunegger M. P. and Grutter M. G. (1992) An unusual feature revealed by the crystal structure at 2. 2 A resolution of human transforming growth factor-beta 2. Nature 358: 430–434
<pub-id pub-id-type="pmid">1641027</pub-id>
</citation>
</ref>
<ref id="CR232">
<label>232</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Christinger</surname>
<given-names>H. W.</given-names>
</name>
<name>
<surname>Muller</surname>
<given-names>Y. A.</given-names>
</name>
<name>
<surname>Berleau</surname>
<given-names>L. T.</given-names>
</name>
<name>
<surname>Keyt</surname>
<given-names>B. A.</given-names>
</name>
<name>
<surname>Cunningham</surname>
<given-names>B. C.</given-names>
</name>
<name>
<surname>Ferrara</surname>
<given-names>N.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Crystallization of the receptor binding domain of vascular endothelial growth factor</article-title>
<source>Proteins</source>
<year>1996</year>
<volume>26</volume>
<fpage>353</fpage>
<lpage>357</lpage>
</citation>
<citation citation-type="display-unstructured">Christinger H. W., Muller Y. A., Berleau L. T., Keyt B. A., Cunningham B. C., Ferrara N. et al. (1996) Crystallization of the receptor binding domain of vascular endothelial growth factor. Proteins 26: 353–357
<pub-id pub-id-type="pmid">8953654</pub-id>
</citation>
</ref>
<ref id="CR233">
<label>233</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wiesmann</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Fuh</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Christinger</surname>
<given-names>H. W.</given-names>
</name>
<name>
<surname>Eigenbrot</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Wells</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Vos</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Crystal structure at 1. 7 A resolution of VEGF in complex with domain 2 of the Flt-1 receptor</article-title>
<source>Cell</source>
<year>1997</year>
<volume>91</volume>
<fpage>695</fpage>
<lpage>704</lpage>
</citation>
<citation citation-type="display-unstructured">Wiesmann C., Fuh G., Christinger H. W., Eigenbrot C., Wells J. A. and Vos A. de (1997) Crystal structure at 1. 7 A resolution of VEGF in complex with domain 2 of the Flt-1 receptor. Cell 91: 695–704
<pub-id pub-id-type="pmid">9393862</pub-id>
</citation>
</ref>
<ref id="CR234">
<label>234</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Christinger</surname>
<given-names>H. W.</given-names>
</name>
<name>
<surname>Fuh</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Vos</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Wiesmann</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>The crystal structure of PlGF in complex with domain 2 of VEGFR1</article-title>
<source>J. Biol. Chem.</source>
<year>2003</year>
<volume>279</volume>
<fpage>10382</fpage>
<lpage>10388</lpage>
</citation>
<citation citation-type="display-unstructured">Christinger H. W., Fuh G., Vos A. M. de and Wiesmann C. (2003) The crystal structure of PlGF in complex with domain 2 of VEGFR1. J. Biol. Chem. 279: 10382–10388
<pub-id pub-id-type="pmid">14684734</pub-id>
</citation>
</ref>
<ref id="CR235">
<label>235</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Starovasnik</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Christinger</surname>
<given-names>H. W.</given-names>
</name>
<name>
<surname>Wiesmann</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Champe</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Vos</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Skelton</surname>
<given-names>N. J.</given-names>
</name>
</person-group>
<article-title>Solution structure of the VEGF-binding domain of Flt-1: comparison of its free and bound states</article-title>
<source>J. Mol. Biol.</source>
<year>1999</year>
<volume>293</volume>
<fpage>531</fpage>
<lpage>544</lpage>
</citation>
<citation citation-type="display-unstructured">Starovasnik M. A., Christinger H. W., Wiesmann C., Champe M. A., Vos A. M. de and Skelton N. J. (1999) Solution structure of the VEGF-binding domain of Flt-1: comparison of its free and bound states. J. Mol. Biol. 293: 531–544
<pub-id pub-id-type="pmid">10543948</pub-id>
</citation>
</ref>
<ref id="CR236">
<label>236</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wiesmann</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Christinger</surname>
<given-names>H. W.</given-names>
</name>
<name>
<surname>Cochran</surname>
<given-names>A. G.</given-names>
</name>
<name>
<surname>Cunningham</surname>
<given-names>B. C.</given-names>
</name>
<name>
<surname>Fairbrother</surname>
<given-names>W. J.</given-names>
</name>
<name>
<surname>Keenan</surname>
<given-names>C. J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Crystal structure of the complex between VEGF and a receptor-blocking peptide</article-title>
<source>Biochemistry</source>
<year>1998</year>
<volume>37</volume>
<fpage>17765</fpage>
<lpage>17772</lpage>
</citation>
<citation citation-type="display-unstructured">Wiesmann C., Christinger H. W., Cochran A. G., Cunningham B. C., Fairbrother W. J., Keenan C. J. et al. (1998) Crystal structure of the complex between VEGF and a receptor-blocking peptide. Biochemistry 37: 17765–17772
<pub-id pub-id-type="pmid">9922142</pub-id>
</citation>
</ref>
<ref id="CR237">
<label>237</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pan</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Russell</surname>
<given-names>S. J.</given-names>
</name>
<name>
<surname>Tom</surname>
<given-names>J. Y.</given-names>
</name>
<name>
<surname>Cochran</surname>
<given-names>A. G.</given-names>
</name>
<name>
<surname>Fairbrother</surname>
<given-names>W. J.</given-names>
</name>
</person-group>
<article-title>Solution structure of a phage-derived peptide antagonist in complex with vascular endothelial growth factor</article-title>
<source>J. Mol. Biol.</source>
<year>2002</year>
<volume>316</volume>
<fpage>769</fpage>
<lpage>787</lpage>
</citation>
<citation citation-type="display-unstructured">Pan B., Li B., Russell S. J., Tom J. Y., Cochran A. G. and Fairbrother W. J. (2002) Solution structure of a phage-derived peptide antagonist in complex with vascular endothelial growth factor. J. Mol. Biol. 316: 769–787
<pub-id pub-id-type="pmid">11866530</pub-id>
</citation>
</ref>
<ref id="CR238">
<label>238</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ma</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Identification of the ligand-binding domain of human vascular-endothelial-growth-factor receptor Flt-1</article-title>
<source>Biotechnol. Appl. Biochem.</source>
<year>2001</year>
<volume>34</volume>
<fpage>199</fpage>
<lpage>204</lpage>
</citation>
<citation citation-type="display-unstructured">Ma L., Wang X., Zhang Z., Zhou X., Chen A. and Yao L. (2001) Identification of the ligand-binding domain of human vascular-endothelial-growth-factor receptor Flt-1. Biotechnol. Appl. Biochem. 34: 199–204
<pub-id pub-id-type="pmid">11730488</pub-id>
</citation>
</ref>
<ref id="CR239">
<label>239</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Keyt</surname>
<given-names>B. A.</given-names>
</name>
<name>
<surname>Nguyen</surname>
<given-names>H. V.</given-names>
</name>
<name>
<surname>Berleau</surname>
<given-names>L. T.</given-names>
</name>
<name>
<surname>Duarte</surname>
<given-names>C. M.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Identification of vascular endothelial growth factor determinants for binding KDR and FLT-1 receptors: generation of receptor-selective VEGF variants by site-directed mutagenesis</article-title>
<source>J. Biol. Chem.</source>
<year>1996</year>
<volume>271</volume>
<fpage>5638</fpage>
<lpage>5646</lpage>
</citation>
<citation citation-type="display-unstructured">Keyt B. A., Nguyen H. V., Berleau L. T., Duarte C. M., Park J., Chen H. et al. (1996) Identification of vascular endothelial growth factor determinants for binding KDR and FLT-1 receptors: generation of receptor-selective VEGF variants by site-directed mutagenesis. J. Biol. Chem. 271: 5638–5646
<pub-id pub-id-type="pmid">8621427</pub-id>
</citation>
</ref>
<ref id="CR240">
<label>240</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kiba</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Yabana</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Shibuya</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>A set of loop-1 and -3 structures in the novel VEGF family member, VEGF-ENZ-7, is essential for the activation of VEGFR-2 signaling</article-title>
<source>J. Biol. Chem.</source>
<year>2003</year>
<volume>278</volume>
<fpage>13453</fpage>
<lpage>13461</lpage>
</citation>
<citation citation-type="display-unstructured">Kiba A., Yabana N. and Shibuya M. (2003) A set of loop-1 and -3 structures in the novel VEGF family member, VEGF-ENZ-7, is essential for the activation of VEGFR-2 signaling. J. Biol. Chem. 278: 13453–13461
<pub-id pub-id-type="pmid">12551914</pub-id>
</citation>
</ref>
<ref id="CR241">
<label>241</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fairbrother</surname>
<given-names>W. J.</given-names>
</name>
<name>
<surname>Champe</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Christinger</surname>
<given-names>H. W.</given-names>
</name>
<name>
<surname>Keyt</surname>
<given-names>B. A.</given-names>
</name>
<name>
<surname>Starovasnik</surname>
<given-names>M. A.</given-names>
</name>
</person-group>
<article-title>Solution structure of the heparin-binding domain of vascular endothelial growth factor</article-title>
<source>Structure</source>
<year>1998</year>
<volume>6</volume>
<fpage>637</fpage>
<lpage>648</lpage>
</citation>
<citation citation-type="display-unstructured">Fairbrother W. J., Champe M. A., Christinger H. W., Keyt B. A. and Starovasnik M. A. (1998) Solution structure of the heparin-binding domain of vascular endothelial growth factor. Structure 6: 637–648
<pub-id pub-id-type="pmid">9634701</pub-id>
</citation>
</ref>
<ref id="CR242">
<label>242</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sheikh</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Edgington</surname>
<given-names>T. S.</given-names>
</name>
</person-group>
<article-title>A novel vascular endothelial growth factor heparin-binding domain substructure binds to glycosaminoglycans in vivo and localizes to tumor microvascular endothelium</article-title>
<source>Cancer Res.</source>
<year>2002</year>
<volume>62</volume>
<fpage>7118</fpage>
<lpage>7123</lpage>
</citation>
<citation citation-type="display-unstructured">El Sheikh A., Liu C., Huang H. and Edgington T. S. (2002) A novel vascular endothelial growth factor heparin-binding domain substructure binds to glycosaminoglycans in vivo and localizes to tumor microvascular endothelium. Cancer Res. 62: 7118–7123
<pub-id pub-id-type="pmid">12460934</pub-id>
</citation>
</ref>
<ref id="CR243">
<label>243</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>McTigue</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Wickersham</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Pinko</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Showalter</surname>
<given-names>R. E.</given-names>
</name>
<name>
<surname>Parast</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Parast</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Tempczyk</surname>
<given-names>R. A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Crystal structure of the kinase domain of human vascular endothelial growth factor receptor 2: a key enzyme in angiogenesis</article-title>
<source>Structure</source>
<year>1999</year>
<volume>7</volume>
<fpage>319</fpage>
<lpage>330</lpage>
</citation>
<citation citation-type="display-unstructured">McTigue M. A., Wickersham J. A., Pinko C., Showalter R. E., Parast C., V, Tempczyk R. A. et al. (1999) Crystal structure of the kinase domain of human vascular endothelial growth factor receptor 2: a key enzyme in angiogenesis. Structure 7: 319–330
<pub-id pub-id-type="pmid">10368301</pub-id>
</citation>
</ref>
<ref id="CR244">
<label>244</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bussolino</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Serini</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Mitola</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Bazzoni</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>DeJana</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Dynamic modules and heterogeneity of function: a lesson from tyrosine kinase receptors in endothelial cells</article-title>
<source>EMBO Rep.</source>
<year>2001</year>
<volume>2</volume>
<fpage>763</fpage>
<lpage>767</lpage>
</citation>
<citation citation-type="display-unstructured">Bussolino F., Serini G., Mitola S., Bazzoni G. and DeJana E. (2001) Dynamic modules and heterogeneity of function: a lesson from tyrosine kinase receptors in endothelial cells. EMBO Rep. 2: 763–767
<pub-id pub-id-type="pmid">11559587</pub-id>
</citation>
</ref>
</ref-list>
<fn-group>
<fn>
<p>Received 15 September 2005; received after revision 11 November; accepted 24 November 2005</p>
</fn>
</fn-group>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D42  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 001D42  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024