Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tumour vascularization: sprouting angiogenesis and beyond

Identifieur interne : 001D38 ( Pmc/Corpus ); précédent : 001D37; suivant : 001D39

Tumour vascularization: sprouting angiogenesis and beyond

Auteurs : Femke Hillen ; Arjan W. Griffioen

Source :

RBID : PMC:2797856

Abstract

Tumour angiogenesis is a fast growing domain in tumour biology. Many growth factors and mechanisms have been unravelled. For almost 30 years, the sprouting of new vessels out of existing ones was considered as an exclusive way of tumour vascularisation. However, over the last years several additional mechanisms have been identified. With the discovery of the contribution of intussusceptive angiogenesis, recruitment of endothelial progenitor cells, vessel co-option, vasculogenic mimicry and lymphangiogenesis to tumour growth, anti-tumour targeting strategies will be more complex than initially thought. This review highlights these processes and intervention as a potential application in cancer therapy. It is concluded that future anti-vascular therapies might be most beneficial when based on multimodal anti-angiogenic, anti-vasculogenic mimicry and anti-lymphangiogenic strategies.


Url:
DOI: 10.1007/s10555-007-9094-7
PubMed: 17717633
PubMed Central: 2797856

Links to Exploration step

PMC:2797856

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tumour vascularization: sprouting angiogenesis and beyond</title>
<author>
<name sortKey="Hillen, Femke" sort="Hillen, Femke" uniqKey="Hillen F" first="Femke" last="Hillen">Femke Hillen</name>
<affiliation>
<nlm:aff id="Aff1">Angiogenesis Laboratory, Research Institute for Growth and Development (GROW), Department of Pathology, Maastricht University & University Hospital Maastricht, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Griffioen, Arjan W" sort="Griffioen, Arjan W" uniqKey="Griffioen A" first="Arjan W." last="Griffioen">Arjan W. Griffioen</name>
<affiliation>
<nlm:aff id="Aff1">Angiogenesis Laboratory, Research Institute for Growth and Development (GROW), Department of Pathology, Maastricht University & University Hospital Maastricht, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">17717633</idno>
<idno type="pmc">2797856</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2797856</idno>
<idno type="RBID">PMC:2797856</idno>
<idno type="doi">10.1007/s10555-007-9094-7</idno>
<date when="2007">2007</date>
<idno type="wicri:Area/Pmc/Corpus">001D38</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">001D38</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Tumour vascularization: sprouting angiogenesis and beyond</title>
<author>
<name sortKey="Hillen, Femke" sort="Hillen, Femke" uniqKey="Hillen F" first="Femke" last="Hillen">Femke Hillen</name>
<affiliation>
<nlm:aff id="Aff1">Angiogenesis Laboratory, Research Institute for Growth and Development (GROW), Department of Pathology, Maastricht University & University Hospital Maastricht, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Griffioen, Arjan W" sort="Griffioen, Arjan W" uniqKey="Griffioen A" first="Arjan W." last="Griffioen">Arjan W. Griffioen</name>
<affiliation>
<nlm:aff id="Aff1">Angiogenesis Laboratory, Research Institute for Growth and Development (GROW), Department of Pathology, Maastricht University & University Hospital Maastricht, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cancer Metastasis Reviews</title>
<idno type="ISSN">0167-7659</idno>
<idno type="eISSN">1573-7233</idno>
<imprint>
<date when="2007">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Tumour angiogenesis is a fast growing domain in tumour biology. Many growth factors and mechanisms have been unravelled. For almost 30 years, the sprouting of new vessels out of existing ones was considered as an exclusive way of tumour vascularisation. However, over the last years several additional mechanisms have been identified. With the discovery of the contribution of intussusceptive angiogenesis, recruitment of endothelial progenitor cells, vessel co-option, vasculogenic mimicry and lymphangiogenesis to tumour growth, anti-tumour targeting strategies will be more complex than initially thought. This review highlights these processes and intervention as a potential application in cancer therapy. It is concluded that future anti-vascular therapies might be most beneficial when based on multimodal anti-angiogenic, anti-vasculogenic mimicry and anti-lymphangiogenic strategies.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc xml:lang="EN" article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Cancer Metastasis Rev</journal-id>
<journal-title>Cancer Metastasis Reviews</journal-title>
<issn pub-type="ppub">0167-7659</issn>
<issn pub-type="epub">1573-7233</issn>
<publisher>
<publisher-name>Springer US</publisher-name>
<publisher-loc>Boston</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">17717633</article-id>
<article-id pub-id-type="pmc">2797856</article-id>
<article-id pub-id-type="publisher-id">9094</article-id>
<article-id pub-id-type="doi">10.1007/s10555-007-9094-7</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Tumour vascularization: sprouting angiogenesis and beyond</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name name-style="western">
<surname>Hillen</surname>
<given-names>Femke</given-names>
</name>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name name-style="western">
<surname>Griffioen</surname>
<given-names>Arjan W.</given-names>
</name>
<address>
<phone>+31-43-3874630</phone>
<fax>+31-43-3876613</fax>
<email>a.griffioen@intmed.unimaas.nl</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<aff id="Aff1">Angiogenesis Laboratory, Research Institute for Growth and Development (GROW), Department of Pathology, Maastricht University & University Hospital Maastricht, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>24</day>
<month>8</month>
<year>2007</year>
</pub-date>
<pub-date pub-type="ppub">
<month>12</month>
<year>2007</year>
</pub-date>
<volume>26</volume>
<issue>3-4</issue>
<fpage>489</fpage>
<lpage>502</lpage>
<permissions>
<copyright-statement>© Springer Science+Business Media, LLC 2007</copyright-statement>
</permissions>
<abstract xml:lang="EN">
<p>Tumour angiogenesis is a fast growing domain in tumour biology. Many growth factors and mechanisms have been unravelled. For almost 30 years, the sprouting of new vessels out of existing ones was considered as an exclusive way of tumour vascularisation. However, over the last years several additional mechanisms have been identified. With the discovery of the contribution of intussusceptive angiogenesis, recruitment of endothelial progenitor cells, vessel co-option, vasculogenic mimicry and lymphangiogenesis to tumour growth, anti-tumour targeting strategies will be more complex than initially thought. This review highlights these processes and intervention as a potential application in cancer therapy. It is concluded that future anti-vascular therapies might be most beneficial when based on multimodal anti-angiogenic, anti-vasculogenic mimicry and anti-lymphangiogenic strategies.</p>
</abstract>
<kwd-group>
<title>Keywords</title>
<kwd>Sprouting angiogenesis</kwd>
<kwd>Intussusceptive angiogenesis</kwd>
<kwd>Endothelial progenitor cells (EPCs)</kwd>
<kwd>Vessel co-option</kwd>
<kwd>Vasculogenic mimicry</kwd>
<kwd>Lymphangiogenesis</kwd>
<kwd>Angiogenesis inhibition</kwd>
</kwd-group>
<custom-meta-wrap>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© Springer Science+Business Media, LLC 2007</meta-value>
</custom-meta>
</custom-meta-wrap>
</article-meta>
</front>
<body>
<sec id="Sec1" sec-type="introduction">
<title>1 Introduction</title>
<p>Tumours can grow to a size of approximately 1–2 mm
<sup>3</sup>
before their metabolic demands are restricted due to the diffusion limit of oxygen and nutrients. In order to grow beyond this size, the tumour switches to an angiogenic phenotype and attracts blood vessels from the surrounding stroma. This process is regulated by a variety of pro- and anti-angiogenic factors, and is a prerequisite for further outgrowth of the tumour [
<xref ref-type="bibr" rid="CR1">1</xref>
]. Next to sprouting angiogenesis, the process by which new vessels are formed from preexisting vasculature, several other mechanisms of neovascularization have been identified in tumours, including intussusceptive angiogenesis, the recruitment of endothelial progenitor cells, vessel co-option, vasculogenic mimicry and lymphangiogenesis (Fig.
<xref rid="Fig1" ref-type="fig">1</xref>
). Due to application for treatment of disease, these processes gained a lot of interest over the last years. This review summarizes the different mechanisms of tumour vascularization, the molecular players that are involved and their relevance in clinical practice.
<fig id="Fig1">
<label>Fig. 1</label>
<caption>
<p>Different mechanisms of tumour vascularisation. This diagram represents the six different types of vascularisation observed in solid tumours, including sprouting angiogenesis, intussusceptive angiogenesis, recruitment of endothelial progenitor cells, vessel co-option, vasculogenic mimicry and lymphangiogenesis. The main key players involved in these processes, if known, are indicated</p>
</caption>
<graphic position="anchor" xlink:href="10555_2007_Article_9094_Fig1" id="MO1"></graphic>
</fig>
</p>
</sec>
<sec id="Sec2">
<title>2 Sprouting angiogenesis</title>
<p>Sprouting angiogenesis is the growth of new capillary vessels out of preexisting ones. These blood vessels will provide expanding tissues and organs with oxygen and nutrients, and remove the metabolic waste. Angiogenesis takes place in physiological situations, such as embryonic development, wound healing and reproduction. It also plays an important role in many pathologies, like diabetes [
<xref ref-type="bibr" rid="CR2">2</xref>
], rheumatoid arthritis [
<xref ref-type="bibr" rid="CR3">3</xref>
], cardiovascular ischemic complications [
<xref ref-type="bibr" rid="CR4">4</xref>
], and cancer [
<xref ref-type="bibr" rid="CR5">5</xref>
]. In cancer, sprouting angiogenesis is not only important in primary tumours, it is also involved in metastasis formation and further outgrowth of metastases [
<xref ref-type="bibr" rid="CR6">6</xref>
].</p>
<p>The process of sprouting angiogenesis involves several sequential steps. Tumour angiogenesis starts with the activation of endothelial cells by specific growth factors that bind to its receptors. As a result, the extracellular matrix and basement membrane, surrounding the endothelial cells, are degraded locally by activated proteases. This allows the endothelial cells to invade into the surrounding matrix and, subsequently, to proliferate and migrate through the matrix. By polarization of the migrating endothelial cells a lumen is created, and an immature blood vessel is formed [
<xref ref-type="bibr" rid="CR7">7</xref>
]. The stabilisation of the immature vessels is established by recruitment of mural cells and generation of extracellular matrix [
<xref ref-type="bibr" rid="CR8">8</xref>
]. This process of sprouting angiogenesis is tightly controlled by positive and negative regulators, the balance of which determines the level of ongoing angiogenesis.</p>
<p>The first angiogenic growth factor, fibroblast growth factor (bFGF), also known as FGF-2, was discovered in the early 1980s [
<xref ref-type="bibr" rid="CR9">9</xref>
]. The FGF family consists of 23 members, of which FGF-2 and FGF-1 (aFGF) are the best known, and four FGF tyrosine kinase receptors have been described. bFGF stimulates all major steps in the angiogenesis cascade and is produced by many cells, among which are macrophages and tumour cells. Although FGF does not have a signal sequence that allows regular secretion, it is released in the extracellular matrix after which angiogenesis is initiated. bFGF is a pleiotropic mitogen for growth and differentiation, known to be involved in endothelial cell proliferation, extracellular matrix degradation, endothelial cell migration and modulation of junctional adhesion molecules. Moreover, the intricate interaction with other growth factors can result in many synergistic activities in endothelial cell functions [
<xref ref-type="bibr" rid="CR10">10</xref>
]. In both mouse and human tumours, the role of bFGF in tumour growth and neovascularization has been demonstrated [
<xref ref-type="bibr" rid="CR11">11</xref>
]. Neutralizing antibodies and siRNA techniques have been described to inhibit tumour growth and neovascularization in mouse models [
<xref ref-type="bibr" rid="CR12">12</xref>
,
<xref ref-type="bibr" rid="CR13">13</xref>
].</p>
<p>Vascular endothelial cell growth factor (VEGF) or vascular permeability factor, is another important player in the stimulation of angiogenesis. VEGF is a general activator of endothelial cell proliferation andmobility. It is the most potent factor that induces vasodilatation of the existing vessels and increases permeability of the vessel wall [
<xref ref-type="bibr" rid="CR14">14</xref>
]. Moreover, it increases the expression of matrix metalloproteinases and plasminogen activators for the degradation of the extracellular matrix and subsequently endothelial cell migration [
<xref ref-type="bibr" rid="CR15">15</xref>
]. The VEGF family of growth factors consists of six members (VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E and placental growth factor) that interact differentially with three cell surface receptor tyrosine kinases, the VEGFRs, or a second class of non-signalling co-receptors, the neuropilins. To date, the VEFG-A/VEGFR2 interaction appears to play a major role in sprouting angiogenesis [
<xref ref-type="bibr" rid="CR7">7</xref>
]. In tumours, higher levels of VEGF are detected and many tumour cell lines were found to be inhibited
<italic>in vivo</italic>
by antibody targeting methods or the use of small-molecule inhibitors of VEGF or VEGFR2 [
<xref ref-type="bibr" rid="CR14">14</xref>
].</p>
<p>Placental growth factor (PLGF), a member of the VEGF family that only binds VEGFR1, is also a mediator of the angiogenic switch, though its role was underestimated. However, activated endothelial cells are known to produce large amount of PLGF and thereby regulating the VEGF-mediated angiogenic switch. Moreover, other cell types like smooth muscle cells, inflammatory cells and tumour cells can also produce PLGF when activated [
<xref ref-type="bibr" rid="CR16">16</xref>
,
<xref ref-type="bibr" rid="CR17">17</xref>
]. Importantly, PLGF seems to play a role in vascular development but does not affect the functionality of physiological vessel formation during development and reproduction [
<xref ref-type="bibr" rid="CR17">17</xref>
].</p>
<p>The angiopoietin family, another important growth factor family in angiogenesis, includes three members (in humans), angiopoietin-1, angiopoietin-2 and angiopoietin-4, that all bind to the endothelial tyrosine kinase receptor Tie-2. The most remarkable characteristic of this family is the opposing effect of the different ligands binding to the same receptor. Angiopoietin-1 activates the Tie-2 signalling while angiopoietin-2 inhibits this activation. Angiopoietin-1 is involved in endothelial cell migration, adhesion and the recruitment of pericytes and smooth muscle cells, while angiopoietin-2 is vessel destabilizer [
<xref ref-type="bibr" rid="CR18">18</xref>
,
<xref ref-type="bibr" rid="CR19">19</xref>
].</p>
<p>Besides the above described angiogenic factors, tumour cells can produce other factors like transforming growth factor-β, which stabilizes newly formed vessels and suppresses the immune system [
<xref ref-type="bibr" rid="CR20">20</xref>
], platelet-derived growth factor, which is a chemoattractant for pericytes [
<xref ref-type="bibr" rid="CR21">21</xref>
], epidermal growth factor, which promotes tumourangiogenesis by upregulating VEGF [
<xref ref-type="bibr" rid="CR22">22</xref>
] and interleukin 8 that specifically enhances endothelial cell migration [
<xref ref-type="bibr" rid="CR23">23</xref>
].</p>
<p>Recent studies have shown similarities in the molecular regulation of guidance of neural and endothelial cells. Specialized endothelial cells, resembling axonal growth cones, are located at the tips of growing capillaries. These tip cells extend and retract their filopodia continuously to explore the environment and to define the direction in which a new vascular sprout grows [
<xref ref-type="bibr" rid="CR24">24</xref>
]. Both axon growth cones and endothelial tip cells seem to use a repertoire of molecular ligand/receptor signalling systems including the family of Ephrins, Semaphorins, Slits, Netrins and Notchs. Most of these molecules seem to play a role in tumour angiogenesis. The injection of soluble Ephrin receptors was found to successfully inhibit tumour angiogenesis in an animal model [
<xref ref-type="bibr" rid="CR25">25</xref>
]. Also semaphorins are hypothesised to have tumour suppressor characteristics since overexpression has been shown to inhibit metastasis in melanomas and highly metastatic melanoma cells showed a downregulation of expression [
<xref ref-type="bibr" rid="CR26">26</xref>
]. On the other hand, Sema4D, a pro-angiogenic factor released by tumour cells, promoted invasion and metastasis [
<xref ref-type="bibr" rid="CR27">27</xref>
]. Likewise, the Slit/Robo signalling seems to promote tumour angiogenesis. Neutralization of Robo1 reduced the microvessel density and the tumour mass of human malignant melanoma
<italic>in vivo</italic>
. Moreover, there is evidence of molecular crosstalk between cancer cells and endothelial cells [
<xref ref-type="bibr" rid="CR28">28</xref>
]. Furthermore, the implication of netrins and their receptors has been studied. The positive signalling pathway of netrins that normally activates apoptosis, seems to be inactivated in tumours. Binding of netrin-1 to its receptors inhibits the tumour suppressor activity of p53 [
<xref ref-type="bibr" rid="CR29">29</xref>
]. There is increasing evidence that Notch signalling is also involved in tumour angiogenesis, although it seems to have both oncogenic and tumour suppressive roles [
<xref ref-type="bibr" rid="CR30">30</xref>
]. It is obvious that the specific role (stimulatory and inhibitory effects) of these molecules in angiogenesis needs further research.</p>
<p>Sprouting angiogenesis can also be negatively regulated. Thrombospondin-1 was among the first naturally occurring angiostatic agent to be discovered [
<xref ref-type="bibr" rid="CR31">31</xref>
]. Later on, more endogenous molecules with angiostatic activity were described. Among these were the 16 kD fragment of prolactin [
<xref ref-type="bibr" rid="CR32">32</xref>
], platelet factor-4 and interferon-α [
<xref ref-type="bibr" rid="CR33">33</xref>
] and interferon-γ inducible protein-10 [
<xref ref-type="bibr" rid="CR34">34</xref>
]. Other members of this class of endogenously produced anti-angiogenic proteins are angiostatin [
<xref ref-type="bibr" rid="CR35">35</xref>
], endostatin [
<xref ref-type="bibr" rid="CR36">36</xref>
], bactericidal/permeability increasing protein [
<xref ref-type="bibr" rid="CR37">37</xref>
], tumstatin [
<xref ref-type="bibr" rid="CR38">38</xref>
]. It is interesting to note that many of these molecules are proteolytic fragments of endogenous macromolecules. Although for several of the currently described angiogenesis inhibitors receptors have been described, detailed mechanisms of action, in most cases, are still obscure [
<xref ref-type="bibr" rid="CR39">39</xref>
].</p>
<p>Next to anti-angiogenesis approaches with endogenous inhibitors, several blocking strategies of the above described angiogenic factors have been reported. Strategies that block the VEGF-A/VEGFR2 signalling are the most abundant ones in the clinical field of anti-angiogenic therapy. A lot of attention is focussed on the approval of the first anti-angiogenic agent, Avastin, by the Food and Drug Administration [
<xref ref-type="bibr" rid="CR40">40</xref>
,
<xref ref-type="bibr" rid="CR41">41</xref>
]. Avastin in combination with chemotherapy demonstrated a survival benefit in patients with metastatic colorectal cancer of several months [
<xref ref-type="bibr" rid="CR42">42</xref>
]. Although a beneficial clinical effect is present, in some patients gastrointestinal perforations, thromboembolic events and impaired wound healing was observed [
<xref ref-type="bibr" rid="CR42">42</xref>
]. Moreover, recent warnings about possible visual and neurological long-term problems in patients administrated with Avastin, will probably delay the FDA approval for more applications [
<xref ref-type="bibr" rid="CR43">43</xref>
,
<xref ref-type="bibr" rid="CR44">44</xref>
]. Besides Avastin, several other VEGF inhibitors are being clinically implicated. The most advanced receptor tyrosine kinase inhibitors that target VEGF receptors are SU11428, BAY 43-9006 [
<xref ref-type="bibr" rid="CR41">41</xref>
].</p>
<p>Next to the reported side effects of anti-angiogenic inhibitors, also induction of resistance against these agents must be acknowledged. There is emerging evidence that VEGF-A may be replaced by other angiogenic pathways and other members of the VEFG family [
<xref ref-type="bibr" rid="CR45">45</xref>
]. Other mechanisms that can participate in resistance are the selection of more hypoxia resistant cells that are less dependent on angiogenesis [
<xref ref-type="bibr" rid="CR46">46</xref>
] and the normalization of tumour vessel that become less responsive to anti-angiogenic therapy [
<xref ref-type="bibr" rid="CR47">47</xref>
]. Moreover, the hypothesis that endothelial cells are more genetically stable than tumour cells (and thus less sensible to develop resistance) is now questioned, especially after several reports on genetic abnormalities in endothelial cells of tumour vessels [
<xref ref-type="bibr" rid="CR48">48</xref>
,
<xref ref-type="bibr" rid="CR49">49</xref>
].</p>
<p>Although a lot of mediators and pathways that are involved in sprouting angiogenesis have been identified, it is clear that the inhibition of this process is very complex. Clinical trials in patients with less advanced stages of cancer, and the long-term effects of approved compounds will guide us to the use of angiostasis in the clinical management of cancer. However, already now, it seems very likely that efficient cancer therapy will be composed of combination of chemotherapy and anti-angiogenic strategies that target multiple angiogenic pathways.</p>
</sec>
<sec id="Sec3">
<title>3 Intussusceptive angiogenesis</title>
<p>A variant of angiogenesis, different from sprouting, is intussusceptive angiogenenesis. This process was first observed in postnatal remodelling of capillaries in the lung [
<xref ref-type="bibr" rid="CR50">50</xref>
]. In the third week of rat life and during the first 2 years in humans, the volume of the lungs increases by more than 20 times. In this developmental process, a new concept of vessel formation was found where preexisting vessels split in two new vessels by the formation of transvascular tissue pillar into the lumen of the vessel.</p>
<p>Intussusceptive microvascular growth is a fast process that can take place within hours or even minutes, because it does not need proliferation of endothelial cells. In this process endothelial cells are remodelled by increasing in volume and becoming thinner. Intussusception is believed to take place after vasculogenesis or angiogenesis to expand the capillary plexus, in a short time and with a little amount of energy. Transmission electron microscopy revealed four consecutive steps [
<xref ref-type="bibr" rid="CR51">51</xref>
]. First, the endothelial cells of opposite walls make a “kissing contact”, by which a transluminal bridge is formed. Secondly, a reorganisation of the interendothelial junctions and perforation of the endothelial bilayer is executed. In the third phase, the interstitial pillar is formed and pericytes and myofibroblasts invade and cover the newly formed interstitial wall. In this stage, transluminar pillars have a diameter of ≤ 2.5 µm. It is hypothesised that pericytes, with their contractile characteristics, are the main stimulator in this phase. During the final phase, the pillars grow in diameter and the endothelial cells retract and two separated vessels are formed. Pillar formation and remodelling is not only observed in capillary plexuses but also within smaller arteries and veins [
<xref ref-type="bibr" rid="CR52">52</xref>
].</p>
<p>In 1993, the first
<italic>in vivo</italic>
intussusceptive microvascular growth was demonstrated by video microscopy in a chick chorioallantoic membrane [
<xref ref-type="bibr" rid="CR53">53</xref>
]. This process has now been detected in various organs, tissue repair processes and also in tumour angiogenesis. Tissue pillars were detected in a colon carcinoma xenograft model. At the growing edge both sprouting and intussusceptive angiogenesis were observed, in the stabilised regions mostly intussusception was detected [
<xref ref-type="bibr" rid="CR54">54</xref>
]. Patan et al. [
<xref ref-type="bibr" rid="CR54">54</xref>
] also hypothesised that intravascular blood flow patterns or changes in shear stress are parameters that regulate pillar formation. In mammary tumours of c-neu transgenic mice, smaller tumour regions exhibited numerous sprouts, while in larger tumours regions frequently pillar- and mesh formations were observed. Very often, these two forms of angiogenesis were seen in parallel in the same nodule. There are some indications that absence of VEGF is important in the induction of intussusceptive angiogenesis in fast growing tumours [
<xref ref-type="bibr" rid="CR55">55</xref>
]. Also in human melanomas a high number of intraluminal tissue folds and a correlation between VEGF and intussusceptive angiogenesis has been observed [
<xref ref-type="bibr" rid="CR56">56</xref>
].</p>
<p>Although the mechanism of intussusception is not fully understood, there are several key players that could influence pillar formation. Alteration in blood flow dynamics in arterial branches could stimulate this process, as observed in the chick chorioallantoic membranes [
<xref ref-type="bibr" rid="CR52">52</xref>
]. Furthermore, changes in shear stress on the endothelial cells, and in wall stress on the pericytes, can activate a biochemical cascade which might result in cytoskeletal rearrangements and adaptations of gap junction complexes [
<xref ref-type="bibr" rid="CR51">51</xref>
]. The changes in shear stress can be sensed by the endothelial cells and transduced by molecules such as CD31, resulting in increased expression of angiogenic factors, adhesion molecules and endothelial nitric oxide synthase [
<xref ref-type="bibr" rid="CR52">52</xref>
]. Although many cells appear to play a role in the process of intussusception, such as the endothelial cells, pericytes, macrophages and blood cells, it is now widely thought that it is mainly mediated by endothelial cell-endothelial cell and endothelial cell-pericyte interactions. Factors, that are known to be involved in these interactions in sprouting angiogenesis, such as the angiopoietins and their Tiereceptors, platelet derived growth factor-B, monocyte chemotactic protein-1, ephrins and EphB-receptors, are candidates for the mediation of intussusceptive angiogenesis [
<xref ref-type="bibr" rid="CR51">51</xref>
]. Injection of platelet derived growth factor-B in a developing chick chorioallantoic membrane stimulated the process of intussusception [
<xref ref-type="bibr" rid="CR57">57</xref>
]. Transgenic mice that overexpress VEGF-A and angiopoietin-1 developed blood vessels that showed small holes in the capillary plexus, representing transluminal pillar formation [
<xref ref-type="bibr" rid="CR58">58</xref>
].</p>
<p>It can be hypothesized that inhibition of sprouting angiogenesis may stimulate the process of intussusceptive angiogenesis. Therefore, it could be a means of drug-resistance against anti-angiogenic agents. The fact that intussusception only involves migration of endothelial cells and vascular remodelling but not cell proliferation, makes it unlikely that anti-proliferative agents will be able to prevent intussusception. In order to develop effective anti-angiogenesis strategies, novel compounds should involve anti-migration characteristics as well.</p>
</sec>
<sec id="Sec4">
<title>4 Endothelial progenitor cells</title>
<p>Until 1997, the growth of new blood vessels in adults was considered to exclusively occur through the mechanism of sprouting and intussusceptive angiogenesis. This paradigm of vascular development changed after the discovery of CD34-enriched subpopulation of mononuclear blood cells [
<xref ref-type="bibr" rid="CR59">59</xref>
]. These cells were able to adapt
<italic>ex vivo</italic>
to an adherent cell type with an endothelial phenotype. They were named endothelial progenitor cells or angioblasts. It is now generally accepted that new vessels can also grow through the recruitment of endothelial progenitor cells (EPCs) that are circulating in the blood. EPCs express several endothelial specific markers like CD34, CD31, VEGFR2, Tie-2 [
<xref ref-type="bibr" rid="CR59">59</xref>
] and CD14 [
<xref ref-type="bibr" rid="CR60">60</xref>
]. The first
<italic>in vivo</italic>
observations of incorporation of EPCs in blood vessels were evident from different mouse and rabbit bone marrow transplantation models. In these models, with heterologous, homologous and autologous transplantation/incorporation of CD34+, CD133+, VEGFR2+ mononuclear blood cells, EPCs incorporated exclusively in blood vessels of neovascularised ischemic limbs [
<xref ref-type="bibr" rid="CR59">59</xref>
]. Moreover, transplantation of endothelial progenitor cells improved limb perfusion, increased capillary density and reduced the risk of limb loss [
<xref ref-type="bibr" rid="CR60">60</xref>
]. In another setting, Lin et al. [
<xref ref-type="bibr" rid="CR61">61</xref>
] showed incorporation of cultured mononuclear cells in blood vessels after a sex-mismatched bone marrow transplantation.</p>
<p>The mobilization and recruitment of EPCs is promoted by several growth factors, chemokines and cytokines, which are produced during processes such as physiological stress (tissue ischemia), physical exercise and tumour growth. Mobilization of endothelial progenitor cells starts with the activation of matrix metalloproteinase-9, which in turn promotes the transformation of membrane-bound Kit ligand to a soluble form. Subsequently, early c-kit positive progenitor cells will detach from the bone marrow niche, move to the vascular zone of the bone marrow and will be released in the circulation [
<xref ref-type="bibr" rid="CR62">62</xref>
]. Angiogenic factors like PLGF and VEGF, which bind to the highly expressed VEGFR2 on EPCs, stimulate the release of EPCs form the bone marrow [
<xref ref-type="bibr" rid="CR63">63</xref>
,
<xref ref-type="bibr" rid="CR64">64</xref>
]. Other factors that can elevate the release of EPCs are stromal cell-derived factor-1, which binds to CXCR-4 on the EPCs, and angiopoetin-1 [
<xref ref-type="bibr" rid="CR65">65</xref>
]. A key player in the activation of matrix metalloproteinase-9 by VEGF and stromal cell-derived factor-1, was found to be endothelial nitric oxide synthase [
<xref ref-type="bibr" rid="CR66">66</xref>
]. Furthermore, factors like granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor have identified as bone marrow stem cell mobilizing factors [
<xref ref-type="bibr" rid="CR67">67</xref>
].</p>
<p>The recruitment and integration of EPCs implicates a complex multistep process, including chemoattraction, active arrest and homing within angiogenic vasculature, transmigration to the interstitial space, incorporation into the microvasculature and differentiation into mature endothelial cells. P-selectin, E-selectin and integrins are considered to be important in the adhesion of EPCs to the vessel wall and in transendothelial migration [
<xref ref-type="bibr" rid="CR68">68</xref>
,
<xref ref-type="bibr" rid="CR69">69</xref>
]. A recent paper demonstrated a functional role of high-mobility group box 1 (HMGB1) in the homing of EPCs. The HMGB1-induced migration of EPCs could be inhibited by antibodies against β
<sub>1</sub>
and β
<sub>2</sub>
integrins [
<xref ref-type="bibr" rid="CR70">70</xref>
]. During diapedesis CD31 and CD99 mediate the passage of EPCs [
<xref ref-type="bibr" rid="CR71">71</xref>
,
<xref ref-type="bibr" rid="CR72">72</xref>
]. The differentiation of EPCs to mature endothelial cells is mainly mediated by VEGF [
<xref ref-type="bibr" rid="CR59">59</xref>
,
<xref ref-type="bibr" rid="CR73">73</xref>
]. After differentiation to a mature endothelial cell, EPCs lose their progenitor properties and start to express endothelial markers like VE-cadherin, von Willebrand facor and endothelial nitric oxide synthase [
<xref ref-type="bibr" rid="CR61">61</xref>
].</p>
<p>EPCs also home in at the site of neovascularization in tumours. Asahara et al. [
<xref ref-type="bibr" rid="CR74">74</xref>
] were the first to report the incorporation of β-galactosidase labelled progenitor cells in both tumour stroma and the endothelial layer of tumour blood vessels. These findings led to the hypothesis that EPCs not only incorporate into the vascular endothelium but also can secrete pro-angiogenic factors in the perivascular sites in the tumour stroma. Later on, the family of Id (inhibitor of DNA binding) proteins was shown to play an important role during incorporation of EPCs in tumour endothelium. Id 1/3 double-mutant mouse embryos had vascular malformations in the brain, leading to fatal haemorrhage [
<xref ref-type="bibr" rid="CR75">75</xref>
]. Moreover, adult Id1
<sup>+/−</sup>
/Id3
<sup>−/−</sup>
mice could not support metastasis and growth of three different tumour cell lines, while transplantation of bone marrow cells of wild-type mice could restore this effect [
<xref ref-type="bibr" rid="CR76">76</xref>
]. The contribution of EPCs to the actual vessel growth, however, is variable. In tumours there are reports of EPCs being the leading process in tumour angiogenesis, while others described a minimal contribution to tumour vasculature [
<xref ref-type="bibr" rid="CR76">76</xref>
<xref ref-type="bibr" rid="CR82">82</xref>
]. In studies with cancer patients similar mixed results were found. In breast carcinoma patients, a higher level of EPCs was detected in the peripheral blood and was suggested as a prognostic marker in tumour patients [
<xref ref-type="bibr" rid="CR83">83</xref>
]. In contrast, the number of EPCs in the blood was not found to be increase in a patient group of 52 gastric cancer and 19 breast cancer patients in comparison to control patients [
<xref ref-type="bibr" rid="CR84">84</xref>
]. These contradictory results on the contribution EPCs could be due to difference in methodology.</p>
<p>Although most clinical applications of EPCs are in the field of ischemic tissue recovery, inhibition of EPC mobilization from bone marrow has tremendous potential in cancer treatment. Some studies have demonstrated an impaired role of EPCs in angiogenesis after specific interventions. In Id mutant knock out mice with xenograft tumours impaired tumour growth was observed [
<xref ref-type="bibr" rid="CR75">75</xref>
]. In a study by Capillo et al. [
<xref ref-type="bibr" rid="CR85">85</xref>
], endostatin was described as a potent inhibitor of mobilization and clonogenic potential of EPCs. Similarly, simultaneous inhibition of VEGFR2 and VEGFR1 demonstrated an effective inhibition of mobilization and incorporation of EPCs in tumour vasculature [
<xref ref-type="bibr" rid="CR76">76</xref>
]. Another clinical application of EPCs is their use as a marker for validation of effectiveness of anti-angiogenic therapy. In 8 different mouse strains there was a striking correlation between bFGF- of VEGF-induced angiogenesis and the level of EPCs [
<xref ref-type="bibr" rid="CR86">86</xref>
]. Alternatively, EPCs might be another source of tumour-homing cells to deliver toxins to the tumour. CD34+ cells that where transfected with a thymidine kinase gene showed a co-localisation with tumour vasculature. As expected, the recruitment of these transfected EPCs inhibited tumour growth [
<xref ref-type="bibr" rid="CR87">87</xref>
]. However, the success of the use of EPCs in cancer treatment depends on the isolation of the proper CD34+, VEGFR2+ haematopoietic cells from the bone marrow or out of circulation. There is still controversy on the exact characterisation of EPCs and possible contamination of the EPC population with circulating endothelial cells [
<xref ref-type="bibr" rid="CR88">88</xref>
]. Moreover, the exact molecular pathways that are involved in the mobilization and homing of EPCs to tumours, still have to be elucidated. Improvement of purification of these progenitor cells and study of their long-term effect to generate endothelial cells
<italic>in vivo</italic>
will clarify this embryonic field of cancer research. Nonetheless, it is obvious that the impact of EPCs in tumour vascularization cannot be neglected and the development of targeting strategies to prevent them from incorporating in regions of neovascularization in the tumour is a new challenge.</p>
</sec>
<sec id="Sec5">
<title>5 Vessel co-option</title>
<p>As stated above, it is generally accepted that growth of tumours and metastases start as an avascular mass and must induce the development of new vessels to grow beyond a few millimeters in size. However, it has been suggested that many tumours can grow in an avascular stage, mainly in well-vascularized tissue like brain and lung [
<xref ref-type="bibr" rid="CR89">89</xref>
<xref ref-type="bibr" rid="CR91">91</xref>
]. Tumour cells can grow along existing vessels without evoking an angiogenic response. This process was defined as vessel co-option.</p>
<p>The first evidence of this process was found during experiments for the search for the molecular players, like angiopoietins, that are involved in early angiogenic events [
<xref ref-type="bibr" rid="CR92">92</xref>
]. After 1 or 2 week(s) after implantation of C6 glioma cells in a rat brain, the small tumours were already well vascularized with vessels that had characteristics of normal brain vessels. Moreover, no angiogenic response was observed. After 4 weeks, blood vessels had undergone a dramatic regression without any compensatory angiogenic response. In the center of the tumour, tumour cells were organised around the few functional vessels and massive tumour cell death was detected. In the tumour periphery, in contrast, a robust angiogenic response was observed. These data showed that most malignancies and metastases originate as an avascular mass, co-opt with host vessels and are rescued. It can be hypothesized that the regression of the initial co-opted vessels is a host defence mechanism. Unfortunately these remaining tumour cells are rescued in a later stage, by robust angiogenesis at the outer rim of the tumour.</p>
<p>The finding that vessel regression was associated with the regression of endothelial cells, due to detachment of pericytes and smooth muscle cells, raised the hypothesis that angiopoietins could be involved in this process. Holasch et al. discovered high angiopoietin-2 expression in co-opted vessels of 2 weeks old tumours and in late-stage tumours with a necrotic core. The expression of VEGF, however, was rather low in early-stage tumours and increased later on. The expression of angiopoietin-1 did not change throughout tumour development. Angiopoietin-2 seems to be the key regulator in the regression of initially co-opted tumour vessels. While the expression of angiopoietin-2 in the absence of VEGF facilitated vessel regression, the co-expression of angiopoietin-2 and VEGF, induced the activity of VEGF and subsequently vessel sprouting. This operation between the two angiogenic factors is similarly present in developmental angiogenesis [
<xref ref-type="bibr" rid="CR19">19</xref>
]. The same expression levels of angiopoietin-2 and angiopoietin-1 were found in human glioblastomas and not in normal brain vasculature [
<xref ref-type="bibr" rid="CR92">92</xref>
]. Vessel co-option has now been observed in different tumour types like murine Lewis lung carcinoma, murine ovarian cancer, human melanoma and human Kaposi sarcoma [
<xref ref-type="bibr" rid="CR92">92</xref>
<xref ref-type="bibr" rid="CR95">95</xref>
]. The role of VEGF in vessel co-option suggests that anti-VEGF therapies may be considered not only for blocking angiogenesis but also to inhibit maturation of vessels in the process of vessel co-option. However, the systemic anti-angiogenesis treatment of a glioblastoma with an anti-VEGFR2 antibody was able to reduce tumour angiogenesis but led to an increased co-option of host vessels in the brain [
<xref ref-type="bibr" rid="CR96">96</xref>
]. Thus, more potent VEGF-inhibitors are needed to prevent both angiogenesis and vessel co-option. Maybe targeting of VEGF, together with angiopoietins, could overcome the growth of tumours along existing vessels.</p>
</sec>
<sec id="Sec6">
<title>6 Vasculogenic mimicry</title>
<p>In 1999, the term “vasculogenic mimicry” was introduced to describe the masquerade of tumour cells as endothelial cells. This process of cell plasticity occurs mainly in aggressive tumours in which tumour cells dedifferentiate to an endothelial phenotype and make tube-like structures. This mechanism provides tumour cells with a secondary circulation system of vasculogenic structures lined by tumour cells, independently of angiogenesis [
<xref ref-type="bibr" rid="CR97">97</xref>
]. This phenomenon was described for the first time in melanomas. Tissue sections of uveal and cutaneous melanomas and their respective liver metastases revealed patterned networks of interconnected loops of extracellular matrix, as identified by periodic acid-Shiff’s reagent (PAS) staining. Importantly, the presence of PAS patterns was associated with worse patient outcome [
<xref ref-type="bibr" rid="CR98">98</xref>
]. Further research suggested that these PAS positive networks might be in close connection with regular blood vessels and can be detected with markers for endothelial cells. Furthermore, endothelial cells could not be identified, strongly suggesting that these vessel-like structures are lined by tumour cells. The same patterned networks could be obtained
<italic>in vitro</italic>
in collagen and matrigel three-dimensional cultures with aggressive melanoma cell lines but not with poorly invasive melanoma cell lines [
<xref ref-type="bibr" rid="CR97">97</xref>
].</p>
<p>Microarray analysis comparing highly invasive and poorly invasive melanoma cells from the same patient indicated a genetic reversion of aggressive melanoma cells to an undifferentiated embryonic-like phenotype [
<xref ref-type="bibr" rid="CR99">99</xref>
]. Endothelium associated genes such as VE-cadherin, Ephrin A2 and tissue factor pathway inhibitors, CD34, tyrosine kinase receptor 1, neuropilin 1, E-selectin and endoglin (CD105) had a more than 2-fold increased expression in vasculogenic mimicry positive cells. Also several matrix related components had an increased expression such as laminin 5γ2, fibronectin, collagen IV α2, collagen I. Genes related to a melanocytic phenotype, like Melan-A, microphthalmia-associated transcription factor (MTIF) and tyrosinase, were more than 20-fold downregulated.</p>
<p>The exact mechanism underlying vasculogenic mimicry still needs to be unravelled. Several molecules have been identified to have a functional role. For example, PI3 kinase (PI3K) was proposed as the key player in activating the transmembrane metalloproteinase MT1MMP [
<xref ref-type="bibr" rid="CR99">99</xref>
]. This protease activates matrix metalloproteinase-2 that cleaves laminin 5γ2 into pro-migratory fragments used for tumour cell migration in vasculogenic mimicry [
<xref ref-type="bibr" rid="CR100">100</xref>
]. There is also a role for VE-cadherin and Ephrin A2 since downregulation of these genes in melanoma cells resulted in an abrogation of their ability to form vasculogenic-like structures [
<xref ref-type="bibr" rid="CR101">101</xref>
]. Both molecules are found to co-localize and VE-cadherin can regulate the expression of EphA2 through its receptor ephrin-A1. So far, several other molecules, mostly found by means of siRNA techniques or anti-body blocking techniques, have been described to play a role in vasculogenic mimicry. Tissue factor pathway inhibitor 2 (TFPI-2) was discovered to be necessary for vasculogenic network formation and is involved in the activation MMP-2. Furthermore, several recent papers reported on different molecules like focal adhesion kinase, cyclooxygenase-2, bone morphogenetic protein-4, insuline-like growth factor binding protein 3 and Nodal and their role in promoting an aggressive melanoma phenotype [
<xref ref-type="bibr" rid="CR102">102</xref>
<xref ref-type="bibr" rid="CR106">106</xref>
].</p>
<p>Next to the above described mediators, genetic characterisation of cell plasticity of tumour cells revealed several molecules that are related to extracellular matrix like fibronectin, collagen IV α2, collagen I. The importance of the extracellular matrix, as a component of the microenvironment, in vasculogenic mimicry was demonstrated by Seftor et al. [
<xref ref-type="bibr" rid="CR107">107</xref>
]. Normal epidermal melanocytes, exposed for 4 days to an extracellular matrix conditioned by metastatic cutaneous melanoma, were reprogrammed to a genotype with specific genes that were associated with the ability to form vasculogenic-like networks. Importantly, these changes in gene expression were only transient, because gene analysis after 7 to 21 days revealed a normal melanocyte phenotype. Recent findings suggested that another microenviromental component, oxygen, may be essential in melanocyte transformation. Low levels of oxygen or hypoxia, are known to promote melanoma cell invasion, metastasis and transformation [
<xref ref-type="bibr" rid="CR108">108</xref>
,
<xref ref-type="bibr" rid="CR109">109</xref>
]. Moreover, hypoxia induces vasculogenic mimicry tube formation
<italic>in vitro</italic>
in a matrigel assay [
<xref ref-type="bibr" rid="CR110">110</xref>
,
<xref ref-type="bibr" rid="CR111">111</xref>
]. In another paper, a B16 melanoma ischemic limb mouse model was used to mimic an hypoxic environment. Initially a decreased tumour growth was observed while later on there was no difference in size with the control tumours. However, the amount of vasculogenic mimicry channels and the gene expression of HIF-1α, MMP-2, MMP-9 and VEGF was increased [
<xref ref-type="bibr" rid="CR112">112</xref>
]. The role of several known tumour growth factors has also been studied, though with disappointing results. Several growth factors, such as basic fibroblast growth factor, vascular endothelial growth factor, transforming Growth Factor-β, platelet derived growth factor and tumour necrosis factor-α were found not to be able to induce formation of vascular networks when added to the poorly invasive melanoma cell lines [
<xref ref-type="bibr" rid="CR97">97</xref>
]. This indicates that angiogenesis and vasculogenic mimicry, in contrast to the previous described tumour vascularization types, are not sharing the same signalling pathways. Moreover, anti-angiogenic targeting strategies do not inhibit the process of vasculogenic mimicry [
<xref ref-type="bibr" rid="CR111">111</xref>
] and could even induce the formation of vasculogenic mimicry vessels as an escape mechanism of the tumour to keep on growing.</p>
<p>Although the functionality and the contribution of vasculogenic-like channels to circulation was criticised at first, several papers evidenced its functional role in tumour circulation. The contribution of vasculogenic mimicry patterns was first proven
<italic>in vitro</italic>
. Looping patterns, that were formed
<italic>in vitro</italic>
by highly aggressive melanoma cell lines, distributed fluid after microinjection [
<xref ref-type="bibr" rid="CR97">97</xref>
]. Several groups tried to prove the fluid-conducting characteristic of vasculogenic mimicry channels
<italic>in vivo</italic>
. Clarijs et al. co-localised an intravenous injected tracer with both blood vessels and matrix patterns in a uveal melanoma xenograft model [
<xref ref-type="bibr" rid="CR113">113</xref>
]. Shirakawa et al. [
<xref ref-type="bibr" rid="CR114">114</xref>
] reported on blood flow in areas of vasculogenic mimicry in a breast carcinoma model using MRI techniques. Another approach was used by Ruf et al. [
<xref ref-type="bibr" rid="CR115">115</xref>
], where Doppler ultrasonography was used to show blood flow in these vasculogenic-like channels. The first
<italic>in vivo</italic>
demonstration of blood circulation in vasculogenic mimicry tubes in humans was observed with laser scanning confocal angiography in patients with a choroidal melanoma [
<xref ref-type="bibr" rid="CR116">116</xref>
]. Up to now, tumour cell plasticity has been described in uveal [
<xref ref-type="bibr" rid="CR98">98</xref>
], cutaneous [
<xref ref-type="bibr" rid="CR117">117</xref>
] and oral [
<xref ref-type="bibr" rid="CR118">118</xref>
] melanoma, breast carcinoma [
<xref ref-type="bibr" rid="CR114">114</xref>
], prostatic carcinoma [
<xref ref-type="bibr" rid="CR119">119</xref>
], ovarian carcinoma [
<xref ref-type="bibr" rid="CR120">120</xref>
], hepatocellular carcinoma [
<xref ref-type="bibr" rid="CR121">121</xref>
], bladder carcinoma [
<xref ref-type="bibr" rid="CR122">122</xref>
], rhabdomyosarcoma and mesothelial sarcoma [
<xref ref-type="bibr" rid="CR123">123</xref>
], osteosarcoma [
<xref ref-type="bibr" rid="CR124">124</xref>
], astrocytoma [
<xref ref-type="bibr" rid="CR125">125</xref>
], pheochromocytoma [
<xref ref-type="bibr" rid="CR126">126</xref>
] and Ewing sarcoma [
<xref ref-type="bibr" rid="CR111">111</xref>
].</p>
<p>The recent findings on the ‘plastic’ endothelial-like phenotype of melanoma and other tumour cells confused the field of cancer biology even more. The idea that these structures could form a functional secondary vascular network that provides the tumour of blood, independent from angiogenic growth factors, makes tumour growth inhibition even more complex. A variety of genes has been investigated concerning their role in tubular network formation of tumour cells. An option for therapy is the use of monoclonal antibodies to these molecules for drug targeting. However, the therapeutic functionality and the choice of the best targets still need to be elucidated. It is evident now that the microenvironment plays an important role in tumour progression and therefore is a novel target for therapy. An initial study to target MMPs was performed. The administration of a chemically modified tetracycline, COL-3, to aggressive melanoma cells in three-dimensional culture, inhibited MMP-2, MMP-9, MT1-MMP and VE-cadherin expression. Next to that, the cleavage of laminin 5 was inhibited and decreased vascular network formation was observed [
<xref ref-type="bibr" rid="CR127">127</xref>
]. However, caution is warranted since administration of modified tetracyclines have reported serious side effects [
<xref ref-type="bibr" rid="CR128">128</xref>
,
<xref ref-type="bibr" rid="CR129">129</xref>
]. In another paper, the addition of anti-angiogenic compounds TNP470, anginex and endostatin could not block the formation of networks [
<xref ref-type="bibr" rid="CR130">130</xref>
]. Until now, only very limited data on targeting vasculogenic mimicry is available. Clearly, more investigation, on essential regulatory pathways of plastic tumour cells that do not overlap normal biological processes, is needed to develop new promising therapeutic approaches.</p>
</sec>
<sec id="Sec7">
<title>7 Lymphangiogenesis</title>
<p>Lymphatic vessels are also part of the vascular circulatory system. The lymphatic system is a network of capillaries, collecting vessels and ducts that drains most of the organs. In contrast to the blood vascular network, the lymphatic network is an open ended, one way transport system, without a driving force, that drains extravasated fluid, collects lymphocytes and returns it to circulation [
<xref ref-type="bibr" rid="CR131">131</xref>
]. Over the last years there is accumulating evidence for a role of the lymphatic system in tumour progression. Metastasis of malignant tumours to regional lymph nodes is one of the early signs of cancer spread in patients. In certain cancer types, such as breast cancer, lymphatic metastasis is one of the predominant routes of cancer spread [
<xref ref-type="bibr" rid="CR132">132</xref>
]. From the lymphatic system, cancer cells can spread to other organs and tissues.</p>
<p>The lymphatic system has not received as much scientific attention as the blood vascular system, maybe due to a lack of specific markers and to the lack of knowledge about the molecular regulation of its development and function. The possibility and optimisation to isolate and culture lymphatic endothelial cells, however, has led to the identification of several markers that are specific for the lymphatic vasculature [
<xref ref-type="bibr" rid="CR133">133</xref>
]. Vascular endothelial growth factor receptor-3 (VEGFR-3) was the first lymphatic marker that was identified [
<xref ref-type="bibr" rid="CR134">134</xref>
]. Later on specific markers such as lymphatic vascular endothelial hyaluronan receptor-1 (LYVE-1) [
<xref ref-type="bibr" rid="CR135">135</xref>
], podoplanin [
<xref ref-type="bibr" rid="CR136">136</xref>
] and transcription factor Prox1 [
<xref ref-type="bibr" rid="CR137">137</xref>
] were identified.</p>
<p>Similar to blood endothelial cells, lymphatic endothelial cells are quiescent under physiological conditions. Experimental evidence for a ‘lymphangiogenic switch’ is still lacking. Nonetheless, it seems likely that the formation of new lymphatic vessels is triggered in a similar way as angiogenesis of blood vessels. Already now, a range of lymphangiogenic factors/receptors that are produced by tumour cells and inflammatory cells have been identified.</p>
<p>After the identification of the lymphatic specific marker VEGFR-3, both VEGF-C and VEGF-D were cloned as unique ligands for this receptor [
<xref ref-type="bibr" rid="CR138">138</xref>
]. In the development of the lymphatic system, the role of VEGF-D is dispensable [
<xref ref-type="bibr" rid="CR139">139</xref>
], whereas VEGF-C null mouse embryos completely lack a lymphatic vasculature and die prenatally [
<xref ref-type="bibr" rid="CR140">140</xref>
].
<italic>In vitro</italic>
, VEGF-C stimulated proliferation, migration and survival of lymphatic endothelial cells [
<xref ref-type="bibr" rid="CR141">141</xref>
]. To demonstrate the VEGF-C/VEGF-D/VEGFR-3 signalling pathway in tumour lymphangiogenesis, tumour cells expressing VEGF-C and -D were used in a mouse tumour model. Both the expression of VEGF-C and -D increased intratumoural lymphangiogenesis and metastasis. In addition, a blocking VEGF-D antibody could inhibit this lymphatic spread [
<xref ref-type="bibr" rid="CR142">142</xref>
,
<xref ref-type="bibr" rid="CR143">143</xref>
]. Furthermore, there are indications that there is a cross talk between blood vessel angiogenesis and lymphangiogenesis. Angiogenic mediators are identified to play a role in lymphangiogenesis but their role is mostly studied in physiological situations. The VEGF-A/VEGFR-2 signalling pathway stimulates lymphangiogenesis. However, the new lymphatic vessels generated by VEGF-A are functionally and structurally abnormal [
<xref ref-type="bibr" rid="CR144">144</xref>
]. The group of Chang et al. [
<xref ref-type="bibr" rid="CR145">145</xref>
] demonstrated that bFGF could induce both blood vessel angiogenesis and lymphangiogenesis and even lymphangiogenesis alone depending on the dose of bFGF that was administrated on mouse cornea. In the same mouse cornea model, PDGF-BB was found to be the most potent of the PDGF family in stimulating lymphangiogenesis [
<xref ref-type="bibr" rid="CR146">146</xref>
]. Above that, PDGFs are often found to be highly expressed in tumours that have increased incidence of lymphatic metastasis [
<xref ref-type="bibr" rid="CR147">147</xref>
]. The first evidence of a role of angiopoietin-2 in lymphangiogenesis was suggested by the angiopoietin-2-null mice that displayed disorganized and hypoplastic lymphatic capillaries [
<xref ref-type="bibr" rid="CR148">148</xref>
]. Importantly, the lymphatic but not the blood vessel phenotype could be rescued by genetic transfer of angiopoietin-1. In addition, Morisada et al. [
<xref ref-type="bibr" rid="CR149">149</xref>
] were able to demonstrate the stimulation of both
<italic>in vitro</italic>
growth of lymphatic endothelial cells and lymphangiogenesis in the mouse cornea by angiopoietin-1. Similarly to angiopoietin-2-null mice, NRP-2 mutants showed absence or severe reduction of small lymphatic vessels and capillaries [
<xref ref-type="bibr" rid="CR150">150</xref>
]. Also an
<italic>in vitro</italic>
and
<italic>in vivo</italic>
stimulatory role of hepatocyte growth factor [
<xref ref-type="bibr" rid="CR151">151</xref>
] and insulin-like growth factor-1 and -2 [
<xref ref-type="bibr" rid="CR152">152</xref>
] on the lymphatic vessel formation was observed.</p>
<p>Now that specific markers are available and some insight into the biology of lymphangiogenesis is available, it becomes evident that lymphangiogenesis is an important parameter in the process of tumour growth [
<xref ref-type="bibr" rid="CR153">153</xref>
]. Nevertheless, there is still an ongoing debate on the role of lymphangiogenesis in tumour progression. It was previously thought that lymphatic metastasis occurred by preexisting lymphatic vessels that are present at the outer rim of the tumour. However, other papers report on the presence of peritumoural and/or intratumoural lymphatics, not only in mouse studies but also in human tumours. Nevertheless, intratumoural lymphatics are rare and their functionality and role in tumour metastasis is still discussed [
<xref ref-type="bibr" rid="CR154">154</xref>
,
<xref ref-type="bibr" rid="CR155">155</xref>
]. There are also reports that lymph angiogenesis parameters such as lymph vessel density, lymph angiogenic growth factors [
<xref ref-type="bibr" rid="CR156">156</xref>
], or the presence of tumour cells within lymph vessels or lymph nodes are valuable prognostic markers [
<xref ref-type="bibr" rid="CR157">157</xref>
<xref ref-type="bibr" rid="CR161">161</xref>
].</p>
<p>The high incidence of metastatic lymphatic spread and the knowledge of several lymphangiogenic markers urged researchers to investigate the inhibition of lymphangiogenesis as a strategy of tumour treatment. Stacker et al. [
<xref ref-type="bibr" rid="CR143">143</xref>
] reported the reduction of lymphatic spread by blocking VEGF-D with a monoclonal antibody. The application of a VEGFR-3 fusion protein (called VEGF-C/D trap) was able to inhibit the growth of tumour-associated lymphatic vessels and inhibited tumour metastasis [
<xref ref-type="bibr" rid="CR162">162</xref>
]. On the other hand, administration of VEGF-C seems to have therapeutic potential for patients with lymphedema since lymphatic function ameliorated significantly [
<xref ref-type="bibr" rid="CR163">163</xref>
]. However, the regulation of lymphatic vessel growth is more difficult because it is not only promoted by the VEGF-C, VEGF-D/VEGFR-3 system. Several other growth factors and molecules that are specific for lymphangiogenesis, of which the exact function has not been resolved yet, could play an important role. An efficient anti-lymphangiogenic therapy should target different lymphatic growth factors. Furthermore, additional information is needed on specific tumour lymphatic markers. A recent paper of Zhang et al. presented some promising results. In search for a lymphatic tissue specific signature, it was demonstrated that tumour development is associated with organ- and stage-specific changes in lymphatics [
<xref ref-type="bibr" rid="CR164">164</xref>
]. Although clinical implementation will take years, cancer patients will benefit from anti-metastatic therapy that can decrease metastatic lymphatic spread.</p>
</sec>
<sec id="Sec8" sec-type="conclusion">
<title>8 Conclusion</title>
<p>Tumours depend on the growth of a vascular network, which is stimulated by a variety of angiogenic mediators, providing them with blood and oxygen. Inhibition of sprouting angiogenesis has gained a lot of progression. Several clinical trials, in which specific growth factors or receptors are being blocked, are currently being performed. Strategies that block the VEGF-A/VEGFR2 signalling are the most abundant ones in the field of anti-angiogenic therapy. After successful clinical trials, Avastin is now entering into the clinic. Because side effects are observed, the emphasis of such growth factor inhibition mediated treatment may shift towards other growth factors, e.g. PLGF [
<xref ref-type="bibr" rid="CR17">17</xref>
], or to simultaneous targeting of multiple pathways.</p>
<p>Clinical success of anti-angiogenesis therapy is present but still limited. Since anti-angiogenic therapy alone seems not to be sufficient to improve patient survival, clinical studies are all in combination with conventional strategies, such as chemo- and radiotherapy. The successful combination of chemotherapy and anti-angiogenesis therapy may benefit from the normalization of the tumour vasculature by anti-angiogenic therapy and subsequently a better administration of chemotherapy [
<xref ref-type="bibr" rid="CR165">165</xref>
].</p>
<p>It is clear now that tumour vasculature is not necessarily dependent of endothelial cell proliferation and sprouting of new capillaries. Several additional mechanisms can provide the tumour of oxygen and nutrients. The molecular players involved and their specific role in tumour development still need to be elucidated. The current knowledge that anti-angiogenesis therapy work best in combination with chemotherapy, should probably in the near future be extended to other types of vascularization as well. There is still a long way to go before we fully understand the different mechanisms of tumor vascularization. But we anticipate that combination of a multimodal anti-vascular approach, representing anti-angiogenesis, anti-lymphangiogenesis and vasculogenic mimicry targeting, together with chemotherapy may become the best possible strategy in the fight against cancer.</p>
</sec>
</body>
<back>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carmeliet</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Jain</surname>
<given-names>R. K.</given-names>
</name>
</person-group>
<article-title>Angiogenesis in cancer and other diseases</article-title>
<source>Nature</source>
<year>2000</year>
<volume>407</volume>
<fpage>249</fpage>
<lpage>257</lpage>
</citation>
<citation citation-type="display-unstructured">Carmeliet, P., & Jain, R. K. (2000). Angiogenesis in cancer and other diseases. Nature, 407, 249–57.
<pub-id pub-id-type="pmid">11001068</pub-id>
</citation>
</ref>
<ref id="CR2">
<label>2.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martin</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Komada</surname>
<given-names>M. R.</given-names>
</name>
<name>
<surname>Sane</surname>
<given-names>D. C.</given-names>
</name>
</person-group>
<article-title>Abnormal angiogenesis in diabetes mellitus</article-title>
<source>Medicinal Research Reviews</source>
<year>2003</year>
<volume>23</volume>
<fpage>117</fpage>
<lpage>145</lpage>
</citation>
<citation citation-type="display-unstructured">Martin, A., Komada, M. R., & Sane, D. C. (2003). Abnormal angiogenesis in diabetes mellitus. Medicinal Research Reviews, 23, 117–45.
<pub-id pub-id-type="pmid">12500286</pub-id>
</citation>
</ref>
<ref id="CR3">
<label>3.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koch</surname>
<given-names>A. E.</given-names>
</name>
</person-group>
<article-title>Angiogenesis as a target in rheumatoid arthritis</article-title>
<source>Annals of the Rheumatic Diseases</source>
<year>2003</year>
<volume>62</volume>
<issue>2</issue>
<fpage>ii60</fpage>
<lpage>ii67</lpage>
</citation>
<citation citation-type="display-unstructured">Koch, A. E. (2003). Angiogenesis as a target in rheumatoid arthritis. Annals of the Rheumatic Diseases, 62 Suppl 2, ii60–7.
<pub-id pub-id-type="pmid">14532152</pub-id>
</citation>
</ref>
<ref id="CR4">
<label>4.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Hong</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Schulten</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Post</surname>
<given-names>M. J.</given-names>
</name>
</person-group>
<article-title>Update on therapeutic neovascularization</article-title>
<source>Cardiovascular Research</source>
<year>2005</year>
<volume>65</volume>
<fpage>639</fpage>
<lpage>648</lpage>
</citation>
<citation citation-type="display-unstructured">Cao, Y., Hong, A., Schulten, H., & Post, M. J. (2005). Update on therapeutic neovascularization. Cardiovascular Research, 65, 639–48.
<pub-id pub-id-type="pmid">15664390</pub-id>
</citation>
</ref>
<ref id="CR5">
<label>5.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carmeliet</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Angiogenesis in life, disease and medicine</article-title>
<source>Nature</source>
<year>2005</year>
<volume>438</volume>
<fpage>932</fpage>
<lpage>936</lpage>
</citation>
<citation citation-type="display-unstructured">Carmeliet, P. (2005). Angiogenesis in life, disease and medicine. Nature, 438, 932–36.
<pub-id pub-id-type="pmid">16355210</pub-id>
</citation>
</ref>
<ref id="CR6">
<label>6.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hanahan</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Weinberg</surname>
<given-names>R. A.</given-names>
</name>
</person-group>
<article-title>The hallmarks of cancer</article-title>
<source>Cell</source>
<year>2000</year>
<volume>100</volume>
<fpage>57</fpage>
<lpage>70</lpage>
</citation>
<citation citation-type="display-unstructured">Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–0.
<pub-id pub-id-type="pmid">10647931</pub-id>
</citation>
</ref>
<ref id="CR7">
<label>7.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ferrara</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Gerber</surname>
<given-names>H. P.</given-names>
</name>
<name>
<surname>LeCouter</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>The biology of VEGF and its receptors</article-title>
<source>Nature Medicine</source>
<year>2003</year>
<volume>9</volume>
<fpage>669</fpage>
<lpage>676</lpage>
</citation>
<citation citation-type="display-unstructured">Ferrara, N., Gerber, H. P., & LeCouter, J. (2003). The biology of VEGF and its receptors. Nature Medicine, 9, 669–76
<pub-id pub-id-type="pmid">12778165</pub-id>
</citation>
</ref>
<ref id="CR8">
<label>8.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jain</surname>
<given-names>R. K.</given-names>
</name>
</person-group>
<article-title>Molecular regulation of vessel maturation</article-title>
<source>Nature Medicine</source>
<year>2003</year>
<volume>9</volume>
<fpage>685</fpage>
<lpage>693</lpage>
</citation>
<citation citation-type="display-unstructured">Jain, R. K. (2003). Molecular regulation of vessel maturation. Nature Medicine, 9, 685–93.
<pub-id pub-id-type="pmid">12778167</pub-id>
</citation>
</ref>
<ref id="CR9">
<label>9.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kerbel</surname>
<given-names>R. S.</given-names>
</name>
</person-group>
<article-title>Tumor angiogenesis: Past, present and the near future</article-title>
<source>Carcinogenesis</source>
<year>2000</year>
<volume>21</volume>
<fpage>505</fpage>
<lpage>515</lpage>
</citation>
<citation citation-type="display-unstructured">Kerbel, R. S. (2000). Tumor angiogenesis: Past, present and the near future. Carcinogenesis, 21, 505–15.
<pub-id pub-id-type="pmid">10688871</pub-id>
</citation>
</ref>
<ref id="CR10">
<label>10.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Itoh</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Ornitz</surname>
<given-names>D. M.</given-names>
</name>
</person-group>
<article-title>Evolution of the Fgf and Fgfr gene families</article-title>
<source>Trends in Genetics</source>
<year>2004</year>
<volume>20</volume>
<fpage>563</fpage>
<lpage>569</lpage>
</citation>
<citation citation-type="display-unstructured">Itoh, N., & Ornitz, D. M. (2004). Evolution of the Fgf and Fgfr gene families. Trends in Genetics, 20, 563–69.
<pub-id pub-id-type="pmid">15475116</pub-id>
</citation>
</ref>
<ref id="CR11">
<label>11.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Presta</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Dell’Era</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Mitola</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Moroni</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Ronca</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Rusnati</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis</article-title>
<source>Cytokine Growth Factor Reviews</source>
<year>2005</year>
<volume>16</volume>
<fpage>159</fpage>
<lpage>178</lpage>
</citation>
<citation citation-type="display-unstructured">Presta, M., Dell’Era, P., Mitola, S., Moroni, E., Ronca, R., & Rusnati, M. (2005). Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Reviews, 16, 159–78.
<pub-id pub-id-type="pmid">15863032</pub-id>
</citation>
</ref>
<ref id="CR12">
<label>12.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gross</surname>
<given-names>J. L.</given-names>
</name>
<name>
<surname>Herblin</surname>
<given-names>W. F.</given-names>
</name>
<name>
<surname>Dusak</surname>
<given-names>B. A.</given-names>
</name>
<name>
<surname>Czerniak</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Diamond</surname>
<given-names>M. D.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Effects of modulation of basic fibroblast growth factor on tumor growth
<italic>in vivo</italic>
</article-title>
<source>Journal of the National Cancer Institute</source>
<year>1993</year>
<volume>85</volume>
<fpage>121</fpage>
<lpage>131</lpage>
</citation>
<citation citation-type="display-unstructured">Gross, J. L., Herblin, W. F., Dusak, B. A., Czerniak, P., Diamond, M. D., Sun, T., et al. (1993). Effects of modulation of basic fibroblast growth factor on tumor growth in vivo. Journal of the National Cancer Institute, 85, 121–31.
<pub-id pub-id-type="pmid">8418301</pub-id>
</citation>
</ref>
<ref id="CR13">
<label>13.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Becker</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Antisense targeting of basic fibroblast growth factor and fibroblast growth factor receptor-1 in human melanomas blocks intratumoral angiogenesis and tumor growth</article-title>
<source>Nature Medicine</source>
<year>1997</year>
<volume>3</volume>
<fpage>887</fpage>
<lpage>893</lpage>
</citation>
<citation citation-type="display-unstructured">Wang, Y. & Becker, D. (1997). Antisense targeting of basic fibroblast growth factor and fibroblast growth factor receptor-1 in human melanomas blocks intratumoral angiogenesis and tumor growth. Nature Medicine, 3, 887–93.
<pub-id pub-id-type="pmid">9256280</pub-id>
</citation>
</ref>
<ref id="CR14">
<label>14.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ferrara</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Davis-Smyth</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>The biology of vascular endothelial growth factor</article-title>
<source>Endocrine Reviews</source>
<year>1997</year>
<volume>18</volume>
<fpage>4</fpage>
<lpage>25</lpage>
</citation>
<citation citation-type="display-unstructured">Ferrara, N., & Davis-Smyth, T. (1997). The biology of vascular endothelial growth factor. Endocrine Reviews, 18, 4–5.
<pub-id pub-id-type="pmid">9034784</pub-id>
</citation>
</ref>
<ref id="CR15">
<label>15.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bergers</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Brekken</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>McMahon</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Vu</surname>
<given-names>T. H.</given-names>
</name>
<name>
<surname>Itoh</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Tamaki</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis</article-title>
<source>Nature Cell Biology</source>
<year>2000</year>
<volume>2</volume>
<fpage>737</fpage>
<lpage>744</lpage>
</citation>
<citation citation-type="display-unstructured">Bergers, G., Brekken, R., McMahon, G., Vu, T. H., Itoh, T., Tamaki, K., et al. (2000). Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biology, 2, 737–44.
<pub-id pub-id-type="pmid">11025665</pub-id>
</citation>
</ref>
<ref id="CR16">
<label>16.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Iyer</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Acharya</surname>
<given-names>K. R.</given-names>
</name>
</person-group>
<article-title>Role of placenta growth factor in cardiovascular health</article-title>
<source>Trends in Cardiovascular Medicine</source>
<year>2002</year>
<volume>12</volume>
<fpage>128</fpage>
<lpage>134</lpage>
</citation>
<citation citation-type="display-unstructured">Iyer, S., & Acharya, K. R. (2002). Role of placenta growth factor in cardiovascular health. Trends in Cardiovascular Medicine, 12, 128–34.
<pub-id pub-id-type="pmid">12007738</pub-id>
</citation>
</ref>
<ref id="CR17">
<label>17.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carmeliet</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Moons</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Luttun</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Vincenti</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Compernolle</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Mol</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions</article-title>
<source>Nature Medicine</source>
<year>2001</year>
<volume>7</volume>
<fpage>575</fpage>
<lpage>583</lpage>
</citation>
<citation citation-type="display-unstructured">Carmeliet, P., Moons, L., Luttun, A., Vincenti, V., Compernolle, V., De Mol, M., et al. (2001). G. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nature Medicine, 7, 575–83.
<pub-id pub-id-type="pmid">11329059</pub-id>
</citation>
</ref>
<ref id="CR18">
<label>18.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Davis</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Aldrich</surname>
<given-names>T. H.</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>P. F.</given-names>
</name>
<name>
<surname>Acheson</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Compton</surname>
<given-names>D. L.</given-names>
</name>
<name>
<surname>Jain</surname>
<given-names>V.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning</article-title>
<source>Cell</source>
<year>1996</year>
<volume>87</volume>
<fpage>1161</fpage>
<lpage>1169</lpage>
</citation>
<citation citation-type="display-unstructured">Davis, S., Aldrich, T. H., Jones, P. F., Acheson, A., Compton, D. L., Jain, V., et al. (1996). Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell, 87, 1161–169.
<pub-id pub-id-type="pmid">8980223</pub-id>
</citation>
</ref>
<ref id="CR19">
<label>19.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maisonpierre</surname>
<given-names>P. C.</given-names>
</name>
<name>
<surname>Suri</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>P. F.</given-names>
</name>
<name>
<surname>Bartunkova</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Wiegand</surname>
<given-names>S. J.</given-names>
</name>
<name>
<surname>Radziejewski</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Angiopoietin-2, a natural antagonist for Tie2 that disrupts
<italic>in vivo</italic>
angiogenesis</article-title>
<source>Science</source>
<year>1997</year>
<volume>277</volume>
<fpage>55</fpage>
<lpage>60</lpage>
</citation>
<citation citation-type="display-unstructured">Maisonpierre, P. C., Suri, C., Jones, P. F., Bartunkova, S., Wiegand, S. J., Radziejewski, C., et al. (1997). Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science, 277, 55–0.
<pub-id pub-id-type="pmid">9204896</pub-id>
</citation>
</ref>
<ref id="CR20">
<label>20.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Elliott</surname>
<given-names>R. L.</given-names>
</name>
<name>
<surname>Blobe</surname>
<given-names>G. C.</given-names>
</name>
</person-group>
<article-title>Role of transforming growth factor Beta in human cancer</article-title>
<source>Journal of Clinical Oncology</source>
<year>2005</year>
<volume>23</volume>
<fpage>2078</fpage>
<lpage>2093</lpage>
</citation>
<citation citation-type="display-unstructured">Elliott, R. L., & Blobe, G. C. (2005). Role of transforming growth factor Beta in human cancer. Journal of Clinical Oncology, 23, 2078–093.
<pub-id pub-id-type="pmid">15774796</pub-id>
</citation>
</ref>
<ref id="CR21">
<label>21.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Armulik</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Abramsson</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Betsholtz</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Endothelial/pericyte interactions</article-title>
<source>Circulation Research</source>
<year>2005</year>
<volume>97</volume>
<fpage>512</fpage>
<lpage>523</lpage>
</citation>
<citation citation-type="display-unstructured">Armulik, A., Abramsson, A., & Betsholtz, C. (2005). Endothelial/pericyte interactions. Circulation Research, 97, 512–23.
<pub-id pub-id-type="pmid">16166562</pub-id>
</citation>
</ref>
<ref id="CR22">
<label>22.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Petit</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Rak</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hung</surname>
<given-names>M. C.</given-names>
</name>
<name>
<surname>Rockwell</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Goldstein</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Fendly</surname>
<given-names>B.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells
<italic>in vitro</italic>
and
<italic>in vivo</italic>
: angiogenic implications for signal transduction therapy of solid tumors</article-title>
<source>American Journal of Pathology</source>
<year>1997</year>
<volume>151</volume>
<fpage>1523</fpage>
<lpage>1530</lpage>
</citation>
<citation citation-type="display-unstructured">Petit, A. M., Rak, J., Hung, M. C., Rockwell, P., Goldstein, N., Fendly, B., et al. (1997). Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. American Journal of Pathology, 151, 1523–530.
<pub-id pub-id-type="pmid">9403702</pub-id>
</citation>
</ref>
<ref id="CR23">
<label>23.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Dubey</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Varney</surname>
<given-names>M. L.</given-names>
</name>
<name>
<surname>Dave</surname>
<given-names>B. J.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>R. K.</given-names>
</name>
</person-group>
<article-title>IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis</article-title>
<source>Journal of Immunology</source>
<year>2003</year>
<volume>170</volume>
<fpage>3369</fpage>
<lpage>3376</lpage>
</citation>
<citation citation-type="display-unstructured">Li, A., Dubey, S., Varney, M. L., Dave, B. J., & Singh, R. K. (2003). IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. Journal of Immunology, 170, 3369–376. </citation>
</ref>
<ref id="CR24">
<label>24.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gerhardt</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Golding</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Fruttiger</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ruhrberg</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Lundkvist</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Abramsson</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia</article-title>
<source>Journal of Cell Biology</source>
<year>2003</year>
<volume>161</volume>
<fpage>1163</fpage>
<lpage>1177</lpage>
</citation>
<citation citation-type="display-unstructured">Gerhardt, H., Golding, M., Fruttiger, M., Ruhrberg, C., Lundkvist, A., Abramsson, A., et al. (2003). VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. Journal of Cell Biology, 161, 1163–177.
<pub-id pub-id-type="pmid">12810700</pub-id>
</citation>
</ref>
<ref id="CR25">
<label>25.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brantley</surname>
<given-names>D. M.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Thompson</surname>
<given-names>E. J.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Brekken</surname>
<given-names>R. A.</given-names>
</name>
<name>
<surname>Thorpe</surname>
<given-names>P. E.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Soluble Eph A receptors inhibit tumor angiogenesis and progression
<italic>in vivo</italic>
</article-title>
<source>Oncogene</source>
<year>2002</year>
<volume>21</volume>
<fpage>7011</fpage>
<lpage>7026</lpage>
</citation>
<citation citation-type="display-unstructured">Brantley, D. M., Cheng, N., Thompson, E. J., Lin, Q., Brekken, R. A., Thorpe, P. E., et al. (2002). Soluble Eph A receptors inhibit tumor angiogenesis and progression in vivo. Oncogene, 21, 7011–026.
<pub-id pub-id-type="pmid">12370823</pub-id>
</citation>
</ref>
<ref id="CR26">
<label>26.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bielenberg</surname>
<given-names>D. R.</given-names>
</name>
<name>
<surname>Hida</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Shimizu</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kaipainen</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kreuter</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>C. C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Semaphorin 3F, a chemorepulsant for endothelial cells, induces a poorly vascularized, encapsulated, nonmetastatic tumor phenotype</article-title>
<source>Journal of Clinical Investigation</source>
<year>2004</year>
<volume>114</volume>
<fpage>1260</fpage>
<lpage>1271</lpage>
</citation>
<citation citation-type="display-unstructured">Bielenberg, D. R., Hida, Y., Shimizu, A., Kaipainen, A., Kreuter, M., Kim, C. C., et al. (2004). Semaphorin 3F, a chemorepulsant for endothelial cells, induces a poorly vascularized, encapsulated, nonmetastatic tumor phenotype. Journal of Clinical Investigation, 114, 1260–271.
<pub-id pub-id-type="pmid">15520858</pub-id>
</citation>
</ref>
<ref id="CR27">
<label>27.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Conrotto</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Valdembri</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Corso</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Serini</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Tamagnone</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Comoglio</surname>
<given-names>P. M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Sema4D induces angiogenesis through Met recruitment by Plexin B1</article-title>
<source>Blood</source>
<year>2005</year>
<volume>105</volume>
<fpage>4321</fpage>
<lpage>4329</lpage>
</citation>
<citation citation-type="display-unstructured">Conrotto, P., Valdembri, D., Corso, S., Serini, G., Tamagnone, L., Comoglio, P. M., et al. (2005). Sema4D induces angiogenesis through Met recruitment by Plexin B1. Blood, 105, 4321–329.
<pub-id pub-id-type="pmid">15632204</pub-id>
</citation>
</ref>
<ref id="CR28">
<label>28.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>B. B.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Gui</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity</article-title>
<source>Cancer Cell</source>
<year>2003</year>
<volume>4</volume>
<fpage>19</fpage>
<lpage>29</lpage>
</citation>
<citation citation-type="display-unstructured">Wang, B., Xiao, Y., Ding, B. B., Zhang, N., Yuan, X., Gui, L., et al. (2003). Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell, 4, 19–9.
<pub-id pub-id-type="pmid">12892710</pub-id>
</citation>
</ref>
<ref id="CR29">
<label>29.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arakawa</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Netrin-1 and its receptors in tumorigenesis</article-title>
<source>Natural Reviews Cancer</source>
<year>2004</year>
<volume>4</volume>
<fpage>978</fpage>
<lpage>987</lpage>
</citation>
<citation citation-type="display-unstructured">Arakawa, H. (2004). Netrin-1 and its receptors in tumorigenesis. Natural Reviews Cancer, 4, 978–87. </citation>
</ref>
<ref id="CR30">
<label>30.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rehman</surname>
<given-names>A. O.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>C. Y.</given-names>
</name>
</person-group>
<article-title>Notch signaling in the regulation of tumor angiogenesis</article-title>
<source>Trends in Cell Biology</source>
<year>2006</year>
<volume>16</volume>
<fpage>293</fpage>
<lpage>300</lpage>
</citation>
<citation citation-type="display-unstructured">Rehman, A. O., & Wang, C. Y. (2006). Notch signaling in the regulation of tumor angiogenesis. Trends in Cell Biology, 16, 293–00.
<pub-id pub-id-type="pmid">16697642</pub-id>
</citation>
</ref>
<ref id="CR31">
<label>31.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rastinejad</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Polverini</surname>
<given-names>P. J.</given-names>
</name>
<name>
<surname>Bouck</surname>
<given-names>N. P.</given-names>
</name>
</person-group>
<article-title>Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene</article-title>
<source>Cell</source>
<year>1989</year>
<volume>56</volume>
<fpage>345</fpage>
<lpage>355</lpage>
</citation>
<citation citation-type="display-unstructured">Rastinejad, F., Polverini, P. J., & Bouck, N. P. (1989). Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell, 56, 345–55.
<pub-id pub-id-type="pmid">2464438</pub-id>
</citation>
</ref>
<ref id="CR32">
<label>32.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ferrara</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Clapp</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Weiner</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>The 16K fragment of prolactin specifically inhibits basal or fibroblast growth factor stimulated growth of capillary endothelial cells</article-title>
<source>Endocrinology</source>
<year>1991</year>
<volume>129</volume>
<fpage>896</fpage>
<lpage>900</lpage>
</citation>
<citation citation-type="display-unstructured">Ferrara, N., Clapp, C., & Weiner, R. (1991). The 16K fragment of prolactin specifically inhibits basal or fibroblast growth factor stimulated growth of capillary endothelial cells. Endocrinology, 129, 896–00.
<pub-id pub-id-type="pmid">1855480</pub-id>
</citation>
</ref>
<ref id="CR33">
<label>33.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kolber</surname>
<given-names>D. L.</given-names>
</name>
<name>
<surname>Knisely</surname>
<given-names>T. L.</given-names>
</name>
<name>
<surname>Maione</surname>
<given-names>T. E.</given-names>
</name>
</person-group>
<article-title>Inhibition of development of murine melanoma lung metastases by systemic administration of recombinant platelet factor 4</article-title>
<source>Journal of the National Cancer Institute</source>
<year>1995</year>
<volume>87</volume>
<fpage>304</fpage>
<lpage>309</lpage>
</citation>
<citation citation-type="display-unstructured">Kolber, D. L., Knisely, T. L., and Maione, T. E. (1995). Inhibition of development of murine melanoma lung metastases by systemic administration of recombinant platelet factor 4. Journal of National Cancer Institute, 87, 304–09.
<pub-id pub-id-type="pmid">7707422</pub-id>
</citation>
</ref>
<ref id="CR34">
<label>34.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luster</surname>
<given-names>A. D.</given-names>
</name>
<name>
<surname>Greenberg</surname>
<given-names>S. M.</given-names>
</name>
<name>
<surname>Leder</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>The IP-10 chemokine binds to a specific cell surface heparan sulfate site shared with platelet factor 4 and inhibits endothelial cell proliferation</article-title>
<source>Journal of Experimental Medicine</source>
<year>1995</year>
<volume>182</volume>
<fpage>219</fpage>
<lpage>231</lpage>
</citation>
<citation citation-type="display-unstructured">Luster, A. D., Greenberg, S. M., & Leder, P. (1995). The IP-10 chemokine binds to a specific cell surface heparan sulfate site shared with platelet factor 4 and inhibits endothelial cell proliferation. Journal of Experimental Medicine, 182, 219–31.
<pub-id pub-id-type="pmid">7790818</pub-id>
</citation>
</ref>
<ref id="CR35">
<label>35.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>O’Reilly</surname>
<given-names>M. S.</given-names>
</name>
<name>
<surname>Holmgren</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Shing</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Rosenthal</surname>
<given-names>R. A.</given-names>
</name>
<name>
<surname>Moses</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma</article-title>
<source>Cell</source>
<year>1994</year>
<volume>79</volume>
<fpage>315</fpage>
<lpage>328</lpage>
</citation>
<citation citation-type="display-unstructured">O’Reilly, M. S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R. A., Moses, M., et al. (1994). Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell, 79, 315–28.
<pub-id pub-id-type="pmid">7525077</pub-id>
</citation>
</ref>
<ref id="CR36">
<label>36.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>O’Reilly</surname>
<given-names>M. S.</given-names>
</name>
<name>
<surname>Boehm</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Shing</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Fukai</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Vasios</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Lane</surname>
<given-names>W. S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Endostatin: An endogenous inhibitor of angiogenesis and tumor growth</article-title>
<source>Cell</source>
<year>1997</year>
<volume>88</volume>
<fpage>277</fpage>
<lpage>285</lpage>
</citation>
<citation citation-type="display-unstructured">O’Reilly, M. S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W. S., et al. (1997). Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell, 88, 277–85.
<pub-id pub-id-type="pmid">9008168</pub-id>
</citation>
</ref>
<ref id="CR37">
<label>37.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schaft</surname>
<given-names>D. W.</given-names>
</name>
<name>
<surname>Toebes</surname>
<given-names>E. A.</given-names>
</name>
<name>
<surname>Haseman</surname>
<given-names>J. R.</given-names>
</name>
<name>
<surname>Mayo</surname>
<given-names>K. H.</given-names>
</name>
<name>
<surname>Griffioen</surname>
<given-names>A. W.</given-names>
</name>
</person-group>
<article-title>Bactericidal/permeability-increasing protein (BPI) inhibits angiogenesis via induction of apoptosis in vascular endothelial cells</article-title>
<source>Blood</source>
<year>2000</year>
<volume>96</volume>
<fpage>176</fpage>
<lpage>181</lpage>
</citation>
<citation citation-type="display-unstructured">van der Schaft, D. W., Toebes, E. A., Haseman, J. R., Mayo, K. H., & Griffioen, A. W. (2000). Bactericidal/permeability-increasing protein (BPI) inhibits angiogenesis via induction of apoptosis in vascular endothelial cells. Blood, 96, 176–81.
<pub-id pub-id-type="pmid">10891448</pub-id>
</citation>
</ref>
<ref id="CR38">
<label>38.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maeshima</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Colorado</surname>
<given-names>P. C.</given-names>
</name>
<name>
<surname>Torre</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Holthaus</surname>
<given-names>K. A.</given-names>
</name>
<name>
<surname>Grunkemeyer</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Ericksen</surname>
<given-names>M. B.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Distinct antitumor properties of a type IV collagen domain derived from basement membrane</article-title>
<source>Journal of Biological Chemistry</source>
<year>2000</year>
<volume>275</volume>
<fpage>21340</fpage>
<lpage>21348</lpage>
</citation>
<citation citation-type="display-unstructured">Maeshima, Y., Colorado, P. C., Torre, A., Holthaus, K. A., Grunkemeyer, J. A., Ericksen, M. B., et al. (2000). Distinct antitumor properties of a type IV collagen domain derived from basement membrane. Journal of Biological Chemistry, 275, 21340–1348.
<pub-id pub-id-type="pmid">10766752</pub-id>
</citation>
</ref>
<ref id="CR39">
<label>39.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tabruyn</surname>
<given-names>S. P.</given-names>
</name>
<name>
<surname>Griffioen</surname>
<given-names>A. W.</given-names>
</name>
</person-group>
<article-title>Molecular pathways of angiogenesis inhibition</article-title>
<source>Biochemical and Biophysical Research Communications</source>
<year>2007</year>
<volume>355</volume>
<fpage>1</fpage>
<lpage>5</lpage>
</citation>
<citation citation-type="display-unstructured">Tabruyn, S. P., & Griffioen, A. W. (2007). Molecular pathways of angiogenesis inhibition. Biochemical and Biophysical Research Communications, 355, 1–.
<pub-id pub-id-type="pmid">17276388</pub-id>
</citation>
</ref>
<ref id="CR40">
<label>40.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marx</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>A boost for tumor starvation</article-title>
<source>Science</source>
<year>2003</year>
<volume>301</volume>
<fpage>452</fpage>
<lpage>454</lpage>
</citation>
<citation citation-type="display-unstructured">Marx, J. Angiogenesis. (2003). A boost for tumor starvation. Science, 301, 452–54.
<pub-id pub-id-type="pmid">12881543</pub-id>
</citation>
</ref>
<ref id="CR41">
<label>41.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ferrara</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Kerbel</surname>
<given-names>R. S.</given-names>
</name>
</person-group>
<article-title>Angiogenesis as a therapeutic target</article-title>
<source>Nature</source>
<year>2005</year>
<volume>438</volume>
<fpage>967</fpage>
<lpage>974</lpage>
</citation>
<citation citation-type="display-unstructured">Ferrara, N., & Kerbel, R. S. (2005). Angiogenesis as a therapeutic target. Nature, 438, 967–74.
<pub-id pub-id-type="pmid">16355214</pub-id>
</citation>
</ref>
<ref id="CR42">
<label>42.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hurwitz</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Fehrenbacher</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Novotny</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Cartwright</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Hainsworth</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Heim</surname>
<given-names>W.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer</article-title>
<source>New England Journal of Medicine</source>
<year>2004</year>
<volume>350</volume>
<fpage>2335</fpage>
<lpage>2342</lpage>
</citation>
<citation citation-type="display-unstructured">Hurwitz, H., Fehrenbacher, L., Novotny, W., Cartwright, T., Hainsworth, J., Heim, W., et al. (2004). Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. New England Journal of Medicine, 350, 2335–342.
<pub-id pub-id-type="pmid">15175435</pub-id>
</citation>
</ref>
<ref id="CR43">
<label>43.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Glusker</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Recht</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Lane</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Reversible posterior leukoencephalopathy syndrome and bevacizumab</article-title>
<source>New England Journal of Medicine</source>
<year>2006</year>
<volume>354</volume>
<fpage>980</fpage>
<lpage>982</lpage>
</citation>
<citation citation-type="display-unstructured">Glusker, P., Recht, L., and Lane, B. (2006). Reversible posterior leukoencephalopathy syndrome and bevacizumab. New England Journal of Medicine, 354, 980–82; discussion 980–82.
<pub-id pub-id-type="pmid">16510760</pub-id>
</citation>
</ref>
<ref id="CR44">
<label>44.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ozcan</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>S. J.</given-names>
</name>
<name>
<surname>Hari</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Reversible posterior leukoencephalopathy syndrome and bevacizumab</article-title>
<source>New England Journal of Medicine</source>
<year>2006</year>
<volume>354</volume>
<fpage>980</fpage>
<lpage>982</lpage>
</citation>
<citation citation-type="display-unstructured">Ozcan, C., Wong, S. J., and Hari, P. (2006). Reversible posterior leukoencephalopathy syndrome and bevacizumab. New England Journal of Medicine, 354, 980–82, discussion 980–82.
<pub-id pub-id-type="pmid">16514715</pub-id>
</citation>
</ref>
<ref id="CR45">
<label>45.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alitalo</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Tammela</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Petrova</surname>
<given-names>T. V.</given-names>
</name>
</person-group>
<article-title>Lymphangiogenesis in development and human disease</article-title>
<source>Nature</source>
<year>2005</year>
<volume>438</volume>
<fpage>946</fpage>
<lpage>953</lpage>
</citation>
<citation citation-type="display-unstructured">Alitalo, K., Tammela, T., & Petrova, T. V. (2005). Lymphangiogenesis in development and human disease. Nature, 438, 946–53.
<pub-id pub-id-type="pmid">16355212</pub-id>
</citation>
</ref>
<ref id="CR46">
<label>46.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>J. L.</given-names>
</name>
<name>
<surname>Rak</surname>
<given-names>J. W.</given-names>
</name>
<name>
<surname>Coomber</surname>
<given-names>B. L.</given-names>
</name>
<name>
<surname>Hicklin</surname>
<given-names>D. J.</given-names>
</name>
<name>
<surname>Kerbel</surname>
<given-names>R. S.</given-names>
</name>
</person-group>
<article-title>Effect of p53 status on tumor response to antiangiogenic therapy</article-title>
<source>Science</source>
<year>2002</year>
<volume>295</volume>
<fpage>1526</fpage>
<lpage>1528</lpage>
</citation>
<citation citation-type="display-unstructured">Yu, J. L., Rak, J. W., Coomber, B. L., Hicklin, D. J., & Kerbel, R. S. (2002). Effect of p53 status on tumor response to antiangiogenic therapy. Science, 295, 1526–528.
<pub-id pub-id-type="pmid">11859195</pub-id>
</citation>
</ref>
<ref id="CR47">
<label>47.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Glade Bender</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Cooney</surname>
<given-names>E. M.</given-names>
</name>
<name>
<surname>Kandel</surname>
<given-names>J. J.</given-names>
</name>
<name>
<surname>Yamashiro</surname>
<given-names>D. J.</given-names>
</name>
</person-group>
<article-title>Vascular remodeling and clinical resistance to antiangiogenic cancer therapy</article-title>
<source>Drug Resistance Updates</source>
<year>2004</year>
<volume>7</volume>
<fpage>289</fpage>
<lpage>300</lpage>
</citation>
<citation citation-type="display-unstructured">Glade Bender, J., Cooney, E. M., Kandel, J. J., & Yamashiro, D. J. (2004). Vascular remodeling and clinical resistance to antiangiogenic cancer therapy. Drug Resistance Updates, 7, 289–00.
<pub-id pub-id-type="pmid">15533766</pub-id>
</citation>
</ref>
<ref id="CR48">
<label>48.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hida</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Hida</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Amin</surname>
<given-names>D. N.</given-names>
</name>
<name>
<surname>Flint</surname>
<given-names>A. F.</given-names>
</name>
<name>
<surname>Panigrahy</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Morton</surname>
<given-names>C. C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Tumor-associated endothelial cells with cytogenetic abnormalities</article-title>
<source>Cancer Research</source>
<year>2004</year>
<volume>64</volume>
<fpage>8249</fpage>
<lpage>8255</lpage>
</citation>
<citation citation-type="display-unstructured">Hida, K., Hida, Y., Amin, D. N., Flint, A. F., Panigrahy, D., Morton, C. C., et al. (2004). Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer Research, 64, 8249–255.
<pub-id pub-id-type="pmid">15548691</pub-id>
</citation>
</ref>
<ref id="CR49">
<label>49.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Streubel</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Chott</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Huber</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Exner</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Jager</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Wagner</surname>
<given-names>O.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas</article-title>
<source>New England Journal of Medicine</source>
<year>2004</year>
<volume>351</volume>
<fpage>250</fpage>
<lpage>259</lpage>
</citation>
<citation citation-type="display-unstructured">Streubel, B., Chott, A., Huber, D., Exner, M., Jager, U., Wagner, O., et al. (2004). Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas. New England Journal of Medicine, 351, 250–59.
<pub-id pub-id-type="pmid">15254283</pub-id>
</citation>
</ref>
<ref id="CR50">
<label>50.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Caduff</surname>
<given-names>J. H.</given-names>
</name>
<name>
<surname>Fischer</surname>
<given-names>L. C.</given-names>
</name>
<name>
<surname>Burri</surname>
<given-names>P. H.</given-names>
</name>
</person-group>
<article-title>Scanning electron microscope study of the developing microvasculature in the postnatal rat lung</article-title>
<source>Anatomical Record</source>
<year>1986</year>
<volume>216</volume>
<fpage>154</fpage>
<lpage>164</lpage>
</citation>
<citation citation-type="display-unstructured">Caduff, J. H., Fischer, L. C., & Burri, P. H. (1986). Scanning electron microscope study of the developing microvasculature in the postnatal rat lung. Anatomical Record, 216, 154–64.
<pub-id pub-id-type="pmid">3777448</pub-id>
</citation>
</ref>
<ref id="CR51">
<label>51.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Burri</surname>
<given-names>P. H.</given-names>
</name>
<name>
<surname>Hlushchuk</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Djonov</surname>
<given-names>V.</given-names>
</name>
</person-group>
<article-title>Intussusceptive angiogenesis: Its emergence, its characteristics, and its significance</article-title>
<source>Developmental Dynamics</source>
<year>2004</year>
<volume>231</volume>
<fpage>474</fpage>
<lpage>488</lpage>
</citation>
<citation citation-type="display-unstructured">Burri, P. H., Hlushchuk, R., & Djonov, V. (2004). Intussusceptive angiogenesis: Its emergence, its characteristics, and its significance. Developmental Dynamics, 231, 474–88.
<pub-id pub-id-type="pmid">15376313</pub-id>
</citation>
</ref>
<ref id="CR52">
<label>52.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Djonov</surname>
<given-names>V. G.</given-names>
</name>
<name>
<surname>Kurz</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Burri</surname>
<given-names>P. H.</given-names>
</name>
</person-group>
<article-title>Optimality in the developing vascular system: branching remodeling by means of intussusception as an efficient adaptation mechanism</article-title>
<source>Developmental Dynamics</source>
<year>2002</year>
<volume>224</volume>
<fpage>391</fpage>
<lpage>402</lpage>
</citation>
<citation citation-type="display-unstructured">Djonov, V. G., Kurz, H., & Burri, P. H. (2002). Optimality in the developing vascular system: branching remodeling by means of intussusception as an efficient adaptation mechanism. Developmental Dynamics, 224, 391–02.
<pub-id pub-id-type="pmid">12203731</pub-id>
</citation>
</ref>
<ref id="CR53">
<label>53.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Patan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Haenni</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Burri</surname>
<given-names>P. H.</given-names>
</name>
</person-group>
<article-title>Evidence for intussusceptive capillary growth in the chicken chorio-allantoic membrane (CAM)</article-title>
<source>Anatomy and Embryology (Berl)</source>
<year>1993</year>
<volume>187</volume>
<fpage>121</fpage>
<lpage>130</lpage>
</citation>
<citation citation-type="display-unstructured">Patan, S., Haenni, B., & Burri, P. H. (1993). Evidence for intussusceptive capillary growth in the chicken chorio-allantoic membrane (CAM). Anatomy and Embryology (Berl), 187, 121–30. </citation>
</ref>
<ref id="CR54">
<label>54.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Patan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Munn</surname>
<given-names>L. L.</given-names>
</name>
<name>
<surname>Jain</surname>
<given-names>R. K.</given-names>
</name>
</person-group>
<article-title>Intussusceptive microvascular growth in a human colon adenocarcinoma xenograft: A novel mechanism of tumor angiogenesis</article-title>
<source>Microvascular Research</source>
<year>1996</year>
<volume>51</volume>
<fpage>260</fpage>
<lpage>272</lpage>
</citation>
<citation citation-type="display-unstructured">Patan, S., Munn, L. L., & Jain, R. K. (1996). Intussusceptive microvascular growth in a human colon adenocarcinoma xenograft: A novel mechanism of tumor angiogenesis. Microvascular Research, 51, 260–72.
<pub-id pub-id-type="pmid">8778579</pub-id>
</citation>
</ref>
<ref id="CR55">
<label>55.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Djonov</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Andres</surname>
<given-names>A. C.</given-names>
</name>
<name>
<surname>Ziemiecki</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Vascular remodelling during the normal and malignant life cycle of the mammary gland</article-title>
<source>Microscopy Research and Technique</source>
<year>2001</year>
<volume>52</volume>
<fpage>182</fpage>
<lpage>189</lpage>
</citation>
<citation citation-type="display-unstructured">Djonov, V., Andres, A. C., & Ziemiecki, A. (2001). Vascular remodelling during the normal and malignant life cycle of the mammary gland. Microscopy Research and Technique, 52, 182–89.
<pub-id pub-id-type="pmid">11169866</pub-id>
</citation>
</ref>
<ref id="CR56">
<label>56.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ribatti</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Nico</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Floris</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Mangieri</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Piras</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Ennas</surname>
<given-names>M. G.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Microvascular density, vascular endothelial growth factor immunoreactivity in tumor cells, vessel diameter and intussusceptive microvascular growth in primary melanoma</article-title>
<source>Oncology Reports</source>
<year>2005</year>
<volume>14</volume>
<fpage>81</fpage>
<lpage>84</lpage>
</citation>
<citation citation-type="display-unstructured">Ribatti, D., Nico, B., Floris, C., Mangieri, D., Piras, F., Ennas, M. G., et al. (2005). Microvascular density, vascular endothelial growth factor immunoreactivity in tumor cells, vessel diameter and intussusceptive microvascular growth in primary melanoma. Oncology Reports, 14, 81–4.
<pub-id pub-id-type="pmid">15944771</pub-id>
</citation>
</ref>
<ref id="CR57">
<label>57.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oh</surname>
<given-names>S. J.</given-names>
</name>
<name>
<surname>Kurz</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Christ</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Wilting</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Platelet-derived growth factor-B induces transformation of fibrocytes into spindle-shaped myofibroblasts
<italic>in vivo</italic>
</article-title>
<source>Histochemistry and Cell Biology</source>
<year>1998</year>
<volume>109</volume>
<fpage>349</fpage>
<lpage>357</lpage>
</citation>
<citation citation-type="display-unstructured">Oh, S. J., Kurz, H., Christ, B., & Wilting, J. (1998). Platelet-derived growth factor-B induces transformation of fibrocytes into spindle-shaped myofibroblasts in vivo. Histochemistry and Cell Biology, 109, 349–57.
<pub-id pub-id-type="pmid">9562384</pub-id>
</citation>
</ref>
<ref id="CR58">
<label>58.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thurston</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Suri</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>McClain</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Sato</surname>
<given-names>T. N.</given-names>
</name>
<name>
<surname>Yancopoulos</surname>
<given-names>G. D.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1</article-title>
<source>Science</source>
<year>1999</year>
<volume>286</volume>
<fpage>2511</fpage>
<lpage>2514</lpage>
</citation>
<citation citation-type="display-unstructured">Thurston, G., Suri, C., Smith, K., McClain, J., Sato, T. N., Yancopoulos, G. D., et al. (1999). Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science, 286, 2511–514.
<pub-id pub-id-type="pmid">10617467</pub-id>
</citation>
</ref>
<ref id="CR59">
<label>59.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Asahara</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Murohara</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Sullivan</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Silver</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zee</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Isolation of putative progenitor endothelial cells for angiogenesis</article-title>
<source>Science</source>
<year>1997</year>
<volume>275</volume>
<fpage>964</fpage>
<lpage>967</lpage>
</citation>
<citation citation-type="display-unstructured">Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., et al. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275, 964–67.
<pub-id pub-id-type="pmid">9020076</pub-id>
</citation>
</ref>
<ref id="CR60">
<label>60.</label>
<citation citation-type="other">Kalka, C., Masuda, H., Takahashi, T., Kalka-Moll, W. M., Silver, M., Kearney, M., et al. (2000). Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization.
<italic>Proceedings of the National Academy of Sciences of the United States of America,</italic>
3422–427.</citation>
</ref>
<ref id="CR61">
<label>61.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lin</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Weisdorf</surname>
<given-names>D. J.</given-names>
</name>
<name>
<surname>Solovey</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hebbel</surname>
<given-names>R. P.</given-names>
</name>
</person-group>
<article-title>Origins of circulating endothelial cells and endothelial outgrowth from blood</article-title>
<source>Journal of Clinical Investigation</source>
<year>2000</year>
<volume>105</volume>
<fpage>71</fpage>
<lpage>77</lpage>
</citation>
<citation citation-type="display-unstructured">Lin, Y., Weisdorf, D. J., Solovey, A., & Hebbel, R. P. (2000). Origins of circulating endothelial cells and endothelial outgrowth from blood. Journal of Clinical Investigation, 105, 71–7.
<pub-id pub-id-type="pmid">10619863</pub-id>
</citation>
</ref>
<ref id="CR62">
<label>62.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Heissig</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Hattori</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Dias</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Friedrich</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ferris</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Hackett</surname>
<given-names>N. R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand</article-title>
<source>Cell</source>
<year>2002</year>
<volume>109</volume>
<fpage>625</fpage>
<lpage>637</lpage>
</citation>
<citation citation-type="display-unstructured">Heissig, B., Hattori, K., Dias, S., Friedrich, M., Ferris, B., Hackett, N. R., et al. (2002). Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell, 109, 625–37.
<pub-id pub-id-type="pmid">12062105</pub-id>
</citation>
</ref>
<ref id="CR63">
<label>63.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Asahara</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Takahashi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Masuda</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kalka</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Iwaguro</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells</article-title>
<source>EMBO Journal</source>
<year>1999</year>
<volume>18</volume>
<fpage>3964</fpage>
<lpage>3972</lpage>
</citation>
<citation citation-type="display-unstructured">Asahara, T., Takahashi, T., Masuda, H., Kalka, C., Chen, D., Iwaguro, H., et al. (1999). VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO Journal, 18, 3964–972.
<pub-id pub-id-type="pmid">10406801</pub-id>
</citation>
</ref>
<ref id="CR64">
<label>64.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hattori</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Heissig</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Dias</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Tejada</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Ferris</surname>
<given-names>B.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment</article-title>
<source>Nature Medicine</source>
<year>2002</year>
<volume>8</volume>
<fpage>841</fpage>
<lpage>849</lpage>
</citation>
<citation citation-type="display-unstructured">Hattori, K., Heissig, B., Wu, Y., Dias, S., Tejada, R., Ferris, B., et al. (2002). Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nature Medicine, 8, 841–49.
<pub-id pub-id-type="pmid">12091880</pub-id>
</citation>
</ref>
<ref id="CR65">
<label>65.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moore</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Hattori</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Heissig</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Shieh</surname>
<given-names>J. H.</given-names>
</name>
<name>
<surname>Dias</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Crystal</surname>
<given-names>R. G.</given-names>
</name>
<name>
<surname>Rafii</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector-mediated elevation of serum levels of SDF-1, VEGF, and angiopoietin-1</article-title>
<source>Annals of the New York Academy of Sciences</source>
<year>2001</year>
<volume>938</volume>
<fpage>36</fpage>
<lpage>45</lpage>
</citation>
<citation citation-type="display-unstructured">Moore, M. A., Hattori, K., Heissig, B., Shieh, J. H., Dias, S., Crystal, R. G., and Rafii, S. (2001). Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector-mediated elevation of serum levels of SDF-1, VEGF, and angiopoietin-1. Annals of the New York Academy of Sciences, 938, 36–5; discussion 45–7.
<pub-id pub-id-type="pmid">11458524</pub-id>
</citation>
</ref>
<ref id="CR66">
<label>66.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aicher</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Heeschen</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Mildner-Rihm</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Urbich</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Ihling</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Technau-Ihling</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells</article-title>
<source>Nature Medicine</source>
<year>2003</year>
<volume>9</volume>
<fpage>1370</fpage>
<lpage>1376</lpage>
</citation>
<citation citation-type="display-unstructured">Aicher, A., Heeschen, C., Mildner-Rihm, C., Urbich, C., Ihling, C., Technau-Ihling, K., et al. (2003). Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nature Medicine, 9, 1370–376.
<pub-id pub-id-type="pmid">14556003</pub-id>
</citation>
</ref>
<ref id="CR67">
<label>67.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Takahashi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kalka</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Masuda</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Silver</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kearney</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization</article-title>
<source>Nature Medicine</source>
<year>1999</year>
<volume>5</volume>
<fpage>434</fpage>
<lpage>438</lpage>
</citation>
<citation citation-type="display-unstructured">Takahashi, T., Kalka, C., Masuda, H., Chen, D., Silver, M., Kearney, M., et al. (1999). Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nature Medicine, 5, 434–38.
<pub-id pub-id-type="pmid">10202935</pub-id>
</citation>
</ref>
<ref id="CR68">
<label>68.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vajkoczy</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Blum</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lamparter</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mailhammer</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Erber</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Engelhardt</surname>
<given-names>B.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Multistep nature of microvascular recruitment of
<italic>ex vivo</italic>
-expanded embryonic endothelial progenitor cells during tumor angiogenesis</article-title>
<source>Journal of Experimental Medicine</source>
<year>2003</year>
<volume>197</volume>
<fpage>1755</fpage>
<lpage>1765</lpage>
</citation>
<citation citation-type="display-unstructured">Vajkoczy, P., Blum, S., Lamparter, M., Mailhammer, R., Erber, R., Engelhardt, B., et al. (2003). Multistep nature of microvascular recruitment of ex vivo-expanded embryonic endothelial progenitor cells during tumor angiogenesis. Journal of Experimental Medicine, 197, 1755–765.
<pub-id pub-id-type="pmid">12810693</pub-id>
</citation>
</ref>
<ref id="CR69">
<label>69.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deb</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Skelding</surname>
<given-names>K. A.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Reeder</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Simper</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Caplice</surname>
<given-names>N. M.</given-names>
</name>
</person-group>
<article-title>Integrin profile and
<italic>in vivo</italic>
homing of human smooth muscle progenitor cells</article-title>
<source>Circulation</source>
<year>2004</year>
<volume>110</volume>
<fpage>2673</fpage>
<lpage>2677</lpage>
</citation>
<citation citation-type="display-unstructured">Deb, A., Skelding, K. A., Wang, S., Reeder, M., Simper, D., & Caplice, N. M. (2004). Integrin profile and in vivo homing of human smooth muscle progenitor cells. Circulation, 110, 2673–677.
<pub-id pub-id-type="pmid">15313945</pub-id>
</citation>
</ref>
<ref id="CR70">
<label>70.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chavakis</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Hain</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Vinci</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Carmona</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Bianchi</surname>
<given-names>M. E.</given-names>
</name>
<name>
<surname>Vajkoczy</surname>
<given-names>P.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>High-mobility group box 1 activates integrin-dependent homing of endothelial progenitor cells</article-title>
<source>Circulation Research</source>
<year>2007</year>
<volume>100</volume>
<fpage>204</fpage>
<lpage>212</lpage>
</citation>
<citation citation-type="display-unstructured">Chavakis, E., Hain, A., Vinci, M., Carmona, G., Bianchi, M. E., Vajkoczy, P., et al. (2007). High-mobility group box 1 activates integrin-dependent homing of endothelial progenitor cells. Circulation Research, 100, 204–12.
<pub-id pub-id-type="pmid">17218606</pub-id>
</citation>
</ref>
<ref id="CR71">
<label>71.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liao</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Huynh</surname>
<given-names>H. K.</given-names>
</name>
<name>
<surname>Eiroa</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Greene</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Polizzi</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Muller</surname>
<given-names>W. A.</given-names>
</name>
</person-group>
<article-title>Migration of monocytes across endothelium and passage through extracellular matrix involve separate molecular domains of PECAM-1</article-title>
<source>Journal of Experimental Medicine</source>
<year>1995</year>
<volume>182</volume>
<fpage>1337</fpage>
<lpage>1343</lpage>
</citation>
<citation citation-type="display-unstructured">Liao, F., Huynh, H. K., Eiroa, A., Greene, T., Polizzi, E., & Muller, W. A. (1995). Migration of monocytes across endothelium and passage through extracellular matrix involve separate molecular domains of PECAM-1. Journal of Experimental Medicine, 182, 1337–343.
<pub-id pub-id-type="pmid">7595204</pub-id>
</citation>
</ref>
<ref id="CR72">
<label>72.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schenkel</surname>
<given-names>A. R.</given-names>
</name>
<name>
<surname>Mamdouh</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Liebman</surname>
<given-names>R. M.</given-names>
</name>
<name>
<surname>Muller</surname>
<given-names>W. A.</given-names>
</name>
</person-group>
<article-title>CD99 plays a major role in the migration of monocytes through endothelial junctions</article-title>
<source>Nature Immunology</source>
<year>2002</year>
<volume>3</volume>
<fpage>143</fpage>
<lpage>150</lpage>
</citation>
<citation citation-type="display-unstructured">Schenkel, A. R., Mamdouh, Z., Chen, X., Liebman, R. M., & Muller, W. A. (2002). CD99 plays a major role in the migration of monocytes through endothelial junctions. Nature Immunology, 3, 143–50.
<pub-id pub-id-type="pmid">11812991</pub-id>
</citation>
</ref>
<ref id="CR73">
<label>73.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gehling</surname>
<given-names>U. M.</given-names>
</name>
<name>
<surname>Ergun</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Schumacher</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Wagener</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Pantel</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Otte</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>
<italic>In vitro</italic>
differentiation of endothelial cells from AC133-positive progenitor cells</article-title>
<source>Blood</source>
<year>2000</year>
<volume>95</volume>
<fpage>3106</fpage>
<lpage>3112</lpage>
</citation>
<citation citation-type="display-unstructured">Gehling, U. M., Ergun, S., Schumacher, U., Wagener, C., Pantel, K., Otte, M., et al. (2000). In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood, 95, 3106–112.
<pub-id pub-id-type="pmid">10807776</pub-id>
</citation>
</ref>
<ref id="CR74">
<label>74.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Asahara</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Masuda</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Takahashi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kalka</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Pastore</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Silver</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization</article-title>
<source>Circulation Research</source>
<year>1999</year>
<volume>85</volume>
<fpage>221</fpage>
<lpage>228</lpage>
</citation>
<citation citation-type="display-unstructured">Asahara, T., Masuda, H., Takahashi, T., Kalka, C., Pastore, C., Silver, M., et al. (1999). Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circulation Research, 85, 221–28.
<pub-id pub-id-type="pmid">10436164</pub-id>
</citation>
</ref>
<ref id="CR75">
<label>75.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lyden</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Young</surname>
<given-names>A. Z.</given-names>
</name>
<name>
<surname>Zagzag</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Gerald</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>O’Reilly</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts</article-title>
<source>Nature</source>
<year>1999</year>
<volume>401</volume>
<fpage>670</fpage>
<lpage>677</lpage>
</citation>
<citation citation-type="display-unstructured">Lyden, D., Young, A. Z., Zagzag, D., Yan, W., Gerald, W., O’Reilly, R., et al. (1999). Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature, 401, 670–77.
<pub-id pub-id-type="pmid">10537105</pub-id>
</citation>
</ref>
<ref id="CR76">
<label>76.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lyden</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Hattori</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Dias</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Costa</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Blaikie</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Butros</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth</article-title>
<source>Nature Medicine</source>
<year>2001</year>
<volume>7</volume>
<fpage>1194</fpage>
<lpage>1201</lpage>
</citation>
<citation citation-type="display-unstructured">Lyden, D., Hattori, K., Dias, S., Costa, C., Blaikie, P., Butros, L., et al. (2001). Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nature Medicine, 7, 1194–201.
<pub-id pub-id-type="pmid">11689883</pub-id>
</citation>
</ref>
<ref id="CR77">
<label>77.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Machein</surname>
<given-names>M. R.</given-names>
</name>
<name>
<surname>Renninger</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lima-Hahn</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Plate</surname>
<given-names>K. H.</given-names>
</name>
</person-group>
<article-title>Minor contribution of bone marrow-derived endothelial progenitors to the vascularization of murine gliomas</article-title>
<source>Brain Pathology</source>
<year>2003</year>
<volume>13</volume>
<fpage>582</fpage>
<lpage>597</lpage>
</citation>
<citation citation-type="display-unstructured">Machein, M. R., Renninger, S., de Lima-Hahn, E., & Plate, K. H. (2003). Minor contribution of bone marrow-derived endothelial progenitors to the vascularization of murine gliomas. Brain Pathology, 13, 582–97.
<pub-id pub-id-type="pmid">14655762</pub-id>
</citation>
</ref>
<ref id="CR78">
<label>78.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ruzinova</surname>
<given-names>M. B.</given-names>
</name>
<name>
<surname>Schoer</surname>
<given-names>R. A.</given-names>
</name>
<name>
<surname>Gerald</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Egan</surname>
<given-names>J. E.</given-names>
</name>
<name>
<surname>Pandolfi</surname>
<given-names>P. P.</given-names>
</name>
<name>
<surname>Rafii</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Effect of angiogenesis inhibition by Id loss and the contribution of bone-marrow-derived endothelial cells in spontaneous murine tumors</article-title>
<source>Cancer Cell</source>
<year>2003</year>
<volume>4</volume>
<fpage>277</fpage>
<lpage>289</lpage>
</citation>
<citation citation-type="display-unstructured">Ruzinova, M. B., Schoer, R. A., Gerald, W., Egan, J. E., Pandolfi, P. P., Rafii, S., et al. (2003). Effect of angiogenesis inhibition by Id loss and the contribution of bone-marrow-derived endothelial cells in spontaneous murine tumors. Cancer Cell, 4, 277–89.
<pub-id pub-id-type="pmid">14585355</pub-id>
</citation>
</ref>
<ref id="CR79">
<label>79.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gothert</surname>
<given-names>J. R.</given-names>
</name>
<name>
<surname>Gustin</surname>
<given-names>S. E.</given-names>
</name>
<name>
<surname>Eekelen</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Schmidt</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Hall</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Jane</surname>
<given-names>S. M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genetically tagging endothelial cells
<italic>in vivo</italic>
: Bone marrow-derived cells do not contribute to tumor endothelium</article-title>
<source>Blood</source>
<year>2004</year>
<volume>104</volume>
<fpage>1769</fpage>
<lpage>1777</lpage>
</citation>
<citation citation-type="display-unstructured">Gothert, J. R., Gustin, S. E., van Eekelen, J. A., Schmidt, U., Hall, M. A., Jane, S. M., et al. (2004). Genetically tagging endothelial cells in vivo: Bone marrow-derived cells do not contribute to tumor endothelium. Blood, 104, 1769–777.
<pub-id pub-id-type="pmid">15187022</pub-id>
</citation>
</ref>
<ref id="CR80">
<label>80.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rajantie</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Ilmonen</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Alminaite</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ozerdem</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Alitalo</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Salven</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells</article-title>
<source>Blood</source>
<year>2004</year>
<volume>104</volume>
<fpage>2084</fpage>
<lpage>2086</lpage>
</citation>
<citation citation-type="display-unstructured">Rajantie, I., Ilmonen, M., Alminaite, A., Ozerdem, U., Alitalo, K., & Salven, P. (2004). Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood, 104, 2084–086.
<pub-id pub-id-type="pmid">15191949</pub-id>
</citation>
</ref>
<ref id="CR81">
<label>81.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peters</surname>
<given-names>B. A.</given-names>
</name>
<name>
<surname>Diaz</surname>
<given-names>L. A.</given-names>
</name>
<name>
<surname>Polyak</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Meszler</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Romans</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Guinan</surname>
<given-names>E. C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Contribution of bone marrow-derived endothelial cells to human tumor vasculature</article-title>
<source>Nature Medicine</source>
<year>2005</year>
<volume>11</volume>
<fpage>261</fpage>
<lpage>262</lpage>
</citation>
<citation citation-type="display-unstructured">Peters, B. A., Diaz, L. A., Polyak, K., Meszler, L., Romans, K., Guinan, E. C., et al. (2005). Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nature Medicine, 11, 261–62.
<pub-id pub-id-type="pmid">15723071</pub-id>
</citation>
</ref>
<ref id="CR82">
<label>82.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Larrivee</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Niessen</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Pollet</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Corbel</surname>
<given-names>S. Y.</given-names>
</name>
<name>
<surname>Long</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Rossi</surname>
<given-names>F. M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Minimal contribution of marrow-derived endothelial precursors to tumor vasculature</article-title>
<source>Journal of Immunology</source>
<year>2005</year>
<volume>175</volume>
<fpage>2890</fpage>
<lpage>2899</lpage>
</citation>
<citation citation-type="display-unstructured">Larrivee, B., Niessen, K., Pollet, I., Corbel, S. Y., Long, M., Rossi, F. M., et al. (2005). Minimal contribution of marrow-derived endothelial precursors to tumor vasculature. Journal of Immunology, 175, 2890–899. </citation>
</ref>
<ref id="CR83">
<label>83.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sussman</surname>
<given-names>L. K.</given-names>
</name>
<name>
<surname>Upalakalin</surname>
<given-names>J. N.</given-names>
</name>
<name>
<surname>Roberts</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Kocher</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Benjamin</surname>
<given-names>L. E.</given-names>
</name>
</person-group>
<article-title>Blood markers for vasculogenesis increase with tumor progression in patients with breast carcinoma</article-title>
<source>Cancer Biology & Therapy</source>
<year>2003</year>
<volume>2</volume>
<fpage>255</fpage>
<lpage>256</lpage>
</citation>
<citation citation-type="display-unstructured">Sussman, L. K., Upalakalin, J. N., Roberts, M. J., Kocher, O., & Benjamin, L. E. (2003). Blood markers for vasculogenesis increase with tumor progression in patients with breast carcinoma. Cancer Biology & Therapy, 2, 255–56.
<pub-id pub-id-type="pmid">12878859</pub-id>
</citation>
</ref>
<ref id="CR84">
<label>84.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>H. K.</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>K. S.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>H. O.</given-names>
</name>
<name>
<surname>Chung</surname>
<given-names>J. H.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>K. R.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>Y. J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Circulating numbers of endothelial progenitor cells in patients with gastric and breast cancer</article-title>
<source>Cancer Letter</source>
<year>2003</year>
<volume>198</volume>
<fpage>83</fpage>
<lpage>88</lpage>
</citation>
<citation citation-type="display-unstructured">Kim, H. K., Song, K. S., Kim, H. O., Chung, J. H., Lee, K. R., Lee, Y. J., et al. (2003). Circulating numbers of endothelial progenitor cells in patients with gastric and breast cancer. Cancer Letter, 198, 83–8. </citation>
</ref>
<ref id="CR85">
<label>85.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Capillo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mancuso</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Gobbi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Monestiroli</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Pruneri</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Dell’Agnola</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Continuous infusion of endostatin inhibits differentiation, mobilization, and clonogenic potential of endothelial cell progenitors</article-title>
<source>Clinical Cancer Research</source>
<year>2003</year>
<volume>9</volume>
<fpage>377</fpage>
<lpage>382</lpage>
</citation>
<citation citation-type="display-unstructured">Capillo, M., Mancuso, P., Gobbi, A., Monestiroli, S., Pruneri, G., Dell’Agnola, C., et al. (2003). Continuous infusion of endostatin inhibits differentiation, mobilization, and clonogenic potential of endothelial cell progenitors. Clinical Cancer Research, 9, 377–82.
<pub-id pub-id-type="pmid">12538491</pub-id>
</citation>
</ref>
<ref id="CR86">
<label>86.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shaked</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Bertolini</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Man</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Rogers</surname>
<given-names>M. S.</given-names>
</name>
<name>
<surname>Cervi</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Foutz</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis; Implications for cellular surrogate marker analysis of antiangiogenesis</article-title>
<source>Cancer Cell</source>
<year>2005</year>
<volume>7</volume>
<fpage>101</fpage>
<lpage>111</lpage>
</citation>
<citation citation-type="display-unstructured">Shaked, Y., Bertolini, F., Man, S., Rogers, M. S., Cervi, D., Foutz, T., et al. (2005). Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis; Implications for cellular surrogate marker analysis of antiangiogenesis. Cancer Cell, 7, 101–11.
<pub-id pub-id-type="pmid">15652753</pub-id>
</citation>
</ref>
<ref id="CR87">
<label>87.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arafat</surname>
<given-names>W. O.</given-names>
</name>
<name>
<surname>Casado</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Alvarez</surname>
<given-names>R. D.</given-names>
</name>
<name>
<surname>Siegal</surname>
<given-names>G. P.</given-names>
</name>
<name>
<surname>Glorioso</surname>
<given-names>J. C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genetically modified CD34+ cells exert a cytotoxic bystander effect on human endothelial and cancer cells</article-title>
<source>Clinical Cancer Research</source>
<year>2000</year>
<volume>6</volume>
<fpage>4442</fpage>
<lpage>4448</lpage>
</citation>
<citation citation-type="display-unstructured">Arafat, W. O., Casado, E., Wang, M., Alvarez, R. D., Siegal, G. P., Glorioso, J. C., et al. (2000). Genetically modified CD34+ cells exert a cytotoxic bystander effect on human endothelial and cancer cells. Clinical Cancer Research, 6, 4442–448.
<pub-id pub-id-type="pmid">11106265</pub-id>
</citation>
</ref>
<ref id="CR88">
<label>88.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ingram</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Caplice</surname>
<given-names>N. M.</given-names>
</name>
<name>
<surname>Yoder</surname>
<given-names>M. C.</given-names>
</name>
</person-group>
<article-title>Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells</article-title>
<source>Blood</source>
<year>2005</year>
<volume>106</volume>
<fpage>1525</fpage>
<lpage>1531</lpage>
</citation>
<citation citation-type="display-unstructured">Ingram, D. A., Caplice, N. M., & Yoder, M. C. (2005). Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood, 106, 1525–531.
<pub-id pub-id-type="pmid">15905185</pub-id>
</citation>
</ref>
<ref id="CR89">
<label>89.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wesseling</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Laak</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Leeuw</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ruiter</surname>
<given-names>D. J.</given-names>
</name>
<name>
<surname>Burger</surname>
<given-names>P. C.</given-names>
</name>
</person-group>
<article-title>Quantitative immunohistological analysis of the microvasculature in untreated human glioblastoma multiforme. Computer-assisted image analysis of whole-tumor sections</article-title>
<source>Journal of Neurosurgery</source>
<year>1994</year>
<volume>81</volume>
<fpage>902</fpage>
<lpage>909</lpage>
</citation>
<citation citation-type="display-unstructured">Wesseling, P., van der Laak, J. A., de Leeuw, H., Ruiter, D. J., & Burger, P. C. (1994). Quantitative immunohistological analysis of the microvasculature in untreated human glioblastoma multiforme. Computer-assisted image analysis of whole-tumor sections. Journal of Neurosurgery, 81, 902–09.
<pub-id pub-id-type="pmid">7525899</pub-id>
</citation>
</ref>
<ref id="CR90">
<label>90.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Holmgren</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>O’Reilly</surname>
<given-names>M. S.</given-names>
</name>
<name>
<surname>Folkman</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Dormancy of micrometastases: Balanced proliferation and apoptosis in the presence of angiogenesis suppression</article-title>
<source>Nature Medicine</source>
<year>1995</year>
<volume>1</volume>
<fpage>149</fpage>
<lpage>153</lpage>
</citation>
<citation citation-type="display-unstructured">Holmgren, L., O’Reilly, M. S., & Folkman, J. (1995). Dormancy of micrometastases: Balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nature Medicine, 1, 149–53.
<pub-id pub-id-type="pmid">7585012</pub-id>
</citation>
</ref>
<ref id="CR91">
<label>91.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pezzella</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Pastorino</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Tagliabue</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Andreola</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Sozzi</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Gasparini</surname>
<given-names>G.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Non-small-cell lung carcinoma tumor growth without morphological evidence of neo-angiogenesis</article-title>
<source>American Journal of Pathology</source>
<year>1997</year>
<volume>151</volume>
<fpage>1417</fpage>
<lpage>1423</lpage>
</citation>
<citation citation-type="display-unstructured">Pezzella, F., Pastorino, U., Tagliabue, E., Andreola, S., Sozzi, G., Gasparini, G., et al. (1997). Non-small-cell lung carcinoma tumor growth without morphological evidence of neo-angiogenesis. American Journal of Pathology, 151, 1417–423.
<pub-id pub-id-type="pmid">9358768</pub-id>
</citation>
</ref>
<ref id="CR92">
<label>92.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Holash</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Maisonpierre</surname>
<given-names>P. C.</given-names>
</name>
<name>
<surname>Compton</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Boland</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Alexander</surname>
<given-names>C. R.</given-names>
</name>
<name>
<surname>Zagzag</surname>
<given-names>D.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Vessel co-option, regression, and growth in tumors mediated by angiopoietins and VEGF</article-title>
<source>Science</source>
<year>1999</year>
<volume>284</volume>
<fpage>1994</fpage>
<lpage>1998</lpage>
</citation>
<citation citation-type="display-unstructured">Holash, J., Maisonpierre, P. C., Compton, D., Boland, P., Alexander, C. R., Zagzag, D., et al. (1999). Vessel co-option, regression, and growth in tumors mediated by angiopoietins and VEGF. Science, 284, 1994–998.
<pub-id pub-id-type="pmid">10373119</pub-id>
</citation>
</ref>
<ref id="CR93">
<label>93.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>J. W.</given-names>
</name>
<name>
<surname>Katsaros</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Fracchioli</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>G.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer</article-title>
<source>Cancer Research</source>
<year>2003</year>
<volume>63</volume>
<fpage>3403</fpage>
<lpage>3412</lpage>
</citation>
<citation citation-type="display-unstructured">Zhang, L., Yang, N., Park, J. W., Katsaros, D., Fracchioli, S., Cao, G., et al. (2003). Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer. Cancer Research, 63, 3403–412.
<pub-id pub-id-type="pmid">12810677</pub-id>
</citation>
</ref>
<ref id="CR94">
<label>94.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dome</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Paku</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Somlai</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Timar</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Vascularization of cutaneous melanoma involves vessel co-option and has clinical significance</article-title>
<source>Journal of Pathology</source>
<year>2002</year>
<volume>197</volume>
<fpage>355</fpage>
<lpage>362</lpage>
</citation>
<citation citation-type="display-unstructured">Dome, B., Paku, S., Somlai, B., & Timar, J. (2002). Vascularization of cutaneous melanoma involves vessel co-option and has clinical significance. Journal of Pathology, 197, 355–62.
<pub-id pub-id-type="pmid">12115882</pub-id>
</citation>
</ref>
<ref id="CR95">
<label>95.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>E. S.</given-names>
</name>
<name>
<surname>Serur</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Manley</surname>
<given-names>C. A.</given-names>
</name>
<name>
<surname>McCrudden</surname>
<given-names>K. W.</given-names>
</name>
<name>
<surname>Frischer</surname>
<given-names>J. S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Potent VEGF blockade causes regression of coopted vessels in a model of neuroblastoma</article-title>
<source>Proceedings of the National Academy of Sciences of the United States of America</source>
<year>2002</year>
<volume>99</volume>
<fpage>11399</fpage>
<lpage>11404</lpage>
</citation>
<citation citation-type="display-unstructured">Kim, E. S., Serur, A., Huang, J., Manley, C. A., McCrudden, K. W., Frischer, J. S., et al. (2002). Potent VEGF blockade causes regression of coopted vessels in a model of neuroblastoma. Proceedings of the National Academy of Sciences of the United States of America, 99, 11399–1404.
<pub-id pub-id-type="pmid">12177446</pub-id>
</citation>
</ref>
<ref id="CR96">
<label>96.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kunkel</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Ulbricht</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Bohlen</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Brockmann</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Fillbrandt</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Stavrou</surname>
<given-names>D.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inhibition of glioma angiogenesis and growth
<italic>in vivo</italic>
by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2</article-title>
<source>Cancer Research</source>
<year>2001</year>
<volume>61</volume>
<fpage>6624</fpage>
<lpage>6628</lpage>
</citation>
<citation citation-type="display-unstructured">Kunkel, P., Ulbricht, U., Bohlen, P., Brockmann, M. A., Fillbrandt, R., Stavrou, D., et al. (2001). Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Research, 61, 6624–628.
<pub-id pub-id-type="pmid">11559524</pub-id>
</citation>
</ref>
<ref id="CR97">
<label>97.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maniotis</surname>
<given-names>A. J.</given-names>
</name>
<name>
<surname>Folberg</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Hess</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Seftor</surname>
<given-names>E. A.</given-names>
</name>
<name>
<surname>Gardner</surname>
<given-names>L. M.</given-names>
</name>
<name>
<surname>Pe’er</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Vascular channel formation by human melanoma cells
<italic>in vivo</italic>
and
<italic>in vitro</italic>
: Vasculogenic mimicry</article-title>
<source>American Journal of Pathology</source>
<year>1999</year>
<volume>155</volume>
<fpage>739</fpage>
<lpage>752</lpage>
</citation>
<citation citation-type="display-unstructured">Maniotis, A. J., Folberg, R., Hess, A., Seftor, E. A., Gardner, L. M., Pe’er, J., et al. (1999). Vascular channel formation by human melanoma cells in vivo and in vitro: Vasculogenic mimicry. American Journal of Pathology, 155, 739–52.
<pub-id pub-id-type="pmid">10487832</pub-id>
</citation>
</ref>
<ref id="CR98">
<label>98.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Folberg</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Rummelt</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Parys-Van Ginderdeuren</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Hwang</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Woolson</surname>
<given-names>R. F.</given-names>
</name>
<name>
<surname>Pe’er</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The prognostic value of tumor blood vessel morphology in primary uveal melanoma</article-title>
<source>Ophthalmology</source>
<year>1993</year>
<volume>100</volume>
<fpage>1389</fpage>
<lpage>1398</lpage>
</citation>
<citation citation-type="display-unstructured">Folberg, R., Rummelt, V., Parys-Van Ginderdeuren, R., Hwang, T., Woolson, R. F., Pe’er, J., et al. (1993). The prognostic value of tumor blood vessel morphology in primary uveal melanoma. Ophthalmology, 100, 1389–398.
<pub-id pub-id-type="pmid">8371929</pub-id>
</citation>
</ref>
<ref id="CR99">
<label>99.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hendrix</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Seftor</surname>
<given-names>E. A.</given-names>
</name>
<name>
<surname>Hess</surname>
<given-names>A. R.</given-names>
</name>
<name>
<surname>Seftor</surname>
<given-names>R. E.</given-names>
</name>
</person-group>
<article-title>Vasculogenic mimicry and tumour-cell plasticity: Lessons from melanoma</article-title>
<source>Nature Reviews Cancer</source>
<year>2003</year>
<volume>3</volume>
<fpage>411</fpage>
<lpage>421</lpage>
</citation>
<citation citation-type="display-unstructured">Hendrix, M. J., Seftor, E. A., Hess, A. R., & Seftor, R. E. (2003). Vasculogenic mimicry and tumour-cell plasticity: Lessons from melanoma. Nature Reviews Cancer, 3, 411–21.
<pub-id pub-id-type="pmid">12778131</pub-id>
</citation>
</ref>
<ref id="CR100">
<label>100.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Seftor</surname>
<given-names>R. E.</given-names>
</name>
<name>
<surname>Seftor</surname>
<given-names>E. A.</given-names>
</name>
<name>
<surname>Koshikawa</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Meltzer</surname>
<given-names>P. S.</given-names>
</name>
<name>
<surname>Gardner</surname>
<given-names>L. M.</given-names>
</name>
<name>
<surname>Bilban</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cooperative interactions of laminin 5 gamma2 chain, matrix metalloproteinase-2, and membrane type-1-matrix/metalloproteinase are required for mimicry of embryonic vasculogenesis by aggressive melanoma</article-title>
<source>Cancer Research</source>
<year>2001</year>
<volume>61</volume>
<fpage>6322</fpage>
<lpage>6327</lpage>
</citation>
<citation citation-type="display-unstructured">Seftor, R. E., Seftor, E. A., Koshikawa, N., Meltzer, P. S., Gardner, L. M., Bilban, M., et al. (2001). Cooperative interactions of laminin 5 gamma2 chain, matrix metalloproteinase-2, and membrane type-1-matrix/metalloproteinase are required for mimicry of embryonic vasculogenesis by aggressive melanoma. Cancer Research, 61, 6322–327.
<pub-id pub-id-type="pmid">11522618</pub-id>
</citation>
</ref>
<ref id="CR101">
<label>101.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hendrix</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Seftor</surname>
<given-names>E. A.</given-names>
</name>
<name>
<surname>Meltzer</surname>
<given-names>P. S.</given-names>
</name>
<name>
<surname>Gardner</surname>
<given-names>L. M.</given-names>
</name>
<name>
<surname>Hess</surname>
<given-names>A. R.</given-names>
</name>
<name>
<surname>Kirschmann</surname>
<given-names>D. A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Expression and functional significance of VE-cadherin in aggressive human melanoma cells: Role in vasculogenic mimicry</article-title>
<source>Proceedings of the National Academy of Sciences of the United States of America</source>
<year>2001</year>
<volume>98</volume>
<fpage>8018</fpage>
<lpage>8023</lpage>
</citation>
<citation citation-type="display-unstructured">Hendrix, M. J., Seftor, E. A., Meltzer, P. S., Gardner, L. M., Hess, A. R., Kirschmann, D. A., et al. (2001). Expression and functional significance of VE-cadherin in aggressive human melanoma cells: Role in vasculogenic mimicry. Proceedings of the National Academy of Sciences of the United States of America, 98, 8018–023.
<pub-id pub-id-type="pmid">11416160</pub-id>
</citation>
</ref>
<ref id="CR102">
<label>102.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hess</surname>
<given-names>A. R.</given-names>
</name>
<name>
<surname>Postovit</surname>
<given-names>L. M.</given-names>
</name>
<name>
<surname>Margaryan</surname>
<given-names>N. V.</given-names>
</name>
<name>
<surname>Seftor</surname>
<given-names>E. A.</given-names>
</name>
<name>
<surname>Schneider</surname>
<given-names>G. B.</given-names>
</name>
<name>
<surname>Seftor</surname>
<given-names>R. E.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Focal adhesion kinase promotes the aggressive melanoma phenotype</article-title>
<source>Cancer Research</source>
<year>2005</year>
<volume>65</volume>
<fpage>9851</fpage>
<lpage>9860</lpage>
</citation>
<citation citation-type="display-unstructured">Hess, A. R., Postovit, L. M., Margaryan, N. V., Seftor, E. A., Schneider, G. B., Seftor, R. E., et al. (2005). Focal adhesion kinase promotes the aggressive melanoma phenotype. Cancer Research, 65, 9851–860.
<pub-id pub-id-type="pmid">16267008</pub-id>
</citation>
</ref>
<ref id="CR103">
<label>103.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Basu</surname>
<given-names>G. D.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>W. S.</given-names>
</name>
<name>
<surname>Stephan</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Wegener</surname>
<given-names>L. T.</given-names>
</name>
<name>
<surname>Conley</surname>
<given-names>C. R.</given-names>
</name>
<name>
<surname>Pockaj</surname>
<given-names>B. A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A novel role for cyclooxygenase-2 in regulating vascular channel formation by human breast cancer cells</article-title>
<source>Breast Cancer Research</source>
<year>2006</year>
<volume>8</volume>
<fpage>R69</fpage>
</citation>
<citation citation-type="display-unstructured">Basu, G. D., Liang, W. S., Stephan, D. A., Wegener, L. T., Conley, C. R., Pockaj, B. A., et al. (2006). A novel role for cyclooxygenase-2 in regulating vascular channel formation by human breast cancer cells. Breast Cancer Research, 8, R69.
<pub-id pub-id-type="pmid">17156488</pub-id>
</citation>
</ref>
<ref id="CR104">
<label>104.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rothhammer</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Bataille</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Spruss</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Eissner</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Bosserhoff</surname>
<given-names>A. K.</given-names>
</name>
</person-group>
<article-title>Functional implication of BMP4 expression on angiogenesis in malignant melanoma</article-title>
<source>Oncogene</source>
<year>2007</year>
<volume>26</volume>
<fpage>4158</fpage>
<lpage>4170</lpage>
</citation>
<citation citation-type="display-unstructured">Rothhammer, T., Bataille, F., Spruss, T., Eissner, G., & Bosserhoff, A. K. (2007). Functional implication of BMP4 expression on angiogenesis in malignant melanoma. Oncogene, 26, 4158–170.
<pub-id pub-id-type="pmid">17173062</pub-id>
</citation>
</ref>
<ref id="CR105">
<label>105.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xi</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Nakajima</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Hamil</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Fodstad</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Riker</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ju</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Association of insulin-like growth factor binding protein-3 expression with melanoma progression</article-title>
<source>Molecular Cancer Therapeutics</source>
<year>2006</year>
<volume>5</volume>
<fpage>3078</fpage>
<lpage>3084</lpage>
</citation>
<citation citation-type="display-unstructured">Xi, Y., Nakajima, G., Hamil, T., Fodstad, O., Riker, A., & Ju, J. (2006). Association of insulin-like growth factor binding protein-3 expression with melanoma progression. Molecular Cancer Therapeutics, 5, 3078–084.
<pub-id pub-id-type="pmid">17172410</pub-id>
</citation>
</ref>
<ref id="CR106">
<label>106.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Topczewska</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Postovit</surname>
<given-names>L. M.</given-names>
</name>
<name>
<surname>Margaryan</surname>
<given-names>N. V.</given-names>
</name>
<name>
<surname>Sam</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hess</surname>
<given-names>A. R.</given-names>
</name>
<name>
<surname>Wheaton</surname>
<given-names>W. W.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Embryonic and tumorigenic pathways converge via Nodal signaling: Role in melanoma aggressiveness</article-title>
<source>Nature Medicine</source>
<year>2006</year>
<volume>12</volume>
<fpage>925</fpage>
<lpage>932</lpage>
</citation>
<citation citation-type="display-unstructured">Topczewska, J. M., Postovit, L. M., Margaryan, N. V., Sam, A., Hess, A. R., Wheaton, W. W., et al. (2006). Embryonic and tumorigenic pathways converge via Nodal signaling: Role in melanoma aggressiveness. Nature Medicine, 12, 925–32.
<pub-id pub-id-type="pmid">16892036</pub-id>
</citation>
</ref>
<ref id="CR107">
<label>107.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Seftor</surname>
<given-names>E. A.</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>K. M.</given-names>
</name>
<name>
<surname>Chin</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Kirschmann</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Wheaton</surname>
<given-names>W. W.</given-names>
</name>
<name>
<surname>Protopopov</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Epigenetic transdifferentiation of normal melanocytes by a metastatic melanoma microenvironment</article-title>
<source>Cancer Research</source>
<year>2005</year>
<volume>65</volume>
<fpage>10164</fpage>
<lpage>10169</lpage>
</citation>
<citation citation-type="display-unstructured">Seftor, E. A., Brown, K. M., Chin, L., Kirschmann, D. A., Wheaton, W. W., Protopopov, A., et al. (2005). Epigenetic transdifferentiation of normal melanocytes by a metastatic melanoma microenvironment. Cancer Research, 65, 10164–0169.
<pub-id pub-id-type="pmid">16288000</pub-id>
</citation>
</ref>
<ref id="CR108">
<label>108.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rofstad</surname>
<given-names>E. K.</given-names>
</name>
<name>
<surname>Rasmussen</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Galappathi</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Mathiesen</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Nilsen</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Graff</surname>
<given-names>B. A.</given-names>
</name>
</person-group>
<article-title>Hypoxia promotes lymph node metastasis in human melanoma xenografts by up-regulating the urokinase-type plasminogen activator receptor</article-title>
<source>Cancer Research</source>
<year>2002</year>
<volume>62</volume>
<fpage>1847</fpage>
<lpage>1853</lpage>
</citation>
<citation citation-type="display-unstructured">Rofstad, E. K., Rasmussen, H., Galappathi, K., Mathiesen, B., Nilsen, K., & Graff, B. A. (2002). Hypoxia promotes lymph node metastasis in human melanoma xenografts by up-regulating the urokinase-type plasminogen activator receptor. Cancer Research, 62, 1847–853.
<pub-id pub-id-type="pmid">11912164</pub-id>
</citation>
</ref>
<ref id="CR109">
<label>109.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bedogni</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Welford</surname>
<given-names>S. M.</given-names>
</name>
<name>
<surname>Cassarino</surname>
<given-names>D. S.</given-names>
</name>
<name>
<surname>Nickoloff</surname>
<given-names>B. J.</given-names>
</name>
<name>
<surname>Giaccia</surname>
<given-names>A. J.</given-names>
</name>
<name>
<surname>Powell</surname>
<given-names>M. B.</given-names>
</name>
</person-group>
<article-title>The hypoxic microenvironment of the skin contributes to Akt-mediated melanocyte transformation</article-title>
<source>Cancer Cell</source>
<year>2005</year>
<volume>8</volume>
<fpage>443</fpage>
<lpage>454</lpage>
</citation>
<citation citation-type="display-unstructured">Bedogni, B., Welford, S. M., Cassarino, D. S., Nickoloff, B. J., Giaccia, A. J., & Powell, M. B. (2005). The hypoxic microenvironment of the skin contributes to Akt-mediated melanocyte transformation. Cancer Cell, 8, 443–54.
<pub-id pub-id-type="pmid">16338658</pub-id>
</citation>
</ref>
<ref id="CR110">
<label>110.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rybak</surname>
<given-names>S. M.</given-names>
</name>
<name>
<surname>Sanovich</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Hollingshead</surname>
<given-names>M. G.</given-names>
</name>
<name>
<surname>Borgel</surname>
<given-names>S. D.</given-names>
</name>
<name>
<surname>Newton</surname>
<given-names>D. L.</given-names>
</name>
<name>
<surname>Melillo</surname>
<given-names>G.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>“Vasocrine–formation of tumor cell-lined vascular spaces: Implications for rational design of antiangiogenic therapies</article-title>
<source>Cancer Research</source>
<year>2003</year>
<volume>63</volume>
<fpage>2812</fpage>
<lpage>2819</lpage>
</citation>
<citation citation-type="display-unstructured">Rybak, S. M., Sanovich, E., Hollingshead, M. G., Borgel, S. D., Newton, D. L., Melillo, G., et al. (2003). “Vasocrine–formation of tumor cell-lined vascular spaces: Implications for rational design of antiangiogenic therapies. Cancer Research, 63, 2812–819.
<pub-id pub-id-type="pmid">12782586</pub-id>
</citation>
</ref>
<ref id="CR111">
<label>111.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schaft</surname>
<given-names>D. W.</given-names>
</name>
<name>
<surname>Hillen</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Pauwels</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Kirschmann</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Castermans</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Egbrink</surname>
<given-names>M. G.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Tumor cell plasticity in Ewing sarcoma, an alternative circulatory system stimulated by hypoxia</article-title>
<source>Cancer Research</source>
<year>2005</year>
<volume>65</volume>
<fpage>11520</fpage>
<lpage>11528</lpage>
</citation>
<citation citation-type="display-unstructured">van der Schaft, D. W., Hillen, F., Pauwels, P., Kirschmann, D. A., Castermans, K., Egbrink, M. G., et al. (2005). Tumor cell plasticity in Ewing sarcoma, an alternative circulatory system stimulated by hypoxia. Cancer Research, 65, 11520–1528.
<pub-id pub-id-type="pmid">16357161</pub-id>
</citation>
</ref>
<ref id="CR112">
<label>112.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>X.</given-names>
</name>
</person-group>
<article-title>Hypoxia influences vasculogenic mimicry channel formation and tumor invasion-related protein expression in melanoma</article-title>
<source>Cancer Letter</source>
<year>2007</year>
<volume>249</volume>
<fpage>188</fpage>
<lpage>197</lpage>
</citation>
<citation citation-type="display-unstructured">Sun, B., Zhang, D., Zhang, S., Zhang, W., Guo, H., & Zhao, X. (2007). Hypoxia influences vasculogenic mimicry channel formation and tumor invasion-related protein expression in melanoma. Cancer Letter, 249, 188–97. </citation>
</ref>
<ref id="CR113">
<label>113.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Clarijs</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Otte-Holler</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Ruiter</surname>
<given-names>D. J.</given-names>
</name>
<name>
<surname>Waal</surname>
<given-names>R. M.</given-names>
</name>
</person-group>
<article-title>Presence of a fluid-conducting meshwork in xenografted cutaneous and primary human uveal melanoma</article-title>
<source>Investigative Ophthalmology and Visual Science</source>
<year>2002</year>
<volume>43</volume>
<fpage>912</fpage>
<lpage>918</lpage>
</citation>
<citation citation-type="display-unstructured">Clarijs, R., Otte-Holler, I., Ruiter, D. J., & de Waal, R. M. (2002). Presence of a fluid-conducting meshwork in xenografted cutaneous and primary human uveal melanoma. Investigative Ophthalmology and Visual Science, 43, 912–18.
<pub-id pub-id-type="pmid">11923228</pub-id>
</citation>
</ref>
<ref id="CR114">
<label>114.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shirakawa</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kobayashi</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Heike</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Kawamoto</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Brechbiel</surname>
<given-names>M. W.</given-names>
</name>
<name>
<surname>Kasumi</surname>
<given-names>F.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Hemodynamics in vasculogenic mimicry and angiogenesis of inflammatory breast cancer xenograft</article-title>
<source>Cancer Research</source>
<year>2002</year>
<volume>62</volume>
<fpage>560</fpage>
<lpage>566</lpage>
</citation>
<citation citation-type="display-unstructured">Shirakawa, K., Kobayashi, H., Heike, Y., Kawamoto, S., Brechbiel, M. W., Kasumi, F., et al. (2002). Hemodynamics in vasculogenic mimicry and angiogenesis of inflammatory breast cancer xenograft. Cancer Research, 62, 560–66.
<pub-id pub-id-type="pmid">11809710</pub-id>
</citation>
</ref>
<ref id="CR115">
<label>115.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ruf</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Seftor</surname>
<given-names>E. A.</given-names>
</name>
<name>
<surname>Petrovan</surname>
<given-names>R. J.</given-names>
</name>
<name>
<surname>Weiss</surname>
<given-names>R. M.</given-names>
</name>
<name>
<surname>Gruman</surname>
<given-names>L. M.</given-names>
</name>
<name>
<surname>Margaryan</surname>
<given-names>N. V.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Differential role of tissue factor pathway inhibitors 1 and 2 in melanoma vasculogenic mimicry</article-title>
<source>Cancer Research</source>
<year>2003</year>
<volume>63</volume>
<fpage>5381</fpage>
<lpage>5389</lpage>
</citation>
<citation citation-type="display-unstructured">Ruf, W., Seftor, E. A., Petrovan, R. J., Weiss, R. M., Gruman, L. M., Margaryan, N. V., et al. (2003). Differential role of tissue factor pathway inhibitors 1 and 2 in melanoma vasculogenic mimicry. Cancer Research, 63, 5381–389.
<pub-id pub-id-type="pmid">14500372</pub-id>
</citation>
</ref>
<ref id="CR116">
<label>116.</label>
<citation citation-type="other">Frenkel, S., Barzel, I., Levy, J., Lin, A. Y., Bartsch, D. U., Majumdar, D., Folberg, R., & Pe’er, J. (2007). Demonstrating circulation in vasculogenic mimicry patterns of uveal melanoma by confocal indocyanine green angiography.
<italic>Eye</italic>
, in press, DOI
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1038/sj.eye.6702783">10.1038/sj.eye.6702783</ext-link>
.</citation>
</ref>
<ref id="CR117">
<label>117.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thies</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Mangold</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Moll</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Schumacher</surname>
<given-names>U.</given-names>
</name>
</person-group>
<article-title>PAS-positive loops and networks as a prognostic indicator in cutaneous malignant melanoma</article-title>
<source>Journal of Pathology</source>
<year>2001</year>
<volume>195</volume>
<fpage>537</fpage>
<lpage>542</lpage>
</citation>
<citation citation-type="display-unstructured">Thies, A., Mangold, U., Moll, I., & Schumacher, U. (2001). PAS-positive loops and networks as a prognostic indicator in cutaneous malignant melanoma. Journal of Pathology, 195, 537–42.
<pub-id pub-id-type="pmid">11745688</pub-id>
</citation>
</ref>
<ref id="CR118">
<label>118.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>Y. J.</given-names>
</name>
<name>
<surname>Nagai</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Siar</surname>
<given-names>C. H.</given-names>
</name>
<name>
<surname>Nakano</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Nagatsuka</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Tsujigiwa</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Angioarchitecture of primary oral malignant melanomas</article-title>
<source>Journal of Histochemistry and Cytochemistry</source>
<year>2002</year>
<volume>50</volume>
<fpage>1555</fpage>
<lpage>1562</lpage>
</citation>
<citation citation-type="display-unstructured">Lee, Y. J., Nagai, N., Siar, C. H., Nakano, K., Nagatsuka, H., Tsujigiwa, H., et al. (2002). Angioarchitecture of primary oral malignant melanomas. Journal of Histochemistry and Cytochemistry, 50, 1555–562.
<pub-id pub-id-type="pmid">12417622</pub-id>
</citation>
</ref>
<ref id="CR119">
<label>119.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sharma</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Seftor</surname>
<given-names>R. E.</given-names>
</name>
<name>
<surname>Seftor</surname>
<given-names>E. A.</given-names>
</name>
<name>
<surname>Gruman</surname>
<given-names>L. M.</given-names>
</name>
<name>
<surname>Heidger</surname>
<given-names>P. M.</given-names>
<suffix>Jr.</suffix>
</name>
<name>
<surname>Cohen</surname>
<given-names>M. B.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Prostatic tumor cell plasticity involves cooperative interactions of distinct phenotypic subpopulations: Role in vasculogenic mimicry</article-title>
<source>Prostate</source>
<year>2002</year>
<volume>50</volume>
<fpage>189</fpage>
<lpage>201</lpage>
</citation>
<citation citation-type="display-unstructured">Sharma, N., Seftor, R. E., Seftor, E. A., Gruman, L. M., Heidger, P. M., Jr., Cohen, M. B., et al. (2002). Prostatic tumor cell plasticity involves cooperative interactions of distinct phenotypic subpopulations: Role in vasculogenic mimicry. Prostate, 50, 189–01.
<pub-id pub-id-type="pmid">11813211</pub-id>
</citation>
</ref>
<ref id="CR120">
<label>120.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sood</surname>
<given-names>A. K.</given-names>
</name>
<name>
<surname>Seftor</surname>
<given-names>E. A.</given-names>
</name>
<name>
<surname>Fletcher</surname>
<given-names>M. S.</given-names>
</name>
<name>
<surname>Gardner</surname>
<given-names>L. M.</given-names>
</name>
<name>
<surname>Heidger</surname>
<given-names>P. M.</given-names>
</name>
<name>
<surname>Buller</surname>
<given-names>R. E.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Molecular determinants of ovarian cancer plasticity</article-title>
<source>American Journal of Pathology</source>
<year>2001</year>
<volume>158</volume>
<fpage>1279</fpage>
<lpage>1288</lpage>
</citation>
<citation citation-type="display-unstructured">Sood, A. K., Seftor, E. A., Fletcher, M. S., Gardner, L. M., Heidger, P. M., Buller, R. E., et al. (2001). Molecular determinants of ovarian cancer plasticity. American Journal of Pathology, 158, 1279–288.
<pub-id pub-id-type="pmid">11290546</pub-id>
</citation>
</ref>
<ref id="CR121">
<label>121.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>X.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Vasculogenic mimicry is associated with high tumor grade, invasion and metastasis, and short survival in patients with hepatocellular carcinoma</article-title>
<source>Oncology Reports</source>
<year>2006</year>
<volume>16</volume>
<fpage>693</fpage>
<lpage>698</lpage>
</citation>
<citation citation-type="display-unstructured">Sun, B., Zhang, S., Zhang, D., Du, J., Guo, H., Zhao, X., et al. (2006). Vasculogenic mimicry is associated with high tumor grade, invasion and metastasis, and short survival in patients with hepatocellular carcinoma. Oncology Reports, 16, 693–98.
<pub-id pub-id-type="pmid">16969481</pub-id>
</citation>
</ref>
<ref id="CR122">
<label>122.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fujimoto</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Onodera</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Mori</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Nagayama</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Yonenaga</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Tachibana</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Tumour plasticity and extravascular circulation in ECV304 human bladder carcinoma cells</article-title>
<source>Anticancer Research</source>
<year>2006</year>
<volume>26</volume>
<fpage>59</fpage>
<lpage>69</lpage>
</citation>
<citation citation-type="display-unstructured">Fujimoto, A., Onodera, H., Mori, A., Nagayama, S., Yonenaga, Y., & Tachibana, T. (2006). Tumour plasticity and extravascular circulation in ECV304 human bladder carcinoma cells. Anticancer Research, 26, 59–9.
<pub-id pub-id-type="pmid">16475680</pub-id>
</citation>
</ref>
<ref id="CR123">
<label>123.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Hao</surname>
<given-names>X.</given-names>
</name>
</person-group>
<article-title>Vasculogenic mimicry is associated with poor survival in patients with mesothelial sarcomas and alveolar rhabdomyosarcomas</article-title>
<source>International Journal of Oncology</source>
<year>2004</year>
<volume>25</volume>
<fpage>1609</fpage>
<lpage>1614</lpage>
</citation>
<citation citation-type="display-unstructured">Sun, B., Zhang, S., Zhao, X., Zhang, W., & Hao, X. (2004). Vasculogenic mimicry is associated with poor survival in patients with mesothelial sarcomas and alveolar rhabdomyosarcomas. International Journal of Oncology, 25, 1609–614.
<pub-id pub-id-type="pmid">15547697</pub-id>
</citation>
</ref>
<ref id="CR124">
<label>124.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cai</surname>
<given-names>X. S.</given-names>
</name>
<name>
<surname>Jia</surname>
<given-names>Y. W.</given-names>
</name>
<name>
<surname>Mei</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>R. Y.</given-names>
</name>
</person-group>
<article-title>Tumor blood vessels formation in osteosarcoma: Vasculogenesis mimicry</article-title>
<source>Chinese Medical Journal (Engl)</source>
<year>2004</year>
<volume>117</volume>
<fpage>94</fpage>
<lpage>98</lpage>
</citation>
<citation citation-type="display-unstructured">Cai, X. S., Jia, Y. W., Mei, J., & Tang, R. Y. (2004). Tumor blood vessels formation in osteosarcoma: Vasculogenesis mimicry. Chinese Medical Journal (Engl), 117, 94–8. </citation>
</ref>
<ref id="CR125">
<label>125.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yue</surname>
<given-names>W. Y.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Z. P.</given-names>
</name>
</person-group>
<article-title>Does vasculogenic mimicry exist in astrocytoma?</article-title>
<source>Journal of Histochemistry and Cytochemistry</source>
<year>2005</year>
<volume>53</volume>
<fpage>997</fpage>
<lpage>1002</lpage>
</citation>
<citation citation-type="display-unstructured">Yue, W. Y. & Chen, Z. P. (2005). Does vasculogenic mimicry exist in astrocytoma? Journal of Histochemistry and Cytochemistry, 53, 997–002.
<pub-id pub-id-type="pmid">15923371</pub-id>
</citation>
</ref>
<ref id="CR126">
<label>126.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Favier</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Plouin</surname>
<given-names>P. F.</given-names>
</name>
<name>
<surname>Corvol</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Gasc</surname>
<given-names>J. M.</given-names>
</name>
</person-group>
<article-title>Angiogenesis and vascular architecture in pheochromocytomas: Distinctive traits in malignant tumors</article-title>
<source>American Journal of Pathology</source>
<year>2002</year>
<volume>161</volume>
<fpage>1235</fpage>
<lpage>1246</lpage>
</citation>
<citation citation-type="display-unstructured">Favier, J., Plouin, P. F., Corvol, P., & Gasc, J. M. (2002). Angiogenesis and vascular architecture in pheochromocytomas: Distinctive traits in malignant tumors. American Journal of Pathology, 161, 1235–246.
<pub-id pub-id-type="pmid">12368197</pub-id>
</citation>
</ref>
<ref id="CR127">
<label>127.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Seftor</surname>
<given-names>R. E.</given-names>
</name>
<name>
<surname>Seftor</surname>
<given-names>E. A.</given-names>
</name>
<name>
<surname>Kirschmann</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Hendrix</surname>
<given-names>M. J.</given-names>
</name>
</person-group>
<article-title>Targeting the tumor microenvironment with chemically modified tetracyclines: Inhibition of laminin 5 gamma2 chain promigratory fragments and vasculogenic mimicry</article-title>
<source>Molecular Cancer Therapeutics</source>
<year>2002</year>
<volume>1</volume>
<fpage>1173</fpage>
<lpage>1179</lpage>
</citation>
<citation citation-type="display-unstructured">Seftor, R. E., Seftor, E. A., Kirschmann, D. A., & Hendrix, M. J. (2002). Targeting the tumor microenvironment with chemically modified tetracyclines: inhibition of laminin 5 gamma2 chain promigratory fragments and vasculogenic mimicry. Molecular Cancer Therapeutics, 1, 1173–179.
<pub-id pub-id-type="pmid">12479698</pub-id>
</citation>
</ref>
<ref id="CR128">
<label>128.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rudek</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Horne</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Figg</surname>
<given-names>W. D.</given-names>
</name>
<name>
<surname>Dahut</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Dyer</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Pluda</surname>
<given-names>J. M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Reversible sideroblastic anemia associated with the tetracycline analogue COL-3</article-title>
<source>American Journal of Hematology</source>
<year>2001</year>
<volume>67</volume>
<fpage>51</fpage>
<lpage>53</lpage>
</citation>
<citation citation-type="display-unstructured">Rudek, M. A., Horne, M., Figg, W. D., Dahut, W., Dyer, V., Pluda, J. M., et al. (2001). Reversible sideroblastic anemia associated with the tetracycline analogue COL-3. American Journal of Hematology, 67, 51–3.
<pub-id pub-id-type="pmid">11279658</pub-id>
</citation>
</ref>
<ref id="CR129">
<label>129.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ghate</surname>
<given-names>J. V.</given-names>
</name>
<name>
<surname>Turner</surname>
<given-names>M. L.</given-names>
</name>
<name>
<surname>Rudek</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Figg</surname>
<given-names>W. D.</given-names>
</name>
<name>
<surname>Dahut</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Dyer</surname>
<given-names>V.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Drug-induced lupus associated with COL-3: Report of 3 cases</article-title>
<source>Archives of Dermatology</source>
<year>2001</year>
<volume>137</volume>
<fpage>471</fpage>
<lpage>474</lpage>
</citation>
<citation citation-type="display-unstructured">Ghate, J. V., Turner, M. L., Rudek, M. A., Figg, W. D., Dahut, W., Dyer, V., et al. (2001). Drug-induced lupus associated with COL-3: Report of 3 cases. Archives of Dermatology, 137, 471–74.
<pub-id pub-id-type="pmid">11295928</pub-id>
</citation>
</ref>
<ref id="CR130">
<label>130.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schaft</surname>
<given-names>D. W.</given-names>
</name>
<name>
<surname>Seftor</surname>
<given-names>R. E.</given-names>
</name>
<name>
<surname>Seftor</surname>
<given-names>E. A.</given-names>
</name>
<name>
<surname>Hess</surname>
<given-names>A. R.</given-names>
</name>
<name>
<surname>Gruman</surname>
<given-names>L. M.</given-names>
</name>
<name>
<surname>Kirschmann</surname>
<given-names>D. A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Effects of angiogenesis inhibitors on vascular network formation by human endothelial and melanoma cells</article-title>
<source>Journal of the National Cancer Institute</source>
<year>2004</year>
<volume>96</volume>
<fpage>1473</fpage>
<lpage>1477</lpage>
</citation>
<citation citation-type="display-unstructured">van der Schaft, D. W., Seftor, R. E., Seftor, E. A., Hess, A. R., Gruman, L. M., Kirschmann, D. A., et al. (2004). Effects of angiogenesis inhibitors on vascular network formation by human endothelial and melanoma cells. Journal of the National Cancer Institute, 96, 1473–477.
<pub-id pub-id-type="pmid">15467037</pub-id>
</citation>
</ref>
<ref id="CR131">
<label>131.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pepper</surname>
<given-names>M. S.</given-names>
</name>
<name>
<surname>Skobe</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Lymphatic endothelium: Morphological, molecular and functional properties</article-title>
<source>Journal of Cell Biology</source>
<year>2003</year>
<volume>163</volume>
<fpage>209</fpage>
<lpage>213</lpage>
</citation>
<citation citation-type="display-unstructured">Pepper, M. S., & Skobe, M. (2003). Lymphatic endothelium: Morphological, molecular and functional properties. Journal of Cell Biology, 163, 209–13.
<pub-id pub-id-type="pmid">14581448</pub-id>
</citation>
</ref>
<ref id="CR132">
<label>132.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Perou</surname>
<given-names>C. M.</given-names>
</name>
<name>
<surname>Sorlie</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Eisen</surname>
<given-names>M. B.</given-names>
</name>
<name>
<surname>Rijn</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Jeffrey</surname>
<given-names>S. S.</given-names>
</name>
<name>
<surname>Rees</surname>
<given-names>C. A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Molecular portraits of human breast tumours</article-title>
<source>Nature</source>
<year>2000</year>
<volume>406</volume>
<fpage>747</fpage>
<lpage>752</lpage>
</citation>
<citation citation-type="display-unstructured">Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., et al. (2000). Molecular portraits of human breast tumours. Nature, 406, 747–52.
<pub-id pub-id-type="pmid">10963602</pub-id>
</citation>
</ref>
<ref id="CR133">
<label>133.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Podgrabinska</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Braun</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Velasco</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Kloos</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Pepper</surname>
<given-names>M. S.</given-names>
</name>
<name>
<surname>Skobe</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Molecular characterization of lymphatic endothelial cells</article-title>
<source>Proceedings of the National Academy of Sciences of the United States of America</source>
<year>2002</year>
<volume>99</volume>
<fpage>16069</fpage>
<lpage>16074</lpage>
</citation>
<citation citation-type="display-unstructured">Podgrabinska, S., Braun, P., Velasco, P., Kloos, B., Pepper, M. S., & Skobe, M. (2002). Molecular characterization of lymphatic endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 99, 16069–6074.
<pub-id pub-id-type="pmid">12446836</pub-id>
</citation>
</ref>
<ref id="CR134">
<label>134.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaipainen</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Korhonen</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Mustonen</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Hinsbergh</surname>
<given-names>V. W.</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>G. H.</given-names>
</name>
<name>
<surname>Dumont</surname>
<given-names>D.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development</article-title>
<source>Proceedings of the National Academy of Sciences of the United States of America</source>
<year>1995</year>
<volume>92</volume>
<fpage>3566</fpage>
<lpage>3570</lpage>
</citation>
<citation citation-type="display-unstructured">Kaipainen, A., Korhonen, J., Mustonen, T., van Hinsbergh, V. W., Fang, G. H., Dumont, D., et al. (1995). Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proceedings of the National Academy of Sciences of the United States of America, 92, 3566–570.
<pub-id pub-id-type="pmid">7724599</pub-id>
</citation>
</ref>
<ref id="CR135">
<label>135.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Banerji</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ni</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>S. X.</given-names>
</name>
<name>
<surname>Clasper</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Tammi</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan</article-title>
<source>Journal of Cell Biology</source>
<year>1999</year>
<volume>144</volume>
<fpage>789</fpage>
<lpage>801</lpage>
</citation>
<citation citation-type="display-unstructured">Banerji, S., Ni, J., Wang, S. X., Clasper, S., Su, J., Tammi, R., et al. (1999). LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. Journal of Cell Biology, 144, 789–01.
<pub-id pub-id-type="pmid">10037799</pub-id>
</citation>
</ref>
<ref id="CR136">
<label>136.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Breiteneder-Geleff</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Soleiman</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kowalski</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Horvat</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Amann</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Kriehuber</surname>
<given-names>E.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: Podoplanin as a specific marker for lymphatic endothelium</article-title>
<source>American Journal of Pathology</source>
<year>1999</year>
<volume>154</volume>
<fpage>385</fpage>
<lpage>394</lpage>
</citation>
<citation citation-type="display-unstructured">Breiteneder-Geleff, S., Soleiman, A., Kowalski, H., Horvat, R., Amann, G., Kriehuber, E., et al. (1999). Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: Podoplanin as a specific marker for lymphatic endothelium. American Journal of Pathology, 154, 385–94.
<pub-id pub-id-type="pmid">10027397</pub-id>
</citation>
</ref>
<ref id="CR137">
<label>137.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oliver</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Detmar</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>The rediscovery of the lymphatic system: Old and new insights into the development and biological function of the lymphatic vasculature</article-title>
<source>Genes & Development</source>
<year>2002</year>
<volume>16</volume>
<fpage>773</fpage>
<lpage>783</lpage>
</citation>
<citation citation-type="display-unstructured">Oliver, G., & Detmar, M. (2002). The rediscovery of the lymphatic system: Old and new insights into the development and biological function of the lymphatic vasculature. Genes & Development, 16, 773–83.
<pub-id pub-id-type="pmid">11937485</pub-id>
</citation>
</ref>
<ref id="CR138">
<label>138.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Joukov</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Sorsa</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Arighi</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Weich</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Saksela</surname>
<given-names>O.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A recombinant mutant vascular endothelial growth factor-C that has lost vascular endothelial growth factor receptor-2 binding, activation, and vascular permeability activities</article-title>
<source>Journal of Biological Chemistry</source>
<year>1998</year>
<volume>273</volume>
<fpage>6599</fpage>
<lpage>6602</lpage>
</citation>
<citation citation-type="display-unstructured">Joukov, V., Kumar, V., Sorsa, T., Arighi, E., Weich, H., Saksela, O., et al. (1998). A recombinant mutant vascular endothelial growth factor-C that has lost vascular endothelial growth factor receptor-2 binding, activation, and vascular permeability activities. Journal of Biological Chemistry, 273, 6599–602.
<pub-id pub-id-type="pmid">9506953</pub-id>
</citation>
</ref>
<ref id="CR139">
<label>139.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baldwin</surname>
<given-names>M. E.</given-names>
</name>
<name>
<surname>Halford</surname>
<given-names>M. M.</given-names>
</name>
<name>
<surname>Roufail</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>R. A.</given-names>
</name>
<name>
<surname>Hibbs</surname>
<given-names>M. L.</given-names>
</name>
<name>
<surname>Grail</surname>
<given-names>D.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Vascular endothelial growth factor D is dispensable for development of the lymphatic system</article-title>
<source>Molecular and Cellular Biology</source>
<year>2005</year>
<volume>25</volume>
<fpage>2441</fpage>
<lpage>2449</lpage>
</citation>
<citation citation-type="display-unstructured">Baldwin, M. E., Halford, M. M., Roufail, S., Williams, R. A., Hibbs, M. L., Grail, D., et al. (2005). Vascular endothelial growth factor D is dispensable for development of the lymphatic system. Molular and Cellular Biology, 25, 2441–449.
<pub-id pub-id-type="pmid">15743836</pub-id>
</citation>
</ref>
<ref id="CR140">
<label>140.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Karkkainen</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Haiko</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Sainio</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Partanen</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Taipale</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Petrova</surname>
<given-names>T. V.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins</article-title>
<source>Nature Immunology</source>
<year>2004</year>
<volume>5</volume>
<fpage>74</fpage>
<lpage>80</lpage>
</citation>
<citation citation-type="display-unstructured">Karkkainen, M. J., Haiko, P., Sainio, K., Partanen, J., Taipale, J., Petrova, T. V., et al. (2004). Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nature Immunology, 5, 74–0.
<pub-id pub-id-type="pmid">14634646</pub-id>
</citation>
</ref>
<ref id="CR141">
<label>141.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Makinen</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Veikkola</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Mustjoki</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Karpanen</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Catimel</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Nice</surname>
<given-names>E. C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3</article-title>
<source>EMBO Journal</source>
<year>2001</year>
<volume>20</volume>
<fpage>4762</fpage>
<lpage>4773</lpage>
</citation>
<citation citation-type="display-unstructured">Makinen, T., Veikkola, T., Mustjoki, S., Karpanen, T., Catimel, B., Nice, E. C., et al. (2001). Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO Journal, 20, 4762–773.
<pub-id pub-id-type="pmid">11532940</pub-id>
</citation>
</ref>
<ref id="CR142">
<label>142.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Skobe</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hawighorst</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Jackson</surname>
<given-names>D. G.</given-names>
</name>
<name>
<surname>Prevo</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Janes</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Velasco</surname>
<given-names>P.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis</article-title>
<source>Nature Medicine</source>
<year>2001</year>
<volume>7</volume>
<fpage>192</fpage>
<lpage>198</lpage>
</citation>
<citation citation-type="display-unstructured">Skobe, M., Hawighorst, T., Jackson, D. G., Prevo, R., Janes, L., Velasco, P., et al. (2001). Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nature Medicine, 7, 192–98.
<pub-id pub-id-type="pmid">11175850</pub-id>
</citation>
</ref>
<ref id="CR143">
<label>143.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stacker</surname>
<given-names>S. A.</given-names>
</name>
<name>
<surname>Caesar</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Baldwin</surname>
<given-names>M. E.</given-names>
</name>
<name>
<surname>Thornton</surname>
<given-names>G. E.</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>R. A.</given-names>
</name>
<name>
<surname>Prevo</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>VEGF-D promotes the metastatic spread of tumor cells via the lymphatics</article-title>
<source>Nature Medicine</source>
<year>2001</year>
<volume>7</volume>
<fpage>186</fpage>
<lpage>191</lpage>
</citation>
<citation citation-type="display-unstructured">Stacker, S. A., Caesar, C., Baldwin, M. E., Thornton, G. E., Williams, R. A., Prevo, R., et al. (2001). VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nature Medicine, 7, 186–91.
<pub-id pub-id-type="pmid">11175849</pub-id>
</citation>
</ref>
<ref id="CR144">
<label>144.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nagy</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Vasile</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Sundberg</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>L. F.</given-names>
</name>
<name>
<surname>Detmar</surname>
<given-names>M. J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis</article-title>
<source>Journal of Experimental Medicine</source>
<year>2002</year>
<volume>196</volume>
<fpage>1497</fpage>
<lpage>1506</lpage>
</citation>
<citation citation-type="display-unstructured">Nagy, J. A., Vasile, E., Feng, D., Sundberg, C., Brown, L. F., Detmar, M. J., et al. (2002). Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. Journal of Experimental Medicine, 196, 1497–506.
<pub-id pub-id-type="pmid">12461084</pub-id>
</citation>
</ref>
<ref id="CR145">
<label>145.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chang</surname>
<given-names>L. K.</given-names>
</name>
<name>
<surname>Garcia-Cardena</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Farnebo</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Fannon</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>E. J.</given-names>
</name>
<name>
<surname>Butterfield</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Dose-dependent response of FGF-2 for lymphangiogenesis</article-title>
<source>Proceedings of the National Academy of Sciences of the United States of America</source>
<year>2004</year>
<volume>101</volume>
<fpage>11658</fpage>
<lpage>11663</lpage>
</citation>
<citation citation-type="display-unstructured">Chang, L. K., Garcia-Cardena, G., Farnebo, F., Fannon, M., Chen, E. J., Butterfield, C., et al. (2004). Dose-dependent response of FGF-2 for lymphangiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 101, 11658–1663.
<pub-id pub-id-type="pmid">15289610</pub-id>
</citation>
</ref>
<ref id="CR146">
<label>146.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cao</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Bjorndahl</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Religa</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Clasper</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Garvin</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Galter</surname>
<given-names>D.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis</article-title>
<source>Cancer Cell</source>
<year>2004</year>
<volume>6</volume>
<fpage>333</fpage>
<lpage>345</lpage>
</citation>
<citation citation-type="display-unstructured">Cao, R., Bjorndahl, M. A., Religa, P., Clasper, S., Garvin, S., Galter, D., et al. (2004). PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell, 6, 333–45.
<pub-id pub-id-type="pmid">15488757</pub-id>
</citation>
</ref>
<ref id="CR147">
<label>147.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Anan</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Morisaki</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Katano</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ikubo</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kitsuki</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Uchiyama</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Vascular endothelial growth factor and platelet-derived growth factor are potential angiogenic and metastatic factors in human breast cancer</article-title>
<source>Surgery</source>
<year>1996</year>
<volume>119</volume>
<fpage>333</fpage>
<lpage>339</lpage>
</citation>
<citation citation-type="display-unstructured">Anan, K., Morisaki, T., Katano, M., Ikubo, A., Kitsuki, H., Uchiyama, A., et al. (1996). Vascular endothelial growth factor and platelet-derived growth factor are potential angiogenic and metastatic factors in human breast cancer. Surgery, 119, 333–39.
<pub-id pub-id-type="pmid">8619189</pub-id>
</citation>
</ref>
<ref id="CR148">
<label>148.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gale</surname>
<given-names>N. W.</given-names>
</name>
<name>
<surname>Thurston</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Hackett</surname>
<given-names>S. F.</given-names>
</name>
<name>
<surname>Renard</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>McClain</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1</article-title>
<source>Dev Cell</source>
<year>2002</year>
<volume>3</volume>
<fpage>411</fpage>
<lpage>423</lpage>
</citation>
<citation citation-type="display-unstructured">Gale, N. W., Thurston, G., Hackett, S. F., Renard, R., Wang, Q., McClain, J., et al. (2002). Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev Cell, 3, 411–23.
<pub-id pub-id-type="pmid">12361603</pub-id>
</citation>
</ref>
<ref id="CR149">
<label>149.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morisada</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Oike</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yamada</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Urano</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Akao</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kubota</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Angiopoietin-1 promotes LYVE-1-positive lymphatic vessel formation</article-title>
<source>Blood</source>
<year>2005</year>
<volume>105</volume>
<fpage>4649</fpage>
<lpage>4656</lpage>
</citation>
<citation citation-type="display-unstructured">Morisada, T., Oike, Y., Yamada, Y., Urano, T., Akao, M., Kubota, Y., et al. (2005). Angiopoietin-1 promotes LYVE-1-positive lymphatic vessel formation. Blood, 105, 4649–656.
<pub-id pub-id-type="pmid">15705793</pub-id>
</citation>
</ref>
<ref id="CR150">
<label>150.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yuan</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Moyon</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Pardanaud</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Breant</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Karkkainen</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Alitalo</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Abnormal lymphatic vessel development in neuropilin 2 mutant mice</article-title>
<source>Development</source>
<year>2002</year>
<volume>129</volume>
<fpage>4797</fpage>
<lpage>4806</lpage>
</citation>
<citation citation-type="display-unstructured">Yuan, L., Moyon, D., Pardanaud, L., Breant, C., Karkkainen, M. J., Alitalo, K., et al. (2002). Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development, 129, 4797–806.
<pub-id pub-id-type="pmid">12361971</pub-id>
</citation>
</ref>
<ref id="CR151">
<label>151.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kajiya</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Hirakawa</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Drinnenberg</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Detmar</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Hepatocyte growth factor promotes lymphatic vessel formation and function</article-title>
<source>EMBO Journal</source>
<year>2005</year>
<volume>24</volume>
<fpage>2885</fpage>
<lpage>2895</lpage>
</citation>
<citation citation-type="display-unstructured">Kajiya, K., Hirakawa, S., Ma, B., Drinnenberg, I., & Detmar, M. (2005). Hepatocyte growth factor promotes lymphatic vessel formation and function. EMBO Journal, 24, 2885–895.
<pub-id pub-id-type="pmid">16052207</pub-id>
</citation>
</ref>
<ref id="CR152">
<label>152.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bjorndahl</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Nissen</surname>
<given-names>L. J.</given-names>
</name>
<name>
<surname>Clasper</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>L. A.</given-names>
</name>
<name>
<surname>Xue</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Insulin-like growth factors 1 and 2 induce lymphangiogenesis
<italic>in vivo</italic>
</article-title>
<source>Proceedings of the National Academy of Sciences of the United States of America</source>
<year>2005</year>
<volume>102</volume>
<fpage>15593</fpage>
<lpage>15598</lpage>
</citation>
<citation citation-type="display-unstructured">Bjorndahl, M., Cao, R., Nissen, L. J., Clasper, S., Johnson, L. A., Xue, Y., et al. (2005). Insulin-like growth factors 1 and 2 induce lymphangiogenesis in vivo. Proceedings of the National Academy of Sciences of the United States of America, 102, 15593–5598.
<pub-id pub-id-type="pmid">16230630</pub-id>
</citation>
</ref>
<ref id="CR153">
<label>153.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saharinen</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Tammela</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Karkkainen</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Alitalo</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Lymphatic vasculature: development, molecular regulation and role in tumor metastasis and inflammation</article-title>
<source>Trends in Immunology</source>
<year>2004</year>
<volume>25</volume>
<fpage>387</fpage>
<lpage>395</lpage>
</citation>
<citation citation-type="display-unstructured">Saharinen, P., Tammela, T., Karkkainen, M. J., & Alitalo, K. (2004). Lymphatic vasculature: development, molecular regulation and role in tumor metastasis and inflammation. Trends in Immunology, 25, 387–95.
<pub-id pub-id-type="pmid">15207507</pub-id>
</citation>
</ref>
<ref id="CR154">
<label>154.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ji</surname>
<given-names>R. C.</given-names>
</name>
</person-group>
<article-title>Lymphatic endothelial cells, tumor lymphangiogenesis and metastasis: New insights into intratumoral and peritumoral lymphatics</article-title>
<source>Cancer and Metastasis Reviews</source>
<year>2006</year>
<volume>25</volume>
<fpage>677</fpage>
<lpage>694</lpage>
</citation>
<citation citation-type="display-unstructured">Ji, R. C. (2006). Lymphatic endothelial cells, tumor lymphangiogenesis and metastasis: New insights into intratumoral and peritumoral lymphatics. Cancer and Metastasis Reviews, 25, 677–94.
<pub-id pub-id-type="pmid">17160713</pub-id>
</citation>
</ref>
<ref id="CR155">
<label>155.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Achen</surname>
<given-names>M. G.</given-names>
</name>
<name>
<surname>Mann</surname>
<given-names>G. B.</given-names>
</name>
<name>
<surname>Stacker</surname>
<given-names>S. A.</given-names>
</name>
</person-group>
<article-title>Targeting lymphangiogenesis to prevent tumour metastasis</article-title>
<source>British Journal of Cancer</source>
<year>2006</year>
<volume>94</volume>
<fpage>1355</fpage>
<lpage>1360</lpage>
</citation>
<citation citation-type="display-unstructured">Achen, M. G., Mann, G. B., & Stacker, S. A. (2006). Targeting lymphangiogenesis to prevent tumour metastasis. British Journal of Cancer, 94, 1355–360.
<pub-id pub-id-type="pmid">16641900</pub-id>
</citation>
</ref>
<ref id="CR156">
<label>156.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stacker</surname>
<given-names>S. A.</given-names>
</name>
<name>
<surname>Achen</surname>
<given-names>M. G.</given-names>
</name>
<name>
<surname>Jussila</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Baldwin</surname>
<given-names>M. E.</given-names>
</name>
<name>
<surname>Alitalo</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Lymphangiogenesis and cancer metastasis</article-title>
<source>Nature Reviews, Cancer</source>
<year>2002</year>
<volume>2</volume>
<fpage>573</fpage>
<lpage>583</lpage>
</citation>
<citation citation-type="display-unstructured">Stacker, S. A., Achen, M. G., Jussila, L., Baldwin, M. E., & Alitalo, K. (2002). Lymphangiogenesis and cancer metastasis. Nature Reviews Cancer, 2, 573–83. </citation>
</ref>
<ref id="CR157">
<label>157.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schoppmann</surname>
<given-names>S. F.</given-names>
</name>
<name>
<surname>Bayer</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Aumayr</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Taucher</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Geleff</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Rudas</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Prognostic value of lymphangiogenesis and lymphovascular invasion in invasive breast cancer</article-title>
<source>Annals of Surgery</source>
<year>2004</year>
<volume>240</volume>
<fpage>306</fpage>
<lpage>312</lpage>
</citation>
<citation citation-type="display-unstructured">Schoppmann, S. F., Bayer, G., Aumayr, K., Taucher, S., Geleff, S., Rudas, M., et al. (2004). Prognostic value of lymphangiogenesis and lymphovascular invasion in invasive breast cancer. Annals of Surgery, 240, 306–12.
<pub-id pub-id-type="pmid">15273556</pub-id>
</citation>
</ref>
<ref id="CR158">
<label>158.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>A. H.</given-names>
</name>
<name>
<surname>Pinder</surname>
<given-names>S. E.</given-names>
</name>
<name>
<surname>Macmillan</surname>
<given-names>R. D.</given-names>
</name>
<name>
<surname>Mitchell</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ellis</surname>
<given-names>I. O.</given-names>
</name>
<name>
<surname>Elston</surname>
<given-names>C. W.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Prognostic value of lymphovascular invasion in women with lymph node negative invasive breast carcinoma</article-title>
<source>European Journal of Cancer</source>
<year>2006</year>
<volume>42</volume>
<fpage>357</fpage>
<lpage>362</lpage>
</citation>
<citation citation-type="display-unstructured">Lee, A. H., Pinder, S. E., Macmillan, R. D., Mitchell, M., Ellis, I. O., Elston, C. W., et al. (2006). Prognostic value of lymphovascular invasion in women with lymph node negative invasive breast carcinoma. European Journal of Cancer, 42, 357–62.
<pub-id pub-id-type="pmid">16377180</pub-id>
</citation>
</ref>
<ref id="CR159">
<label>159.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schaft</surname>
<given-names>D. W.</given-names>
</name>
<name>
<surname>Pauwels</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Hulsmans</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zimmermann</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Poll-Franse</surname>
<given-names>L. V.</given-names>
</name>
<name>
<surname>Griffioen</surname>
<given-names>A. W.</given-names>
</name>
</person-group>
<article-title>Absence of lymphangiogenesis in ductal breast cancer at the primary tumor site</article-title>
<source>Cancer Letter</source>
<year>2007</year>
<volume>254</volume>
<fpage>128</fpage>
<lpage>136</lpage>
</citation>
<citation citation-type="display-unstructured">van der Schaft, D. W., Pauwels, P., Hulsmans, S., Zimmermann, M., van de Poll-Franse, L. V., & Griffioen, A. W. (2007). Absence of lymphangiogenesis in ductal breast cancer at the primary tumor site. Cancer Letter, 254, 128–36. </citation>
</ref>
<ref id="CR160">
<label>160.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arigami</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Natsugoe</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Uenosono</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Arima</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Mataki</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ehi</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Lymphatic invasion using D2-40 monoclonal antibody and its relationship to lymph node micrometastasis in pN0 gastric cancer</article-title>
<source>British Journal of Cancer</source>
<year>2005</year>
<volume>93</volume>
<fpage>688</fpage>
<lpage>693</lpage>
</citation>
<citation citation-type="display-unstructured">Arigami, T., Natsugoe, S., Uenosono, Y., Arima, H., Mataki, Y., Ehi, K., et al. (2005). Lymphatic invasion using D2-40 monoclonal antibody and its relationship to lymph node micrometastasis in pN0 gastric cancer. British Journal of Cancer, 93, 688–93.
<pub-id pub-id-type="pmid">16136051</pub-id>
</citation>
</ref>
<ref id="CR161">
<label>161.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lotan</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Gupta</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Shariat</surname>
<given-names>S. F.</given-names>
</name>
<name>
<surname>Palapattu</surname>
<given-names>G. S.</given-names>
</name>
<name>
<surname>Vazina</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Karakiewicz</surname>
<given-names>P. I.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Lymphovascular invasion is independently associated with overall survival, cause-specific survival, and local and distant recurrence in patients with negative lymph nodes at radical cystectomy</article-title>
<source>Journal of Clinical Oncology</source>
<year>2005</year>
<volume>23</volume>
<fpage>6533</fpage>
<lpage>6539</lpage>
</citation>
<citation citation-type="display-unstructured">Lotan, Y., Gupta, A., Shariat, S. F., Palapattu, G. S., Vazina, A., Karakiewicz, P. I., et al. (2005). Lymphovascular invasion is independently associated with overall survival, cause-specific survival, and local and distant recurrence in patients with negative lymph nodes at radical cystectomy. Journal of Clinical Oncology, 23, 6533–539.
<pub-id pub-id-type="pmid">16116151</pub-id>
</citation>
</ref>
<ref id="CR162">
<label>162.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Karpanen</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Egeblad</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Karkkainen</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Kubo</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Yla-Herttuala</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Jaattela</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth</article-title>
<source>Cancer Research</source>
<year>2001</year>
<volume>61</volume>
<fpage>1786</fpage>
<lpage>1790</lpage>
</citation>
<citation citation-type="display-unstructured">Karpanen, T., Egeblad, M., Karkkainen, M. J., Kubo, H., Yla-Herttuala, S., Jaattela, M., et al. (2001). Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Research, 61, 1786–790.
<pub-id pub-id-type="pmid">11280723</pub-id>
</citation>
</ref>
<ref id="CR163">
<label>163.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Szuba</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Skobe</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Karkkainen</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Shin</surname>
<given-names>W. S.</given-names>
</name>
<name>
<surname>Beynet</surname>
<given-names>D. P.</given-names>
</name>
<name>
<surname>Rockson</surname>
<given-names>N. B.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Therapeutic lymphangiogenesis with human recombinant VEGF-C</article-title>
<source>FASEB Journal</source>
<year>2002</year>
<volume>16</volume>
<fpage>1985</fpage>
<lpage>1987</lpage>
</citation>
<citation citation-type="display-unstructured">Szuba, A., Skobe, M., Karkkainen, M. J., Shin, W. S., Beynet, D. P., Rockson, N. B., et al. (2002). Therapeutic lymphangiogenesis with human recombinant VEGF-C. FASEB Journal, 16, 1985–987.
<pub-id pub-id-type="pmid">12397087</pub-id>
</citation>
</ref>
<ref id="CR164">
<label>164.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Giraudo</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Hoffman</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Hanahan</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Ruoslahti</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Lymphatic zip codes in premalignant lesions and tumors</article-title>
<source>Cancer Research</source>
<year>2006</year>
<volume>66</volume>
<fpage>5696</fpage>
<lpage>5706</lpage>
</citation>
<citation citation-type="display-unstructured">Zhang, L., Giraudo, E., Hoffman, J. A., Hanahan, D., & Ruoslahti, E. (2006). Lymphatic zip codes in premalignant lesions and tumors. Cancer Research, 66, 5696–706.
<pub-id pub-id-type="pmid">16740707</pub-id>
</citation>
</ref>
<ref id="CR165">
<label>165.</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jain</surname>
<given-names>R. K.</given-names>
</name>
</person-group>
<article-title>Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy</article-title>
<source>Science</source>
<year>2005</year>
<volume>307</volume>
<fpage>58</fpage>
<lpage>62</lpage>
</citation>
<citation citation-type="display-unstructured">Jain, R. K. (2005). Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science, 307, 58–2.
<pub-id pub-id-type="pmid">15637262</pub-id>
</citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D38 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 001D38 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:2797856
   |texte=   Tumour vascularization: sprouting angiogenesis and beyond
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:17717633" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a LymphedemaV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024