Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Limb volume measurements: comparison of accuracy and decisive parameters of the most used present methods

Identifieur interne : 000E57 ( Pmc/Corpus ); précédent : 000E56; suivant : 000E58

Limb volume measurements: comparison of accuracy and decisive parameters of the most used present methods

Auteurs : Adam Chromy ; Ludek Zalud ; Petr Dobsak ; Igor Suskevic ; Veronika Mrkvicova

Source :

RBID : PMC:4653131

Abstract

Limb volume measurements are used for evaluating growth of muscle mass and effectivity of strength training. Beside sport sciences, it is used e.g. for detection of oedemas, lymphedemas or carcinomas or for examinations of muscle atrophy. There are several commonly used methods, but there is a lack of clear comparison, which shows their advantages and limits. The accuracy of each method is uncertainly estimated only. The aim of this paper is to determine and experimentally verify their accuracy and compare them among each other. Water Displacement Method (WD), three methods based on circumferential measures—Frustum Sign Model (FSM), Disc Model (DM), Partial Frustum Model (PFM) and two 3D scan based methods Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) were compared. Precise reference cylinders and limbs of two human subjects were measured 10 times by each method. Personal dependency of methods was also tested by measuring 10 times the same object by 3 different people. Accuracies: WD 0.3 %, FSM 2–8 % according person, DM, PFM 1–8 %, MRI 2 % (hand) or 8 % (finger), CT 0.5 % (hand) or 2 % (finger);times: FSM 1 min, CT 7 min, WD, DM, PFM 15 min, MRI 19 min; and more. WD was found as the best method for most of uses with best accuracy. The CT disposes with almost the same accuracy and allows measurements of specific regions (e.g. particular muscles), as same as MRI, which accuracy is worse though, but it is not harmful. Frustum Sign Model is usable for very fast estimation of limb volume, but with lower accuracy, Disc Model and Partial Frustum Model is useful in cases when Water Displacement cannot be used.


Url:
DOI: 10.1186/s40064-015-1468-7
PubMed: 26618096
PubMed Central: 4653131

Links to Exploration step

PMC:4653131

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Limb volume measurements: comparison of accuracy and decisive parameters of the most used present methods</title>
<author>
<name sortKey="Chromy, Adam" sort="Chromy, Adam" uniqKey="Chromy A" first="Adam" last="Chromy">Adam Chromy</name>
<affiliation>
<nlm:aff id="Aff1">International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">Central European Institute of Technology, Brno University of Technology, Technicka 3082/10, 616 00 Brno, Czech Republic</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zalud, Ludek" sort="Zalud, Ludek" uniqKey="Zalud L" first="Ludek" last="Zalud">Ludek Zalud</name>
<affiliation>
<nlm:aff id="Aff1">International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">Central European Institute of Technology, Brno University of Technology, Technicka 3082/10, 616 00 Brno, Czech Republic</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dobsak, Petr" sort="Dobsak, Petr" uniqKey="Dobsak P" first="Petr" last="Dobsak">Petr Dobsak</name>
<affiliation>
<nlm:aff id="Aff1">International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Suskevic, Igor" sort="Suskevic, Igor" uniqKey="Suskevic I" first="Igor" last="Suskevic">Igor Suskevic</name>
<affiliation>
<nlm:aff id="Aff1">International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mrkvicova, Veronika" sort="Mrkvicova, Veronika" uniqKey="Mrkvicova V" first="Veronika" last="Mrkvicova">Veronika Mrkvicova</name>
<affiliation>
<nlm:aff id="Aff4">Department of Preventive Medicine, Faculty of Medicine, Masaryk University of Brno, Brno, Czech Republic</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26618096</idno>
<idno type="pmc">4653131</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4653131</idno>
<idno type="RBID">PMC:4653131</idno>
<idno type="doi">10.1186/s40064-015-1468-7</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000E57</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000E57</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Limb volume measurements: comparison of accuracy and decisive parameters of the most used present methods</title>
<author>
<name sortKey="Chromy, Adam" sort="Chromy, Adam" uniqKey="Chromy A" first="Adam" last="Chromy">Adam Chromy</name>
<affiliation>
<nlm:aff id="Aff1">International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">Central European Institute of Technology, Brno University of Technology, Technicka 3082/10, 616 00 Brno, Czech Republic</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zalud, Ludek" sort="Zalud, Ludek" uniqKey="Zalud L" first="Ludek" last="Zalud">Ludek Zalud</name>
<affiliation>
<nlm:aff id="Aff1">International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">Central European Institute of Technology, Brno University of Technology, Technicka 3082/10, 616 00 Brno, Czech Republic</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dobsak, Petr" sort="Dobsak, Petr" uniqKey="Dobsak P" first="Petr" last="Dobsak">Petr Dobsak</name>
<affiliation>
<nlm:aff id="Aff1">International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Suskevic, Igor" sort="Suskevic, Igor" uniqKey="Suskevic I" first="Igor" last="Suskevic">Igor Suskevic</name>
<affiliation>
<nlm:aff id="Aff1">International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mrkvicova, Veronika" sort="Mrkvicova, Veronika" uniqKey="Mrkvicova V" first="Veronika" last="Mrkvicova">Veronika Mrkvicova</name>
<affiliation>
<nlm:aff id="Aff4">Department of Preventive Medicine, Faculty of Medicine, Masaryk University of Brno, Brno, Czech Republic</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">SpringerPlus</title>
<idno type="eISSN">2193-1801</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Limb volume measurements are used for evaluating growth of muscle mass and effectivity of strength training. Beside sport sciences, it is used e.g. for detection of oedemas, lymphedemas or carcinomas or for examinations of muscle atrophy. There are several commonly used methods, but there is a lack of clear comparison, which shows their advantages and limits. The accuracy of each method is uncertainly estimated only. The aim of this paper is to determine and experimentally verify their accuracy and compare them among each other. Water Displacement Method (WD), three methods based on circumferential measures—Frustum Sign Model (FSM), Disc Model (DM), Partial Frustum Model (PFM) and two 3D scan based methods Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) were compared. Precise reference cylinders and limbs of two human subjects were measured 10 times by each method. Personal dependency of methods was also tested by measuring 10 times the same object by 3 different people. Accuracies: WD 0.3 %, FSM 2–8 % according person, DM, PFM 1–8 %, MRI 2 % (hand) or 8 % (finger), CT 0.5 % (hand) or 2 % (finger);times: FSM 1 min, CT 7 min, WD, DM, PFM 15 min, MRI 19 min; and more. WD was found as the best method for most of uses with best accuracy. The CT disposes with almost the same accuracy and allows measurements of specific regions (e.g. particular muscles), as same as MRI, which accuracy is worse though, but it is not harmful. Frustum Sign Model is usable for very fast estimation of limb volume, but with lower accuracy, Disc Model and Partial Frustum Model is useful in cases when Water Displacement cannot be used.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Akagi, R" uniqKey="Akagi R">R Akagi</name>
</author>
<author>
<name sortKey="Takai, Y" uniqKey="Takai Y">Y Takai</name>
</author>
<author>
<name sortKey="Ohta, M" uniqKey="Ohta M">M Ohta</name>
</author>
<author>
<name sortKey="Kanehisa, H" uniqKey="Kanehisa H">H Kanehisa</name>
</author>
<author>
<name sortKey="Kawakami, Y" uniqKey="Kawakami Y">Y Kawakami</name>
</author>
<author>
<name sortKey="Fukunaga, T" uniqKey="Fukunaga T">T Fukunaga</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Armer, Jm" uniqKey="Armer J">JM Armer</name>
</author>
<author>
<name sortKey="Ridner, Sh" uniqKey="Ridner S">SH Ridner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brijker, F" uniqKey="Brijker F">F Brijker</name>
</author>
<author>
<name sortKey="Heijdra, Yf" uniqKey="Heijdra Y">YF Heijdra</name>
</author>
<author>
<name sortKey="Van Den Elshout, Fj" uniqKey="Van Den Elshout F">FJ Van Den Elshout</name>
</author>
<author>
<name sortKey="Bosch, Fh" uniqKey="Bosch F">FH Bosch</name>
</author>
<author>
<name sortKey="Folgering, Ht" uniqKey="Folgering H">HT Folgering</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chlosta, P" uniqKey="Chlosta P">P Chlosta</name>
</author>
<author>
<name sortKey="Drewa, T" uniqKey="Drewa T">T Drewa</name>
</author>
<author>
<name sortKey="Siekiera, J" uniqKey="Siekiera J">J Siekiera</name>
</author>
<author>
<name sortKey="Jaskulski, J" uniqKey="Jaskulski J">J Jaskulski</name>
</author>
<author>
<name sortKey="Petrus, A" uniqKey="Petrus A">A Petrus</name>
</author>
<author>
<name sortKey="Kamecki, K" uniqKey="Kamecki K">K Kamecki</name>
</author>
<author>
<name sortKey="Mikolajczak, W" uniqKey="Mikolajczak W">W Mikolajczak</name>
</author>
<author>
<name sortKey="Obarzanowski, M" uniqKey="Obarzanowski M">M Obarzanowski</name>
</author>
<author>
<name sortKey="Wronczewski, A" uniqKey="Wronczewski A">A Wronczewski</name>
</author>
<author>
<name sortKey="Krasnicki, K" uniqKey="Krasnicki K">K Krasnicki</name>
</author>
<author>
<name sortKey="Jasinski, M" uniqKey="Jasinski M">M Jasinski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cmelik, M" uniqKey="Cmelik M">M Cmelik</name>
</author>
<author>
<name sortKey="Machonsky, L" uniqKey="Machonsky L">L Machonsky</name>
</author>
<author>
<name sortKey="Sima, Z" uniqKey="Sima Z">Z Sima</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Santo, Ng" uniqKey="De Santo N">NG De Santo</name>
</author>
<author>
<name sortKey="Bisaccia, C" uniqKey="Bisaccia C">C Bisaccia</name>
</author>
<author>
<name sortKey="Cirillo, M" uniqKey="Cirillo M">M Cirillo</name>
</author>
<author>
<name sortKey="Richet, G" uniqKey="Richet G">G Richet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deltombe, T" uniqKey="Deltombe T">T Deltombe</name>
</author>
<author>
<name sortKey="Jamart, J" uniqKey="Jamart J">J Jamart</name>
</author>
<author>
<name sortKey="Recloux, S" uniqKey="Recloux S">S Recloux</name>
</author>
<author>
<name sortKey="Legrand, C" uniqKey="Legrand C">C Legrand</name>
</author>
<author>
<name sortKey="Vandenbroeck, N" uniqKey="Vandenbroeck N">N Vandenbroeck</name>
</author>
<author>
<name sortKey="Theys, S" uniqKey="Theys S">S Theys</name>
</author>
<author>
<name sortKey="Hanson, P" uniqKey="Hanson P">P Hanson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gaszynski, T" uniqKey="Gaszynski T">T Gaszynski</name>
</author>
<author>
<name sortKey="Szewczyk, T" uniqKey="Szewczyk T">T Szewczyk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haase, F" uniqKey="Haase F">F Haase</name>
</author>
<author>
<name sortKey="Siewert, C" uniqKey="Siewert C">C Siewert</name>
</author>
<author>
<name sortKey="Von Rautenfeld, Db" uniqKey="Von Rautenfeld D">DB von Rautenfeld</name>
</author>
<author>
<name sortKey="Fischbach, Ju" uniqKey="Fischbach J">JU Fischbach</name>
</author>
<author>
<name sortKey="Seifert, H" uniqKey="Seifert H">H Seifert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hackney, Kj" uniqKey="Hackney K">KJ Hackney</name>
</author>
<author>
<name sortKey="Cook, Sb" uniqKey="Cook S">SB Cook</name>
</author>
<author>
<name sortKey="Fairchild, Tj" uniqKey="Fairchild T">TJ Fairchild</name>
</author>
<author>
<name sortKey="Ploutz Snyder, Ll" uniqKey="Ploutz Snyder L">LL Ploutz-Snyder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haponiuk, I" uniqKey="Haponiuk I">I Haponiuk</name>
</author>
<author>
<name sortKey="Chojnicki, M" uniqKey="Chojnicki M">M Chojnicki</name>
</author>
<author>
<name sortKey="Steffens, M" uniqKey="Steffens M">M Steffens</name>
</author>
<author>
<name sortKey="Jaworski, R" uniqKey="Jaworski R">R Jaworski</name>
</author>
<author>
<name sortKey="Szofer Sendrowska, A" uniqKey="Szofer Sendrowska A">A Szofer-Sendrowska</name>
</author>
<author>
<name sortKey="Juscinski, J" uniqKey="Juscinski J">J Juscinski</name>
</author>
<author>
<name sortKey="Kwasniak, E" uniqKey="Kwasniak E">E Kwasniak</name>
</author>
<author>
<name sortKey="Paczkowski, K" uniqKey="Paczkowski K">K Paczkowski</name>
</author>
<author>
<name sortKey="Zielinski, J" uniqKey="Zielinski J">J Zielinski</name>
</author>
<author>
<name sortKey="Gierat Haponiuk, K" uniqKey="Gierat Haponiuk K">K Gierat-Haponiuk</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karakas, P" uniqKey="Karakas P">P Karakas</name>
</author>
<author>
<name sortKey="Bozkir, Mg" uniqKey="Bozkir M">MG Bozkir</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaulesar Sukul, Dm" uniqKey="Kaulesar Sukul D">DM Kaulesar Sukul</name>
</author>
<author>
<name sortKey="Den Hoed, Pt" uniqKey="Den Hoed P">PT den Hoed</name>
</author>
<author>
<name sortKey="Johannes, Ej" uniqKey="Johannes E">EJ Johannes</name>
</author>
<author>
<name sortKey="Van Dolder, R" uniqKey="Van Dolder R">R van Dolder</name>
</author>
<author>
<name sortKey="Benda, E" uniqKey="Benda E">E Benda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khanavi, M" uniqKey="Khanavi M">M Khanavi</name>
</author>
<author>
<name sortKey="Sabbagh Bani Azad, M" uniqKey="Sabbagh Bani Azad M">M Sabbagh-Bani-Azad</name>
</author>
<author>
<name sortKey="Abdolghaffari, Ah" uniqKey="Abdolghaffari A">AH Abdolghaffari</name>
</author>
<author>
<name sortKey="Vazirian, M" uniqKey="Vazirian M">M Vazirian</name>
</author>
<author>
<name sortKey="Isazadeh, I" uniqKey="Isazadeh I">I Isazadeh</name>
</author>
<author>
<name sortKey="Rezvanfar, Ma" uniqKey="Rezvanfar M">MA Rezvanfar</name>
</author>
<author>
<name sortKey="Baeeri, M" uniqKey="Baeeri M">M Baeeri</name>
</author>
<author>
<name sortKey="Mohammadirad, A" uniqKey="Mohammadirad A">A Mohammadirad</name>
</author>
<author>
<name sortKey="Rahimi, R" uniqKey="Rahimi R">R Rahimi</name>
</author>
<author>
<name sortKey="Shams Ardekani, Mr" uniqKey="Shams Ardekani M">MR Shams-Ardekani</name>
</author>
<author>
<name sortKey="Abdollahi, M" uniqKey="Abdollahi M">M Abdollahi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Knarr, Ba" uniqKey="Knarr B">BA Knarr</name>
</author>
<author>
<name sortKey="Ramsay, Jw" uniqKey="Ramsay J">JW Ramsay</name>
</author>
<author>
<name sortKey="Buchanan, Ts" uniqKey="Buchanan T">TS Buchanan</name>
</author>
<author>
<name sortKey="Higginson, Js" uniqKey="Higginson J">JS Higginson</name>
</author>
<author>
<name sortKey="Binder Macleod, Sa" uniqKey="Binder Macleod S">SA Binder-Macleod</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mccollough, Ch" uniqKey="Mccollough C">CH McCollough</name>
</author>
<author>
<name sortKey="Zink, Fe" uniqKey="Zink F">FE Zink</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Megens, Am" uniqKey="Megens A">AM Megens</name>
</author>
<author>
<name sortKey="Harris, Sr" uniqKey="Harris S">SR Harris</name>
</author>
<author>
<name sortKey="Kim Sing, C" uniqKey="Kim Sing C">C Kim-Sing</name>
</author>
<author>
<name sortKey="Mckenzie, Dc" uniqKey="Mckenzie D">DC McKenzie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meijer, Rs" uniqKey="Meijer R">RS Meijer</name>
</author>
<author>
<name sortKey="Rietman, Js" uniqKey="Rietman J">JS Rietman</name>
</author>
<author>
<name sortKey="Geertzen, Jhb" uniqKey="Geertzen J">JHB Geertzen</name>
</author>
<author>
<name sortKey="Bosmans, Jc" uniqKey="Bosmans J">JC Bosmans</name>
</author>
<author>
<name sortKey="Dijkstra, Pu" uniqKey="Dijkstra P">PU Dijkstra</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ramsay, Jw" uniqKey="Ramsay J">JW Ramsay</name>
</author>
<author>
<name sortKey="Barrance, Pj" uniqKey="Barrance P">PJ Barrance</name>
</author>
<author>
<name sortKey="Buchanan, Ts" uniqKey="Buchanan T">TS Buchanan</name>
</author>
<author>
<name sortKey="Higginson, Js" uniqKey="Higginson J">JS Higginson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ribeiro, Rcb" uniqKey="Ribeiro R">RCB Ribeiro</name>
</author>
<author>
<name sortKey="Lima, Smpf" uniqKey="Lima S">SMPF Lima</name>
</author>
<author>
<name sortKey="Carreira, Acg" uniqKey="Carreira A">ACG Carreira</name>
</author>
<author>
<name sortKey="Masiero, D" uniqKey="Masiero D">D Masiero</name>
</author>
<author>
<name sortKey="Chamlian, Tr" uniqKey="Chamlian T">TR Chamlian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ridner, Sh" uniqKey="Ridner S">SH Ridner</name>
</author>
<author>
<name sortKey="Montgomery, Ld" uniqKey="Montgomery L">LD Montgomery</name>
</author>
<author>
<name sortKey="Hepworth, Jt" uniqKey="Hepworth J">JT Hepworth</name>
</author>
<author>
<name sortKey="Stewart, Br" uniqKey="Stewart B">BR Stewart</name>
</author>
<author>
<name sortKey="Armer, Jm" uniqKey="Armer J">JM Armer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sander, Ap" uniqKey="Sander A">AP Sander</name>
</author>
<author>
<name sortKey="Hajer, Nm" uniqKey="Hajer N">NM Hajer</name>
</author>
<author>
<name sortKey="Hemenway, K" uniqKey="Hemenway K">K Hemenway</name>
</author>
<author>
<name sortKey="Miller, Ac" uniqKey="Miller A">AC Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spinczyk, D" uniqKey="Spinczyk D">D Spinczyk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sproule, Dm" uniqKey="Sproule D">DM Sproule</name>
</author>
<author>
<name sortKey="Montgomery, Mj" uniqKey="Montgomery M">MJ Montgomery</name>
</author>
<author>
<name sortKey="Punyanitya, M" uniqKey="Punyanitya M">M Punyanitya</name>
</author>
<author>
<name sortKey="Shen, W" uniqKey="Shen W">W Shen</name>
</author>
<author>
<name sortKey="Dashnaw, S" uniqKey="Dashnaw S">S Dashnaw</name>
</author>
<author>
<name sortKey="Montes, J" uniqKey="Montes J">J Montes</name>
</author>
<author>
<name sortKey="Dunaway, S" uniqKey="Dunaway S">S Dunaway</name>
</author>
<author>
<name sortKey="Finkel, R" uniqKey="Finkel R">R Finkel</name>
</author>
<author>
<name sortKey="Darras, B" uniqKey="Darras B">B Darras</name>
</author>
<author>
<name sortKey="De Vivo, Dc" uniqKey="De Vivo D">DC De Vivo</name>
</author>
<author>
<name sortKey="Kaufmann, P" uniqKey="Kaufmann P">P Kaufmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Szopinski, T" uniqKey="Szopinski T">T Szopinski</name>
</author>
<author>
<name sortKey="Golabek, T" uniqKey="Golabek T">T Golabek</name>
</author>
<author>
<name sortKey="Borowka, A" uniqKey="Borowka A">A Borowka</name>
</author>
<author>
<name sortKey="Chlosta, P" uniqKey="Chlosta P">P Chlosta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taylor, R" uniqKey="Taylor R">R Taylor</name>
</author>
<author>
<name sortKey="Jayasinghe, Uw" uniqKey="Jayasinghe U">UW Jayasinghe</name>
</author>
<author>
<name sortKey="Koelmeyer, L" uniqKey="Koelmeyer L">L Koelmeyer</name>
</author>
<author>
<name sortKey="Ung, O" uniqKey="Ung O">O Ung</name>
</author>
<author>
<name sortKey="Boyages, J" uniqKey="Boyages J">J Boyages</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Trends, T" uniqKey="Trends T">T Trends</name>
</author>
<author>
<name sortKey="Read, W" uniqKey="Read W">W Read</name>
</author>
<author>
<name sortKey="Jobs, Ar" uniqKey="Jobs A">AR Jobs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Udupa, Jk" uniqKey="Udupa J">JK Udupa</name>
</author>
<author>
<name sortKey="Herman, Gt" uniqKey="Herman G">GT Herman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wachal, K" uniqKey="Wachal K">K Wachal</name>
</author>
<author>
<name sortKey="Szmyt, K" uniqKey="Szmyt K">K Szmyt</name>
</author>
<author>
<name sortKey="Oszkinis, G" uniqKey="Oszkinis G">G Oszkinis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Webb, Ar" uniqKey="Webb A">AR Webb</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Springerplus</journal-id>
<journal-id journal-id-type="iso-abbrev">Springerplus</journal-id>
<journal-title-group>
<journal-title>SpringerPlus</journal-title>
</journal-title-group>
<issn pub-type="epub">2193-1801</issn>
<publisher>
<publisher-name>Springer International Publishing</publisher-name>
<publisher-loc>Cham</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26618096</article-id>
<article-id pub-id-type="pmc">4653131</article-id>
<article-id pub-id-type="publisher-id">1468</article-id>
<article-id pub-id-type="doi">10.1186/s40064-015-1468-7</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Limb volume measurements: comparison of accuracy and decisive parameters of the most used present methods</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Chromy</surname>
<given-names>Adam</given-names>
</name>
<address>
<phone>+420 541 146 479</phone>
<email>adam.chromy@ceitec.vutbr.cz</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
<xref ref-type="aff" rid="Aff2"></xref>
<xref ref-type="aff" rid="Aff3"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zalud</surname>
<given-names>Ludek</given-names>
</name>
<address>
<email>zalud@feec.vutbr.cz</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
<xref ref-type="aff" rid="Aff2"></xref>
<xref ref-type="aff" rid="Aff3"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dobsak</surname>
<given-names>Petr</given-names>
</name>
<address>
<email>petr.dobsak@fnusa.cz</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Suskevic</surname>
<given-names>Igor</given-names>
</name>
<address>
<email>igor.suskevic@fnusa.cz</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mrkvicova</surname>
<given-names>Veronika</given-names>
</name>
<address>
<email>veronika.mrkvicova@fnusa.cz</email>
</address>
<xref ref-type="aff" rid="Aff4"></xref>
</contrib>
<aff id="Aff1">
<label></label>
International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic</aff>
<aff id="Aff2">
<label></label>
Central European Institute of Technology, Brno University of Technology, Technicka 3082/10, 616 00 Brno, Czech Republic</aff>
<aff id="Aff3">
<label></label>
Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic</aff>
<aff id="Aff4">
<label></label>
Department of Preventive Medicine, Faculty of Medicine, Masaryk University of Brno, Brno, Czech Republic</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>19</day>
<month>11</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>19</day>
<month>11</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="collection">
<year>2015</year>
</pub-date>
<volume>4</volume>
<elocation-id>707</elocation-id>
<history>
<date date-type="received">
<day>31</day>
<month>8</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>22</day>
<month>10</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>© Chromy et al. 2015</copyright-statement>
<license license-type="OpenAccess">
<license-p>
<bold>Open Access</bold>
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<p>Limb volume measurements are used for evaluating growth of muscle mass and effectivity of strength training. Beside sport sciences, it is used e.g. for detection of oedemas, lymphedemas or carcinomas or for examinations of muscle atrophy. There are several commonly used methods, but there is a lack of clear comparison, which shows their advantages and limits. The accuracy of each method is uncertainly estimated only. The aim of this paper is to determine and experimentally verify their accuracy and compare them among each other. Water Displacement Method (WD), three methods based on circumferential measures—Frustum Sign Model (FSM), Disc Model (DM), Partial Frustum Model (PFM) and two 3D scan based methods Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) were compared. Precise reference cylinders and limbs of two human subjects were measured 10 times by each method. Personal dependency of methods was also tested by measuring 10 times the same object by 3 different people. Accuracies: WD 0.3 %, FSM 2–8 % according person, DM, PFM 1–8 %, MRI 2 % (hand) or 8 % (finger), CT 0.5 % (hand) or 2 % (finger);times: FSM 1 min, CT 7 min, WD, DM, PFM 15 min, MRI 19 min; and more. WD was found as the best method for most of uses with best accuracy. The CT disposes with almost the same accuracy and allows measurements of specific regions (e.g. particular muscles), as same as MRI, which accuracy is worse though, but it is not harmful. Frustum Sign Model is usable for very fast estimation of limb volume, but with lower accuracy, Disc Model and Partial Frustum Model is useful in cases when Water Displacement cannot be used.</p>
</abstract>
<kwd-group xml:lang="en">
<title>Keywords</title>
<kwd>Volumetric measurements</kwd>
<kwd>Volumetric methods</kwd>
<kwd>Body volume</kwd>
</kwd-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© The Author(s) 2015</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1">
<title>Background</title>
<p>Since very beginning of sport, visual observation of limb volume has been the most common method evaluating growth of muscle mass (De Santo et al.
<xref ref-type="bibr" rid="CR7">2011</xref>
), what consequently evaluates effectivity and utility of applied strength training schedule (Silva-Couto et al.
<xref ref-type="bibr" rid="CR31">2014</xref>
).</p>
<p>But if you are
<italic>observing only</italic>
, the changes in muscle mass are visible only when increments or decrements are significantly large, e.g. after longer exercising period. To be able to detect the efficiency of training in its
<italic>very beginning</italic>
or to be able to
<italic>objectively compare</italic>
two training methods, we have to detect
<italic>tiny differences</italic>
of muscle mass. In this case, the observing is insufficient—it is necessary to
<italic>measure</italic>
volumetric changes of limb (Akagi et al.
<xref ref-type="bibr" rid="CR1">2009</xref>
; Kaulesar Sukul et al.
<xref ref-type="bibr" rid="CR16">1993</xref>
; Knarr et al.
<xref ref-type="bibr" rid="CR18">2013</xref>
).</p>
<p>Beside sport sciences, the measurement of limb volume with sufficient precision is also valuable for many other purposes—e.g. for early detection of peripheral oedemas (Brijker et al.
<xref ref-type="bibr" rid="CR3">2000</xref>
; Haase et al.
<xref ref-type="bibr" rid="CR10">2009</xref>
; Haponiuk et al.
<xref ref-type="bibr" rid="CR12">2013</xref>
), lymphedemas, carcinomas (Ridner et al.
<xref ref-type="bibr" rid="CR28">2007</xref>
) or fibrosis (Ribeiro et al.
<xref ref-type="bibr" rid="CR27">2010</xref>
), its monitoring and control of its evolution; measurement of rehabilitation progress (Khanavi et al.
<xref ref-type="bibr" rid="CR17">2014</xref>
; Konecny
<xref ref-type="bibr" rid="CR19">2013</xref>
), measurements of muscle atrophy (Ramsay et al.
<xref ref-type="bibr" rid="CR26">2011</xref>
; Silva-Couto M de et al.
<xref ref-type="bibr" rid="CR31">2014</xref>
) or supervision of recovery process after invasive surgeries (Konecny
<xref ref-type="bibr" rid="CR19">2013</xref>
; Sproule et al.
<xref ref-type="bibr" rid="CR34">2011</xref>
; Wachal et al.
<xref ref-type="bibr" rid="CR40">2014</xref>
).</p>
<p>According to (Armer and Ridner
<xref ref-type="bibr" rid="CR2">2006</xref>
; Brijker et al.
<xref ref-type="bibr" rid="CR3">2000</xref>
; Kaulesar Sukul et al.
<xref ref-type="bibr" rid="CR16">1993</xref>
; Lavelle and Stanton
<xref ref-type="bibr" rid="CR20">2014</xref>
; Ridner et al.
<xref ref-type="bibr" rid="CR28">2007</xref>
), the presently most used methods intended for measurements of limb volumes are: circumferential methods called
<italic>Frustum Sign Model</italic>
,
<italic>Disc Model</italic>
and their conjunction
<italic>Partial Frustum Model</italic>
; method called
<italic>Water Displacement Volumetry</italic>
and methods based on 3D model provided by
<italic>Magnetic Resonance Imaging</italic>
(MRI) or
<italic>Computed Tomography</italic>
(CT). There are several papers about their practical use, but there is not enough information about their accuracy (only uncertain estimations) and their specific advantages and limits.</p>
<p>The aim of this paper is to determine and experimentally verify their accuracy and compare them among each other also in other parameters, which are decisive to their usability. The result of this work should be an objective overview of available methods and should serve as guide when choosing the proper method for particular application.</p>
</sec>
<sec id="Sec2">
<title>Methods</title>
<p>The first part of this section describes reference objects used for the following experiments. In the second part, measuring procedure of each tested method is described. Final part describes both comparative experiments: accuracy and repeatability verification experiment and personal dependency test.</p>
<sec id="Sec3">
<title>Reference objects</title>
<p>For verification of accuracy of Water Displacement Method and the circumferential measurements, we use precise aluminium cylinders in three sizes (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
) with volumes similar to finger, hand and forearm. Dimensions of each reference cylinder has been measured with slide calliper and according to (Jamerson
<xref ref-type="bibr" rid="CR14">2009</xref>
) their volumes were computed as 15.91 ± 0.06, 432.46 ± 0.53 and 973.42 ± 0.89 ml.
<fig id="Fig1">
<label>Fig. 1</label>
<caption>
<p>Precise reference cylinders for verification of accuracy of Water Displacement Method and circumferential methods</p>
</caption>
<graphic xlink:href="40064_2015_1468_Fig1_HTML" id="MO1"></graphic>
</fig>
</p>
<p>For verification of accuracy of Magnetic Resonance Imaging and Computed Tomography, as same as for comparative experiments among different methods, two real human limbs were used. At patient’s limb, borders of three regions of interest were marked with permanent marker (Fig. 
<xref rid="Fig2" ref-type="fig">2</xref>
) as follows:
<fig id="Fig2">
<label>Fig. 2</label>
<caption>
<p>Patient’s upper limb with marked region of interest—forearm, hand and finger regions</p>
</caption>
<graphic xlink:href="40064_2015_1468_Fig2_HTML" id="MO2"></graphic>
</fig>
</p>
<sec id="Sec4">
<title>Finger</title>
<p>Region situated at middle finger of left hand, in distal direction from axial cutting plane located at the centre of proximal interphalangeal joint (
<italic>articulatio interphalangealis proximalis digii tertii</italic>
).</p>
</sec>
<sec id="Sec5">
<title>Hand</title>
<p>Region of left hand, in distal direction from axial cutting plane going through both ulnar styloid process (
<italic>processus styloideus ulnae</italic>
) and radial styloid process (
<italic>processus styloideus radii</italic>
).</p>
</sec>
<sec id="Sec6">
<title>Forearm</title>
<p>Region of forearm between axial cutting plane going through both ulnar styloid process (
<italic>processus styloideus ulnae</italic>
) and radial styloid process (
<italic>processus styloideus radii</italic>
) and axial cutting plane going through olecranon and cubital fossa (
<italic>fossa cubitalis</italic>
).</p>
<p>Each region of interest has been defined as above because of the fact that MRI and CT modalities do not recognize the border defined with permanent marker, so we have to be able to exactly determine boundaries of region just from the image of bones inside the limb, which are clearly visible at CT and MRI images.</p>
<p>Note: When words Finger, Hand and Forearm are written in following text with first character in capital, it is used in mean of the region of interest defined above, not in its anatomical sense.</p>
</sec>
</sec>
<sec id="Sec7">
<title>Water Displacement Method</title>
<p>The most commonly used volumetric method is based on quantum of water overflowing from fully filled container when measured limb is inserted (Armer and Ridner
<xref ref-type="bibr" rid="CR2">2006</xref>
; Megens et al.
<xref ref-type="bibr" rid="CR23">2001</xref>
; Szopinski et al.
<xref ref-type="bibr" rid="CR36">2014</xref>
).</p>
<p>The experimental apparatus is shown on Fig. 
<xref rid="Fig3" ref-type="fig">3</xref>
. It consists of concave tube, closed at the bottom side and equipped with spillway on the top of the tube (Lavelle and Stanton
<xref ref-type="bibr" rid="CR20">2014</xref>
). The spillway fall into the container placed at the precise digital weight scale KERN PCB 2500-2 (d = 0.01 g). There are two different tubes used in this experiment: the smaller one has a diameter 27 mm and the height 150 mm and is intended for measurements of small objects like a finger. The bigger one has a diameter 156 mm and the height 595 mm and is intended for measurements of objects in size of hand or forearm.
<fig id="Fig3">
<label>Fig. 3</label>
<caption>
<p>The measuring apparatus for Water Displacement Method. Two water tubes with different sizes for various sizes of measured object</p>
</caption>
<graphic xlink:href="40064_2015_1468_Fig3_HTML" id="MO3"></graphic>
</fig>
</p>
<p>At the start of measurement, the container is emptied and tube is filled with water since water starts to float through the spillway. We wait so long as the spilled water fully drops away (up to 10 min at bigger tube and 20 s at smaller tube) and reset the scale value (TARE). Then, the measured object is inserted into the tube up to the marked edge of region of interest (in case of human limb) or fully drowns in case of reference cylinder. We wait so long as the spilled water fully drops away (in case of reference cylinder) or when the dropping period is longer than 1 s (in case of human limb, because the shivering of limb vibrates with water level and dropping of water does not ceases totally). The weight of spilled water in grams is the value of volume in millilitres, since the density of water is 0.999 g/ml at 20 °C (Cmelik et al.
<xref ref-type="bibr" rid="CR5">2011</xref>
).</p>
<p>The method is frequently used because of its simplicity and very high accuracy. The main disadvantages are, that it requires good flexibility of measured limb, good motoric functions of patient (shivering of limb significantly influences result) and it is very time consuming (Damstra
<xref ref-type="bibr" rid="CR6">2009</xref>
; Deltombe et al.
<xref ref-type="bibr" rid="CR8">2007</xref>
; Kaulesar Sukul et al.
<xref ref-type="bibr" rid="CR16">1993</xref>
; Lavelle and Stanton
<xref ref-type="bibr" rid="CR20">2014</xref>
; Ridner et al.
<xref ref-type="bibr" rid="CR28">2007</xref>
). Region of interest is limited to level of immersion only, what is not suitable for specific measurements (e.g. size of particular muscle).</p>
</sec>
<sec id="Sec8">
<title>Frustum Sign Model</title>
<p>The experimental apparatus consists of the non-elastic string with diameter d
<sub>s</sub>
 = 3.45 mm and the ruler with d = 1 mm. There are just 2 circumferential measurements taken at opposite sides of measured region and the volume of limb is approximated by truncated cone between them (Fig. 
<xref rid="Fig4" ref-type="fig">4</xref>
) (Deltombe et al.
<xref ref-type="bibr" rid="CR8">2007</xref>
).
<fig id="Fig4">
<label>Fig. 4</label>
<caption>
<p>Schematic difference between the real volume of Forearm region and particular circumferential approximations</p>
</caption>
<graphic xlink:href="40064_2015_1468_Fig4_HTML" id="MO4"></graphic>
</fig>
</p>
<p>Instead of standard equations from (Armer and Ridner
<xref ref-type="bibr" rid="CR2">2006</xref>
; Deltombe et al.
<xref ref-type="bibr" rid="CR8">2007</xref>
; Ridner et al.
<xref ref-type="bibr" rid="CR28">2007</xref>
), we used its modification, since the diameter of measuring string indispensably influences the result:
<disp-formula id="Equa">
<alternatives>
<tex-math id="M1">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ V_{F} = \frac{\pi }{3} \cdot h \cdot \left[ {\left( {\frac{{C_{1} }}{2\pi } - \frac{{d_{s} }}{2}} \right)^{2} + \left( {\frac{{C_{1} }}{2\pi } - \frac{{d_{s} }}{2}} \right) \cdot \left( {\frac{{C_{2} }}{2\pi } - \frac{{d_{s} }}{2}} \right) + \left( {\frac{{C_{2} }}{2\pi } - \frac{{d_{s} }}{2}} \right)^{2} } \right] $$\end{document}</tex-math>
<mml:math id="M2" display="block">
<mml:mrow>
<mml:msub>
<mml:mi>V</mml:mi>
<mml:mi>F</mml:mi>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mi mathvariant="italic">π</mml:mi>
<mml:mn>3</mml:mn>
</mml:mfrac>
<mml:mo>·</mml:mo>
<mml:mi>h</mml:mi>
<mml:mo>·</mml:mo>
<mml:mfenced close="]" open="[" separators="">
<mml:mrow>
<mml:msup>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mfrac>
<mml:msub>
<mml:mi>C</mml:mi>
<mml:mn>1</mml:mn>
</mml:msub>
<mml:mrow>
<mml:mn>2</mml:mn>
<mml:mi mathvariant="italic">π</mml:mi>
</mml:mrow>
</mml:mfrac>
<mml:mo>-</mml:mo>
<mml:mfrac>
<mml:msub>
<mml:mi>d</mml:mi>
<mml:mi>s</mml:mi>
</mml:msub>
<mml:mn>2</mml:mn>
</mml:mfrac>
</mml:mrow>
</mml:mfenced>
<mml:mn>2</mml:mn>
</mml:msup>
<mml:mo>+</mml:mo>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mfrac>
<mml:msub>
<mml:mi>C</mml:mi>
<mml:mn>1</mml:mn>
</mml:msub>
<mml:mrow>
<mml:mn>2</mml:mn>
<mml:mi mathvariant="italic">π</mml:mi>
</mml:mrow>
</mml:mfrac>
<mml:mo>-</mml:mo>
<mml:mfrac>
<mml:msub>
<mml:mi>d</mml:mi>
<mml:mi>s</mml:mi>
</mml:msub>
<mml:mn>2</mml:mn>
</mml:mfrac>
</mml:mrow>
</mml:mfenced>
<mml:mo>·</mml:mo>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mfrac>
<mml:msub>
<mml:mi>C</mml:mi>
<mml:mn>2</mml:mn>
</mml:msub>
<mml:mrow>
<mml:mn>2</mml:mn>
<mml:mi mathvariant="italic">π</mml:mi>
</mml:mrow>
</mml:mfrac>
<mml:mo>-</mml:mo>
<mml:mfrac>
<mml:msub>
<mml:mi>d</mml:mi>
<mml:mi>s</mml:mi>
</mml:msub>
<mml:mn>2</mml:mn>
</mml:mfrac>
</mml:mrow>
</mml:mfenced>
<mml:mo>+</mml:mo>
<mml:msup>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mfrac>
<mml:msub>
<mml:mi>C</mml:mi>
<mml:mn>2</mml:mn>
</mml:msub>
<mml:mrow>
<mml:mn>2</mml:mn>
<mml:mi mathvariant="italic">π</mml:mi>
</mml:mrow>
</mml:mfrac>
<mml:mo>-</mml:mo>
<mml:mfrac>
<mml:msub>
<mml:mi>d</mml:mi>
<mml:mi>s</mml:mi>
</mml:msub>
<mml:mn>2</mml:mn>
</mml:mfrac>
</mml:mrow>
</mml:mfenced>
<mml:mn>2</mml:mn>
</mml:msup>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
</mml:math>
<graphic xlink:href="40064_2015_1468_Article_Equa.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
where
<italic>h</italic>
is distance between two circumferential measurements,
<italic>C</italic>
<sub>
<italic>1</italic>
</sub>
and
<italic>C</italic>
<sub>
<italic>2</italic>
</sub>
are measured values of circumference and
<italic>d</italic>
<sub>
<italic>s</italic>
</sub>
is diameter of measuring string.</p>
<p>The patients were placed in a sitting position with forearms pronated. The string was placed around the arm; always in direct contact with the skin but without excessive pressure (Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
) and the circumference was marked on the string. The length of marked part of string was measured by ruler. Measurements of arm circumference were captured at the level of both defining cutting planes of Forearm region, in case of Finger, the first circumference was taken at defining cutting plane and the second one was taken 10 mm proximally from the tip of middle finger. The measurements of Hand region were not performed, since the method is not intended for this purpose.
<fig id="Fig5">
<label>Fig. 5</label>
<caption>
<p>Measuring of limb circumference used at Frustum Sign Model, Disc Model and Partial Frustum Model method</p>
</caption>
<graphic xlink:href="40064_2015_1468_Fig5_HTML" id="MO6"></graphic>
</fig>
</p>
<p>This method is primarily used in cases, when the measured limb is not flexible enough to be placed into the water, in case of water-incompatible disease or in case, when patient limb is shivering too much (Ridner et al.
<xref ref-type="bibr" rid="CR28">2007</xref>
). Provides very quick and easy measurements, but its accuracy is low (Deltombe et al.
<xref ref-type="bibr" rid="CR8">2007</xref>
) and the results significantly depend on personal experiences of staff (Armer and Ridner
<xref ref-type="bibr" rid="CR2">2006</xref>
; Karakas and Bozkir
<xref ref-type="bibr" rid="CR15">2012</xref>
). The possibility of region of interest selection is also very limited.</p>
</sec>
<sec id="Sec9">
<title>Disc Model</title>
<p>The experimental apparatus and the method procedure is the same as in case of Frustum Sign Model, the only difference is that circumferential measurements are taken each 40 mm (Forearm region) or 10 mm (Finger region) from proximal border cutting plane of region and the total volume is computed as sum of equidistant discs (Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
) (Deltombe et al.
<xref ref-type="bibr" rid="CR8">2007</xref>
).</p>
<p>We use the modification of equation by (Kaulesar Sukul et al.
<xref ref-type="bibr" rid="CR16">1993</xref>
), because the diameter of measuring string influences the result and cannot be neglected:
<disp-formula id="Equb">
<alternatives>
<tex-math id="M3">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ V_{D} = \mathop \sum \limits_{n} \pi \cdot h \cdot \left( {\frac{C}{2\pi } - \frac{{d_{s} }}{2}} \right)^{2} $$\end{document}</tex-math>
<mml:math id="M4" display="block">
<mml:mrow>
<mml:msub>
<mml:mi>V</mml:mi>
<mml:mi>D</mml:mi>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:munder>
<mml:mo movablelimits="false"></mml:mo>
<mml:mi>n</mml:mi>
</mml:munder>
<mml:mi mathvariant="italic">π</mml:mi>
<mml:mo>·</mml:mo>
<mml:mi>h</mml:mi>
<mml:mo>·</mml:mo>
<mml:msup>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mfrac>
<mml:mi>C</mml:mi>
<mml:mrow>
<mml:mn>2</mml:mn>
<mml:mi mathvariant="italic">π</mml:mi>
</mml:mrow>
</mml:mfrac>
<mml:mo>-</mml:mo>
<mml:mfrac>
<mml:msub>
<mml:mi>d</mml:mi>
<mml:mi>s</mml:mi>
</mml:msub>
<mml:mn>2</mml:mn>
</mml:mfrac>
</mml:mrow>
</mml:mfenced>
<mml:mn>2</mml:mn>
</mml:msup>
</mml:mrow>
</mml:math>
<graphic xlink:href="40064_2015_1468_Article_Equb.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
where
<italic>h</italic>
is distance between two circumferential measurements,
<italic>C</italic>
is measured value of circumference and
<italic>d</italic>
<sub>
<italic>s</italic>
</sub>
is diameter of measuring string.</p>
<p>This method has the same advantages and usage purposes as Frustum Sign Model, but is a bit more accurate (Kaulesar Sukul et al.
<xref ref-type="bibr" rid="CR16">1993</xref>
; Sander et al.
<xref ref-type="bibr" rid="CR29">2002</xref>
), however more time consuming (Haase et al.
<xref ref-type="bibr" rid="CR10">2009</xref>
).</p>
</sec>
<sec id="Sec10">
<title>Partial Frustum Model</title>
<p>This method combines two methods mentioned above. It takes the same measurements as Disc Model, but approximates volume by 40 mm or 10 mm high truncated cones instead of equidistant discs (Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
) (Sander et al.
<xref ref-type="bibr" rid="CR29">2002</xref>
). The equation used at Frustum Sign Model was used.</p>
<p>This method has the same advantages and usage purposes as two previous methods, but it is slightly more time consuming compare to Disc Model if counted manually, but in case of computer processing, the time is the same and the accuracy is better since the approximation is more relevant to real volume (Lavelle and Stanton
<xref ref-type="bibr" rid="CR20">2014</xref>
).</p>
</sec>
<sec id="Sec11">
<title>Magnetic Resonance Imaging (MRI)</title>
<p>MRI is an imaging modality providing 3D models of human body, including their inner structures (Udupa and Herman
<xref ref-type="bibr" rid="CR39">1999</xref>
; Webb
<xref ref-type="bibr" rid="CR41">2003</xref>
). Although common volumetric application of MRI are mostly focused on measurements of inner organs (Chlosta et al.
<xref ref-type="bibr" rid="CR4">2011</xref>
; Gaszynski and Szewczyk
<xref ref-type="bibr" rid="CR9">2014</xref>
), MRI is used for limb volume measurements too (Akagi et al.
<xref ref-type="bibr" rid="CR1">2009</xref>
; Hackney et al.
<xref ref-type="bibr" rid="CR11">2012</xref>
; Knarr et al.
<xref ref-type="bibr" rid="CR18">2013</xref>
; Ramsay et al.
<xref ref-type="bibr" rid="CR26">2011</xref>
; Silva-Couto M de et al.
<xref ref-type="bibr" rid="CR31">2014</xref>
).</p>
<p>Its significant advantage is the possibility of selection of arbitrary regions of interest, what allows measurements of particular muscles, ligaments or bones instead of entire limb only as in case of previous methods (Udupa and Herman
<xref ref-type="bibr" rid="CR39">1999</xref>
). Nevertheless, the method is not frequently used because of its important disadvantages –high acquisition and operational costs (“Magnetic Resonance Imaging,”
<xref ref-type="bibr" rid="CR21">2010</xref>
), time consuming measurement procedure (Seidl and Vaněčková
<xref ref-type="bibr" rid="CR30">2007</xref>
) and limitation of patients with pacemakers or piercing (Novelline and Squire
<xref ref-type="bibr" rid="CR25">2004</xref>
).</p>
<p>The experimental apparatus consists of GE Discovery MR750 3T magnetic resonance imager providing captured data in DICOM format and open source software 3D Slicer (“3D Slicer,”
<xref ref-type="bibr" rid="CR32">2015</xref>
) capable of processing this data.</p>
<p>The patient’s body was situated in pronated position, with left upper limb raised upwards, shoulder joint in flexion, with forearms pronated. Region of hand was placed inside of measuring area of MRI device. Measurement using Ax T1 FSPGR 3D protocol was performed with Slice Thickness of 1.4 mm. The Hand region only was scanned due to the financial reason.</p>
<p>Scanned 3D data (Fig. 
<xref rid="Fig6" ref-type="fig">6</xref>
) were processed in 3D Slicer as follows: measured region was cropped by cutting planes going through the exact points at skeleton as defined above. Using Threshold Effect tool of Editor, we created label map containing volume of measured region. Using Dilate and Erode effect, we clean the unlabelled islands inside of region. Finally, the volume of labelled area has been computed from number of labelled voxels and known size of voxel (Spinczyk,
<xref ref-type="bibr" rid="CR33">2014</xref>
).
<fig id="Fig6">
<label>Fig. 6</label>
<caption>
<p>Visualization of captured 3D data from CT in 3D Slicer software. Using opaque tissues volume rendering to be able to see the bones because of precise setting of the region of interest</p>
</caption>
<graphic xlink:href="40064_2015_1468_Fig6_HTML" id="MO8"></graphic>
</fig>
</p>
</sec>
<sec id="Sec12">
<title>Computed Tomography (CT)</title>
<p>CT uses x-ray instead of magnetic spin in order to build the 3D model, but the volume is computed the same way as MRI—from 3D model provided by imaging modality. Compare to MRI, the CT provides better contrast, lower noise and higher spatial resolution (Herman
<xref ref-type="bibr" rid="CR13">2009</xref>
), what leads to better accuracy (McCollough and Zink
<xref ref-type="bibr" rid="CR22">1999</xref>
). The operational costs are also significantly lower (Udupa and Herman
<xref ref-type="bibr" rid="CR39">1999</xref>
). On the other hand, the ionizing radiation absorbed by patient during average scan can be up to 15 mSv (whole body scanning) (Trends et al.
<xref ref-type="bibr" rid="CR38">2008</xref>
), what is one-third of allowed exposition for workers with ionizing source per year and exceeds Czech generic hygiene limits for common people even 15 times (Statni urad pro jadernou bezpecnost
<xref ref-type="bibr" rid="CR35">2002</xref>
). For this reason, the use of this modality is allowed as rare as possible and repeated scanning is out of the question.</p>
<p>The patient was situated in the same position as at MRI. Measurement with Slice Thickness of 0.6 mm was performed. The Hand region only was scanned due to the ionizing radiation and financial reason.</p>
<p>Data processing was performed the same way as at MRI.</p>
</sec>
<sec id="Sec13">
<title>Accuracy and repeatability experiments</title>
<p>Since there is no universal object, which volume can be exactly computed and at the same time it is measurable by all compared methods, the experiments were processed as follows:</p>
<p>
<italic>In first step</italic>
, the accuracy of Water Displacement and all three circumferential methods has been verified on precise reference cylinders with known volume. Each cylinder was measured using each method 10 times (by the same person) in order to determine its repeatability. Results of this step are shown in Table 
<xref rid="Tab1" ref-type="table">1</xref>
in rows 1, 4 and 7 and on Fig. 
<xref rid="Fig7" ref-type="fig">7</xref>
. These results served for assessment of accuracy of Water Displacement, Frustum Sign Method, Disc Model and Partial Frustum.
<table-wrap id="Tab1">
<label>Table 1</label>
<caption>
<p>Overview of result values and their standard deviations measured using different methods</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="2"></th>
<th align="left">Method</th>
<th align="left" colspan="2">Water Displ.</th>
<th align="left" colspan="2">Frustum Sign</th>
<th align="left" colspan="2">Disc Model</th>
<th align="left" colspan="2">Partial Frustum</th>
<th align="left" colspan="2">MRI</th>
<th align="left" colspan="2">CT</th>
</tr>
<tr>
<th align="left">Measured object
<break></break>
Reference value</th>
<th align="left" colspan="2">Measured value
<break></break>
RSD/RACC</th>
<th align="left" colspan="2">Measured value
<break></break>
RSD/RACC</th>
<th align="left" colspan="2">Measured value
<break></break>
RSD/RACC</th>
<th align="left" colspan="2">Measured value
<break></break>
RSD/RACC</th>
<th align="left" colspan="2">Measured value
<break></break>
RSD/RACC</th>
<th align="left" colspan="2">Measured value
<break></break>
RSD/RACC</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="2">1</td>
<td align="left" rowspan="2">Reference finger
<break></break>
15.91 ± 0.06 ml</td>
<td align="left" colspan="2">15.96 ± 0.04 ml</td>
<td align="left" colspan="2">16.14 ± 0.31 ml</td>
<td align="left" colspan="2">16.22 ± 0.27 ml</td>
<td align="left" colspan="2">16.27 ± 0.28 ml</td>
<td align="left" rowspan="2" colspan="2">NA</td>
<td align="left" rowspan="2" colspan="2">NA</td>
</tr>
<tr>
<td align="left">0.3 %</td>
<td align="left">0.3 %</td>
<td align="left">1.9 %</td>
<td align="left">1.4 %</td>
<td align="left">1.7 %</td>
<td align="left">1.9 %</td>
<td align="left">1.7 %</td>
<td align="left">2.2 %</td>
</tr>
<tr>
<td align="left" rowspan="2">2</td>
<td align="left" rowspan="2">Finger, subject 1
<break></break>
13.80 ± 0.34 ml</td>
<td align="left" colspan="2">13.80 ± 0.34 ml</td>
<td align="left" colspan="2">13.66 ± 0.78 ml</td>
<td align="left" colspan="2">13.08 ± 0.59 ml</td>
<td align="left" colspan="2">12.66 ± 0.58 ml</td>
<td align="left" colspan="2">13.22 ± 0.62 ml</td>
<td align="left" colspan="2">13.41 ± 0.28 ml</td>
</tr>
<tr>
<td align="left">2.5 %</td>
<td align="left"></td>
<td align="left">5.7 %</td>
<td align="left">1.0 %</td>
<td align="left">4.5 %</td>
<td align="left">5.2 %</td>
<td align="left">4.6 %</td>
<td align="left">8.2 %</td>
<td align="left">4.7 %</td>
<td align="left">4.2 %
<sup>a</sup>
</td>
<td align="left">2.1 %</td>
<td align="left">2.8 %
<sup>a</sup>
</td>
</tr>
<tr>
<td align="left" rowspan="2">3</td>
<td align="left" rowspan="2">Finger, subject 2
<break></break>
13.69 ± 0.21 ml</td>
<td align="left" colspan="2">13.69 ± 0.21 ml</td>
<td align="left" colspan="2">14.62 ± 0.39 ml</td>
<td align="left" colspan="2">13.71 ± 0.37 ml</td>
<td align="left" colspan="2">13.11 ± 0.35 ml</td>
<td align="left" colspan="2">14.81 ± 0.70 ml</td>
<td align="left" colspan="2">13.88 ± 0.35 ml</td>
</tr>
<tr>
<td align="left">1.6 %</td>
<td align="left"></td>
<td align="left">2.7 %</td>
<td align="left">6.8 %</td>
<td align="left">2.7 %</td>
<td align="left">0.2 %</td>
<td align="left">2.7 %</td>
<td align="left">4.2 %</td>
<td align="left">4.7 %</td>
<td align="left">8.2 %
<sup>a</sup>
</td>
<td align="left">2.5 %</td>
<td align="left">1.4 %
<sup>a</sup>
</td>
</tr>
<tr>
<td align="left" rowspan="2">4</td>
<td align="left" rowspan="2">Reference hand
<break></break>
432.46 ± 0.53 ml</td>
<td align="left" colspan="2">433.74 ± 4.12 ml</td>
<td align="left" colspan="2">443.82 ± 5.04 ml</td>
<td align="left" colspan="2">441.63 ± 3.86 ml</td>
<td align="left" colspan="2">441.53 ± 3.93 ml</td>
<td align="left" rowspan="2" colspan="2">NA</td>
<td align="left" rowspan="2" colspan="2">NA</td>
</tr>
<tr>
<td align="left">0.9 %</td>
<td align="left">0.3 %</td>
<td align="left">1.1 %</td>
<td align="left">2.6 %</td>
<td align="left">0.9 %</td>
<td align="left">2.1 %</td>
<td align="left">0.9 %</td>
<td align="left">2.1 %</td>
</tr>
<tr>
<td align="left" rowspan="2">5</td>
<td align="left" rowspan="2">Hand, subject 1
<break></break>
397.70 ± 4.84 ml</td>
<td align="left" colspan="2">397.70 ± 4.84 ml</td>
<td align="left" rowspan="2" colspan="2">NA</td>
<td align="left" rowspan="2" colspan="2">NA</td>
<td align="left" rowspan="2" colspan="2">NA</td>
<td align="left" colspan="2">392.27 ± 18.71 ml</td>
<td align="left" colspan="2">399.49 ± 6.54 ml</td>
</tr>
<tr>
<td align="left">1.2 %</td>
<td align="left"></td>
<td align="left">4.8 %</td>
<td align="left">1.4 %
<sup>a</sup>
</td>
<td align="left">1.6 %</td>
<td align="left">0.4 %
<sup>a</sup>
</td>
</tr>
<tr>
<td align="left" rowspan="2">6</td>
<td align="left" rowspan="2">Hand, subject 2
<break></break>
439.10 ± 7.66 ml</td>
<td align="left" colspan="2">439.10 ± 7.66 ml</td>
<td align="left" rowspan="2" colspan="2">NA</td>
<td align="left" rowspan="2" colspan="2">NA</td>
<td align="left" rowspan="2" colspan="2">NA</td>
<td align="left" colspan="2">428.79 ± 21.46 ml</td>
<td align="left" colspan="2">439.54 ± 7.34 ml</td>
</tr>
<tr>
<td align="left">1.7 %</td>
<td align="left"></td>
<td align="left">5.0 %</td>
<td align="left">2.3 %
<sup>a</sup>
</td>
<td align="left">1.7 %</td>
<td align="left">0.1 %
<sup>a</sup>
</td>
</tr>
<tr>
<td align="left" rowspan="2">7</td>
<td align="left" rowspan="2">Reference forearm
<break></break>
973.42 ± 0.89 ml</td>
<td align="left" colspan="2">971.47 ± 3.50 ml</td>
<td align="left" colspan="2">963.95 ± 6.35 ml</td>
<td align="left" colspan="2">962.49 ± 3.78 ml</td>
<td align="left" colspan="2">962.37 ± 2.83 ml</td>
<td align="left" rowspan="2" colspan="2">NA</td>
<td align="left" rowspan="2" colspan="2">NA</td>
</tr>
<tr>
<td align="left">0.4 %</td>
<td align="left">0.2 %</td>
<td align="left">0.7 %</td>
<td align="left">1.0 %</td>
<td align="left">0.4 %</td>
<td align="left">1.1 %</td>
<td align="left">0.3 %</td>
<td align="left">1.1 %</td>
</tr>
<tr>
<td align="left" rowspan="2">8</td>
<td align="left" rowspan="2">Forearm, subject 1
<break></break>
1184.90 ± 9.91 ml</td>
<td align="left" colspan="2">1184.90 ± 9.91 ml</td>
<td align="left" colspan="2">1087.72 ± 19.70 ml</td>
<td align="left" colspan="2">1235.28 ± 12.96 ml</td>
<td align="left" colspan="2">1303.94 ± 15.50 ml</td>
<td align="left" rowspan="2" colspan="2">NA</td>
<td align="left" rowspan="2" colspan="2">NA</td>
</tr>
<tr>
<td align="left">0.8 %</td>
<td align="left"></td>
<td align="left">1.8 %</td>
<td align="left">8.2 %</td>
<td align="left">1.0 %</td>
<td align="left">4.3 %</td>
<td align="left">1.2 %</td>
<td align="left">10.0 %</td>
</tr>
<tr>
<td align="left" rowspan="2">9</td>
<td align="left" rowspan="6">Forearm, subject 2
<break></break>
1128.50 ± 9.76 ml</td>
<td align="left" colspan="2">1128.50 ± 9.76 ml</td>
<td align="left" colspan="2">1072.45 ± 33.66 ml</td>
<td align="left" colspan="2">1054.53 ± 22.89 ml</td>
<td align="left" colspan="2">1119.77 ± 23.29 ml</td>
<td align="left" rowspan="2" colspan="2">NA</td>
<td align="left" rowspan="2" colspan="2">NA</td>
</tr>
<tr>
<td align="left">0.9 %</td>
<td align="left"></td>
<td align="left">3.1 %</td>
<td align="left">5.0 %</td>
<td align="left">2.2 %</td>
<td align="left">6.6 %</td>
<td align="left">2.1 %</td>
<td align="left">0.8 %</td>
</tr>
<tr>
<td align="left" rowspan="2">10</td>
<td align="left" rowspan="4" colspan="2"></td>
<td align="left" colspan="2">1108.26 ± 16.11 ml</td>
<td align="left" colspan="2">1096.81 ± 27.16 ml</td>
<td align="left" colspan="2">1161.05 ± 26.89 ml</td>
<td align="left" rowspan="2" colspan="2">NA</td>
<td align="left" rowspan="2" colspan="2">NA</td>
</tr>
<tr>
<td align="left">1.5 %</td>
<td align="left">1.8 %</td>
<td align="left">2.5 %</td>
<td align="left">2.8 %</td>
<td align="left">2.3 %</td>
<td align="left">2.9 %</td>
</tr>
<tr>
<td align="left" rowspan="2">11</td>
<td align="left" colspan="2">1168.53 ± 28.68 ml</td>
<td align="left" colspan="2">1136.85 ± 14.06 ml</td>
<td align="left" colspan="2">1203.69 ± 12.81 ml</td>
<td align="left" rowspan="2" colspan="2">NA</td>
<td align="left" rowspan="2" colspan="2">NA</td>
</tr>
<tr>
<td align="left">2.5 %</td>
<td align="left">3.5 %</td>
<td align="left">1.2 %</td>
<td align="left">0.7 %</td>
<td align="left">1.1 %</td>
<td align="left">6.7 %</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>
<italic>Measured value</italic>
result value including standard deviation,
<italic>RSD</italic>
relative standard deviation,
<italic>RACC</italic>
relative abs. accuracy relative to Reference value,
<italic>Reference value</italic>
volume computed from precise dimensions in case of reference cylinder, in case of other methods, the reference value is the volume measured using Water Displacement Method</p>
<p>
<sup>a</sup>
For detailed description of RACC and Reference Value for MRI and CT see “
<xref rid="Sec13" ref-type="sec">Accuracy and repeatability experiments</xref>
” section</p>
</table-wrap-foot>
</table-wrap>
<fig id="Fig7">
<label>Fig. 7</label>
<caption>
<p>Results of comparison among circumferential methods and Water Displacement method performed on reference object with known volume</p>
</caption>
<graphic xlink:href="40064_2015_1468_Fig7_HTML" id="MO9"></graphic>
</fig>
</p>
<p>
<italic>In second step</italic>
, all the methods were tested on the patients. Two subjects, 26 and 39 years old, currently without pathological findings, were used for measurements of Forearm, Hand and Finger regions. Measurement of each region on every patient was also performed 10 times. Results of this step are shown in Table 
<xref rid="Tab1" ref-type="table">1</xref>
in rows 2, 3, 5, 6, 8 and 9 and on Fig. 
<xref rid="Fig8" ref-type="fig">8</xref>
.
<fig id="Fig8">
<label>Fig. 8</label>
<caption>
<p>Results of comparison among tested methods performed on human subject 1</p>
</caption>
<graphic xlink:href="40064_2015_1468_Fig8_HTML" id="MO10"></graphic>
</fig>
</p>
<p>Since aluminium objects are not allowed for CT and MRI, true values of measured volumes are not known, so reference values for assessment of CT and MRI accuracy were stated as follows: Water Displacement method and circumferential methods were examined in both first and second step and dependency between accuracy and measuring method was the same, so we can assume, that the most accurate method according to first step will be also the most accurate method in second step. Since this best accurate method, Water Displacement Method reaches up to 0.3 % accuracy, its value was taken as reference in case of analysing CT and MRI methods, where true value is not known.</p>
<p>
<italic>Accuracy</italic>
(relative absolute accuracy, RACC) was computed as relative difference between measured value of volume and true value of volume according to formula:
<disp-formula id="Equc">
<alternatives>
<tex-math id="M5">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ RACC = \left| {\frac{{\bar{x} - x_{T} }}{{x_{T} }}} \right| $$\end{document}</tex-math>
<mml:math id="M6" display="block">
<mml:mrow>
<mml:mi>R</mml:mi>
<mml:mi>A</mml:mi>
<mml:mi>C</mml:mi>
<mml:mi>C</mml:mi>
<mml:mo>=</mml:mo>
<mml:mfenced close="|" open="|" separators="">
<mml:mfrac>
<mml:mrow>
<mml:mover accent="true">
<mml:mrow>
<mml:mi>x</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mo stretchy="false">¯</mml:mo>
</mml:mrow>
</mml:mover>
<mml:mo>-</mml:mo>
<mml:msub>
<mml:mi>x</mml:mi>
<mml:mi>T</mml:mi>
</mml:msub>
</mml:mrow>
<mml:msub>
<mml:mi>x</mml:mi>
<mml:mi>T</mml:mi>
</mml:msub>
</mml:mfrac>
</mml:mfenced>
</mml:mrow>
</mml:math>
<graphic xlink:href="40064_2015_1468_Article_Equc.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
where
<inline-formula id="IEq1">
<alternatives>
<tex-math id="M7">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bar{x} $$\end{document}</tex-math>
<mml:math id="M8">
<mml:mover accent="true">
<mml:mrow>
<mml:mi>x</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mo stretchy="false">¯</mml:mo>
</mml:mrow>
</mml:mover>
</mml:math>
<inline-graphic xlink:href="40064_2015_1468_Article_IEq1.gif"></inline-graphic>
</alternatives>
</inline-formula>
is given as:
<disp-formula id="Equd">
<alternatives>
<tex-math id="M9">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bar{x} = \frac{1}{N} \mathop \sum \limits_{i = 1}^{N} x_{i} $$\end{document}</tex-math>
<mml:math id="M10" display="block">
<mml:mrow>
<mml:mover accent="true">
<mml:mrow>
<mml:mi>x</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mo stretchy="false">¯</mml:mo>
</mml:mrow>
</mml:mover>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mn>1</mml:mn>
<mml:mi>N</mml:mi>
</mml:mfrac>
<mml:munderover>
<mml:mo movablelimits="false"></mml:mo>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mi>N</mml:mi>
</mml:munderover>
<mml:msub>
<mml:mi>x</mml:mi>
<mml:mi>i</mml:mi>
</mml:msub>
</mml:mrow>
</mml:math>
<graphic xlink:href="40064_2015_1468_Article_Equd.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
variable
<inline-formula id="IEq2">
<alternatives>
<tex-math id="M11">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ x_{T} $$\end{document}</tex-math>
<mml:math id="M12">
<mml:msub>
<mml:mi>x</mml:mi>
<mml:mi>T</mml:mi>
</mml:msub>
</mml:math>
<inline-graphic xlink:href="40064_2015_1468_Article_IEq2.gif"></inline-graphic>
</alternatives>
</inline-formula>
means a true value of volume, N is number of measurements (10) and
<inline-formula id="IEq3">
<alternatives>
<tex-math id="M13">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ x_{i} $$\end{document}</tex-math>
<mml:math id="M14">
<mml:msub>
<mml:mi>x</mml:mi>
<mml:mi>i</mml:mi>
</mml:msub>
</mml:math>
<inline-graphic xlink:href="40064_2015_1468_Article_IEq3.gif"></inline-graphic>
</alternatives>
</inline-formula>
is i-th measured value.</p>
<p>This parameter represents influence of systematic errors on measured value.</p>
<p>
<italic>Repeatability</italic>
(RSD) was computed as standard deviation of measured values in case of same object and same person performing the measurement according to formula:
<disp-formula id="Eque">
<alternatives>
<tex-math id="M15">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ RSD = \frac{{\sqrt {\frac{1}{N}\mathop \sum \nolimits_{i = 1}^{N} (x_{i} - \bar{x})^{2} } }}{{\bar{x}}} $$\end{document}</tex-math>
<mml:math id="M16" display="block">
<mml:mrow>
<mml:mi>R</mml:mi>
<mml:mi>S</mml:mi>
<mml:mi>D</mml:mi>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:msqrt>
<mml:mrow>
<mml:mfrac>
<mml:mn>1</mml:mn>
<mml:mi>N</mml:mi>
</mml:mfrac>
<mml:msubsup>
<mml:mo></mml:mo>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mi>N</mml:mi>
</mml:msubsup>
<mml:msup>
<mml:mrow>
<mml:mo stretchy="false">(</mml:mo>
<mml:msub>
<mml:mi>x</mml:mi>
<mml:mi>i</mml:mi>
</mml:msub>
<mml:mo>-</mml:mo>
<mml:mover accent="true">
<mml:mrow>
<mml:mi>x</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mo stretchy="false">¯</mml:mo>
</mml:mrow>
</mml:mover>
<mml:mo stretchy="false">)</mml:mo>
</mml:mrow>
<mml:mn>2</mml:mn>
</mml:msup>
</mml:mrow>
</mml:msqrt>
<mml:mover accent="true">
<mml:mrow>
<mml:mi>x</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mo stretchy="false">¯</mml:mo>
</mml:mrow>
</mml:mover>
</mml:mfrac>
</mml:mrow>
</mml:math>
<graphic xlink:href="40064_2015_1468_Article_Eque.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
</p>
<p>This parameter represents influence of random errors on measured value.</p>
</sec>
<sec id="Sec15">
<title>Personal dependency test</title>
<p>In case of circumferential measurements, the result value of volume is dependent on particular person performing the measurement, since the value affects how much the string is tightened.</p>
<p>Three sets of 10 measurements on the same Forearm region using each circumferential method were performed by three different people in order to test personal dependency of the method. Results of this test are shown in Table 
<xref rid="Tab1" ref-type="table">1</xref>
in rows 9, 10 and 11.</p>
</sec>
</sec>
<sec id="Sec16">
<title>Results</title>
<p>Overview of measured values is summarized in Table 
<xref rid="Tab1" ref-type="table">1</xref>
. Diagrams on Fig. 
<xref rid="Fig7" ref-type="fig">7</xref>
and on Fig. 
<xref rid="Fig8" ref-type="fig">8</xref>
show median, first and third quartile, minimal and maximal measured value for each method.</p>
<p>Water Displacement method can be considered as the best method overall, since it has the very best accuracy (RACC = 0.3 %) and the best repeatability (SD up to 0.9 % at Forearm) together with simplicity—no expensive equipment is needed, the apparatus directly shows the measured value and it is operator independent. Experimental accuracy (0.3 %) was better than accuracy estimated in (Kaulesar Sukul et al.
<xref ref-type="bibr" rid="CR16">1993</xref>
) (2 %). It was even better since the size of object was bigger.</p>
<p>It was observed, that the only problem of the method is shivering of the measured limb, what causes false dropping and consequently increase of measured volume. It is clear from SD, which is about 2 times lower in case of reference cylinders. This phenomenon has been observed more at the last measurements, when examined subject started to be tired. Measure procedure is also time consuming (15 min.) comparing to circumferential methods, because the dropping is very slow.</p>
<p>The Frustum Sign Model was very fast (less than 1 min.), but it was very personally dependent in both accuracy and repeatability. The repeatability was in range from 2 to 6 % and accuracy in range from 2 to 8 % according the operator. But difference in resulting value in case of measurements of the same object by various operators was up to 10 %. On the other side, the best single operator was able to measure with RACC = 1.8 % and SD = 1.5 %.</p>
<p>Both Disc Model and Partial Frustum Model were also personally dependent, but the repeatability was better (1–2 % Forearm, 3–4 % Finger). The best operators reach also better accuracy (up to 1 %). However, the measurement was significantly slower (15 min.). There is no proven difference between these methods, but Partial Frustum Model is preferred, due to its more authentic volume approximation, what could theoretically lead to better accuracy.</p>
<p>The MRI and CT based measurements were significantly more expensive, but there are the only methods, where selecting of special region is allowed. Since MRI has lower resolution and there is also more noise in MRI data, the edge of object is harder to detect precisely, so the repeatability was lower in case of MRI (5 %) compared to CT (2 %). Also the accuracy was very good in case of CT (2 % finger, 0.5 % hand). The CT is the only method, which reaches up to the same accuracy and repeatability as the Water Displacement Method; however its use has adverse effect on human health.</p>
<p>Overall summary of parameters of compared volumetric methods shows Table 
<xref rid="Tab2" ref-type="table">2</xref>
. It can be used as a guide when choosing the proper method for specific application.
<table-wrap id="Tab2">
<label>Table 2</label>
<caption>
<p>Overview of defining parameters of compared methods and their recommended usage</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left"></th>
<th align="left">Water Displ.</th>
<th align="left">Frustum Sign</th>
<th align="left">Disc Model</th>
<th align="left">Partial Frustum</th>
<th align="left">MRI</th>
<th align="left">CT</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">Accuracy
<sup>a</sup>
</td>
<td align="left">0.3 %</td>
<td align="left">2–8 %
<sup>b</sup>
</td>
<td align="left">1–8 %
<sup>b</sup>
</td>
<td align="left">1–8 %
<sup>b,c</sup>
</td>
<td align="left">Finger 8 %
<break></break>
Hand 2 %</td>
<td align="left">Finger 2 %
<break></break>
Hand 0.5 %</td>
</tr>
<tr>
<td align="left">Repeatability
<sup>d</sup>
</td>
<td align="left">Finger 2 %
<break></break>
Forearm 0.9 %</td>
<td align="left">2–6 %
<sup>b</sup>
</td>
<td align="left">Finger 3–4 %
<break></break>
Forearm 1–2 %
<sup>b</sup>
</td>
<td align="left">Finger 3–4 %
<break></break>
Forearm 1–2 %
<sup>b</sup>
</td>
<td align="left">5 %</td>
<td align="left">2 %</td>
</tr>
<tr>
<td align="left">Measure time</td>
<td align="left">Finger 3 min
<break></break>
Other 15 min</td>
<td align="left">1 min.</td>
<td align="left">Finger 8 min
<break></break>
Forearm 14 min</td>
<td align="left">Finger 8 min
<break></break>
Forearm 14 min</td>
<td align="left">Hand 19 min</td>
<td align="left">Hand 7 min</td>
</tr>
<tr>
<td align="left">Processing time</td>
<td align="left">Less than 1 min</td>
<td align="left">Less than 1 min
<sup>e</sup>
</td>
<td align="left">1 min
<sup>e</sup>
</td>
<td align="left">1 min
<sup>e</sup>
</td>
<td align="left">12 min</td>
<td align="left">7 min</td>
</tr>
<tr>
<td align="left">Measurement cost
<sup>f</sup>
</td>
<td align="left">Less than 1 EUR</td>
<td align="left">Less than 1 EUR</td>
<td align="left">Less than 1 EUR</td>
<td align="left">Less than 1 EUR</td>
<td align="left">250–300 EUR</td>
<td align="left">100 EUR</td>
</tr>
<tr>
<td align="left">Operator dependency
<sup>g</sup>
</td>
<td align="left">None</td>
<td align="left">High</td>
<td align="left">High</td>
<td align="left">High</td>
<td align="left">Low</td>
<td align="left">Low</td>
</tr>
<tr>
<td align="left">Special region measurements
<sup>h</sup>
</td>
<td align="left">No</td>
<td align="left">No</td>
<td align="left">No</td>
<td align="left">No</td>
<td align="left">Yes</td>
<td align="left">Yes</td>
</tr>
<tr>
<td align="left">Limitations</td>
<td align="left">Shivering body, flexibility of limb, infection</td>
<td align="left" colspan="3">Almost none</td>
<td align="left">Claustrophobia, no metal (piercing, pacemaker,…)</td>
<td align="left">High radiation dose, artefacts on metal parts</td>
</tr>
<tr>
<td align="left">Recommended use</td>
<td align="left">Best for accurate measurements of flexible and non-infected limbs. Good for standard use</td>
<td align="left">When very fast, but not accurate (only estimation) of volume is required. Use the same staff to avoid operator dependency</td>
<td align="left">No reason to use this method, same usage as Partial Frustum
<sup>c</sup>
</td>
<td align="left">Use this, when better accuracy is required, but patient does not meet the limitations of Water Disp. Use the same staff</td>
<td align="left">Use this in case of specific measurement region, where high accuracy is not necessary or in case of repeated measurements</td>
<td align="left">Use this, when accurate measurement of specific region is required and the measurement is single shot only</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>
<sup>a</sup>
Accuracy is defined as relative deviation of mean value from reference value (see
<xref rid="Sec13" ref-type="sec">Accuracy and repeatability experiments</xref>
section)</p>
<p>
<sup>b</sup>
Strongly dependant on person performing measurements</p>
<p>
<sup>c</sup>
Approximation of volume is more authentic than Disc Model, so accuracy should be theoretically higher. However, no significant difference was experimentally detected</p>
<p>
<sup>d</sup>
Repeatability is SD of measurements performed by same staff (see “
<xref rid="Sec13" ref-type="sec">Accuracy and repeatability experiments </xref>
” section)</p>
<p>
<sup>e</sup>
In case of writing the values into the auto-computing computer worksheet</p>
<p>
<sup>f</sup>
Refers to all the expenses on the measurement, including acquisition cost proportion relevant to one measurement</p>
<p>
<sup>g</sup>
If resulting measured value depends on particular abilities of person performing measurement</p>
<p>
<sup>h</sup>
Allowing any irregular nonstandard region of interest</p>
</table-wrap-foot>
</table-wrap>
</p>
</sec>
<sec id="Sec17">
<title>D
<sc>iscussion</sc>
</title>
<p>Megens et al. (
<xref ref-type="bibr" rid="CR23">2001</xref>
) or Kaulesar Sukul et al. (
<xref ref-type="bibr" rid="CR16">1993</xref>
) consider Water Displacement method as the best method based on its repeatability. This experiment is conform to this claim and besides reliability, it evaluates also accuracy related to the true value, what is also the best from tested methods (Fig. 
<xref rid="Fig7" ref-type="fig">7</xref>
).</p>
<p>Sander et al. (
<xref ref-type="bibr" rid="CR29">2002</xref>
), Taylor et al. (
<xref ref-type="bibr" rid="CR37">2006</xref>
) or Meijer et al. (
<xref ref-type="bibr" rid="CR24">2004</xref>
) declares high correlation among circumferential methods and Water Displacement method, but significant discrepancy between values of these method. Based on that, they stated it cannot be indicated which method is preferable. This experiment evaluated method’s values in relation with true value and proved, that Water Displacement values are the closest from true value.</p>
<p>We confirmed repeatability of Frustum Sign and Disc Model given by Deltombe et al. (
<xref ref-type="bibr" rid="CR8">2007</xref>
) and evaluated accuracy, which is worse than Water Displacement’s. On the other hand, this method cannot be considered as useless, since it is much faster than Water Displacement. It depends, how accurate measurement is necessary, but in many cases, its accuracy can be sufficient.</p>
<p>There are modification of Frustum Sign Model called Disc Model and Partial Frustum model, which were originally introduced in order to improve the accuracy. We examined, that improvement of accuracy is insignificant, especially in contrast with increase of measure time. Because of that, there is no reason to use another circumferential method than Frustum Sign Model.</p>
<p>We experimentally proved and quantified the assumption of Armer and Ridner (
<xref ref-type="bibr" rid="CR2">2006</xref>
) that measured value is dependent on skills of person performing measurement (Table 
<xref rid="Tab1" ref-type="table">1</xref>
, rows 9–11).</p>
<p>All these method provides volume of entire limb, not the volume of muscles or oedemas only, what is usually value, which is required. In cases of measurements of oedemas, we consider changes in muscle mass as negligible, likewise in case of measurements of muscle growth or atrophy, we neglect oedemas. But there are cases, where these neglects are inappropriate. From this reason, we introduced new methods for limb volumetry into the comparison, CT and MRI, which are, even though expensive, the only methods useful in such cases.</p>
<p>The strength of this study is comparison of wide range of methods, presently used in limb volume measurements. The benefit of this study is also evaluation of all parameters necessary to know, when deciding which method to use, including accuracy or measurement time.</p>
<p>The limitation of this study is, that true value of measured object is known only for reference cylinders and not for human subjects. Because of that, the accuracy of MRI and CT cannot be stated exactly (marked with asterisk in Table 
<xref rid="Tab1" ref-type="table">1</xref>
) and provided values depends on validity of condition given in section “
<xref rid="Sec13" ref-type="sec">Accuracy and repeatability experiments</xref>
”.</p>
<p>Future studies should verify the validity of this condition on another reference object with known true volume, which is more relevant to human limb and measurable also with MRI and CT (phantom). It should also investigate the lover limb since oedemas preferably occur at the feet.</p>
</sec>
<sec id="Sec18">
<title>Conclusion</title>
<p>The ideal volumetric method for upper limb should be accurate, repeatable, operator independent, simple, inexpensive and fast. Except the last one, the Water Displacement Method has all the abilities, so it is recommended as a standard method.</p>
<p>When use of Water Displacement is not possible (flexibility, shivering, infection, etc.), we recommend to use Partial Frustum Model, which takes the same time as Water Displacement, and reaches the satisfactory accuracy.</p>
<p>When accuracy is not the decisive factor and fast measurement is preferred, use Frustum Sign Method. It is the fastest method, which results (when taken by the same person) can be useful for fast estimation of volume.</p>
<p>In case of all circumferential method, be aware, that result value is very personally dependent, so only measurements taken by the same staff are comparable. Two measurements taken by different staff can vary by up to 10 %.</p>
<p>Due to expensive operation, the MRI and CT methods are recommended only in cases, when measurement of specific region is necessary (e.g. volume of particular muscle). When only single measurement (or very few) is necessary, use CT, which is less expensive and very accurate. In case of repeated measurements or when accuracy is not too important, use MRI, which has no harmful influence on patient’s health.</p>
</sec>
</body>
<back>
<ack>
<title>Authors’ contributions</title>
<p>AC carried out the research, experiments and prepared this manuscript; LZ carried out the experiments and supervised the research as technical expert; PD suggested the topic and supervised the research as medical expert; IS carried out the experiments with MRI and CT; VM carried out the summary of available methods and its parameters. All authors read and approved the final manuscript.</p>
<sec id="FPar1">
<title>Acknowledgements</title>
<p>This work was supported by the project CEITEC—Central European Institute of Technology (CZ.1.05/1.1.00/02.0068) financed from European Regional Development Fund, by the project FNUSA-ICRC (CZ.1.05/1.1.00/02.0123) financed from European Regional Development Fund and by the project FEKT-S-14-2429 “The research of new control methods, measurement procedures and intelligent instruments in automation” financed from Internal science fund of Brno University of Technology.</p>
</sec>
<sec id="FPar2">
<title>Competing interests</title>
<p>All authors declare that they have no competing interests. Authors declare that the experiments reported in the manuscript were performed in accordance with the ethical standards of the Helsinki Declaration and there were no other participants involved in experiments than the authors of this paper.</p>
</sec>
</ack>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Akagi</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Takai</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ohta</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kanehisa</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kawakami</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Fukunaga</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Muscle volume compared to cross-sectional area is more appropriate for evaluating muscle strength in young and elderly individuals</article-title>
<source>Age Ageing</source>
<year>2009</year>
<volume>38</volume>
<fpage>564</fpage>
<lpage>569</lpage>
<pub-id pub-id-type="doi">10.1093/ageing/afp122</pub-id>
<pub-id pub-id-type="pmid">19596739</pub-id>
</element-citation>
</ref>
<ref id="CR2">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Armer</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Ridner</surname>
<given-names>SH</given-names>
</name>
</person-group>
<article-title>Measurement Techniques In Assessment Of Lymphedema</article-title>
<source>Lymph Link Artic Repr</source>
<year>2006</year>
<volume>18</volume>
<fpage>1</fpage>
<lpage>4</lpage>
</element-citation>
</ref>
<ref id="CR3">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brijker</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Heijdra</surname>
<given-names>YF</given-names>
</name>
<name>
<surname>Van Den Elshout</surname>
<given-names>FJ</given-names>
</name>
<name>
<surname>Bosch</surname>
<given-names>FH</given-names>
</name>
<name>
<surname>Folgering</surname>
<given-names>HT</given-names>
</name>
</person-group>
<article-title>Volumetric measurements of peripheral oedema in clinical conditions</article-title>
<source>Clin Physiol Oxf Engl</source>
<year>2000</year>
<volume>20</volume>
<fpage>56</fpage>
<lpage>61</lpage>
<pub-id pub-id-type="doi">10.1046/j.1365-2281.2000.00224.x</pub-id>
</element-citation>
</ref>
<ref id="CR4">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chlosta</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Drewa</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Siekiera</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Jaskulski</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Petrus</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kamecki</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Mikolajczak</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Obarzanowski</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wronczewski</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Krasnicki</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Jasinski</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Lymph node dissection during laparoscopic (LRC) and open (ORC) radical cystectomy due to muscle invasive bladder urothelial cancer (pT2-3, TCC)</article-title>
<source>Videosurgery Miniinvasive Tech</source>
<year>2011</year>
<volume>6</volume>
<fpage>127</fpage>
<lpage>131</lpage>
<pub-id pub-id-type="doi">10.5114/wiitm.2011.24689</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Cmelik</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Machonsky</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Sima</surname>
<given-names>Z</given-names>
</name>
</person-group>
<source>Fyzikalni tabulky</source>
<year>2011</year>
<publisher-loc>Liberec</publisher-loc>
<publisher-name>TU Liberec</publisher-name>
</element-citation>
</ref>
<ref id="CR6">
<mixed-citation publication-type="other">Damstra RJ (2009) Diagnostic and THERAPEUTICAL ASPECTS OF LYMPHEDEMa. Stichting Lymfologie Centrum Nederland (SLCN) ; University Library, Universiteit Maastricht [host], Drachten; Maastricht</mixed-citation>
</ref>
<ref id="CR7">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Santo</surname>
<given-names>NG</given-names>
</name>
<name>
<surname>Bisaccia</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Cirillo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Richet</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Medicine in the Encyclopedie (1751–1780) of Diderot and d’Alembert</article-title>
<source>J Nephrol</source>
<year>2011</year>
<volume>24</volume>
<fpage>S12</fpage>
<lpage>S24</lpage>
<pub-id pub-id-type="doi">10.5301/JN.2011.6485</pub-id>
<pub-id pub-id-type="pmid">21614775</pub-id>
</element-citation>
</ref>
<ref id="CR8">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deltombe</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Jamart</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Recloux</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Legrand</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Vandenbroeck</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Theys</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Hanson</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Reliability and limits of agreement of circumferential, water displacement, and optoelectronic volumetry in the measurement of upper limb lymphedema</article-title>
<source>Lymphology</source>
<year>2007</year>
<volume>40</volume>
<fpage>26</fpage>
<lpage>34</lpage>
<pub-id pub-id-type="pmid">17539462</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gaszynski</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Szewczyk</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>The influence of laparoscopic vs. open gastric bypass on hemodynamic function in morbidly obese patients during general anesthesia</article-title>
<source>Videosurgery Miniinvasive Tech</source>
<year>2014</year>
<volume>9</volume>
<fpage>83</fpage>
<lpage>88</lpage>
<pub-id pub-id-type="doi">10.5114/wiitm.2014.40988</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haase</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Siewert</surname>
<given-names>C</given-names>
</name>
<name>
<surname>von Rautenfeld</surname>
<given-names>DB</given-names>
</name>
<name>
<surname>Fischbach</surname>
<given-names>JU</given-names>
</name>
<name>
<surname>Seifert</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Comparison of different methods to quantify the volume of horse limbs</article-title>
<source>Berl Münch Tierärztl Wochenschr</source>
<year>2009</year>
<volume>122</volume>
<fpage>126</fpage>
<lpage>131</lpage>
<pub-id pub-id-type="pmid">19350812</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hackney</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Cook</surname>
<given-names>SB</given-names>
</name>
<name>
<surname>Fairchild</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Ploutz-Snyder</surname>
<given-names>LL</given-names>
</name>
</person-group>
<article-title>Skeletal muscle volume following dehydration induced by exercise in heat</article-title>
<source>Extreme Physiol Med</source>
<year>2012</year>
<volume>1</volume>
<fpage>3</fpage>
<pub-id pub-id-type="doi">10.1186/2046-7648-1-3</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haponiuk</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Chojnicki</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Steffens</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Jaworski</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Szofer-Sendrowska</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Juscinski</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kwasniak</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Paczkowski</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Zielinski</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Gierat-Haponiuk</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Miniinvasive interventional bridge to major surgical repair of critical aortic coarctation in a newborn with severe multiorgan failure</article-title>
<source>Videosurgery Miniinvasive Tech</source>
<year>2013</year>
<volume>8</volume>
<fpage>244</fpage>
<lpage>248</lpage>
<pub-id pub-id-type="doi">10.5114/wiitm.2011.33472</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<mixed-citation publication-type="other">Herman GT (2009) Fundamentals of Computerized Tomography: Image Reconstruction from Projections, 2nd ed. 2010 edition. Springer, Dordrecht, New York</mixed-citation>
</ref>
<ref id="CR14">
<mixed-citation publication-type="other">Jamerson T (2009) Uncertainty example using simple propagation of uncertainty rules, The University of Mississippi [WWW Document].
<ext-link ext-link-type="uri" xlink:href="http://www.phy.olemiss.edu/~thomas/weblab/221%20Miscellaneous%20folder/221_web_uncertainty/No_quad_uncertainty_fall_09.pdf">http://www.phy.olemiss.edu/~thomas/weblab/221%20Miscellaneous%20folder/221_web_uncertainty/No_quad_uncertainty_fall_09.pdf</ext-link>
</mixed-citation>
</ref>
<ref id="CR15">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Karakas</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Bozkir</surname>
<given-names>MG</given-names>
</name>
</person-group>
<article-title>Anthropometric indices in relation to overweight and obesity among Turkish medical students</article-title>
<source>Arch Med Sci</source>
<year>2012</year>
<volume>8</volume>
<fpage>209</fpage>
<lpage>213</lpage>
<pub-id pub-id-type="doi">10.5114/aoms.2012.28546</pub-id>
<pub-id pub-id-type="pmid">22661991</pub-id>
</element-citation>
</ref>
<ref id="CR16">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaulesar Sukul</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>den Hoed</surname>
<given-names>PT</given-names>
</name>
<name>
<surname>Johannes</surname>
<given-names>EJ</given-names>
</name>
<name>
<surname>van Dolder</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Benda</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Direct and indirect methods for the quantification of leg volume: comparison between water displacement volumetry, the disk model method and the frustum sign model method, using the correlation coefficient and the limits of agreement</article-title>
<source>J Biomed Eng</source>
<year>1993</year>
<volume>15</volume>
<fpage>477</fpage>
<lpage>480</lpage>
<pub-id pub-id-type="doi">10.1016/0141-5425(93)90062-4</pub-id>
<pub-id pub-id-type="pmid">8277752</pub-id>
</element-citation>
</ref>
<ref id="CR17">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Khanavi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sabbagh-Bani-Azad</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Abdolghaffari</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Vazirian</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Isazadeh</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Rezvanfar</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Baeeri</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Mohammadirad</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Rahimi</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Shams-Ardekani</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Abdollahi</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>On the benefit of galls of Quercus brantii Lindl. in murine colitis: the role of free gallic acid</article-title>
<source>Arch Med Sci</source>
<year>2014</year>
<volume>6</volume>
<fpage>1225</fpage>
<lpage>1234</lpage>
<pub-id pub-id-type="doi">10.5114/aoms.2014.47831</pub-id>
<pub-id pub-id-type="pmid">25624862</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Knarr</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Ramsay</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Buchanan</surname>
<given-names>TS</given-names>
</name>
<name>
<surname>Higginson</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Binder-Macleod</surname>
<given-names>SA</given-names>
</name>
</person-group>
<article-title>Muscle volume as a predictor of maximum force generating ability in the plantar flexors post-stroke: measuring plantar flexor force post-stroke</article-title>
<source>Muscle Nerve</source>
<year>2013</year>
<volume>48</volume>
<fpage>971</fpage>
<lpage>976</lpage>
<pub-id pub-id-type="doi">10.1002/mus.23835</pub-id>
<pub-id pub-id-type="pmid">23494851</pub-id>
</element-citation>
</ref>
<ref id="CR19">
<mixed-citation publication-type="other">Konecny P (2013) Nove trendy v neurorehabilitaci [abstract]. In: Dobsak P (ed) Proceedings of the IV. Dny Fyzioterapie 11–12 October 2013. pp 7–7</mixed-citation>
</ref>
<ref id="CR20">
<mixed-citation publication-type="other">Lavelle K, Stanton DB (2014) Measurement of Edema in the Hand Clinic, American Society of Hand Therapists [WWW Document].
<ext-link ext-link-type="uri" xlink:href="http://www.researchgate.net/publication/257927122_American_Society_of_Hand_Therapists_TM_Key_Recommendations_for_Outcome_Evaluation_of_Edema_Measurement_of_Edema_in_the_Hand_Clinic_2_Conceptual_Basis_for_Testing_TestsMethods_Used_to_Measure_Edema">http://www.researchgate.net/publication/257927122_American_Society_of_Hand_Therapists_TM_Key_Recommendations_for_Outcome_Evaluation_of_Edema_Measurement_of_Edema_in_the_Hand_Clinic_2_Conceptual_Basis_for_Testing_TestsMethods_Used_to_Measure_Edema</ext-link>
</mixed-citation>
</ref>
<ref id="CR21">
<mixed-citation publication-type="other">Magnetic Resonance Imaging [WWW Document] (2010). URL
<ext-link ext-link-type="uri" xlink:href="http://www.mri-portal.com/clanky/magneticka_rezonance.php">http://www.mri-portal.com/clanky/magneticka_rezonance.php</ext-link>
</mixed-citation>
</ref>
<ref id="CR22">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McCollough</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Zink</surname>
<given-names>FE</given-names>
</name>
</person-group>
<article-title>Performance evaluation of a multi-slice CT system</article-title>
<source>Med Phys</source>
<year>1999</year>
<volume>26</volume>
<fpage>2223</fpage>
<lpage>2230</lpage>
<pub-id pub-id-type="doi">10.1118/1.598777</pub-id>
<pub-id pub-id-type="pmid">10587202</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Megens</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Kim-Sing</surname>
<given-names>C</given-names>
</name>
<name>
<surname>McKenzie</surname>
<given-names>DC</given-names>
</name>
</person-group>
<article-title>Measurement of upper extremity volume in women after axillary dissection for breast cancer</article-title>
<source>Arch Phys Med Rehabil</source>
<year>2001</year>
<volume>82</volume>
<fpage>1639</fpage>
<lpage>1644</lpage>
<pub-id pub-id-type="doi">10.1053/apmr.2001.26822</pub-id>
<pub-id pub-id-type="pmid">11733875</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meijer</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Rietman</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Geertzen</surname>
<given-names>JHB</given-names>
</name>
<name>
<surname>Bosmans</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Dijkstra</surname>
<given-names>PU</given-names>
</name>
</person-group>
<article-title>Validity and intra- and interobserver reliability of an indirect volume measurements in patients with upper extremity lymphedema</article-title>
<source>Lymphology</source>
<year>2004</year>
<volume>37</volume>
<fpage>127</fpage>
<lpage>133</lpage>
<pub-id pub-id-type="pmid">15560108</pub-id>
</element-citation>
</ref>
<ref id="CR25">
<mixed-citation publication-type="other">Novelline RA, Squire LF (2004) Squire’s Fundamentals of Radiology. La Editorial, UPR</mixed-citation>
</ref>
<ref id="CR26">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ramsay</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Barrance</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Buchanan</surname>
<given-names>TS</given-names>
</name>
<name>
<surname>Higginson</surname>
<given-names>JS</given-names>
</name>
</person-group>
<article-title>Paretic muscle atrophy and non-contractile tissue content in individual muscles of the post-stroke lower extremity</article-title>
<source>J Biomech</source>
<year>2011</year>
<volume>44</volume>
<fpage>2741</fpage>
<lpage>2746</lpage>
<pub-id pub-id-type="doi">10.1016/j.jbiomech.2011.09.001</pub-id>
<pub-id pub-id-type="pmid">21945568</pub-id>
</element-citation>
</ref>
<ref id="CR27">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ribeiro</surname>
<given-names>RCB</given-names>
</name>
<name>
<surname>Lima</surname>
<given-names>SMPF</given-names>
</name>
<name>
<surname>Carreira</surname>
<given-names>ACG</given-names>
</name>
<name>
<surname>Masiero</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Chamlian</surname>
<given-names>TR</given-names>
</name>
</person-group>
<article-title>Inter-tester reliability assessment of the volumetric measurement of the hand in subjects without any changes in their upper extremities</article-title>
<source>Acta Fisiatr</source>
<year>2010</year>
<volume>17</volume>
<fpage>3</fpage>
<lpage>7</lpage>
</element-citation>
</ref>
<ref id="CR28">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ridner</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Montgomery</surname>
<given-names>LD</given-names>
</name>
<name>
<surname>Hepworth</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Stewart</surname>
<given-names>BR</given-names>
</name>
<name>
<surname>Armer</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>Comparison of upper limb volume measurement techniques and arm symptoms between healthy volunteers and individuals with known lymphedema</article-title>
<source>Lymphology</source>
<year>2007</year>
<volume>40</volume>
<fpage>35</fpage>
<lpage>46</lpage>
<pub-id pub-id-type="pmid">17539463</pub-id>
</element-citation>
</ref>
<ref id="CR29">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sander</surname>
<given-names>AP</given-names>
</name>
<name>
<surname>Hajer</surname>
<given-names>NM</given-names>
</name>
<name>
<surname>Hemenway</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>AC</given-names>
</name>
</person-group>
<article-title>Upper-extremity volume measurements in women with lymphedema: a comparison of measurements obtained via water displacement with geometrically determined volume</article-title>
<source>Phys Ther</source>
<year>2002</year>
<volume>82</volume>
<fpage>1201</fpage>
<lpage>1212</lpage>
<pub-id pub-id-type="pmid">12444879</pub-id>
</element-citation>
</ref>
<ref id="CR30">
<mixed-citation publication-type="other">Seidl Z, Vaněčková M (2007) Magnetická rezonance hlavy, mozku a páteře, Avicenum. ed. Grada</mixed-citation>
</ref>
<ref id="CR31">
<mixed-citation publication-type="other">Silva-Couto de MA, Prado-Medeiros CL, Oliveira AB, Alcantara CC, Guimaraes AT, Salvini de TF, Mattioli R, de Russo TL (2014) Muscle atrophy, voluntary activation disturbances, and low serum concentrations of IGF-1 and IGFBP-3 are associated with weakness in people with chronic stroke. Phys Ther 94:957–967. doi:10.2522/ptj.20130322</mixed-citation>
</ref>
<ref id="CR32">
<mixed-citation publication-type="other">Slicer D (2015) [WWW Document].
<ext-link ext-link-type="uri" xlink:href="http://www.slicer.org/">http://www.slicer.org/</ext-link>
</mixed-citation>
</ref>
<ref id="CR33">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Spinczyk</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Preparing the anatomical model for ablation of unresectable liver tumor</article-title>
<source>Videosurgery Miniinvasive Tech</source>
<year>2014</year>
<volume>9</volume>
<fpage>246</fpage>
<lpage>251</lpage>
<pub-id pub-id-type="doi">10.5114/wiitm.2014.43022</pub-id>
</element-citation>
</ref>
<ref id="CR34">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sproule</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Montgomery</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Punyanitya</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Dashnaw</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Montes</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Dunaway</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Finkel</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Darras</surname>
<given-names>B</given-names>
</name>
<name>
<surname>De Vivo</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Kaufmann</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Thigh muscle volume measured by magnetic resonance imaging is stable over a 6-month interval in spinal muscular atrophy</article-title>
<source>J Child Neurol</source>
<year>2011</year>
<volume>26</volume>
<fpage>1252</fpage>
<lpage>1259</lpage>
<pub-id pub-id-type="doi">10.1177/0883073811405053</pub-id>
<pub-id pub-id-type="pmid">21572051</pub-id>
</element-citation>
</ref>
<ref id="CR35">
<mixed-citation publication-type="other">Statni urad pro jadernou bezpecnost (2002) Vyhlaska O Radiacni Ochrane</mixed-citation>
</ref>
<ref id="CR36">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Szopinski</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Golabek</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Borowka</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Chlosta</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Is determination of transition zone volume by transrectal ultrasound in patients with clinically benign prostatic enlargement sufficiently reliable in the clinical setting?</article-title>
<source>Videosurgery Miniinvasive Tech</source>
<year>2014</year>
<volume>9</volume>
<fpage>398</fpage>
<lpage>403</lpage>
<pub-id pub-id-type="doi">10.5114/wiitm.2014.43128</pub-id>
</element-citation>
</ref>
<ref id="CR37">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taylor</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Jayasinghe</surname>
<given-names>UW</given-names>
</name>
<name>
<surname>Koelmeyer</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ung</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Boyages</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Reliability and validity of arm volume measurements for assessment of lymphedema</article-title>
<source>Phys Ther</source>
<year>2006</year>
<volume>86</volume>
<fpage>205</fpage>
<lpage>214</lpage>
<pub-id pub-id-type="pmid">16445334</pub-id>
</element-citation>
</ref>
<ref id="CR38">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Trends</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Read</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Jobs</surname>
<given-names>AR</given-names>
</name>
</person-group>
<article-title>CT and radiation: What radiologists should know</article-title>
<source>Appl Radiol</source>
<year>2008</year>
<volume>37</volume>
<fpage>22</fpage>
<lpage>29</lpage>
</element-citation>
</ref>
<ref id="CR39">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Udupa</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Herman</surname>
<given-names>GT</given-names>
</name>
</person-group>
<source>3D Imaging in Medicine</source>
<year>1999</year>
<edition>2</edition>
<publisher-loc>Boca Raton</publisher-loc>
<publisher-name>CRC Press</publisher-name>
</element-citation>
</ref>
<ref id="CR40">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wachal</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Szmyt</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Oszkinis</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Diagnosis and treatment of a patient with type IV endoleak as a late complication after endovascular aneurysm repair</article-title>
<source>Videosurgery Miniinvasive Tech</source>
<year>2014</year>
<volume>9</volume>
<fpage>667</fpage>
<lpage>670</lpage>
<pub-id pub-id-type="doi">10.5114/wiitm.2014.47264</pub-id>
</element-citation>
</ref>
<ref id="CR41">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Webb</surname>
<given-names>AR</given-names>
</name>
</person-group>
<source>Introduction to biomedical imaging</source>
<year>2003</year>
<publisher-loc>Hoboken</publisher-loc>
<publisher-name>Wiley</publisher-name>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E57 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000E57 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4653131
   |texte=   Limb volume measurements: comparison of accuracy and decisive parameters of the most used present methods
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:26618096" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a LymphedemaV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024